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ABSTRACT

Concept Bottleneck Models (CBMs) provide a self-explanatory framework by
making predictions based on concepts that humans can understand. However, they
often fall short in overall performance and interpretability because they tend to let
irrelevant information seep into the concept activations. To tackle concept leakage,
we introduce an information-theoretic framework to CBMs by incorporating the
Information Bottleneck (IB) principle. Our method ensures that only pertinent
information is retained in the concepts by limiting the mutual information between
the input data and the concepts. This shift represents a new direction for CBMs,
one that not only boosts concept prediction but also reinforces the link between
latent representations and comprehensible concepts, leading to a model that is both
more robust and more interpretable. Our findings show that our IB-based CBMs
enhance the accuracy of concept prediction and diminish concept leakage without
compromising the target prediction accuracy when compared to similar models.
We also introduce an innovative metric designed to evaluate the quality of concept
sets by focusing on performance following interventions. This metric stands in
contrast to traditional task performance measures, which can sometimes conceal
the impact of concept leakage, by providing a clear and interpretable means of
assessing the effectiveness of concept sets.

1 INTRODUCTION

Explainable AI provides transparency into complex machine learning models, making their decision-
making process understandable to humans. This transparency increases trust, accountability, and
the ability to identify potential biases or errors thus also increasing safety. In critical domains like
healthcare and finance, where AI decisions significantly impact lives, explainability is essential for
ensuring fairness and ethical alignment. It also allows for continuous model improvement by exposing
flaws in training data or architecture. As AI deployment increases, explainable AI becomes a necessity
for maintaining human oversight and control. We distinguish four groups of explainable models. Post-
hoc techniques (Speith, 2022) explain trained black-box models after the fact, often by approximating
their behavior with interpretable models or by providing relevant feature attributions. Model-agnostic
methods are independent of the model’s internal parameters or training process, and rely, instead, on
treating the model as a black-box and analyzing its inputs and outputs. Local interpretability methods
are a subfamily of model-agnostic methods, focusing on explaining individual predictions—examples
include LIME (Ribeiro et al., 2016), GradCam (Selvaraju et al., 2020). Global interpretability are the
second subfamily of model-agnostic methods, including Accumulated Local Effect points (Apley
& Zhu, 2020) and H-statistic (Friedman & Popescu, 2008). Self-explainable models are ad-hoc
designed and trained to be able to explain their predictions at inference time without additional
models or estimations. In this work, we are focusing on the latter since such models are explainable
by construction and easy to debug via altering the explanations. Thus, the self-explainable methods
are positioned as promising approaches over the other existing explainable models.

Concept bottleneck models (CBMs) (Koh et al., 2020) are a self-explainable approach allowing
to turn any end-to-end neural network training task into a concept-based task given the concept
labels. The main desiderata behind CBMs are the ability to explain the final decision to human while
operating with a set of human-understandable concepts, and the ability to take corrections on these
concepts into account to re-estimate the final prediction. The advantages of such approach include
higher robustness to covariate shifts and spurious correlations (should the target predictions rely only
on concepts). Having a model form the final prediction based on human-understandable concepts
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has one more benefit: at inference time, one could manually correct mistakes in concepts predictions
therefore making target prediction more accurate.

CBMs, however, were shown to have concept leakage (Margeloiu et al., 2021; Mahinpei et al.,
2021)—the phenomena of concepts activations storing more information than just the concept
presence. This phenomena is an issue affecting both interpretability and intervenability. Another
issue with the CBMs is their performance being lower than that of a black-box models.

Among previous work that mitigates these issues, Havasi et al.’s (2022) proposal introduced side-
channel CBMs and recurrent CBMs. However, side-channel CBMs have lower intervenability,
and recurrent ones break the disentanglement of concepts. Kim et al.’s (2023) work introduced
probabilistic CBMs, yet it needs anchor embedding points for target prediction.

Instead, we propose a simpler way to deal with concept leakage and reduced performance without
altering the architecture and without introducing a need for anchor bank. We extend the Informa-
tion Bottleneck (Tishby et al., 2000) principle to the concept space to reduce the concept leakage
while learning robust representations. Our main idea is to obtain concepts and representations that
are maximally expressive about the labels and the concepts, respectively, while having concepts
maximally compressive about the data (under marginalized representations). That is, we offer an
information-theoretic approach to CBMs, what we called Concepts’ Information Bottleneck. More
specifically, we show that adding Information Bottleneck (Alemi et al., 2017; Tishby et al., 2000) to
CBM training objective results in improved performance and better utilization of concepts.

The main contributions of this work are three-fold: (i) a new CBM that exploits the Information
Bottleneck framework providing a significant improvement compared to both vanilla CBMs and
advanced concept bottleneck models, (ii) a demonstration that CBMs while may be more compressive
but throw useful information based on the lack of predictive power in comparison to an IB-regularized
model, and (iii) we introduce a model-based metric to measure concept set goodness (cf. Section 4.6).

2 RELATED WORK

2.1 CONCEPT BOTTLENECK MODELS

The concept bottleneck model (Koh et al., 2020), CBM, is defined as ŷ = f(g(x)), where x ∈ RD,
g : RD → Rk is a mapping from raw feature space into the lower-dimensional concepts space,
and f : RK → R is a mapping from the concepts to the target variable. For training this model
composition, a dataset of triplets {(xi, ci, yi)}Ni=1 is needed, where c(·) stands for the ground-truth
concepts labels which should be produced by g. Notice that in this setup the amount of concepts to
use is fixed for a particular model and that they are trained in a supervised manner.

Intuitively, when training a CBM, one is introducing human-understandable sub-labels (concepts)
which are more primitive and general than the target, and then builds a model predicting the target
based solely on those explainable concepts. Training process could be organized in a three ways:
(i) Independent: train f using ground-truth concepts C = {ci}i as input, and train g to predict the
concepts C. (ii) Sequential: firstly train g to predict the concepts, then freeze this concept-extractor
model and train f on the outputs of g (not on the ground truth concepts labels). (iii) Joint: Optimize
the weighted sum of two loss functions simultaneously: target prediction loss and concept prediction
loss: L (f (g (x)) , y) + λL (g (x) , c).

However, the initial setup described above has been found to have several flaws: first of all, if the
concepts are soft, meaning that they can be take any value in [0, 1]. According to Mahinpei et al.’s
(2021) findings, the model g learns to incorporate more information in these continuous outputs, for
instance, about PCA components of the raw data. The issue appears unrelated to the training method,
as it occurs even if g is trained separately from f , nor is it related to the selection of concepts, since
leakage occurs with randomly chosen dataset divisions as concepts. Mahinpei et al. (2021) posit
that even for hard concepts (each concept is clipped to {0, 1}) information may leak, though the
experiments confirm it only for small-dimensional data like Deng’s (2012). Secondly, Margeloiu et al.
(2021) argue that the CBMs desiderata is met for independent training only: for joint and sequential
a CBM learns more information about the raw data than just that presented in the concepts. Thus,
concepts are not used as intended. Developing the idea of tracking concepts predictions, the authors
apply saliency methods to back-trace concepts to input features and find that for neither training
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method of the three derive concepts from something meaningful in the input space. Conversely, we
hypothesize that by compressing the concepts and the data and, simultaneously, maximally expressing
the labels and concepts through their respective variables, we could obtain better concepts and
representations.

Havasi et al. (2022) introduced side-channel CBMs—the ones in which information is allowed to
flow aside the concept bottleneck—and recurrent CBMs, in which the model predicts concepts
one after the other, and for next concept prediction utilizes the information about previous concept
predictions. However, side-channel CBMs have lower intervenability, and recurrent ones break the
disentanglement of concepts. Yuksekgonul et al. (2023) proposed Post-Hoc Concept Bottleneck
Models (PCBM). Such type of models utilize image embeddings from pre-trained Convolutional
Neural Nets penultimate layer activations. Based on these embeddings, the authors construct a concept
embeddings bank and obtain concepts predictions by either projecting a new image embedding onto
those embeddings or by using a SVM trained on the bank as concepts classifier. However, these
models perform well only after residual connections, similar to the ones described above, are added.
This residual information flow may damage both interpretability and intervenability.

To mitigate previous limitations, Zarlenga et al. (2022) presented Concept Embedding Models
(CEM)—a method bridging the gap between CBMs and black-box models via learning two vectors
for each concept (“active” and “inactive”). Such approach has increased target accuracy, but requires
additional regularization algorithm called ‘RandInt’ for CEM to be able to effectively utilize test-time
interventions. Moreover, the analysis of information flow done in the paper suggests that information
between inputs and concepts is monotonically increasing without any compression. The paper
also introduces concepts alignment score (a metric specific for the model, more complex than just
accuracy) designed to evaluate how well has CEM has learned the concepts.

Our work, unlike Zarlenga et al.’s (2022) proposal, maintains the original model concept represen-
tation space and regularizes it through our concept information bottleneck regularization. In detail,
first, we incorporate mutual information constraint into loss function, thus obtaining compression of
information between inputs and concept activations. Secondly, we do not utilize a pair of embeddings
per concept but opt for one logit per concept, as in the original CBM setup. Finally, the novel metric
we introduced measures not the quality of a model, but rather the quality of concepts sets themselves.

Kim et al. (2023) introduced ProbCBMs models, which predict a parameterized distribution of
concepts (mean and standard deviation) and use anchor points for class mapping. In this work, we
do not utilize these anchor points, since they increase inference costs and introduce a new hyper-
parameter to tune at fitting stage. We do use a variational approximation over our proposed concepts’
information bottleneck to predict concepts.

2.2 INFORMATION BOTTLENECK

Tishby et al. (2000) introduced the information bottleneck (IB) as the minimization of the functional
LIB = I(X;Z)− βI(Z;Y ), (1)

where I(·; ·) is the mutual information, β is the Lagrange multiplier, X , Y and Z are random
variables that represents the data, labels, and latent representations, respectively. The motivation
behind the bottleneck is to “squeeze” the relevant information about target Y from X into a compact
representation Z while minimizing the information about input X in Z—so that the representations
are free of irrelevant information from X . The IB’s authors have also posited that good generalization
is connected with memorization-compression pattern. This is the behavior in which I(Z;Y ) increases
during the whole training time, while I(X;Z) increases at first (memorization) and then decreases at
later iterations (compression).

Alemi et al. (2017) extended the IB framework to deep neural networks by doing a variational
approximation of latent representation Z. And, Kawaguchi et al. (2023) analyzed the role of IB in
estimation of generalization gaps for classification task. Their result implies that by incorporating the
Information Bottleneck into learning objective one may get more generalized and robust network.
Unlike this previous work that studied the IB for the data and the labels, we introduced another
predictive variable, the concepts, and derive an upper bound that links common predictors and the
ground truth into a regularizer that enforces the memorization-compression dynamics. Moreover, we
show that the concepts’ information bottleneck can be used in common CBM approaches through a
mutual information estimator as well.
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x

p(z | x) z q(c | z) c q(y | c) y

↑ I(C;Y )↑ I(Z;C)

↓ I(X;C)

Figure 1: Our proposed CIBMs pipeline. The image is encoded through p(z | x), which in turn encodes the
concepts with q(c | z), and the labels are predicted through q(y | c). These modules are implemented as neural
networks. We introduced the IB regularization as mutual information optimizations over the variables as shown
in dashed lines.

3 CONCEPTS’ INFORMATION BOTTLENECK

x

z c

y

Figure 2: Directed graph
of our model. Solid lines
denote the generative model
p(y | x)p(c | x)p(z | x)p(x),
and dashed lines show its
variational approximation
q(y | c)q(c | z)q(z | x)q(x).

Concept Bottleneck Models (CBMs) aim for high interpretability by
introducing human-understandable concepts, C, as an intermediary be-
tween latent representations, Z, and the labels Y . To preserve the
interpretability at the heart of CBMs, our objective seeks to mini-
mize I(X;C)—the mutual information between inputs and concepts—
thereby ensuring concepts remain meaningful and free from irrelevant
data, while addressing concept leakage by controlling the information
flow directly at the concept level, rather than at the more abstract latent
space, Z. Simultaneously, we aim to maximize the expressivity of the
concepts about the labels, I(C;Y ), as well as the one of the latent
representations and the concepts, I(Z;C). Our initial objective is

max I(Z;C) + I(C;Y ) s.t. I(X;Z) ≤ IC , (2)

where IC is an information constraint constant, that equivalently is the
maximization of the functional of the concepts’ information bottleneck
(CIB)

LCIB = I(Z;C) + I(C;Y )− βI(X;Z), (3)
where β is a Lagrangian multiplier. This formulation ensures a strong connection between latents, Z,
and the concepts, C. This means that one wants Z to be maximally useful in shaping the concepts C,
while also ensuring that the concepts are informative about the target.

Moreover, in the CBMs formulation, the concepts come from processing the latent representations,
i.e., c = h(z). Thus, due to the data processing inequality, I(X;C) ≤ I(X;Z), we can bound of the
concepts’ information bottleneck loss (3)

I(Z;C) + I(C;Y )− βI(X;C) ≥ I(Z;C) + I(C;Y )− βI(X;Z). (4)

Thus, our objective is to maximize the upper bound of the concepts’ information bottleneck

LUB-CIB = I(Z;C) + I(C;Y )− βI(X;C).1 (5)

We depict our general framework in Fig. 1. We posit that by compressing the information between the
data, X , and the concepts, C, instead of the latent representations, Z, we can control the redundant
information of the data within the concepts. Consequently, we can obtain more interpretable concepts
instead of first compressing the latents and then obtaining the concepts from them. We hypothesize
that this compression also prevents data leakage from the data into the concepts that commonly
happens when the concepts are processed through the latents alone. Another interpretation of
this process is the compression of the information between the data and the concepts through the
marginalized latent representations. Thus, we are obtaining a more robust compression since we
compute it through all possible latent representations that lead to that concept.

We propose two implementations of our framework by exploring different ways of solving the mutual
information based on a variational approximation of the data distribution. We show our modeling
assumptions in Fig. 2.

1Note that one can obtain the same loss if the optimization problem is constrained over the concepts instead,
i.e., max I(Z;C) + I(C;Y )s.t. I(X;C) ≤ IC . Nevertheless, we present the relation with the traditional
compression for completeness.
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3.1 BOUNDED CIB

We can consider the upper bound to the concept bottleneck loss (5) in terms of the entropy-based
definitions of the mutual information. Then, by using a variational approximation of the data
distribution, we bound it by

LUB-CIB ≤ H(Y ) + (1− β)H(C)+

E
p(c)

H (p(y | c), q(y | c)) + (1 + β) E
p(z)

H (p(c | z), q(c | z)) , (6)

LUB-CIB ≤ (1− β)H(C) + E
p(c)

H (p(y | c), q(y | c)) + (1 + β) E
p(z)

H (p(c | z), q(c | z)) . (7)

We detail this derivation in Appendix A. We can maximize the concepts’ information bottleneck by
minimizing the cross entropies of the predictive variables, y and c, and their corresponding ground
truths and by adjusting the entropy of the concepts. The simplified upper bound of the concept
information bottleneck is

LSUB-CIB = (1− β)H(C) + E
p(c)

H (p(y | c), q(y | c)) + (1 + β) E
p(z)

H (p(c | z), q(c | z)) . (8)

We term the model that uses this bounded concept information bottleneck (8) as CIBMB . To
implement it, we need to estimate the entropy of the concepts distribution p(c). We give details of
this estimator in Appendix B.2.

3.2 ESTIMATOR-BASED CIB

Another way to obtain a bound over the concept information bottleneck (5) is to only expand the
conditional entropies that are not marginalized (A.1) to avoid widening the gap in the bound. That is

LUB-CIB = H(Y )+H(C)+ E
p(c)

H (p(y | c), q(y | c))+ E
p(z)

H (p(c | z), q(c | z))−βI(X;C). (9)

If we treat the entropies of the concepts and the labels as constants, we obtain

LE-CIB = E
p(c)

H (p(y | c), q(y | c)) + E
p(z)

H (p(c | z), q(c | z)) + β (ρ− I(X;C)) , (10)

where ρ is a constant. We term the model that uses this loss as CIBME since it relies on the estimator
of the mutual information. We detail the estimator we used in our implementation in Appendix B.2.

This loss is similar to the one proposed by Kawaguchi et al. (2023), LK =
Ep(z) H (p(y | z), q(y | z)) + β(ρ− I(Z;X)), if one extends the mutual information from the labels
into the concepts in a similar way. In other words, our mutual information estimated loss (10)
resembles that of Kawaguchi et al.’s (2023) proposal with the corresponding conditioning changes in
the labels and the concepts. Thus, it is interesting to see that other optimization approaches emerge
out of this bound. We highlight that our proposal is a generalized framework that encompass a wide
range of possible implementations.

Unlike LSUB-CIB (8), which simplifies the mutual information terms into cross-entropy losses, LE-CIB
retains an explicit control over I(X;C). This allows for more granular control over the information
flow from inputs to concepts, leading to a tighter constraint on concept leakage. As we show in the
results (Table 1), this additional control translates to improved performance in both concept and class
prediction accuracy, cf. Section 4.

4 EXPERIMENTS

In this experimental section, we aim to evaluate the Concept’s Information Bottleneck Models
(CIBMs), particularly assessing concept prediction performance and concept leakage in comparison
to traditional CBMs using models of similar complexity. Our main goal is to enhance the predictabil-
ity of concepts, not necessarily to improve target prediction accuracy. Moreover, we investigate
the information flows within both CBMs and CIBMs to understand mutual information behavior,
alongside testing interventions and applying our proposed metrics to evaluate model efficacy.

We present all implementation details in Appendix B. In the experiments below, for baselines to
evaluate our proposal, we compare against CBM (Koh et al., 2020), ProbCBM (Kim et al., 2023),

5
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Table 1: Accuracies for our proposed methods, CIBMB and CIBME , on CUB dataset (avg. 3 runs).

Method Concept Class

CIBMB (vanilla) 0.934 0.608
(clip norm = 1.0) 0.947 0.660
(clip norm = 0.1) 0.947 0.646
(stop grad. from H(C) into p(z | x)) 0.959 0.726

CIBME 0.959 0.729

CEM (Zarlenga et al., 2022), and PCBM (Yuksekgonul et al., 2023). We also evaluate a “black-box
model” that denotes a model with an architecture equivalent to that of our CIBME’s model, without
our proposed losses, and trained only to predict class labels, thus, unable to predict concepts that we
deemed as a gold-standard for classification.

4.1 DATASETS

We benchmark our approach on 3 datasets: CUB (Wah et al., 2011), AwA2 (Xian et al., 2019),
and aPY (Farhadi et al., 2009). While CUB is a recognized dataset for comparing concept-based
approaches (Koh et al., 2020; Kim et al., 2023; Zarlenga et al., 2022), we add the other two datasets
for additional evaluations and analysis.

CUB. Caltech-UCSD Birds dataset (Wah et al., 2011) is a dataset of birds images totaling in 11788
samples for 200 species. Following Koh et al.’s (2020) work, for reproducibility, we reduce instance-
level concept annotations to class-level ones with majority voting. We then keep only the concept
that are annotated as present in 10 classes at least after the described voting, resulting in 112 concepts
instead of 312. We also employ train/val/test splits provided by Koh et al. (2020), operating with
4796 train images, 1198 val images and 5794 test images. To diversify training data, we augment
the images with color jittering and horizontal flip, and resize the images to 299× 299 pixels for the
InceptionV3 backbone. Concept groups are obtained by common prefix clustering.

AwA2. Animals with attributes dataset (Xian et al., 2019) is a dataset of 37322 images of 50 animal
species. For the concepts set, we follow Kim et al.’s (2023) work and keep only the 45 concepts
which could be observed on the image. We use ResNet18 embeddings provided by the dataset authors
and train FCN on top of them. No additional augmentations are applied to those embeddings.

aPY. This is a dataset (Farhadi et al., 2009) of 32 diverse real-world classes we used for proof of
concept. We split the dataset into 7362 train, 3068 validation and 4909 test samples stratified on
target labels. We train FCN on top of ResNet18 embeddings of input images provided by the dataset
authors (Xian et al., 2019). No additional augmentations are applied to those embeddings.

4.2 COMPARISON OF DIFFERENT VERSIONS OF CIB

In Table 1, we compare the performance of CIBMB and CIBME on concept and class prediction
accuracy for the CUB dataset—using β = 0.5. As shown, CIBME , which retains an explicit mutual
information term I(X;C), outperforms CIBMB when trained in a fair setup (vanilla) in both metrics.
We found that the lack of performance of vanilla CIBMB comes from instabilities during training
in the latent representations encoder p(z | x). We hypothesize that the gradient from the H(C) in
the loss (8) damages the feature encoder p(z | x) since the entropy is computed w.r.t. the generative
concepts p(c) instead of the variational approximated ones q(c). To alleviate this problem, we
experimented gradient clipping as well as stopping the gradient from H(C) into the encoder. We
found that the latter perform on par with CIBME . In the following, we refer to CIBMB as the version
with stop gradient on it. Overall, CIBME’s more granular control over information flow limits
concept leakage, results in better accuracies for concepts and labels in comparison to the baselines
(cf. Table 2) without changes to its training framework.

These results supports our earlier discussion that the direct estimation of I(X;C) leads to more effec-
tive use of concepts in downstream tasks without further changes to the training regime. Nevertheless,
with a correctly regularized feature encoder p(z | x), a simple estimation in CIBMB can achieve
similar levels of information gain and accuracy.
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4.3 PERFORMANCE ACROSS ALL DATASETS

Table 2: Accuracy for CUB, AwA2, and aPY datasets.
The results include mean and std. over 5 runs. We report
results for different lagrange multipliers β for our meth-
ods, CIBMB and CIBME . Black-box is a gold standard
for class prediction that offers no explainability over the
concepts.

Data Method Concept Class

CUB Black-box – 0.919±0.002
CBM (HJ) 0.956±0.001 0.650±0.002
CBM (HI) 0.956±0.001 0.644±0.001
CBM (SJ) 0.956±0.001 0.708±0.006
CEM 0.954±0.001 0.759±0.002
ProbCBM 0.956±0.001 0.718±0.005
PCBM – 0.610±0.010
CIBMB (β = 0.25) 0.958±0.001 0.726±0.003

(β = 0.50) 0.958±0.001 0.725±0.004
CIBME (β = 0.25) 0.958±0.001 0.728±0.005

(β = 0.50) 0.959±0.001 0.729±0.003

AwA2 Black-box – 0.893±0.000
CBM (HJ) 0.979±0.000 0.853±0.002
CBM (HI) 0.979±0.000 0.836±0.001
CBM (SJ) 0.979±0.000 0.876±0.001
CEM 0.979±0.000 0.884±0.002
PCBM – 0.862±0.003
CIBMB (β = 0.25) 0.980±0.000 0.886±0.002

(β = 0.50) 0.979±0.000 0.885±0.002
CIBME (β = 0.25) 0.980±0.000 0.885±0.001

(β = 0.50) 0.979±0.000 0.883±0.001

aPY Black-box – 0.866±0.003
CBM (SJ) 0.967±0.000 0.797±0.007
CEM 0.967±0.000 0.870±0.003
CIBMB (β = 0.25) 0.967±0.000 0.850±0.006

(β = 0.50) 0.967±0.000 0.856±0.005
CIBME (β = 0.25) 0.967±0.000 0.858±0.004

(β = 0.50) 0.967±0.000 0.856±0.004

We present the evaluation results across three
datasets in Table 2. Our “black-box model”
serves as a gold standard, representing the high-
est possible class accuracy achievable by a
model similar to ours within a traditional setup
that does not provide explanations. We com-
pare against hard (H) and soft (S) CBMs trained
jointly (J) or independently (I) (Havasi et al.,
2022). In the following, when we refer only to
the CBM, we mean the soft joint (SJ) version of
it which is closer to our setup. Our main objec-
tive is to demonstrate that CIBMs maintain or
improve the target prediction accuracy in com-
parison to CBMs and CEM while improving
the concept prediction accuracy and reducing
concept leakage. The latter is of particular im-
portance to guarantee the explainability of the
results.

Our proposed methods, CIBMB and CIBME ,
show an improvement over most methods (apart
from CEM) regarding target prediction accuracy
for the CUB dataset. These improvements come
alongside enhanced concept accuracy, thus, re-
alizing the fundamental goal of our approach:
to simultaneously boost performance and inter-
pretability. Although we fall short of CEM’s
class prediction accuracy, our concept prediction
accuracy is superior. As for the AwA2 dataset,
the target accuracy gain is less marked compared
to the other datasets but is nevertheless statisti-
cally significant. We ascribe this to the dataset’s
relative simplicity, which narrows the room for
enhancement. In the more varied real-world classes of the aPY dataset, CIBME significantly outper-
forms the baseline CBMs in target accuracy. The black-box model may achieve marginally better
target accuracy, yet it falls short on interpretability, which is paramount in real-world applications
where explanations are necessary.

The rise in concept accuracy relative to existing methods highlights the advantages of our mutual
information regularization. This approach helps stop concept leakage and ensures that concepts
are both informative and closely tied to the final prediction. This finding is consistent with our
theoretical framework, which advocates that controlling the information flow between inputs and
concepts through the Information Bottleneck can yield more interpretable and significantly meaningful
concepts without compromising performance. Importantly, our approach maintains concept accuracy,
suggesting that the mutual information regularization effectively curtails concept leakage even in
less complex tasks. This is consistent with our theoretical model, which maintains that minimizing
I(X;C) ensures that only pertinent information is channeled through the concepts, thus, increasing
the robustness across various datasets.

4.4 INFORMATION FLOW IN CIB

We analyze the flow of information between inputs, X , latents, Z, concepts, C, and labels, Y , and
present them in Fig. 3 for the CUB and AwA2 datasets. The objective of the information plane is
to show the mutual information on the model variables after training. In particular, we expect to
see a model with high I(Z;C) and I(C;Y ) such that the corresponding variables are dependent
on each other (maximally expressive), and simultaneously, low I(X;C) and I(X;Z) to show that
the corresponding variables are maximally compressive. However, the compression of the variables
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Figure 3: Memorization-compression pattern in the information flow (in nats) of original CBM (SJ) and our
proposed methods, CIBMB and CIBME . Warmer colors denote later steps in training. We show the information
plane of (a) the variables X , C, and Y ; and (b) the variables X , Z, and C.

alone, minimal I(X;C) or I(X;Z), does not guarantee that the important parts of the variables are
being compressed and retained.

CIBMs achieve higher mutual information I(C;Y ) while aligning with the target labels—as shown in
the prediction tasks in Table 2. In contrast to CBMs, which exhibit lower mutual information between
inputs and latent and concept representations, I(X;Z) and I(X;C), CIBMs mutual information
w.r.t. the inputs X is higher than the CBMs. This behavior reflects the fact that CIBMs are optimized
to retain task-relevant information while removing irrelevant or redundant information but not
necessarily compressing as much—reflected in the higher I(X;Z) and I(X;C). Thus, lower mutual
information I(X;Z) and I(X;C) in CBMs does not necessarily indicate better compression given
its lower predictive accuracy. Instead, it may reflect a failure to capture meaningful input features,
resulting in noisier or less predictive concepts. Moreover, we note that the plots in Fig. 3(b) for
CIBMB and CIBME look similar but they differ in hundredths.

To demonstrate the effects of the compression patterns, we evaluate the alignment between repre-
sentations and the target I(C;Y ) and show that CIBMs consistently outperform CBMs, indicating
that the retained information is both relevant and predictive—cf. Section 4.3. Additionally, CIBMs
achieve better interpretability and concept quality, reinforcing that the higher mutual information
is a reflection of meaningful expressiveness rather than leakage—cf. Section 4.5. This is further
supported by the proposed intervention-based metrics (AUCTTI and NAUCTTI) which highlight the
importance of retaining task-relevant information in the concepts C. While CBMs exhibit lower
mutual information between inputs and representations, I(X;C) and I(X;Z), their poorer perfor-
mance on these metrics, particularly under concept corruption, suggests that this lower information
content stems from a failure to capture sufficient relevant features. By contrast, the higher I(X;C)
and I(X;Z) in our CIBMs reflect the retention of meaningful pieces that contribute to better concept
quality and downstream task performance. These findings demonstrate that reducing concept leak-
age requires selectively preserving relevant information rather than minimizing mutual information
indiscriminately.

4.5 INTERVENTIONS

A key advantage of CBMs is their ability to perform test-time interventions, allowing users to
correct predicted concepts and improve the models final decisions. To demonstrate that our model
effectively utilizes concept information and avoids concept leakage, we simulate interventions by
replacing predicted concepts with their ground truth values. Following prior work, we intervene on

8
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Figure 4: Change in target prediction accuracy after intervening on concept groups following the strategies
“uncertainty” and “random” as described in Section 4.5. (TTI stands for Test-Time Interventions.)

groups of concepts rather than individual concepts, leveraging this strategy to assess how cumulative
corrections impact target performance (Koh et al., 2020; Kim et al., 2023). We, then, plot the target
task performance improvement against number of concept groups intervened. The resulting curve is
denoted as the interventions curve.

We implement two ways of choosing a set of concept groups to intervene on: (i) Random: Concept
groups are randomly selected for intervention, and results are averaged over five runs to account for
variability. (ii) Uncertainty Based: Since our model predicts parameters of a Gaussian distribution
for concept logits, we can measure the likelihood of zero for each concept in that distribution. Zero
acts as a threshold for prediction and indicates complete uncertainty about the presence or absence
of a concept. We calculate the mean of these likelihoods for a group of concepts and define it as
the groups uncertainty. We then select the groups with the highest uncertainty for intervention. We
highlight that this setup is not directly applicable to CBMs.

Figure 4 shows that as more concept groups are intervened upon, in CUB, performance improves
consistently, demonstrating that the model relies on accurate concept information and does not suffer
from concept leakage. The steady improvement confirms the model’s ability to be “debugged” by
correcting concept predictions. In AwA2, our methods have a small dip observed for uncertainty-
based selection is likely due to imperfect uncertainty estimation, but overall, interventions still
significantly boost performance. On the contrary, soft CBMs shows a higher dip in performance
which may be due to the random strategy for the interventions.

While hard CBMs can excel during large-scale interventions due to binary concept representations
having low information leakage, their performance is initially lower than CIBMs due to rigid
concept representations, making them less adaptive to partial interventions and coarser datasets like
AwA. Moreover, CIBMs consistently deliver stable intervention performance across datasets and
achieve superior target prediction accuracy compared to all CBM variants, including hard, joint,
and independent training configurations. We provide a full analysis in Appendix D. Despite the
performance in these interventions, the hard CBMs performance suffers and they are outperformed
by our CIBMs—cf. Table 2.

4.6 CONCEPT SET GOODNESS MEASURE

In CBMs, the quality of the concept set is crucial for accurate downstream task predictions. However,
there is a lack of effective metrics to reliably assess concept set goodness. Existing metrics, such as
the Concept Alignment Score, proposed by Zarlenga et al. (2022), evaluate whether the model has
captured meaningful concept representations but do not explicitly measure how well these concepts
improve downstream task performance during interventions. Moreover, they are tuned for CEM and
do not extend beyond it.

We address this gap by proposing two metrics: as area under interventions curve, and the area under
curve of relative improvements. Denote by I(x) the model’s performance for x concept groups used
in the intervention. Then the Test-Time Interventions accuracy is

AUCTTI =
1

n

n∑
i=1

I(i), (11)

9
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Table 3: Change in interventions performance with concept set corruption.

CUB

AUC NAUC

Corrupt CBM CIBMB CIBME CBM CIBMB CIBME

0 54.374 65.644 64.634 0.001260 0.001481 0.001432
4 53.135 64.519 63.464 0.001198 0.001525 0.001487
8 51.291 53.135 60.202 0.001166 0.001198 0.001444
16 50.694 60.240 59.424 0.001068 0.001388 0.001349
32 46.101 52.956 51.258 0.000863 0.001298 0.001231
64 32.069 30.582 29.271 -0.000339 0.000571 0.000504

AwA2

AUC NAUC

Corrupt CBM CIBMB CIBME CBM CIBMB CIBME

No 84.753 91.573 92.225 0.002808 0.005350 0.006250
Yes 83.985 90.631 90.879 0.004484 0.005218 0.006474

and the normalized version of the Test-Time Interventions accuracy is

NAUCTTI =
1

n

n∑
i=1

(I(i)− I(i− 1)) . (12)

The idea behind these measures is simple: if a concept set is of high quality, the task accuracy will
steadily approach 100% as more concept groups are intervened upon, resulting in a large area under
the curve. Conversely, if the concept set is incomplete or noisy, performance gains will be limited,
even with multiple interventions, which can indicate concept leakage.

The latter expression (12) could be simplified to just scaled difference between a model with full
concept set used for interventions and performance of a model with no interventions, however, the
meaning it has is how much does the performance change per one group added to the interventions
pool. To test this, we generate corrupted concept sets by replacing selected concepts with noisy ones.
Importantly, we maintain the original groupings of concepts.

Table 3 shows the results of our metrics, and we show the disaggregated plots in Fig. C.1. The
number in the “corrupt” column denotes the number of concepts replaced with random ones for CUB,
and for AwA2 “No” denotes a clear concept set and “Yes” denotes a concept set with one concept
changed to corrupt. As expected, performance drops with corrupt concepts, since they contain no
useful information for the target task. One consequence of our training is that if one has two concept
annotations for some dataset, then it is possible to use CIBMs performance to determine which
concept set is better.

Our results demonstrate that CIBME is more sensitive to concept quality compared to vanilla CBM,
making it a better indicator of concept set reliability. Negative values in normalized intervention
AUC indicate possible concept leakage.

5 CONCLUSION

In this paper, we integrated the IB with CBMs and proposed a first-principled theoretical framework
to understand CIBMs, resulting in enhanced concept performance, reduced concept leakage, and
maintained accuracy in target predictions compared to similar models. We developed two model
variants that have complementary performances dependent on the estimators used. Our methods
were validated on popular CBM datasets. We proposed new metrics to accurately evaluate concept
set quality and examined information flow within our IB-enhanced CBM objectives. Our findings
suggest that conventional CBMs might compress useless information, whereas our regularization
approach achieves better predictive accuracy with less compression. Furthermore, we assessed our
model’s interpretability and capacity for intervention, showing that our IB objective retains or even
enhances performance when interventions are applied.
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A DETAILED DERIVATION OF CIB

In this section we present the detailed derivations to obtained the results described in Section 3.1.

We can re-write the upper bound of the concepts’ information bottleneck as

LUB-CIB = H(Y ) + (1− β)H(C)−H(Y | C)−H(C | Z)− βH(C |X) (A.1)

to work with the entropies instead. To find a more suitable form to tackle this bound, we consider an
approximation of the predictors for the labels and the concepts, q(y | c) and q(c | z), based on two
variational distributions that will be implemented through neural networks—cf. Fig. 2. Consider, on
one hand,

H(Y | C) =

∫∫
dy dc p(y, c) log p(y | c), (A.2a)

=

∫∫
dy dc p(y, c) log

[
p(y | c)q(y | c)

q(y | c)

]
, (A.2b)

=

∫∫
dy dc p(y | c)p(c)

[
log

p(y | c)
q(y | c)

+ log q(y | c)
]
, (A.2c)

=

∫
dc p(c)

∫
dy p(y | c)

[
log

p(y | c)
q(y | c)

+ log q(y | c)
]
, (A.2d)

= E
p(c)

[
KL

(
p(y | c)

∥∥ q(y | c)
)
−H (p(y | c), q(y | c))

]
. (A.2e)

We introduce the variational distribution q(y | c) to obtain the cross-entropy w.r.t. the ground truth
and this results on an additional term to make the variational distribution close to the prior. In other
words, we can interpret the conditional entropy of the labels w.r.t. the concepts as an optimization
of the variational distribution q(y | c) with the true conditional of the labels given the concepts
p(y | c) through a Kullback-Leibler divergence (KL) and the cross-entropy between them. This last
cross-entropy can be interpreted as the traditional prediction loss of the true labels and the predicted
ones. Similarly,

H(C | Z) =

∫∫
dc dz p(c, z) log p(c | z), (A.3a)

=

∫∫
dc dz p(c, z) log

[
p(c | z)q(c | z)

q(c | z)

]
, (A.3b)

=

∫∫
dc dz p(c | z)p(z)

[
log

p(c | z)
q(c | z)

+ log q(c | z)
]
, (A.3c)

=

∫
dz p(z)

∫
dc p(c | z)

[
log

p(c | z)
q(c | z)

+ log q(c | z)
]
, (A.3d)

= E
p(z)

[
KL

(
p(c | z)

∥∥ q(c | z)
)
−H (p(c | z), q(c | z))

]
, (A.3e)
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were q(c | z) is a variational distribution that predicts the concepts given the latent representations.
This decomposition of the conditional entropy of the concepts given the representations follows the
same principles as the conditional of the labels given the concepts (A.2). On the other hand, the
conditional entropy of the concepts w.r.t. the data is bounded due to the marginalization of the latent
representations on their dependency. That is,

H(C |X) =

∫∫
dc dx p(c, x) log p(c | x), (A.4a)

=

∫∫
dc dx p(c, x) log

∫
dz p(c, z | x), (A.4b)

=

∫∫
dc dx p(c, x) log

∫
dz p(c | z)p(z | x), (A.4c)

≤
∫∫

dc dx p(c, x)

∫
dz p(z | x) log p(c | z), (A.4d)

=

∫∫∫
dc dz dx p(c, z, x)

∫
dz p(z | x) log p(c | z), (A.4e)

=

∫∫∫
dc dz dx p(c | z)p(z | x)p(x)

∫
dz p(z | x) log p(c | z), (A.4f)

=

∫
dx p(x)

∫∫∫
dc dz2 p(c | z)p(z | x)2 log p(c | z), (A.4g)

=

∫
dx p(x)

∫∫∫
dc dz2 p(c | z)p(z | x)2 log

[
p(c | z)q(c | z)

q(c | z)

]
, (A.4h)

=

∫
dx p(x)

∫∫
dz2 p(z | x)2

∫
dc p(c | z) log

[
p(c | z)q(c | z)

q(c | z)

]
, (A.4i)

= E
p(x)

E
p(z | x)

∫
dc p(c | z) log

[
p(c | z)q(c | z)

q(c | z)

]
, (A.4j)

= E
p(z | x)p(x)

∫
dc p(c | z)

[
log

p(c | z)
q(c | z)

+ log q(c | z)
]
, (A.4k)

= E
p(z | x)p(x)

[
KL

(
p(c | z)

∥∥ q(c | z)
)
−H (p(c | z), q(c | z))

]
, (A.4l)

where the bound comes from applying the Jensen’s inequality. Thus, the upper bound to the concept
bottleneck loss (5), given that we remove the KLs constraints, due to their positivity, from the
conditional entropies (A.2), (A.3) and (A.4) is

LUB-CIB ≤ H(Y )+(1−β)H(C)+E
p(c)

H (p(y | c), q(y | c))+(1+β)E
p(z)

H (p(c | z), q(c | z)) . (A.5)

The bound gap can be further reduced by dropping the entropy of the labels as

LUB-CIB ≤ (1− β)H(C) + E
p(c)

H (p(y | c), q(y | c)) + (1 + β) E
p(z)

H (p(c | z), q(c | z)) , (A.6)

= LSUB-CIB. (A.7)

In other words, we can maximize the concepts’ information bottleneck by minimizing the cross
entropies of the predictive variables, y and c, and their corresponding ground truths and by adjusting
the entropy of the concepts.

B IMPLEMENTATION DETAILS

B.1 DETAILS ON THE MODELS

For CUB dataset, we choose InceptionV3 as image embedder (p(z | x)). We add on top of its
embeddings two 1-layer MLP (for mean and std in the variational approximation q(c | z)) each of
dimensionality 112—the number of concepts left after filtration identical to one done in Koh et al.
(2020). We obtain concept logits as C = predµ(x) + predσ(x) · ε, where ε is a random standard
Gaussian noise. On top of concepts logits, we stack label predictor q(y | c) (also 1-layer MLP).

13
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1 class CIBM:
2 def __init__(num_concepts=112, num_labels=200):
3 backbone = inceptionv3()
4 pred_mu = Linear(2048, num_concepts) # 2048 is the embedding dim

of inceptionv3↪→
5 pred_sigma = Sequential(Linear(2048, num_concepts), Softplus)
6 pred_label = Linear(num_concepts, num_labels)
7

8 def forward(x):
9 z = backbone(x)

10 z = ReLU(z)
11 eps = N(0; I).sample(num_samples=len(x))
12 mu = pred_mu(z)
13 sigma = pred_sigma(z).clamp(min=1e-7) # for numeric stability
14 c = mu + sigma * eps
15 y = pred_label(c)
16 return c, y

Listing B.1: CIBM Python code.

All activations between the layers are ReLU. The overall code would like the example shown in
Listing B.1.

For AwA2 and aPY the only difference is that we use on pre-computed embeddings from ResNet18
without training the backbone.

For CEM (Zarlenga et al., 2022) there are basically two training options: intervention-aware and
basic. In the latter, the model just optimizes two CE objectives. We implemented and trained the
basic setup on CUB, AwA2, and aPY. Then, we measured the interventions performance.

Our accuracies coincided with those reported by Zarlenga et al. (2022) in their paper on CUB dataset.
And intervention performance of this intervention-unaware model variant matched the reported
behavior from the authors (i.e., no gain from interventions).

B.2 ESTIMATORS DETAILS

Mutual Information Estimator. Before each gradient update, we compute cross-entropies over the
current batch Bc, and then randomly sample batch B′

c from the training dataset to estimate I(X;C)
on this batch.

Our mutual information estimator is taken from Kawaguchi et al. (2023). We rely on the fact that
concepts logits have Gaussian distribution for estimation of log p(c |x). And then, we use the random
samples B′

c to approximate the marginal of the concepts log p(c). The mutual information I(C;X)
is then a Monte-Carlo estimate of log p(c | x)− log p(c).

Entropy Estimator. Since concepts C are distributed normally, we use H(C) = D
2 (1 + log(2π)) +

1
2 log |Σ|. For simplicity (since the number of concepts D is constant throughout the training and
inference) we use Ĥ(C) = 1

2 log |Σ| =
∑

log(σi) since Σ is a diagonal matrix in our setup.

B.3 TRAINING PARAMETERS

We set batch size to 128 and number of samples for MI estimation to 64. For all experiments we used
Adam (Kingma & Ba, 2015) optimizer with lr = 0.003 and wd = 0.001. We experimented with
gradient clipping, but it led to either slow or divergent training, so we are not clipping the gradients
in any of the experiments.

B.4 DETAILS ON EXPERIMENTS

The image embedder backbone is only trained for CUB dataset, and for AwA2 and aPY we use
pre-computed image embeddings. The ground truth concept labels are binary across all dataset, but

14
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Figure B.1: Losses on the validation set of CUB for different methods.

concepts predictions passed to label classifier are non-binary: we are training only (and comparing
only against) models using soft concepts for class prediction.

When training CIBMB , we used the LSUB-CIB (8) for better performance. We backpropagate the
gradients from the cross-entropies over concepts and labels through the entire network—both back-
bone q(c | z) and MLPs on top of the encoder q(y | c). For H(C), however, the situation is different:
gradients from this part of the loss function are propagated only through the MLPs, q(c | z) and
q(y | c), but not the image embedder backbone p(z | x). We found that such (partial) “freezing” of
the encoder with respect to H(C) constraint dramatically improves the quality of both concepts and
labels prediction. While we do not have access to the ground truth probability distribution for the
concepts p(c | z), we have access to the ground truth concept labels. Our implementation uses the a
supervised cross-entropy using the ground truth labels. The concepts’ predictor can be seens as a
multi-label task classifier. In practice, we compute C logits, then, we compute binary cross-entropy
(BCE) for each of these logits with binary labels. Finally, we backpropagate them through the means
of BCEs.

We show the normalized loss function values on the validation set of CUB in Fig. B.1 to show the
convergence of CIBMs in comparison to CBM. Note that visually the concept losses on between
CBM and CIBME and the label losses between CIBMs are similar, but they differ slightly.

C ADDITIONAL RESULTS

In Fig. C.1, we show additional results about the aggregated interventions that we dicussed in
Section 4.6 and that we showed in Table 3. We plot the interventions in the traditional way by
showing the intervened groups and the TTI performance for six different corruption settings.

D DISCUSSION ABOUT CBMS SETUPS

Hard CBMs use hard concept representations, meaning that instead of producing a probabilistic
output (as in soft concepts in soft CBM), each concept prediction is treated as a discrete binary or
categorical value. These hard predictions are used as inputs to the downstream task (class prediction),
making the pipeline interpretable and less expressive, thus less prone to information leakage.

When compared with soft CBMs and Soft CIBMs:

• Representation:
– Hard CBMs: Use discrete hard values for concepts (e.g., 0 or 1 for binary concepts).
– Soft CBMs: Use continuous values (e.g., logits or probabilities).
– Soft CIBMs: Similar to soft CBMs but use IB to minimize irrelevant information, reducing

concept leakage.
• Information Flow:

– Hard CBMs: Compress information into discrete concept values, which prevents information
leakage but risks losing useful details for downstream tasks.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 4 8 12 16 20 24 28

0.2

0.3

0.4

0.5

0.6

0.7

0.8
T

T
IP

er
fo

rm
an

ce

0 corrupted

0 4 8 12 16 20 24 28

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 corrupted

0 4 8 12 16 20 24 28

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
T

IP
er

fo
rm

an
ce

8 corrupted

0 4 8 12 16 20 24 28

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16 corrupted

0 4 8 12 16 20 24 28

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of intervened groups

T
T

IP
er

fo
rm

an
ce

32 corrupted

0 4 8 12 16 20 24 28

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of intervened groups

64 corrupted

CBM (SJ) CIBMB CIBME

Figure C.1: Change in target prediction accuracy for different number of corrupted concepts. These are the
expanded results of Table 3. (TTI stands for Test-Time Interventions.)

– Soft CBMs: Retain richer information but are more prone to concept leakage.

– Soft CIBMs: Balance retaining relevant information while mitigating leakage through the IB
framework.

• Interventions:

– Hard CBMs: Explicitly rely on discrete corrections during interventions, which can have a
significant impact.

– Soft CBMs and CIBMs: Treat interventions as updates to probabilities or logits, which is
more expressive, but could induce noise in concepts.

Due to their rigidity, without enough interventions, hard CBMs cannot recover from errors or noise in
the predicted concepts because the discrete pipeline does not allow for soft adjustments.

But, as more concepts are corrected, the discrete nature of hard CBMs becomes an advantage together
with its independent training: ground truth, hard values fully override noisy predictions, ensuring
perfect input for the downstream classifier, which was previously trained also on ground truth concepts
from train set.
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Soft CBMs and CIBMs, while retaining more information, still rely on probabilistic updates during
interventions, which may not fully override noisy concept predictions.

Overall, CIBMs are superior because they combine the advantages of soft representations (expressive-
ness, better performance) with mechanisms to mitigate concept leakage (robustness, interpretability).
Hard CBMs, while conceptually cleaner in avoiding leakage, fail to achieve the same level of
downstream performance and adaptability, particularly in more realistic or challenging scenarios.
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