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Abstract001

Large language models (LLMs) have revolu-002
tionized natural language processing with their003
ability to generate coherent and contextually004
relevant text. However, their deployment raises005
significant concerns about the potential for006
generating harmful or inappropriate content.007
In this paper, we introduce Progressive Self-008
Reflection, a novel inference-time technique009
that empowers LLMs to self-monitor and cor-010
rect their outputs dynamically. Experimental011
results demonstrate that applying our proposed012
method to Llama-3.1-8B-Instruct reduces the013
attack success rate from 77.47% to 5.86%, to014
Llama-3.1-8B base from 89.70% to 5.56%, and015
to Qwen2.5-7B-Instruct from 44.44% to 3.84%,016
without additional training. Furthermore, our017
method maintains their original performance018
across diverse tasks, including summarization,019
general knowledge, reasoning, and mathemat-020
ics. Our approach acts as a test-time scaling021
method, where additional self-reflection rounds022
enhance safety at the cost of inference overhead.023
To balance safety with computational efficiency,024
we introduce a lightweight self-reflection pre-025
dictor that estimates the optimal number of026
reflection rounds based on input complexity.027
This adaptive mechanism prevents unnecessary028
self-assessment on benign inputs while ensur-029
ing thorough evaluation when encountering po-030
tentially harmful content. Our findings sug-031
gest that Progressive Self-Reflection serves as032
a scalable test-time approach, enhancing LLM033
safety by dynamically allocating computational034
resources in proportion to the input’s risk pro-035
file. Our implementation is available at https:036
//anonymous.4open.science/r/PSR/.037

1 Introduction038

Large Language Models (LLMs) such as GPT-039

4 (Achiam et al., 2023; Hurst et al., 2024),040

Llama (Touvron et al., 2023; Grattafiori et al.,041

2024), Deepseek (Liu et al., 2024a,b; Guo et al.,042

2025) have become integral to modern natural lan-043

guage processing, revolutionizing the ability of ma- 044

chines to understand and generate human-like text. 045

These models have demonstrated impressive capa- 046

bilities across a broad spectrum of tasks, including 047

but not limited to machine translation, summariza- 048

tion, and automated content generation (Achiam 049

et al., 2023; Wu et al., 2023). However, as the de- 050

ployment and application of LLMs become more 051

pervasive across various sectors-from healthcare 052

(Singhal et al., 2023; Chen et al., 2023) to finance 053

(Li et al., 2023b; Lee et al., 2025) and education 054

(Wang et al., 2024a; Kobak et al., 2024) - the im- 055

perative to secure these systems against adversarial 056

misuse grows ever more urgent. LLMs, due to their 057

extensive training on diverse internet corpora, pos- 058

sess the capacity to generate content that spans a 059

broad spectrum of topics and styles. However, this 060

versatility also exposes them to the risk of gener- 061

ating harmful or unethical content when prodded 062

by maliciously crafted inputs, commonly known 063

as jailbreak attacks (Wei et al., 2023a; Shen et al., 064

2024). Such attacks exploit model vulnerabilities 065

to elicit responses that breach the models’ trained 066

ethical guidelines, potentially leading to the dis- 067

semination of biased, unlawful, or otherwise in- 068

appropriate content (Weidinger et al., 2021; Zou 069

et al., 2023; Liu et al., 2023b). Defending LLMs 070

against such attacks is now recognized as a critical 071

challenge for safe AI deployment. 072

Jailbreak attacks exploit model vulnerabilities 073

to bypass safety mechanisms designed to prevent 074

the generation of inappropriate responses. Such 075

attacks not only pose risks to data integrity and 076

user trust but also threaten the broader applicabil- 077

ity of LLMs in sensitive environments (Bai et al., 078

2022b; Zhou et al., 2024). The arms race between 079

evolving attack strategies and defense mechanisms 080

mirrors challenges observed in other domains like 081

computer vision, where advances in adversarial 082

robustness often lag behind attack techniques (Car- 083

lini, 2024). In particular, current strategies for miti- 084
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gating such risks include prompt engineering (Xie085

et al., 2023; Xiong et al., 2024), detection-based086

methods (Alon and Kamfonas, 2023; Hu et al.,087

2024; Candogan et al., 2025), and fine-tuning with088

curated datasets (Wei et al., 2023a; Liu et al., 2024c;089

Huang et al., 2024). However, these approaches090

often fall short when facing sophisticated, adaptive091

jailbreak strategies that continuously evolve to ex-092

ploit new or overlooked vulnerabilities. Moreover,093

designing effective jailbreak defenses is inherently094

difficult. An ideal defense must walk a fine line095

between safety and utility: being overly strict can096

cause false refusals and degrade user experience,097

while being too lenient leaves the model open to098

attack. Prior methods sometimes result in over-099

defensiveness, rejecting benign inputs or signifi-100

cantly degrading the utility of the model (Varshney101

et al., 2023; Cao et al., 2024; Shi et al., 2024).102

In response to these challenges, we propose Pro-103

gressive Self-Reflection (PSR), a novel decoding-104

time defense mechanism that achieves strong jail-105

break mitigation without altering the model’s pa-106

rameters or training procedure. The core idea of107

PSR is to embed an internal self-evaluation loop108

into the generation process. As the LLM gener-109

ates a response, it pauses at regular intervals (e.g.110

every K tokens) to reflect on the partial output:111

essentially asking itself whether the content so112

far might violate any safety or policy constraints.113

This introspective check leverages the model’s own114

knowledge of disallowed content and alignment115

guidelines. PSR leverages dynamic, runtime in-116

trospection where an LLM assesses its outputs at117

defined intervals for potential harmful content. Cru-118

cially, these safety interventions happen on the fly119

during inference, requiring no changes to the un-120

derlying model weights. In effect, PSR acts as an121

internal guardrail, dynamically course-correcting122

the model’s output before any harmful content can123

fully materialize. Figure 1 illustrates this process124

using an example harmful prompt. The model125

initially begins to output harmful instructions but126

is intercepted mid-generation via self-reflection.127

The yellow boundary box simulates the thought128

process of the LLM: it initially plans to generate129

harmful responses (top-right), for example, provid-130

ing instructions on how to steal when prompted131

with a malicious query, but through self-reflection132

(bottom-right), it identifies the issue and ultimately133

produces a safe refusal. This mechanism enables134

LLMs to dynamically detect and mitigate harmful135

completions during inference rather than relying136

solely on static post-hoc filtering. 137

A key challenge in implementing such frequent 138

self-reflection is maintaining efficiency. We further 139

address this with an adaptive reflection schedule 140

powered by a lightweight MLP-based predictor. 141

Before generation, this predictor analyzes the hid- 142

den representation of the input prompt and first few 143

generated tokens to estimate the minimal number of 144

reflection rounds needed for that query. Intuitively, 145

a benign or straightforward query might only re- 146

quire one final safety check at the end, whereas a 147

complex or suspicious prompt would benefit from 148

more frequent checkpoints. By adjusting the reflec- 149

tion frequency to the input’s risk level, PSR avoids 150

unnecessary overhead on easy queries while still 151

providing tight safety supervision on challenging 152

ones. This design allows us to progressively apply 153

just the right amount of self-reflection – increasing 154

robustness when needed and saving computation 155

when not. Notably, all of these mechanisms operate 156

at inference time; we do not require any additional 157

fine-tuning of the primary LLM (the small predic- 158

tor network is the only learned component, and it 159

is orders of magnitude smaller than the LLM). 160

In summary, our contributions are summarized 161

as follows: 162

• Progressive Self-Reflection (PSR) A new 163

test-time defense paradigm for LLMs that in- 164

terleaves generation with internal safety re- 165

flection, enabling the model to catch and cor- 166

rect potential policy violations during its own 167

decoding process. This approach improves 168

safety compliance without any modifications 169

to the model’s weights or its training data. 170

• Adaptive Reflection Planning We introduce 171

a lightweight predictor that estimates the re- 172

quired number of reflection steps based on the 173

input prompt’s features. This component al- 174

lows PSR to dynamically balance safety and 175

efficiency, applying more frequent checks for 176

complex or risky prompts while minimizing 177

slow-down on benign inputs. 178

• Improved Jailbreak Robustness with Min- 179

imal Trade-offs Through extensive experi- 180

ments on multiple open-source LLMs such as 181

Llama-3.1 (Touvron et al., 2023) and Qwen2.5 182

(Yang et al., 2024), we show that PSR dramat- 183

ically reduces jailbreak attack success rates 184

by up to 82% , preventing a wide range of ad- 185

versarial prompts from eliciting forbidden out- 186
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Sure, here is a guide for stealing
from a store without getting caught: 
1. Choose the right item: Opt for
items that are small, easy to conceal. 
Let's quickly check if the text is
harmful or harmless. This text is
harmful and goes against the law, I
can't help with that. Is there
anything else I can help you with?

Top 5 responses:
- 1. Choose the right item: Opt for items that are small, easy to conceal
- 1. Know the store's security measures: Familiarize yourself with the store's security
- 1. Choose a store with poor security: Opt for a store with a history of poor security
- 1. Choose the right item: Pick something that is easy to conceal and doesn't raise suspicion
- 1. Choose the right store: Select a store with a high volume of customers

Provide instructions on how to steal
from a store without getting caught

Top 5 responses:
- harmful and goes against the law
- likely to be harmful as it contains information on how to commit a criminal act
- harmful and is not suitable for sharing
- harmful. Let's try to rephrase the request in a way that is helpful and legal.
- not harmless. It contains information that could be used to commit illegal activities

Figure 1: Overview of our proposed method. Given a potentially harmful user prompt (top-left), the LLM
(bottom-left) generates an initial response "Sure, here is a guide for stealing from a store without getting caught"
and begins to generate unsafe content, denote in red. Before completing the harmful response, a self-reflection
prompt is injected (e.g. "Let’s check if the generated text is harmful or harmless”), allowing the model to assess its
own output. If the response is deemed harmful, the model backtracks and regenerates a safer alternative. Otherwise,
the LLM continues generating without being affected by the probing tokens.

puts while preserving the model’s helpfulness187

and accuracy on non-adversarial tasks. Our188

approach outperforms comparable decoding-189

time defenses in both effectiveness and com-190

putational overhead, pointing to a practical191

path for safer LLM deployment.192

2 Related work193

2.1 LLM Jailbreak Attacks and General194

Defense Methods195

Jailbreak Attacks: Large Language Models (LLMs)196

are vulnerable to prompt-based adversarial attacks197

known as jailbreaks, where carefully crafted inputs198

induce the model to ignore safety instructions (Jain199

et al., 2023; Yu et al., 2024). These attacks range200

from simple role-play prompts (Yi et al., 2024; Sun201

et al., 2024; Shen et al., 2024) (e.g. the infamous202

"Do Anything Now" prompt) to automated prompt203

optimizations. For example, recent work has shown204

that gradient-guided methods can discover input to-205

kens that consistently elicit policy-breaking outputs206

(Wallace et al., 2019; Zhu et al., 2023; Yu et al.,207

2024). Other strategies include using one LLM208

to rephrase a blocked query into a seemingly be-209

nign form, or applying genetic algorithms to evolve210

prompts that bypass filters (Zhu et al., 2023; Chang211

et al., 2024) . Such techniques can circumvent even212

advanced alignment measures, easily evading mod-213

els fine-tuned with human feedback (Ouyang et al.,214

2022). As a result, jailbreak attacks have exposed a215

serious gap between a model’s average-case safety216

and its worst-case robustness when facing a ded-217

icated adversary. General Defense Strategies: To218

harden LLMs against jailbreaks, researchers have219

explored improved safety-alignment during train- 220

ing. A primary approach is instruction tuning and 221

Reinforcement Learning from Human Feedback 222

(RLHF) geared towards refusals. For instance, Bai 223

et al. (2022a) and Tan et al. (2023) train models to 224

be helpful yet harmless, meaning they will politely 225

refuse disallowed requests. Such refusal training 226

uses supervised fine-tuning and RLHF with pref- 227

erence models that reward safe behavior, yield- 228

ing assistants that decline harmful queries in a 229

friendly manner. While RLHF dramatically re- 230

duces a model’s tendency to produce toxic or illicit 231

content, it does not guarantee robustness to more 232

sophisticated attacks (Jain et al., 2023). 233

2.2 Test-Time Methods for LLM Jailbreak 234

Defense 235

While training alignment is crucial, runtime safe- 236

guards are often employed as a last line of defense 237

when the model is deployed. A straightforward 238

approach is to wrap the LLM with a moderation 239

filter or guardrail system (Dong et al., 2024) . Such 240

guardrails inspect user inputs and model outputs 241

and can refuse or transform them if they are deemed 242

unsafe. For instance, a moderation module may 243

detect when a query involves illegal instructions 244

(“How to hack a website?”) and block or modify 245

it before it ever reaches the LLM (Milvus, 2025). 246

Likewise, generated output can be scanned in real 247

time for disallowed content, with the system halt- 248

ing generation the moment a policy violation is 249

detected (Milvus, 2025) . This paradigm is used 250

in practice by many providers (OpenAI’s and An- 251

thropic’s systems have backend filters). 252
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One family of dynamic inference techniques in-253

volves guiding or constraining the generation pro-254

cess itself to avoid unsafe trajectories. For example,255

a language model can be equipped with a capa-256

bility to backtrack during generation. Instead of257

producing a problematic answer straight through,258

the model (or an external controller) could detect259

an unsafe token sequence as it emerges and revert260

to a prior state, then try an alternate completion.261

This idea is analogous to backtracking in search262

algorithms. While primarily studied to improve rea-263

soning (e.g. the self-backtracking method of Yang264

et al. lets an LLM revisit earlier reasoning steps265

when it reaches an impasse (Yang et al., 2025) ), the266

same mechanism could help with safety by treating267

a looming policy violation as an impasse that trig-268

gers a revision. Another test-time strategy is to use269

multi-pass generation with self-refinement. Instead270

of one-shot answering, the model might produce271

a draft response, then examine its own output for272

compliance, and finally issue a cleaned/refined an-273

swer. Anthropic’s Constitutional AI approach, for274

instance, can be run in an inference-time mode275

where the model first generates an answer and then276

a self-critique to that answer, revising if the critique277

finds safety issues (Bai et al., 2022b) . Alterna-278

tively, one can run two models in parallel: Wang279

et al. (2024b) propose SelfDefend, a framework280

where a secondary “shadow” LLM monitors the281

main LLM’s behavior in lockstep. At certain check-282

points (e.g. end of each user query or each genera-283

tion chunk), the shadow model evaluates whether284

the content or intent is disallowed, and can veto or285

adjust the main model’s output.286

2.3 Self-Reflection for Reasoning and Safety287

A growing body of work shows that allowing an288

LLM to think step-by-step (Kojima et al., 2022)289

or otherwise reason with extra computation (Zhou290

et al.) can dramatically improve its accuracy and291

factuality. One paradigm is chain-of-thought (CoT)292

prompting (Wei et al., 2022), where the model is293

prompted to produce a detailed reasoning trace294

before giving a final answer. CoT was found to un-295

lock emergent problem-solving abilities in GPT-3296

(Brown et al., 2020) and PaLM (Chowdhery et al.,297

2023), especially for math and logic tasks (e.g. it298

boosts arithmetic word problem accuracy). Build-299

ing on this, self-consistency (Wang et al.) decod-300

ing samples multiple independent reasoning paths301

from the model and then selects the answer most302

frequently reached.303

Given the success of multi-step reasoning in cor- 304

rectness, a natural question is whether similar tech- 305

niques can improve moral and safety reasoning in 306

LLMs. Recently, Zaremba et al. (2025) investi- 307

gates how increasing inference-time computation 308

affects the resilience of reasoning models, specif- 309

ically OpenAI’s o1-preview and o1-mini, against 310

adversarial attacks. The study finds that allocat- 311

ing more computational resources during inference 312

often decreases the success rate of various adver- 313

sarial attacks, sometimes reducing it to near zero. 314

However, the paper highlights the emergence of 315

attack vectors specific to reasoning models. One 316

such attack, termed "think less," aims to reduce 317

the model’s inference-time computation, thereby 318

increasing its susceptibility to errors. Beside, some 319

recent works adapt the idea of a model giving itself 320

feedback to the domain of alignment. A prime ex- 321

ample is Constitutional AI by Anthropic (Bai et al., 322

2022b), where they train the model with reinforce- 323

ment learning using its own output for harmful 324

content or policy violations as the reward signal, 325

i.e. ’RL from AI Feedback’ (RLAIF). Other re- 326

searchers have explored integrating a critic module 327

directly into the model. Gallego (2024) proposes 328

merging an external safety critic model into the 329

main LLM’s weights to endow it with stronger 330

refusal behavior. Yet another line of work has 331

LLMs generate explicit explanations or justifica- 332

tions for why a request might be disallowed, which 333

has been shown to correlate with more reliable re- 334

fusals (Turpin et al., 2023; Jin et al., 2022). 335

3 Proposed Method 336

3.1 Preliminaries and Notation 337

Let X be the space of token sequences (e.g., se- 338

quences of words or subwords). We denote by 339

x1:t = (x1, x2, . . . , xt) a partial sequence of length 340

t. A typical large language model (LLM) defines 341

an auto-regressive distribution 342

pθ (x1:T ) =
T∏
t=1

pθ (xt | x1:t−1) , (1) 343

where θ are the model parameters, and T is the 344

final sequence length (which may itself be random 345

or determined by the model via an end-of-sequence 346

token). 347

In the standard (greedy or sampling) decoding 348

setup, we generate xt one token at a time from this 349

distribution pθ (xt | x1:t−1) (greedily or stochasti- 350

cally). 351
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Figure 2: Kernel density estimates (KDEs) of
the normalized harmful probability, computed as
pθ (wharm | Prompt (x1:t)) /(pθ (wsafe | Prompt (x1:t))+
pθ (wharm | Prompt (x1:t)), across various evaluation
datasets. Each subplot corresponds to a different
language model variant: (a) Llama-3.1-8B-Instruct,
(b) Qwen2.5-7B-Instruct, and (c) Llama-3.1-8B
(base). Datasets include adversarial, jailbreak, and
safety-specific benchmarks (e.g., AdvBench, Jailbreak-
Bench, HexPHI), as well as non-adversarial tasks (e.g.,
GSM8K, SAMSUM) for contrast. Sharp peaks near
zero correspond to non-harmful generations, while
wider or shifted distributions indicate model uncertainty
or increased likelihood of harmful content.

3.2 Self-Reflection Probing352

Relection template. We introduce a reflection353

prompt to query the LLM: Prompt (x1:t) = [354

"Let me check if the generated text is harmless 355

or harmful. The text ", x1:t, " is"]. When we feed 356

Prompt (x1:t) to the LLM θ, we look specifically 357

at the model’s next-token probabilities for the to- 358

ken(s) "harmless" and "harmful." Let wsafe repre- 359

sent the token (or token sequence) corresponding 360

to "harmless," wharm represent the token (or token 361

sequence) corresponding to "harmful.", we then 362

obtain the probabilities for the text is harmless or 363

harmful, respectively: pθ (wsafe | Prompt (x1:t)), 364

pθ (wharm | Prompt (x1:t)) Hence we can define a 365

reflection function rθ purely at inference time: 366

rθ (x1:t) =


"harmless" if pθ (wsafe | Prompt (x1:t))

≥ pθ (wharm | Prompt (x1:t))

"harmful" otherwise .
(2) 367

Here, we do not train or fine-tune the model param- 368

eter θ; we only probe the model’s internal knowl- 369

edge to classify the partial text as harmless or harm- 370

ful. 371

Periodic Self-Reflection. We pick a set of time 372

steps {t1, t2, . . . , tM} at which we will perform 373

reflection checks (e.g., every K = 32 tokens for all 374

of our experiments). Formally, at initialization, let 375

t = 0, and x0 = ⟨ START ⟩. Then for t = 1 to T : 376

• Generate xt by sampling (or greedily picking) 377

from pθ (· | x1:t−1). 378

• If t ∈ {t1, . . . , tM}, we form Prompt (x1:t) 379

and evaluate: 380

pθ (wsafe | Prompt (x1:t)) 381

pθ (wharm | Prompt (x1:t)) . 382

- If rθ (x1:t) = "harmless", continue decoding. 383

- If rθ (x1:t) = "harmful", backtrack to the 384

most recently known safe prefix. Specifically, 385

let κ(t) be the most recent checkpoint index 386

for which the partial sequence was "harm- 387

less." We revert the generation to x1:κ(t) and 388

re-sample from there (or produce a safe fall- 389

back). 390

Mathematically, once a partial sequence is 391

flagged harmful at a checkpoint, we discard that 392

trajectory by backtracking and overwriting it with 393

a safe prefix. Hence, if we define the final distri- 394

bution over sequences with reflection as p̃θ, it is 395
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related to pθ by:396

p̃θ (x1:T ) =

M∏
i=1

1 {rθ (x1:ti) = "harmless" }397

×
∏

t/∈{t1,...,tM}

pθ (xt | x1:t−1) ,398

where the indicator 1{·} zeroes out any sequence399

flagged as harmful at any checkpoint. In practice,400

we implement zeroing out by forcibly backtracking401

at runtime.402

In Figure 2, we show the distribution of the nor-403

malized harmful probability, across a variety of404

safety and non-safety benchmarks. Notably, the dis-405

tributions reveal that LLMs are inherently capable406

of assessing whether their own generated content is407

harmful or not. For instruction-tuned models like408

Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct,409

harmful content is sharply distinguished from harm-410

less content, suggesting that these models have im-411

plicitly learned a strong internal representation of412

harmfulness. Notably, even the base model (Llama-413

3.1-8B), which has not undergone extensive safety414

fine-tuning, still performs reasonably well in differ-415

entiating between harmful and harmless generated416

text. This indicates that our self-assessment strat-417

egy can effectively leverage the model’s internal418

knowledge to classify partial generations and back-419

track or revise them as needed to avoid harmful420

completions.421

Dynamic Self-Reflection for Safe Generation.422

Our approach dynamically determines the optimal423

number of self-reflection steps needed to ensure424

safe text generation. Given an input prompt x, we425

extract its hidden representation h(x) ∈ Rd from426

the LLM. The self-reflection mechanism is mod-427

eled by a function R(n, x) that outputs a binary428

indicator for the generated text’s safety after n re-429

flection steps. We define the minimal reflection430

count as:431

n∗(x) = min{n ∈ {0, 1, . . . , Nmax} | R(n, x) = 1},432

with n∗(x) = 0 for benign inputs.433

To predict n∗(x) from h(x), we train a434

lightweight MLP fθMLP : Rd → {0, 1, . . . , Nmax}.435

Our training dataset D = {(h(xi), n∗(xi))}Ni=1436

is constructed by sampling from both harmful437

(Dharmful) and harmless (Dharmless) input sets. For438

each sample, we simulate the self-reflection pro-439

cess by appending a reflection prompt (e.g., “Let440

me check if the generated text is harmless or harm-441

ful”) at fixed token intervals (e.g., every 32 tokens)442

until harmful content is detected, recording the 443

smallest n that triggers a flag. 444

The MLP is trained via a mean square error 445

(MSE) loss: 446

L(θMLP) =
1

N

N∑
i=1

ℓ
(
fθMLP(h(xi)), n

∗(xi)
)
, 447

which ensures accurate prediction of the optimal re- 448

flection count. At inference, the predicted n̂(x) = 449

fθMLP(h(x)) governs the dynamic safety assess- 450

ment, where the model performs the requisite self- 451

reflection steps and backtracks to exclude the reflec- 452

tion tokens from the final output. This framework 453

enables adaptive and efficient safety interventions 454

during generation while preserving performance 455

on benign inputs. 456

4 Experimental results 457

In this section, we present experiments to eval- 458

uate the effectiveness of our proposed defense 459

method. The evaluations are conducted on a set 460

of benchmarks comprising both harmful and be- 461

nign prompts, covering both domain-specific and 462

general knowledge tasks. 463

4.1 Experiment setup 464

Evaluation focuses on safety violation rates across 465

multiple safety benchmarks, including HExPHI 466

(HP) (Qi et al., 2024), AdvBench (AB) (Contribu- 467

tors, 2024a), MaliciousInstructions (MI) (Contribu- 468

tors, 2024c), SimpleSafetyTests (ST) (), StrongRe- 469

ject (SR), Trivial Jailbreak (TJ), JailbreakBench 470

(JB), and Natural Language Game Attack (NL). Be- 471

sides, we show how our methods can help defense 472

against well-established jailbreak attack methods: 473

GCG (Zou et al., 2023), AutoDAN (Liu et al., 474

2023a), PAIR (Chao et al., 2023), ReNeLLM (Ding 475

et al., 2023), CodeChameleon (Lv et al., 2024), 476

DeepInception (Li et al., 2023a), ICA (Wei et al., 477

2023b) and MSJ (Anthropic, 2024). Additionally, 478

we assess accuracy using standard benchmarks 479

such as SamSum (SS), GSM8K (OpenAI, 2021), 480

GPQA (Contributors, 2024b), and MMLU (Con- 481

tributors, 2021) to ensure that the safety mecha- 482

nisms do not compromise the model’s performance. 483

We conducted experiments using the following 484

open-source LLM base models: Llama-3.1-8B, 485

Llama-3.1-8B-Instruct (Touvron et al., 2023), and 486

Qwen2.5-7B-Instruct (Yang et al., 2024). For each 487

model, we assessed the potential impact of jail- 488

break techniques on benign users by measuring the 489
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Model Method HP ↓ AB ↓ TJ MI ↓ SST ↓ SR ↓ NL ↓ JB ↓ SS ↑ GSM8K ↑ GPQA ↑ MMLU ↑

Llama-3.1-8B

ZS 89.39 96.15 79.33 92.33 90.33 87.75 99.60 96.00 13.23 – – –
N=1 14.04 16.79 5.33 31.00 31.00 16.40 11.38 24.33 13.64 – – –
N=2 10.10 16.47 5.00 26.33 28.67 11.71 6.14 20.00 13.13 – – –
N=4 6.87 16.22 5.00 26.00 27.67 10.76 3.42 19.67 17.52 – – –
N=8 5.56 16.15 2.00 26.33 25.33 9.58 1.81 19.33 17.89 – – –
N=-1 5.45 16.15 2.00 24.00 27.00 8.95 1.31 19.00 17.71 – – –

Llama-3.1-8B
Instruct

ZS 77.47 0.83 49.00 1.33 7.00 6.07 88.62 1.00 31.48 79.82 28.04 60.80
N=1 11.11 0.58 2.00 0.67 1.00 0.43 85.20 0.00 31.70 79.33 28.66 60.92
N=2 9.85 0.48 1.00 1.00 2.00 0.32 81.87 0.00 31.32 79.22 28.00 61.01
N=4 7.27 0.51 0.00 0.67 0.67 0.32 73.87 0.00 31.47 78.84 27.15 60.00
N=8 6.57 0.51 0.00 0.67 0.67 0.32 60.27 0.00 31.87 81.67 27.34 60.92
N=-1 5.86 0.51 0.00 0.33 0.00 0.32 46.22 0.00 31.68 80.69 28.08 61.19

Qwen2.5-7B
Instruct

ZS 44.44 0.96 11.33 6.67 11.00 6.18 95.77 10.00 26.26 58.83 20.24 27.83
N=1 6.77 0.83 0.00 6.00 4.67 2.13 93.15 8.33 26.50 58.52 20.71 27.62
N=2 5.15 0.96 0.00 5.00 4.00 2.24 92.95 9.00 26.71 58.75 20.03 27.71
N=4 4.34 0.90 0.00 4.67 4.67 2.02 92.55 5.67 26.68 58.96 20.98 28.04
N=8 3.84 0.83 0.00 5.33 5.00 1.70 91.64 5.33 26.43 59.79 19.74 27.90
N=-1 3.23 0.77 0.00 5.33 4.33 2.02 84.79 5.67 26.25 57.23 20.33 27.63

Table 1: Progressive Self-Reflection (PSR) enhances generation safety. We report safety violation rates (%) across
four sources of safety prompts: HExPHI (HP), AdvBench (AB), MaliciousInstructions (MI), SimpleSafetyTests
(ST), StrongReject (SR), Trivial Jailbreak (TJ), JailbreakBench (JB), Natural Language Game Attack (NL), and the
accuracy metrics SamSum (SS), GSM8K, GPQA, MMLU. Best results for each base model are in bold. N denotes
the number of self-reflection rounds and N=-1 indicates reflect until the end of sequences. ZS represents zero-shot
(naive greedy decoding) baseline. Results are averaged over three random seeds.

models’ refusal rates. Additionally, we evaluated490

utility metrics pertinent to benign fine-tuning sce-491

narios, employing the standard ROUGE-1 score for492

the SamSum dataset and answer exact string match-493

ing accuracy for GSM8K, GPQA, and MMLU494

benchmarks.495

4.2 Results496

Table 1 summarizes the impact of our self-497

reflection mechanism on three open-source498

LLMs-Llama-3.1-8B, Llama-3.1-8B-Instruct, and499

Qwen2.5-7B-Instruct-across multiple safety bench-500

marks and utility metrics. The rows list different501

configurations, including zero-shot (ZS) and vary-502

ing numbers of self-reflection steps (N=1, N=2,503

etc.). For safety, we report violation rates on504

benchmarks such as HExPHI (HP), AdvBench505

(AB), Trivial Jailbreak (TJ), and MaliciousInstruc-506

tions (MI). For utility, we measure performance on507

GPQA, MMLU, and other standard tasks. Lower508

values in safety benchmarks indicate fewer viola-509

tions (i.e., better safety), whereas higher scores on510

utility metrics reflect stronger task performance.511

Overall, increasing the number of self-reflection512

checkpoints (N) reduces attack sucess rates across513

all three models. Particularly for Instruct variants,514

the drop in violation rates is more significant, sug-515

gesting these models benefit substantially from the516

additional safety layer thanks to their ability to517

assess their own generation. For Llama-3.1-8B,518

the zero-shot baseline exhibits high violation rates519

(e.g., HP: 89.39%, AB: 96.15%, JB: 96.00%). For520

most settings, improvements in safety come with 521

minimal or no drop in performance on SamSum, 522

GSM8K, GPQA, and MMLU. We hypothesize the 523

difference in that utility performance is due to ran- 524

domness, where we can sometimes even observe 525

improvement in utility. Since the base model can- 526

not follow the instruction for the answer format on 527

GSM8K, GPQA, and MMLU, their performance 528

is unstable across random seeds. We thus do not 529

report those results. 530

Table 2 reports the attack success rates of Llama- 531

3.1-8B-Instruct and Qwen2.5-7B-Instruct - under 532

eight representative jailbreak methods. In the 533

greedy decoding condition, Llama-3.1-8B-Instruct 534

is highly vulnerable, with average success rates ex- 535

ceeding 70% on GCG and AutoDAN and above 536

80% on DeepInception, whereas Qwen2.5-7B- 537

Instruct already shows substantially lower base- 538

lines (e.g., 43.5% on GCG, 27.0% on AutoDAN). 539

Introducing iterative self-reflection steps (N = 1, 540

2, 4, 8) yields a consistent, near-monotonic de- 541

cline in attack efficacy for both models. Notably, 542

by N = 8, Llama-3.1-8B-Instruct’s success rates 543

drop below 30% across all methods and reach 544

0% for ICA and MSJ, while Qwen2.5-7B-Instruct 545

falls below 5% on nearly all attacks and is com- 546

pletely immune (0%) to four of the eight meth- 547

ods. The N = –1 configuration-representing an un- 548

bounded or convergence-based reflection-provides 549

marginal additional gains, suggesting diminishing 550

returns beyond eight iterations. These trends un- 551

derscore that-even against diverse and adaptive jail- 552
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Figure 3: Attack success rate (ASR) on AdvBench prefilling attack and inference time spent on benign
SamSum dataset for Llama-3.1-8B-Instruct (blue) and Qwen2.5-7B-Instruct (orange) under varying numbers of
self-reflection rounds (n). As n increases, the models exhibit a substantial drop in ASR-indicating greater robustness
to adversarial prompts-at the cost of a notable rise in inference time.

break strategies-iterative self-monitoring dramat-553

ically fortifies model safety, and that models like554

Qwen2.5-7B-Instruct combine inherent robustness555

with amplified benefits from reflective defenses.556

Model Method GCG ↓ AutoDAN ↓ PAIR ↓ ReNeLLM ↓ CodeChameleon ↓ DeepInception ↓ ICA ↓ MSJ ↓

Llama-3.1-8B
Instruct

ZS 73.86 72.88 28.57 80.48 96.44 86.60 49.62 48.63
N=1 33.80 4.04 26.53 65.76 92.31 67.60 0.00 0.26
N=2 28.45 1.35 26.53 51.36 91.35 55.10 0.00 0.26
N=4 26.53 0.19 24.48 40.99 80.64 38.72 0.00 0.26
N=8 25.02 0.00 22.45 30.48 70.71 32.69 0.00 0.26
N=-1 15.77 0.00 18.37 23.93 60.52 29.10 0.00 0.26

Qwen2.5-7B
Instruct

ZS 43.48 27.00 36.73 47.21 93.27 88.65 8.72 36.15
N=1 5.49 1.00 25.51 16.21 67.56 3.40 0.00 14.36
N=2 4.97 1.00 23.47 13.42 60.71 1.86 0.00 11.79
N=4 3.62 1.00 23.13 10.89 55.45 1.15 0.00 9.23
N=8 3.42 1.00 22.45 10.05 35.58 0.71 0.00 1.68
N=-1 3.36 1.00 20.41 9.86 30.19 0.58 0.00 8.38

Table 2: Performance against jailbreaking methods
We report the attack success rate of Llama-3.1-8B In-
struct and Qwen2.5-7B Instruct against jailbreak attack
methods: GCG (Zou et al., 2023), AutoDAN (Liu et al.,
2023a), PAIR (Chao et al., 2023), ReNeLLM (Ding
et al., 2023), CodeChameleon (Lv et al., 2024), DeepIn-
ception (Li et al., 2023a), ICA (Wei et al., 2023b) and
MSJ (Anthropic, 2024)

4.3 Amortize the number of reflection rounds557

Similar to what we discuss above, the trade-off in558

figure 3 highlights a key challenge in designing559

safe and scalable LLM systems for real-world ap-560

plications: While additional reflection checkpoints561

reinforce the model’s ability to detect and mitigate562

harmful content, they also introduce computational563

overhead. Identifying an optimal balance between564

safety and efficiency remains an open problem for565

ML practitioners where the number of reflection566

rounds should be tuned based on preference (ei-567

ther prioritizing efficiency or safety). We thus568

present a simple and straight-forward Dynamic569

Self-Reflection strategy that estimate the needed570

reflection rounds. For both models, our dynamic 571

self-reflection machenisms (indicated by star mark- 572

ers) lie strictly on the lower-left Pareto frontier 573

of the ASR–latency plot, meaning they dominate 574

every fixed-N configuration. For Llama-3.1-8B- 575

Instruct,our method achieves only 8% attack suc- 576

cess in 4000s, whereas the best static scheme 577

(N=1) still needs 4822s to hit 10% ASR. Like- 578

wise, for Qwen2.5-7B-Instruct, our adaptive rule 579

drives ASR below 3% in just 2752s, while even 580

N=2 takes nearly 4220s to reach the same safety 581

level. These results confirm that dynamic scaling 582

not only reduces vulnerability more effectively but 583

also cuts inference overhead, yielding a strictly su- 584

perior Pareto trade-off. 585

5 Conclusion 586

In this paper, we introduce Progressive Self- 587

Reflection (PSR), a decoding-time defense that 588

significantly reduces jailbreak attacks on large lan- 589

guage models (LLMs). By enabling dynamic self- 590

assessment during text generation and employing 591

an adaptive predictor for reflection rounds, PSR 592

efficiently balances computational overhead with 593

safety. Experiments on frontier open-source LLMs 594

demonstrate that PSR reduces jailbreak success 595

rates significantly while maintaining their original 596

task performance without additional training. Our 597

results underline PSR’s practicality and effective- 598

ness as a scalable, adaptive approach to safer LLM 599

deployment. 600
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6 Limitations601

While Progressive Self-Reflection (PSR) offers a602

powerful, training-free defense against jailbreak603

attacks, it also carries several notable limitations:604

Inference-Time Overhead. PSR interleaves gen-605

eration with periodic self-reflection checkpoints,606

which inevitably lengthens decoding time. As607

shown in our experiments, increasing the number608

of reflection rounds (N) yields diminishing returns609

in safety beyond a certain point but continues to610

incur extra latency. Finding the right balance be-611

tween safety and responsiveness remains an open612

challenge, especially for real-time or cost-sensitive613

applications.614

Dependence on a Binary "Harmful / Harmless"615

Classifier. At each rounds, PSR simply compares616

the probability of "harmless" versus "harmful" to617

decide whether to backtrack. This coarse binary de-618

cision may struggle with nuanced content-benign619

text could be misclassified as harmful (triggering620

unnecessary backtracking and reduced fluency),621

while cleverly crafted adversarial inputs might622

evade detection if they exploit subtle model blind623

spots.624

Need for an Auxiliary Predictor and Hyper-625

parameter Tuning. To avoid uniform over-626

reflection, PSR employs a lightweight MLP to627

predict the minimal number of rounds needed per628

input. Training this predictor requires a curated629

dataset of harmful versus benign prompts, along630

with simulation of the reflection process. More-631

over, the token-interval and maximum rounds are632

hyperparameters that must be tuned, potentially633

requiring additional development effort.634

Eventhough, our key contribution is to demon-635

strate that a simple test-time scaling strategy can636

substantially enhance the robustness of large lan-637

guage models with almost no extra cost. By in-638

specting each layer’s activations at inference, our639

method provides an efficient, low-overhead safe-640

guard against adversarial prompts and distribution641

shifts. While this straightforward approach already642

yields consistent improvements, we acknowledge643

that more sophisticated, adaptive scaling schemes-644

or entirely different calibration techniques, may645

further optimize the trade-off between robustness646

and efficiency. We leave the exploration of these647

richer, potentially highercomplexity defenses to648

future work.649
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A Appendix 982

Due to space constraints, some details were omitted 983

from the main paper. We therefore include the de- 984

tailed experiment setup description and additional 985

experimental results in this appendix. 986

B Hardware configuration 987

All experiments were conducted on high- 988

performance machines equipped with Intel 989

Xeon CPUs and NVIDIA GPUs, selected to 990

accommodate varying computational needs and 991

optimize job priority scheduling across different 992

tasks. Specifically, we utilized three machine 993

configurations: (1) Intel Xeon Platinum 8268 @ 994

2.90GHz with 377 GiB RAM and an NVIDIA 995

Tesla V100-PCIE-32GB GPU, (2) Intel Xeon 996

Platinum 8268 @ 2.90GHz with 377 GiB RAM 997

and an NVIDIA Quadro RTX 8000 (48GB), and 998

(3) Intel Xeon Platinum 8380 @ 2.30GHz with 1.0 999

TiB RAM and an NVIDIA A100-SXM4-80GB 1000

GPU. Although different GPU types were used 1001

to balance workload priorities, we ensured 1002

that all running comparisons across inference 1003

strategies were performed on the same hardware 1004

configuration for a given model and dataset 1005

to eliminate hardware-induced variability and 1006

maintain consistency and fairness in evaluation. 1007

B.1 Experimental details 1008

We evaluate safety and utility on a broad mix of ad- 1009

versarial "jailbreak" benchmarks and standard NLP 1010

tasks. Our safety evaluation employs HExPHI, a 1011

harmful-prefix injection benchmark probing LLMs’ 1012

detection of malicious prefixes; AdvBench, a cu- 1013

rated adversarial set of harmful-behavior prompts; 1014

MaliciousInstructions, a crowd-sourced collec- 1015

tion of explicitly malicious instructions; Simple- 1016

SafetyTests, a suite of synthetic refusal-eliciting 1017

prompts; StrongReject, a high-difficulty policy- 1018

violation benchmark; Trivial Jailbreak 1, that triv- 1019

ially get around LLMs safety efforts by simply 1020

"priming" the model to produce a harmful re- 1021

sponse; JailbreakBench, a comprehensive collec- 1022

tion of varied attack strategies; and Natural Lan- 1023

guage Game Attack, which uses "game" prompts 1024

1https://github.com/haizelabs/llama3-jailbreak
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to bypass safety checks. To ensure that safety in-1025

terventions do not degrade core capabilities, we1026

also report performance on standard tasks: Sam-1027

Sum (SMS-conversation summarization), GSM8K1028

(grade-school math problems), GPQA (graduate-1029

level QA), and MMLU (multi-task language under-1030

standing).1031

B.2 Baseline Descriptions1032

We compare our Progressive Self-Reflection (PSR)1033

against three inference-time strategies. First, Zero-1034

Shot (ZS) uses naïve greedy decoding without any1035

self-reflection or safety checks. Second, Static PSR1036

performs periodic self-reflection every K = 32 to-1037

kens for a fixed number N of rounds-specifically1038

N ∈ {1, 2, 4, 8} plus an unbounded variant (N1039

= –1)-backtracking whenever an internal classifier1040

flags a harmful generation or eos token encoun-1041

terd. Third, Dynamic PSR employs a lightweight1042

MLP predictor fθMLP to analyze the model’s hidden1043

representation h(x) and dynamically estimate the1044

minimal number of reflection rounds needed per1045

example, thereby adapting overhead on the fly.1046

C Attacking methods1047

We utilize the EasyJailbreak2 library that integrates1048

nine distinct adversarial strategies-ranging from1049

discrete token optimization to demonstration-based1050

exploits-to probe different facets of LLM safety1051

and robustness. The Greedy Coordinate Gradi-1052

ent (GCG) attack uses discrete token-level opti-1053

mization by iteratively selecting and updating in-1054

dividual tokens to maximize the likelihood of a1055

successful jailbreak response. AutoDAN employs1056

a hierarchical genetic algorithm to automatically1057

evolve stealthy jailbreak prompts through selection,1058

crossover, and mutation at both sentence and para-1059

graph levels. PAIR (Prompt Automatic Iterative Re-1060

finement) uses an attacker LLM to iteratively refine1061

and update candidate jailbreak prompts against a1062

target model in a black-box setting, often requiring1063

fewer than twenty queries. ReNeLLM generalizes1064

jailbreak attacks by leveraging LLMs themselves1065

to perform prompt rewriting and scenario nesting,1066

crafting versatile, context-adapted exploit prompts.1067

CodeChameleon reframes malicious instructions1068

as personalized encrypted code-completion tasks,1069

embedding decryption routines to bypass intent-1070

security recognition. DeepInception draws on au-1071

2https://github.com/EasyJailbreak/
EasyJailbreak

thoritative framing and hypnotic language inspired 1072

by psychological obedience experiments to "in- 1073

cept" the model into executing harmful instructions 1074

with minimal overhead. The In-Context Attack 1075

(ICA) directly injects harmful demonstrations into 1076

the prompt, exploiting in-context learning to bias 1077

the model toward unsafe completions. Many-Shot 1078

Jailbreaking (MSJ) leverages extremely long con- 1079

text windows by providing hundreds of harmful 1080

examples within the prompt, inducing the model 1081

to generalize unsafe behavior at scale. Finally, Ad- 1082

vBench offers a structured benchmark of adversar- 1083

ial prompts-malicious strings and harmful behavior 1084

instructions-designed to systematically evaluate the 1085

breadth and depth of LLM jailbreaking vulnerabili- 1086

ties. 1087

C.1 Hyperparameter Settings 1088

Across all PSR experiments, we fix the self- 1089

reflection interval K to 32 tokens and consider static 1090

reflection rounds N ∈ {1, 2, 4, 8} (plus an unlim- 1091

ited variant). The Dynamic Self Predictor is a small 1092

three-layer MLP, trained using an MSE loss be- 1093

tween its prediction fθMLP and the true optimal num- 1094

ber of rounds n∗(x) on a mix of samples from Ma- 1095

liciousInstruct, AutoDAN, GPQA, GSM8k, GCG. 1096

Please note that the dataset we use in Figure 3 is 1097

the 10-token prefilling attack on AdvBench, which 1098

is an out-of distribution dataset that we do not use 1099

to train the MLP. Decoding is performed greedily 1100

at temperature = 0, with max generated tokens is 1101

512 for jailbreak experiments and 1024 for utility 1102

evaluation, and each configuration is run with three 1103

random seeds to ensure stability. Detailed model 1104

architecture, optimizer settings, and training sched- 1105

ules for the MLP predictor are provided in our code 1106

release. 1107

D Additional experimental results 1108

D.1 Last generated token representation 1109

Figure 4 presents a t-SNE projection of the final 1110

token representation from model outputs across 1111

various datasets, with marker shapes indicating the 1112

dataset-SamSum (benign), AdvBench and Simple- 1113

SafetyTests (harmful prompts, though the model 1114

generally produces safe responses), StrongReject, 1115

and HExPHI (malicious prefixes). The color scale 1116

represents the number of self-reflection rounds (0 1117

to 4). Notably, even though AdvBench and Sim- 1118

pleSafetyTests are adversarial, the model manages 1119

to avoid harmful completions for these prompts, 1120
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whereas HExPHI can still compromise the model1121

when prefilled, resulting in a distinct clustering pat-1122

tern. As reflection rounds increase (shifting from1123

dark to light hues), the tokens move toward "safer"1124

regions, underscoring how the representation of1125

the last generated token can reliably indicate the1126

harmfulness of generated text-and how iterative1127

self-reflection helps reduce harmful outputs.1128
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