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Abstract

Video Large Language Models have demonstrated strong video understanding
capabilities, yet their practical deployment is hindered by substantial inference costs
caused by redundant video tokens. Existing pruning techniques fail to effectively
exploit the spatiotemporal redundancy present in video data. To bridge this gap, we
perform a systematic analysis of video redundancy from two perspectives: temporal
context and visual context. Leveraging these insights, we propose Dynamic Density
Pruning for Fast Video LLMs termed FastVID. Specifically, FastVID dynamically
partitions videos into temporally ordered segments to preserve temporal structure
and applies a density-based token pruning strategy to maintain essential spatial and
temporal information. Our method significantly reduces computational overhead
while maintaining temporal and visual integrity. Extensive evaluations show that
FastVID achieves state-of-the-art performance across various short- and long-
video benchmarks on leading Video LLMs, including LLaVA-OneVision, LLaVA-
Video, Qwen2-VL, and Qwen2.5-VL. Notably, on LLaVA-OneVision-7B, FastVID
effectively prunes 90.3% of video tokens, reduces FLOPs to 8.3%, and accelerates
the prefilling stage by 7.1×, while maintaining 98.0% of the original accuracy.
The code is available at https://github.com/LunarShen/FastVID.

1 Introduction

Video Large Language Models (Video LLMs) [7, 22, 19, 57, 45] have shown strong performance in
video understanding but incur substantial inference costs. While several methods [38, 28, 48, 18, 37,
60] explore training-time compression to mitigate this issue, they often require expensive retraining.
In this work, we focus on an inference-time acceleration strategy that enhances efficiency without
requiring additional training.

This computational burden is primarily caused by the high volume of video tokens, making effective
token compression essential. While prior image compression methods [6, 32, 56, 51, 5] reduce
redundancy within a single image, they fail to exploit temporal dependencies across frames. As a
result, spatiotemporal redundancy remain insufficiently explored. In this work, we systematically
analyze video redundancy from two key perspectives: temporal context and visual context.

Temporal context is fundamental to video understanding, as the order and continuity of frames directly
influence semantic interpretation. As depicted in Figure 1(a), disrupting frame order (shuffled) or
omitting frames (incomplete) leads to incorrect comprehension, highlighting the necessity of pre-
serving temporal structure. To achieve this, we segment the video into temporally ordered segments,
grouping highly similar consecutive frames. Pruning is applied within each high-redundancy segment
but not across segments, preserving the essential temporal structure for accurate video understanding.
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Q: How do the players celebrate scoring the first goal in this video?

A: High-fiving with the teammates.

A: Kneeling on the field and screaming.

A: Running on the field.

(a) Temporal Context

Original 

Image

(b2) Density-Based Sampling (ours)(b1) Uniform Sampling
Incomplete

Shuffled

Ordered

(b) Visual Context

Anchor Token

Each token is assigned to 

its nearest anchor token.

Figure 1: Effective token compression in Video LLMs relies on preserving both temporal and visual
context. (a) shows the impact of temporal disruptions, emphasizing the importance of temporal
structure preservation. (b) show the effects of different token selection strategies for visual merging,
where patches that share the same inner and border color are merged. Density-based Sampling
retains both distinctive and representative context while effectively reducing redundancy.

Given high-redundancy segments, we aim to preserve visual context by effectively consolidating
spatial and temporal information within each segment. A state-of-the-art method VisionZip [51]
applies uniform token sampling followed by merging redundant tokens [5] as shown in Figure 1(b1).
However, its token selection strategy is content-agnostic, potentially leading to the loss of important
details, such as the guitar body being incorrectly merged with the background. To address this, we
propose a density-based token sampling in Figure 1(b2). Specifically, high-density tokens, surrounded
by numerous similar tokens, serve as candidates for selection. We select density peak tokens as
anchors, which have a higher density than their neighbors and by a relatively large distance from
tokens with higher densities [30]. This strategy ensures that the selected tokens are both representative
and distinctive, effectively preserving segment visual context while reducing redundancy.

Building upon these insights, we propose Dynamic Density Pruning for Fast VIDeo LLMs, mini-
mizing spatiotemporal redundancy while preserving essential semantics. We begin with Dynamic
Temporal Segmentation, which adaptively partitions videos into segments. Within each segment, we
introduce Density Spatiotemporal Pruning to retain both global visual context and salient details.
FastVID significantly accelerates inference while preserving both temporal and visual integrity.

To evaluate the generalization capability of our approach, we evaluate it on leading Video LLMs,
LLaVA-OneVision [19], LLaVA-Video [57], Qwen2-VL [45], and Qwen2.5-VL [4]. To further vali-
date its effectiveness, we perform extensive experiments on MVBench [21], LongVideoBench [46],
MLVU [58], and VideoMME [12]. These benchmarks cover a wide range of video complexities
and durations, ensuring a comprehensive evaluation. Notably, on LLaVA-OneVision-7B, FastVID
effectively prunes 90.3% of video tokens, reduces FLOPs to 8.3%, and accelerates the prefilling
stage by 7.1×, while maintaining 98.0% of the original accuracy across all benchmarks.

The main contributions are summarized as follows: (1) We analyze Video LLM compression
from both temporal and visual context perspectives, emphasizing the importance of maintaining
temporal and visual integrity. (2) We propose FastVID, a novel pruning framework that employs
Dynamic Temporal Segmentation to partition videos into temporally ordered segments and Density
Spatiotemporal Pruning to retain global segment information and key details. (3) Our FastVID
achieves state-of-the-art performance across diverse Video LLMs and benchmarks, while maintaining
robust accuracy even under extreme compression.

2 Related Work

Video LLMs. With the rapid advancement of LMMs [1, 8, 42] and MLLMs [43, 25, 26, 20, 3, 27, 15,
14], there has been growing interest in Video LLMs. These models can be categorized based on how
they process video tokens: general Video LLMs and Video LLMs with training-time compression.

General Video LLMs [24, 7, 22, 19, 57, 45] directly process raw video tokens or apply pooling.
Video-LLaVA [22] leverages shared projection layers to obtain unified visual representations. LLaVA-

2



OneVision [19] demonstrates strong video understanding through task transfer from images. LLaVA-
Video [57] creates a high-quality synthetic dataset for video instruction-following. To better capture
the spatiotemporal structure of video, some models [57, 45] introduce additional designs for video
positional information. LLaVA-Video1 introduces newline tokens to distinguish spatial and temporal
positions effectively.

Video LLMs with training-time compression [38, 28, 48, 18, 37, 60] aim to significantly reduce the
number of video tokens, enabling longer video sequences. Chat-UniVi [18] progressively clusters
visual tokens and provides multi-scale features. LongVU [37] employs cross-modal query and inter-
frame dependencies to adaptively reduce video redundancy. Apollo [60] explores scaling consistency
and uses the Perceiver Resampler [17].

However, general Video LLMs remain the dominant paradigm, with LLaVA-OneVision and the
Qwen-VL series being widely adopted due to its adaptability and superior performance. Therefore,
we focus on inference-time acceleration for general Video LLMs.

Token Compression. Token compression has emerged as an effective approach to reduce com-
putational complexity in transformer architectures, such as ViT [10] and CLIP [29]. ToMe [5]
progressively merges fixed spatial tokens, while TempMe [35] extends this concept by merging
neighboring clips to minimize temporal redundancy.

Recent studies [6, 32, 56, 51, 5, 47, 23, 59] primarily focus on spatial token reduction to accelerate Im-
age LLMs. FastV [6] selects text-relevant tokens at shallow layers of the LLM. LLaVA-PruMerge [32]
uses attention scores from the [CLS] token to prune spatial redundancy. SparseVLM [56] proposes a
token recycling strategy to aggregate and reconstruct tokens. VisionZip [51] reduces visual redun-
dancy in the vision encoders. However, these methods overlook the temporal relationships across
frames.

Due to the high volume of video tokens in Video LLMs, recent video compression methods [13, 41,
16, 36, 34, 40] have gained increasing attention. FrameFusion [13] applies both merging and pruning
across successive shallow LLM layers, but repeated pruning operations adversely affect overall
efficiency. DyCoke [41] merges tokens across frames and applies dynamic KV cache reduction.
However, its pruning during the prefilling stage struggles to achieve substantial token reduction while
maintaining accuracy. PruneVID [16] clusters video tokens and selects those most relevant to query
tokens, but this dependency on clustering introduces significant latency during compression. Despite
these advances, efficient and accurate pruning under large token reduction remains unsolved.

3 Methodology

3.1 FastVID
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Figure 2: The overview of our FastVID.

In this paper, we focus on preserving temporal
and visual context at the prefilling stage. By re-
ducing video tokens before LLM processing, our
FastVID significantly enhances computational
efficiency while facilitating easy deployment, in-
cluding compatibility with FlashAttention [9],
KV cache, multi-turn conversations, and a plug-
and-play design for seamless integration into ex-
isting Video LLMs. Our method achieves robust
performance even under extreme compression
rates, offering a practical solution for fast Video
LLMs.

Figure 2 presents an overview of FastVID. Given an input video, F frames are uniformly sampled
(e.g., 32 in LLaVA-OneVision, 64 in LLaVA-Video). Each frame is individually processed by the
vision encoder. The extracted tokens are projected and pooled into a video token sequence. With
FastVID, we effectively eliminate redundant tokens while preserving critical information. Specifically,
Dynamic Temporal Segmentation (DySeg) in Section 3.2 dynamically partitions video tokens into
temporally ordered, high-redundancy segments, while Density Spatiotemporal Pruning (STPrune) in

1https://github.com/LLaVA-VL/LLaVA-NeXT
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(b) Fixed-interval Segmentation

(c) Cluster-based Segmentation

(d) Dynamic Temporal Segmentation (ours)

(a) Original Sampled Frames

Figure 3: Visualization of different segmentation methods on 12 sampled frames from a video
example. (b) Fixed-interval Segmentation struggles to maintain high intra-segment similarity, leading
to visually diverse frames within the same segment. (c) Cluster-based Segmentation disrupts temporal
order, grouping frames from different time periods to the same segment. (d) Our DySeg adaptively
partitions the video, preserving both temporal structure and high intra-segment similarity. Please
refer to Table 8 for a detailed quantitative comparison.

Section 3.3 performs density-based pruning within each segment, enhancing efficiency with minimal
loss of key information. The final retained video tokens, combined with query tokens, is then fed into
the LLM to generate the response.

3.2 Dynamic Temporal Segmentation

As shown in Figure 3(b) and 3(c), there are two common static segmentation methods for sampled
frame sequences. In Figure 3(b), Fixed-interval Segmentation partitions the sequence into segments
of a fixed length, preserving temporal order but potentially grouping visually dissimilar frames.
Figure 3(c) shows Cluster-based Segmentation, where frames are grouped into three clusters based
on frame similarity. However, it suffers from a predefined cluster number, leading to ineffective
segmentation when video complexity varies. As a result, the first segment contains similar objects but
different scenes. Furthermore, clustering may disrupt the temporal order by ignoring critical temporal
information, such as omitting key frames (e.g., the 9th frame) and incorrectly grouping frames from
different time periods into the first segment.

To address the limitations of static methods, we propose Dynamic Temporal Segmentation, a simple
yet effective method that adaptively refines segment boundaries according to video complexity. DySeg
achieves both temporal structure and high intra-segment similarity, generating fewer partitions for
simple scenes and finer ones for more complex scenes.

To enable effective pruning, DySeg induces high spatiotemporal redundancy within each segment by
minimizing similarity between adjacent segments. Thus, we segment the video based on transition
similarity between adjacent frames. Specifically, we utilize global frame features f to compute the
cosine similarity:

ti = cos(fi, fi+1), i = 1, · · · , F − 1,

T = {t1, t2, · · · , tF−1}, (1)

where ti denotes the transition similarity between the i-th and (i+ 1)-th frame. T denotes the F − 1
transition similarities for F sampled frames. To achieve dynamic segmentation, we select transitions
that satisfy the following conditions:

S1 = argminc−1 T, S2 = {i | ti < τ, ti ∈ T},
S = S1 ∪ S2, (2)

where c denotes the minimum number of segments and τ denotes the threshold for transition similarity.
S1 denotes the c− 1 most dissimilar frame transitions, while S2 denotes transitions where similarity
falls below a fixed threshold τ . Each transition in the union S marks a boundary between segments.
In simple videos with minimal shot transitions, S2 is often empty. In such cases, S1 enables finer
segmentation by distinguishing subtle temporal changes. For complex videos, S1 is typically a
subset of S2, where S2 ensures that adjacent frames with similarity below τ are assigned to different
segments. In Figure 3(d), our DySeg effectively segments videos by dynamically adjusting granularity
in a simple yet effective manner, outperforming Fixed-interval and Clustering-based methods.
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(b) Density-based Token Merging (ours)

Density-based Sampling Similarity-based Assignment Anchor-centric Aggregation

(a) Cluster-based Token Merging

Averaging

Clustering

Figure 4: Comparison of our proposed DTM and Cluster-based Token Merging. (a) Cluster-based
methods aggregate tokens within each cluster and concatenate them, leading to a loss of positional
information and disruption of the spatiotemporal structure in video data. (b) Our DTM updates
anchor tokens while preserving their original positional information, maintaining structural coherence.
Please refer to Table 7 for a detailed quantitative comparison.

3.3 Density Spatiotemporal Pruning

After obtaining segments with highly similar frames, we introduce STPrune to reduce redundant
tokens. It consists of two key modules: Density-based Token Merging (DTM) for segment visual
context and Attention-based Token Selection (ATS) for salient details. For a segment of P frames, we
retain rPN tokens in total, where N is the number of tokens per frame, and r denotes the retention
ratio. These tokens are generated by DTM and ATS. Specifically, drPN tokens are generated by
DTM and (1− d)rPN tokens are generated by ATS, where d controls the token allocation between
the two modules.

Density-based Token Merging. For segment visual context, we first identify anchor tokens and
to-be-merged tokens. Selecting anchor tokens from the entire segment would disrupt their spatial
relationships, as anchor tokens corresponding to different components of the same object might be
distributed across multiple frames. To mitigate this, we restrict anchor token selection to specific
frames. Specifically, we sample anchor frames at a fixed interval p and select anchor tokens from
these frames. The remaining tokens in the segment are treated as to-be-merged tokens. Specifically,
the number of anchor frames is ⌈P/p⌉. From each anchor frame, drPN/⌈P/p⌉ tokens are selected
as anchor tokens. Please see Figure 5 for a visualization of DTM applied to video segments.

To further clarify DTM, Figure 4(b) illustrates DTM when the segment length is 1 and shows that it
consists of three key steps. First, we follow density peaks clustering algorithms [30, 11] to compute
the density score. For each token in the anchor frame [v1, v2, · · · , vN ], we calculate its local density
ρi and its distance to the closest higher-density token δi, obtaining the final density score ρi × δi:

ρi = exp(−1

k

∑
vj∈kNN(vi)

d(vi, vj)2), (3)

δi =

 min
j:ρj>ρi

d(vi, vj), if ∃j s.t. ρj > ρi

max
j

d(vi, vj), otherwise
(4)

where d(vi, vj) denotes the Euclidean distance. Density peak tokens with high ρi× δi serve as anchor
tokens, indicating that they are surrounded by neighbors with lower local density while remaining
relatively distant from other high-density tokens. This selection ensures that anchor tokens are both
representative and distinctive. Next, for each anchor frame, Similarity-based Assignment assigns
each token in the segment to the nearest anchor token using cosine similarity. Finally, we apply
Anchor-centric Aggregation to merge the assigned tokens into their respective anchors, preserving key
visual structures through representative tokens. For an anchor a and its associated tokens [b1, · · · , bn],
the updated a∗ is computed as:

a∗ = βa+
1− β

n

n∑
i=1

bi, (5)

where β controls the balance between the anchor token and its associated tokens. In Figure 4,
we compare our DTM with Cluster-based Token Merging. In LLMs, RoPE [39] encodes relative
positional relationships between tokens, making positional information essential for maintaining the
spatiotemporal structure of video tokens. While prior methods [16] rely on Cluster-based Token
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Table 1: Comparison of state-of-the-art methods on LLaVA-OneVision [19]. The A%/B% retention
ratio indicates that A% of the LLM input tokens are retained, and subsequently compressed to B%
during the LLM forward pass. The best performance among those with similar retention ratios R is
highlighted in bold. TFLOPs related to video tokens are reported (see Appendix A for details).

Method Retention
Ratio R

TFLOPs MVBench LongVideo
Bench MLVU VideoMME Avg. Acc.

Overall Short Medium Long Score %
Duration 16s 1∼60min 3∼120min 1∼60min 1∼3min 3∼30min 30∼60min

Vanilla 100% 48.82 56.9 56.4 65.2 58.6 70.3 56.6 48.8 59.3 100
DyCoke [41]CVPR’25 32.5% 14.13 56.3 56.6 62.1 57.1 68.1 56.7 46.7 58.0 97.8

FastV [6]ECCV’24 100%/25% 13.45 54.7 55.5 61.5 56.2 68.0 54.6 46.0 57.0 96.1
VisionZip [51]CVPR’25 25% 10.73 53.7 51.2 58.5 54.1 61.6 53.4 47.2 54.4 91.7
VisionZip∗ [51]CVPR’25 25% 10.73 56.6 55.7 64.8 58.0 68.6 57.7 47.7 58.8 99.1

DyCoke [41]CVPR’25 25% 10.73 49.5 48.1 55.8 51.0 61.1 48.6 43.2 51.1 86.2
FastVID 25% 10.73 56.5 56.3 64.1 58.0 69.9 56.6 47.7 58.7 99.0

FastV [6]ECCV’24 100%/20% 11.38 54.1 56.6 61.2 56.2 66.8 54.6 47.2 57.0 96.1
VisionZip [51]CVPR’25 19.9% 8.46 53.0 50.0 57.1 53.0 60.8 51.0 47.1 53.3 90.0
VisionZip∗ [51]CVPR’25 19.9% 8.46 55.8 55.4 64.2 58.0 68.6 57.0 48.3 58.4 98.5

FastVID 19.9% 8.46 56.3 57.1 63.9 57.9 69.3 56.7 47.7 58.8 99.1
FastV [6]ECCV’24 100%/15% 9.35 53.2 54.9 59.8 54.7 65.1 53.4 45.7 55.7 93.9

VisionZip [51]CVPR’25 14.8% 6.23 50.3 46.9 54.4 49.5 55.8 49.3 43.3 50.3 84.8
VisionZip∗ [51]CVPR’25 14.8% 6.23 54.3 53.9 63.1 55.5 63.0 54.4 49.1 56.7 95.6

FastVID 14.8% 6.23 56.0 56.2 63.2 57.7 69.3 56.2 47.4 58.3 98.3
FastV [6]ECCV’24 100%/10% 7.36 51.7 52.1 57.7 52.4 60.9 51.4 45.0 53.5 90.2

VisionZip [51]CVPR’25 9.7% 4.04 44.4 43.5 51.5 46.0 50.4 45.8 41.8 46.4 78.3
VisionZip∗ [51]CVPR’25 9.7% 4.04 51.7 48.3 59.7 52.8 59.4 52.0 46.9 53.1 89.6
PruneVID∗ [16]ACL’25 10.1% 4.23 54.2 53.8 62.3 55.9 66.4 52.9 48.3 56.6 95.4

FastVID 9.7% 4.04 55.9 56.3 62.7 57.3 67.4 56.0 48.6 58.1 98.0
PruneVID [16]ACL’25 10.1%/3.9% 2.58 54.1 51.8 62.3 55.5 67.1 51.8 47.7 55.9 94.3
FastVID+FastV [6] 9.7%/3.6% 2.47 55.0 53.6 61.9 56.3 66.1 54.8 48.1 56.7 95.6

Merging, they discard positional information, causing RoPE to struggle with encoding spatiotemporal
structure. In contrast, our DTM maintains the positional information of merged tokens, enhancing
visual context understanding.

Overall, our DTM offers three key advantages: (1) Density-based Sampling selects density peak
tokens as anchors, ensuring representative visual context. (2) We maintain the original positional
information of updated anchor tokens, preserving spatiotemporal structure. (3) Anchor-centric
Aggregation emphasizes representative tokens, enhancing feature representation.

Attention-based Token Selection. In addition to segment visual context obtained through DTM, we
introduce ATS to capture salient visual details.

Motivated by previous studies [32, 51, 44, 55], we utilize [CLS] attention scores to identify salient
visual information. However, in Video LLMs, which commonly use SigLIP [53] as their vision en-
coder, [CLS] attention scores cannot be obtained. This is because Video LLMs utilize the penultimate
layer of SigLIP, omitting the SigLIP head where the [CLS] token is generated. To overcome this, we
reintegrate a pretrained SigLIP head into the vision encoder, allowing the model to compute [CLS]
attention scores. Since the SigLIP head is lightweight (15.2M parameters), this modification incurs
minimal computational overhead compared to the full Video LLM.

Specifically, we extract the [CLS] attention score from the pretrained SigLIP head, A ∈ RH×W ,
where H and W are the spatial dimensions of frame tokens. Since Video LLMs incorporate pooling
(see Figure 2), we apply the same operation to A, resulting in Ā ∈ RH̄×W̄ , where H̄ and W̄ are
the pooled spatial dimensions. Finally, for each frame, we select the top (1− d)rN tokens with the
highest attention scores to preserve critical visual details.

4 Experiments

4.1 Experimental Settings

Benchmarks. We evaluate our method on several widely used video understanding benchmarks:
MVBench [21, 31], LongVideoBench [46], MLVU [58], and VideoMME (wo sub.) [12]. Specifically,
VideoMME is officially divided into short, medium, and long subsets. These benchmarks contain
videos of varying durations and complex scenarios, providing a comprehensive evaluation of our
method’s effectiveness and generalization.

Implementation Details. We apply our method to leading Video LLMs: LLaVA-OneVision [19],
LLaVA-Video [57], Qwen2-VL [45], and Qwen2.5-VL [4]. Unless otherwise specified, we adopt
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Table 2: Comparison of state-of-the-art methods on LLaVA-Video [57]. TFLOPs∗ calculations
include both video and newline tokens.

Method Retention
Ratio R

# Newline
Tokens M TFLOPs∗ MVBench LongVideo

Bench MLVU VideoMME Avg. Acc.
Overall Short Long Score %

Vanilla 100% 832 103.2 60.4 59.6 70.3 64.1 76.9 53.4 63.6 100
DyCoke [41]CVPR’25 32.1% 256 27.1 59.3 57.9 65.7 61.6 74.6 51.1 61.1 96.1

FastV [6]ECCV’24 100%/25% 832/568.7 29.2 58.0 58.3 63.9 61.0 71.3 51.0 60.3 94.8
VisionZip [51]CVPR’25 24.9% 64 19.5 56.4 54.1 62.1 58.6 66.3 51.2 57.8 90.9
VisionZip∗ [51]CVPR’25 24.9% 64 19.5 58.3 58.3 66.6 61.9 73.3 52.2 61.5 96.7

DyCoke [41]CVPR’25 25% 208 20.7 50.8 53.0 56.9 56.1 65.8 48.9 54.2 85.2
FastVID∗ 24.9% 64 19.5 59.3 58.3 67.7 62.6 74.9 52.0 62.0 97.5
FastVID 24.9% 715.5 24.5 59.9 57.4 68.6 63.6 74.9 53.7 62.4 98.1

FastV [6]ECCV’24 100%/10% 832/311.8 16.2 55.8 55.4 58.9 57.9 67.6 48.6 57.0 89.6
VisionZip [51]CVPR’25 9.5% 64 7.3 46.3 46.6 52.2 49.5 54.2 44.3 48.7 76.6
VisionZip∗ [51]CVPR’25 9.5% 64 7.3 56.6 53.6 61.7 58.7 67.6 50.1 57.7 90.7

FastVID∗ 9.5% 64 7.3 58.3 56.2 63.9 59.6 70.9 50.7 59.5 93.6
FastVID 9.5% 508.2 10.5 58.5 56.5 64.9 60.7 71.7 51.2 60.2 94.7

Table 3: Comparison of state-of-the-art methods on Qwen2-VL [45]. We set the maximum number of
video tokens fed into the LLM to 16384, and the maximum number of sampled frames to 768. FastV
performs pruning based on LLM attention scores, but its eager-attention implementation materializes
the full attention matrix in memory, leading to OOM errors due to the large number of video tokens.

Method # Token TFLOPs VideoMME
Short Medium Long Overall

Vanilla 13447.1 100% 124.0 100% 74.1 60.4 54.3 63.0 100%
FastV [6]ECCV’24 13447.1/3361.8 100%/25% 31.3 25.3% Out of Memory

VisionZip∗ [51]CVPR’25 3349.3 24.9% 24.1 19.4% 70.9 56.3 48.3 58.5 92.9%
PruneVID∗ [16]ACL’25 3460.6 25.7% 25.0 20.1% 66.7 54.0 48.1 56.3 89.4%

FastVID 3349.3 24.9% 24.1 19.4% 72.7 58.3 50.7 60.6 96.2%

the hyperparameter setting c = 8, τ = 0.9, d = 0.4, p = 4, β = 0.6 for all experiments. For
LLaVA-OneVision, 32 sampled frames generate a 32× 196 token input to the LLM. We experiment
with r ∈ {25%, 20%, 15%, 10%}. For LLaVA-Video, 64 sampled frames generate a 64× 169 token
input. We experiment with r ∈ {25%, 10%}. For the Qwen-VL series, which samples up to 768
frames, we discard highly redundant frames and set τ to its optimal value. We conduct all evaluations
using LMMs-Eval [54] on A100 GPUs.

Compared Baselines. (1) For image compression, we adopt both the widely used classic method
FastV [6] and the current state-of-the-art method VisionZip [51]. VisionZip prunes tokens in the
last layer of the MLLM’s ViT, conflicting with pooling in Video LLMs and degrading performance.
To address this, we implement VisionZip∗, which applies pruning after pooling. (2) For video
compression, we compare two recent methods, DyCoke [41] and PruneVID [16]. Our FastVID
focuses on pruning during the prefilling stage. To ensure fairness, we reimplement these baselines
without pruning in the decoding stage. PruneVID applies two-stage pruning on both input tokens
and the LLM’s 10th layer. PruneVID∗ refers to the variant that prunes only input tokens. More
implementation details of these baselines are provided in Appendix A.

4.2 Comparisons with State-of-the-Art Methods

For a comprehensive evaluation, we compare our FastVID with state-of-the-art methods on bench-
marks with diverse video durations. We perform evaluations across different retention ratios R to
systematically assess model performance. In the case of DyCoke, video frames are evenly divided
into 4-frame segments, retaining all tokens from the first frame while pruning the rest. Consequently,
its lowest retention ratio R is 25%.

Results on LLaVA-OneVision. In Table 1, we evaluate our FastVID against other methods on
LLaVA-OneVision. While FastV and VisionZip perform well at R = 25%, but their performance
declines sharply as R decreases. This indicates the limitations of spatial compression alone, which
struggles to preserve essential temporal information under extreme pruning. Notably, even after
pruning 90.3% of the tokens, our FastVID preserves 98.0% of the vanilla model’s performance. To
compare with PrunVID, we additionally apply FastV at the 10th layer of the LLM. FastVID+FastV
achieves 95.6% of the original accuracy at 2.47 (5.1%) TFLOPs.
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Table 4: Comparison of state-of-the-art methods on Qwen2.5-VL [4]. We set the maximum number
of video tokens fed into the LLM to 16384, and the maximum number of sampled frames to 768.

Method # Token TFLOPs VideoMME
Short Medium Long Overall

Vanilla 13447.1 100% 124.0 100% 76.7 68.2 56.9 67.3 100%
PruneVID∗ [16]ACL’25 3294.5 24.5% 23.7 19.1% 67.0 59.4 51.6 59.3 88.1%

FastVID 3240.7 24.1% 23.2 18.7% 74.3 61.3 52.8 62.8 93.3%

Table 5: Efficiency Comparison on LLaVA-OneVision [19]. The prefilling time, defined as the latency
to the first generated token, is measured on VideoMME using an A100 GPU.

Method # Token TFLOPs Prefilling Time (ms) Avg. Acc.Segmentation Compression LLM Forward Total

Vanilla 6272 (100%) 48.82 (100%) – – 476.3 476.3 (1.0×) 59.3 (100%)
PruneVID∗ [16] 635.6 (10.1%) 4.23 (8.7%) 5.2 32.0 64.3 101.5 (4.7×) 56.6 (95.4%)

FastVID 608 (9.7%) 4.04 (8.3%) 0.5 5.6 61.1 67.2 (7.1×) 58.1 (98.0%)

Results on LLaVA-Video. LLaVA-Video adopts a unique design by inserting newline tokens after
each height-wise position in every frame, producing 64 × 13 × (13 + 1) tokens. In Table 2, for
all methods, when the positional information of retained tokens is preserved, we also retain the
associated newline tokens. For a fair comparison with VisionZip, we evaluate FastVID∗, where only
one newline token is retained per frame. Notably, our FastVID consistently outperforms all baselines
across various retention ratios.

Results on Qwen2-VL. Unlike LLaVA-OneVision [19] and LLaVA-Video [57], Qwen2-VL [45]
employs a distinct architecture that samples 768 frames per video and processes them using 3D
convolutions. It introduces M-RoPE, which decomposes rotary embeddings into temporal, height,
and width components. The model dynamically adjusts the resolution of each frame. In Table 3, our
FastVID outperforms other baselines on Qwen2-VL under similar model complexity. In particular,
FastVID achieves a 2.4 accuracy improvement on the long subset.

Results on Qwen2.5-VL. To further demonstrate its generalization ability, we report results on
Qwen2.5-VL [4] in Table 4. Unlike the LLaVA series and Qwen2-VL, Qwen2.5-VL employs a
vision encoder with window attention and a Qwen2.5 LLM [50], representing a substantially different
architecture. Compared to the recent SOTA PruneVID, FastVID achieves a 3.5 improvement under a
comparable retention ratio. As shown in Tables 1, 2, 3, and 4, our FastVID’s consistent superiority
across these distinct Video LLM architectures further validates its strong generalizability and practical
effectiveness.

Efficiency Comparison. Table 5 compares the efficiency of our method against the state-of-the-art
video compression method PruneVID. Latency and accuracy are evaluated while maintaining similar
model complexity. PruneVID relies heavily on time-consuming clustering algorithms during both
video segmentation and compression. In contrast, FastVID leverages efficient transition similarity
to achieve efficient segmentation. Although density score computation (see Eq. (3-4)) is time-
consuming, we restrict this step to anchor frames and parallelize its execution, thereby accelerating
the compression process. As a result, FastVID achieves a 7.1× speedup while preserving 98.0%
accuracy. Further comparisons with PruneVID are provided in Appendix C.

4.3 Ablation Study

By default, we conduct ablation studies on LLaVA-OneVision at r = 10%. Further hyperparameter
analysis is provided in Appendix B.

Table 8: Ablation study on video segmentation.
Segmentation MVBench LongVideo-

Bench MLVU VideoMME Avg.
Acc.

Fixed-interval 55.1 53.6 61.7 55.4 95.3%
Cluster-based 53.2 53.0 61.7 54.8 93.9%
Our DySeg 55.9 56.3 62.7 57.3 98.0%

Ablation study on DySeg. To compare different
video segmentation methods, we present qual-
itative and quantitative results in Figure 3 and
Table 8, respectively. In Table 8, Fixed-interval
Segmentation with an interval of 4 generates
32/4 = 8 segments, while Cluster-based Seg-
mentation generates 8 clusters, ensuring consis-
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Table 6: Ablation Study on d in STPrune.
STPrune consists of DTM and ATS. A fraction
d of the retained tokens is from DTM, while the
remaining 1− d is from ATS.

d
in STPrune MVBench LongVideo-

Bench MLVU VideoMME Avg.
Acc.

0.0/ATS 55.3 55.3 62.4 55.0 96.2%
0.2 55.0 53.6 62.1 56.1 95.7%
0.4 55.9 56.3 62.7 57.3 98.0%
0.6 55.6 54.5 62.0 56.2 96.3%
0.8 56.0 54.9 62.6 55.6 96.7%

1.0/DTM 54.1 50.1 61.5 55.9 93.5%

Table 7: Ablation study on different token merging
strategies. Figure 1(b1) presents Uniform. Fig-
ure 4(a) presents Cluster-based.

Token
Merging MVBench LongVideo-

Bench MLVU VideoMME Avg.
Acc.

LLaVA-OneVision
Uniform 55.0 54.7 62.0 56.4 96.2%

Cluster-based 55.6 55.2 62.4 57.3 97.2%
Our DTM 55.9 56.3 62.7 57.3 98.0%

LLaVA-Video
Uniform 55.4 54.6 62.9 59.8 91.5%

Cluster-based 55.3 55.1 62.9 60.1 91.8%
Our DTM 58.5 56.5 64.9 60.7 94.7%

Table 9: Ablation study on the SigLIP head
in ATS.

Method VideoMME

FastVID 57.3
w/o the SigLIP head 56.3

Table 10: Improved length extrapolation via FastVID.
Method # Frame # Token VideoMME

Vanilla 32 6272 58.6 100%
FastVID (r=25%) 128 6272 60.4 103.1%
FastVID (r=10%) 320 6080 61.4 104.8%

tency with the minimal segment number c in our DySeg. Fixed-interval preserves temporal order
between segments, whereas Cluster-based maintains intra-segment similarity. The results show that
Fixed-interval outperforms Cluster-based by 1.4%, highlighting the importance of temporal structure
preservation in Video LLM pruning. Additionally, high intra-segment similarity is also essential
for effective pruning. Our proposed DySeg successfully integrates both advantages while enabling
dynamic pruning, achieving a superior average performance of 98.0%.

Ablation study on STPrune. STPrune is proposed to prune tokens within each segment and
consists of two key components: DTM and ATS. DTM employs density-based sampling to merge
redundant tokens, preserving segment visual context. ATS leverages [CLS] attention scores to
highlight important visual details. Table 6 presents an ablation study on d, which controls the token
distribution between DTM and ATS. The results show that ATS alone (when d = 0.0) outperforms
DTM alone (when d = 1.0). However, the best performance is achieved at d = 0.4, demonstrating
that a balanced integration of both modules is crucial for preserving essential video information. This
integration boosts performance by 1.8% and 4.5% points over ATS and DTM alone, respectively.

Ablation study on DTM. In Table 7, we compare different token merging strategies for segment
visual context. Uniform, used in VisionZip, selects anchor tokens in a content-agnostic manner,
which limits its ability to distinguish semantically meaningful objects. Cluster-based discards
essential positional information, resulting in inferior performance, particularly in LLaVA-Video. By
leveraging Density-based Sampling and Anchor-centric Aggregation, our DTM achieves superior
results, especially in LLaVA-Video, where DTM outperforms other methods by 2.9%.

Ablation study on the SigLIP head in ATS. We reintroduce the original, un-finetuned SigLIP head
to generate attention scores in ATS. This creates a potential parameter gap between the fine-tuned
SigLIP encoder and the original SigLIP head. However, we believe this gap has limited impact for
the following reasons.

First, the SigLIP head is pretrained jointly with the encoder on large-scale vision-language data,
enabling strong generalization and transferability. Second, since the first-stage training of Video
LLMs also aims to align visual and textual representations, the SigLIP head is naturally compatible
with this alignment objective. Finally, as shown in Table 9, results show that using the SigLIP head
leads to a 1.0 improvement, indicating its effectiveness. This is likely because the SigLIP head is
explicitly trained to aggregate patch tokens for semantic alignment, making its attention scores better
suited for identifying semantic salient tokens.

In addition, we emphasize that our FastVID generalizes to vision encoders without pretrained heads
or [CLS] tokens (e.g., the Qwen-VL series). In such cases, [CLS] attention scores are computed
at the Video LLM’s ViT final layer using pseudo [CLS] tokens derived by averaging patch tokens.
Our FastVID achieves strong performance on Qwen2-VL (Table 3) and Qwen2.5-VL (Table 4),
significantly outperforming previous methods.
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Figure 5: Visualization of FastVID with c = 0, τ = 0.9, d = 0.4, p = 2. We retain a total of 40
tokens, including 16 tokens in DTM (highlighted in red) and 24 in ATS (highlighted in blue). In
DTM, patches that share the same inner and border color are merged.

Improved length extrapolation. In Table 10, by applying FastVID with different retention ratios, we
extend the number of sampled frames from 32 to 320 while maintaining a comparable total number
of input video tokens. This consistently improves performance, which demonstrates that FastVID not
only compresses video tokens efficiently but also enables effective length extrapolation.

4.4 Qualitative Results

Figure 5 visualizes the proposed DySeg and STPrune. In Figure 5(a), all frames are grouped into a
single segment, with the 1st and 3rd frames selected as anchor frames, where DTM is applied. In
Figure 5(b), the frames are divided into two segments, with the 1st, 3rd, and 4th frames selected
as anchor frames. Blue tokens represent those selected by ATS due to high [CLS] attention. These
tokens readily cluster together and do not always correspond to object regions, suggesting that while
they reflect salient [CLS] information, they lack broader visual context. In contrast, DTM’s red tokens
effectively aggregate visually similar content across frames, significantly reducing spatiotemporal
redundancy while preserving visual context. Together, ATS and DTM offer complementary benefits
for effective video compression. More qualitative results are provided in Appendix B.

5 Conclusion

In this paper, we introduced FastVID, a novel inference-time pruning framework designed to accel-
erate Video LLMs by effectively reducing spatiotemporal redundancy. Through a comprehensive
analysis of video tokens from both temporal context and visual context, FastVID dynamically par-
titions videos into temporally ordered segments and employs density-based token pruning within
each segment. Extensive experiments across multiple Video LLMs and benchmarks demonstrate its
generalization ability and effectiveness. Crucially, FastVID maintains high performance even under
extreme compression rates, enabling practical deployment of fast Video LLMs.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our work does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Sections 3 and 4 provide sufficient details for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Due to time constraints, we provide code in the attached zip file to reproduce
the main results in Table 1. The full code will be open-sourced once finalized.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all necessary details in Section 4 and the attached zip file.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We focus on inference-time acceleration. Following prior works [41, 51], we
use LMMs-Eval [54] for evaluation to ensure fairness and stability of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on compute are provided in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that this
paper aligns with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to the appendix for the discussion of broader impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work focuses on accelerating inference for existing Video LLMs. We do
not release any new data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please refer to the appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please refer to the attached zip file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There were no such experiments or research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There were no such participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM was only used for editing purposes (e.g., grammar, spelling, word
choice).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

This appendix provides additional details and results to support our main paper:

• Appendix A presents additional experimental settings, including reproduction details of the
compared baselines and an estimation of the computational cost.

• Appendix B presents additional experimental results, such as ablation studies on key hyperpa-
rameters and further quantitative and qualitative results.

• Appendix C discusses limitations of our approach and its potential broader impacts.

A Additional Experimental Settings

A.1 Reproduction Details of Compared Baselines

All experiments are conducted using LMMs-Eval2 [54] for consistency. The performance of the
vanilla versions of LLaVA-OneVision3 [19], LLaVA-Video3 [57], and Qwen2-VL4 [45] differs
slightly from their reported results, remaining within an acceptable margin of error. We reimplement
all baseline methods using LMMs-Eval, following their official implementations:

• FastV5 [6] (ECCV 2024). FastV performs token pruning at the K-th layer of the LLM
using attention scores, with a filtering ratio R. We reimplement it with K = 2, using R ∈
{75%, 80%, 85%, 90%} in Table 1 and R ∈ {75%, 90%} in Table 2.

• VisionZip6 [51] (CVPR 2025). Visionzip performs pruning at the vision encoder’s output,
which conflicts with pooling operations in Video LLMs and degrades performance. To address
this, we implement VisionZip∗, which applies pruning after pooling. Following the original
settings, each frame retains both dominant and contextual tokens in a 54:10 ratio. We define r
as the proportion of tokens retained per frame. We set r ∈ {25%, 20%, 15%, 10%} in Table 1
and r ∈ {25%, 10%} in Table 2.

• DyCoke7 [41] (CVPR 2025). DyCoke prunes in both prefilling and decoding stages. For fair
comparison, we only evaluate its pre-filling stage. The pruning rate in the TTM module is set
K ∈ {0.9, 1.0} in both Table 1 and Table 2.

• PruneVID8 [16] (ACL 2025). PruneVID includes both input-stage and intra-LLM pruning in
the pre-filling phase, along with decoding pruning. For fair comparison, we evaluate two variants:
PruneVID∗ (input-stage pruning only) and PruneVID (full prefilling pruning). Following the
original settings, we use a threshold τ = 0.8, temporal segment ratio γ = 0.25, token selection
ratio α = 0.4, and attention calculations use the 10th layer. The cluster ratio β controls
compression in the input-stage pruning. We use β = 11% in Table 1 and Table 5.

A.2 Computational Cost Estimation

Following prior works [6, 47], we report the theoretical FLOPs of the LLM related to visual/video
tokens. Specifically, LLaVA-OneVision [19], LLaVA-Video [57], and Qwen2-VL [45] are all built
on Qwen2 [49], which employs grouped-query attention [2] and a SwiGLU-based three-layer feed-
forward network [33]. The per-layer FLOPs of the LLM are computed as:

2nD(hkvd) + 2nD2 + 2n2D + 3nDD′ (6)

where n is the number of video tokens, D is the hidden state size, D′ is the FFN intermediate size,
hkv is the number of key/value heads, and d is the head dimension.

2https://github.com/EvolvingLMMs-Lab/lmms-eval, MIT License
3https://github.com/LLaVA-VL/LLaVA-NeXT, Apache License 2.0
4https://github.com/QwenLM/Qwen2.5-VL, Apache License 2.0
5https://github.com/pkunlp-icler/FastV
6https://github.com/dvlab-research/VisionZip, Apache License 2.0
7https://github.com/KD-TAO/DyCoke, Apache License 2.0
8https://github.com/Visual-AI/PruneVid, CC BY-NC-SA 4.0 License
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Figure 6: Ablation study on c and τ in DySeg. c denotes the minimum number of segments in a
video, whereas τ denotes the transition similarity threshold. Both parameters jointly control the
segmentation granularity.

1 2 3 4 5 6 7 8p
56

57

58

59

Vi
de

oM
M

E

57.3

95

100

Av
g.

 A
cc

.

98.0

Avg. Acc.
VideoMME

(a)

0.0 0.2 0.4 0.6 0.8 1.056

57

58

59

Vi
de

oM
M

E
57.3

95

100

Av
g.

 A
cc

.98.0
Avg. Acc.
VideoMME

(b)

Figure 7: Ablation study on p and β in DTM. p denotes the interval for anchor frame selection,
whereas β controls the merging weight for anchor tokens and their associated tokens in Eq. (5).

B Additional Experimental Results

B.1 Ablation study on c and τ in DySeg

We evaluate the effect of c and τ in Eq. (2) of DySeg. Figure 6(a) shows results with varing c.
In simple video scenarios with high transition similarity, c regulates segmentation. When c = 1,
segmentation relies solely on τ . c = 32 divides the video into single-frame segments. Performance
remains stable for 1 ≤ c ≤ 16, but the decline at c = 32 suggests that excessive segmentation
disregards temporal relationships. The optimal performance at c = 8 indicates the benefit of a
minimum cluster number. Figure 6(b) shows results with varing τ . When τ is small, most transitions
in S are selected by c. As τ increases, more transitions fall below the threshold. The best performance
is achieved at τ = 0.9, effectively grouping redundant frames while separating non-redundant ones.

B.2 Ablation study on p and β in DTM

In Figure 7(a), we evaluate the effect of p on anchor frame selection, from which anchor tokens are
subsequently sampled. When p = 1, anchor tokens are evenly distributed across all frames within
a segment. As p increases, fewer frames are selected as anchors, while more anchor tokens are
allocated to each anchor frame. Given the high similarity between frames in a segment, a sufficient
number of anchor tokens per anchor frame is essential to capture visual context. However, if p is too
large, all anchor tokens come from the first frame, limiting temporal information. We find that p = 4
yields the best performance by effectively capturing spatiotemporal context. Figure 7(b) shows the
effect of β in Eq. (5). When β = 0.0, matching tokens are averaged. β = 1.0 discards all non-anchor
tokens, removing segment visual context and leading to a performance drop. Notably, Anchor-centric
Assignment (when β = 0.6) yields optimal results, highlighting the importance of representative
tokens and visual context.
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Table 11: Additional quantitative results on VideoMME. We
report the overall performance of LLaVA-OneVision.

Method Retention
Ratio R

TFLOPs VideoMME

Vanilla 100% 48.82 58.6
PyramidDrop [47]CVPR’25 100%/4.1%/2.0%/1.0% 14.70 51.8
SparseVLM [56]ICML’25 100%/10.4%/5.3%/2.9% 7.06 53.3

LLaVA-PruMerge [32]ICCV’25 9.7% 4.04 49.9
FastVID 9,7% 4.04 57.3

Table 12: Additional quantitative re-
sults on ANet-QA. We report the per-
formance of LLaVA-OneVision.

Method TFLOPs ANet-QA
Accuracy Score

Vanilla 48.82 54.4 3.57
PyramidDrop 14.70 41.2 3.07

FastVID 4.04 53.1 3.52

B.3 Additional Quantitative Results

In Table 11, we conduct additional comparative experiments against previous methods.

Comparison with PyramidDrop [47]. Following its official settings, we prune tokens at the 8th,
16th, and 24th layers with retention ratios of 4.1%, 2.0%, and 1.0%, respectively. Despite aggressive
pruning, PyramidDrop still incurs high FLOPs due to full video token processing in the first 8 layers.
In contrast, our FastVID compresses tokens from the input stage, reduces computation significantly,
and outperforms PyramidDrop under extreme pruning.

Comparison with SparseVLM [56]. Following its official setup, we prune tokens at the 3rd, 7th,
and 16th layers with retention ratios of 10.4%, 5.3%, and 2.9%, respectively. Although SparseVLM
aggressively prunes later layers, it still incurs high FLOPs due to full token processing in the early
layers. In contrast, FastVID compresses tokens from the input stage, leading to significantly lower
computational cost. Moreover, FastVID achieves better performance due to its more effective video
token pruning strategy.

Comparison with LLaVA-PruMerge [32]. Although both LLaVA-Prumerge and our ATS select
tokens based on attention scores, our FastVID is specifically designed to better preserve both temporal
and visual context in Video LLMs. A direct quantitative comparison is provided in Table 11. Under the
same video token budget of 608 tokens (≈9.7% retention ratio), our method significantly outperforms
LLaVA-PruMerge.

B.4 Results for long-context generation

FastVID prunes redundant video tokens while preserving critical semantic information, which
supports both short- and long-context generation tasks. We select ANet-QA [52] for the video
captioning task reported in Table 12. Metrics are computed using GPT-3.5-Turbo-0125. FastVID
achieves 97.6% accuracy and 98.6% score, demonstrating its effectiveness in long-context generation.

B.5 Additional Qualitative Results

Figures 8-10 show additional qualitative results on VideoMME. We use the following settings:
c = 0, τ = 0.9, d = 0.4, p = 2, retaining an average of 10 tokens per frame. Figure 8 presents static
scenes, while Figures 9 and 10 present dynamic scenes. These visualizations demonstrate FastVID’s
ability to adaptively segment videos across varying temporal dynamics. Within each segment, the
merged region boundaries loosely align with object shapes, highlighting the effectiveness of the
proposed DTM in preserving visual context.

Figures 8(b) and 9(a) showcase failure cases where the query is relevant to only a small subset of
frames. In Figure 8(b), only a few frames depict the subject eating a banana, while in Figure 9(a),
only a few frames correspond to the entrance scene. In such scenarios, when detailed questions are
posed, our query-agnostic pruning strategy becomes less effective. Under high compression rates,
most retained tokens are allocated to query-irrelevant frames, making it challenging for the model to
provide the necessary visual evidence and produce accurate responses.
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C Additional Discussions

C.1 Comparison with PruneVID

PruneVID [16] and FastVID differ fundamentally in both design and implementation. Below, we
detail the key technical distinctions and their practical impact on efficiency and accuracy.

1. Methodological Differences
(a) Segmentation Strategy: PruneVID uses the original density-based clustering to partition the

video into segments, with a hard upper bound on segment number (≤ sampled frames × γ
= 0.25). This constraint may cause semantically diverse frames to be grouped together
in complex videos, reducing the effectiveness of subsequent pruning. In contrast, FastVID
uses frame transition similarity to adaptively segment the video, ensuring high intra-segment
similarity, thereby facilitating more efficient and accurate token pruning.

(b) Compression Strategy: PruneVID performs clustering-based merging (Figure 4(a)) on both
dynamic and static tokens within each segment, without considering token representativeness
or positional structure. In contrast, our proposed density-based token merging DTM selects
anchor tokens only from anchor frames and merges the remaining tokens within each segment.
The number of anchor tokens per frame is adaptive to segment length. Importantly, our DTM
explicitly emphasizes anchor tokens located at density peaks. Positional information of
anchor tokens is preserved to maintain the spatiotemporal structure, which is particularly benefi-
cial for the Qwen-VL series that adopts M-RoPE. We further apply anchor-centric aggregation
instead of simple average pooling to highlight representative anchor tokens.

2. Practical Impact
(a) Efficiency: In Table 5, we conduct a detailed efficiency comparison. The primary bottleneck in

efficiency lies in the density score computation. Our segmentation based on frame transition
similarity is significantly faster than PruneVID’s clustering. During compression, PruneVID
clusters dynamic and static tokens separately per segment. Crucially, the number of tokens
varies across segments, which leads to repeated density computations. In contrast, we computes
density scores in parallel across all anchor frames, requiring only a single pass. As a result, our
pruning speed is 6.1× faster (6.1ms vs. 37.2ms).

(b) Accuracy: We compare PruneVID across multiple Video LLMs, including LLaVA-OneVision
(Table 1), Qwen2-VL (Table 3), and Qwen2.5-VL (Table 4). Under both the 32 fixed-frame
sampling setting (LLaVA-OneVision) and dynamic frame sampling (Qwen-VL series), our
method consistently outperforms PruneVID at the similar compression ratio. We attribute
this improvement to our more effective dynamic segmentation strategy, which ensures high
intra-segment similarity. Furthermore, our token merging strategy highlights representative
tokens while retaining thier positional information, making it well-suited for diverse models.

In summary, FastVID introduces a novel framework that integrates dynamic temporal segmentation
with density spatiotemporal pruning, effectively preserving both temporal and visual context. It
achieves consistent improvements in both efficiency and accuracy over prior methods across diverse
Video LLMs.

C.2 Limitations

FastVID achieves strong performance on LLaVA-OneVision [19] (32 frames/video), maintaining com-
parable accuracy with only 8.3% of the FLOPs. However, on LLaVA-Video [57] (64 frames/video),
Qwen2-VL [45] (768 frames/video) and Qwen2.5-VL [4] (768 frames/video), although FastVID
consistently outperforms existing SOTA baselines, a noticeable accuracy drop occurs compared to
the original model.

This degradation mainly arises from the nature of our query-agnostic pruning strategy. Our aggressive
pruning retains only a small number of tokens. When temporal spans are long, few of these retained
tokens relate to the query, leading to performance drops. To overcome these challenges, future
work may explore integrating query-guided keyframe selection to better support long-frame Video
LLMs [45, 57].

However, query-agnostic pruning has a key advantage: the pruned KV cache can be reused across
multiple dialogue turns with different queries, making it more suitable for multi-turn conversations.
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Both query-aware and query-agnostic methods have their own advantages, and the choice can be
made based on specific application scenarios.

C.3 Broader Impacts

FastVID accelerates inference for existing Video LLMs without modifying their parameters or
training new models, thereby minimizing the risk of introducing new biases or unintended behaviors.
However, FastVID inherits any potential negative societal impacts of the original models, such as
representational bias or potential misuse. Despite this, FastVID maintains strong performance even
under extreme token compression. This makes the use of Video LLMs more practical in environments
with limited computational resources, promoting broader and more sustainable deployment.

26
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DTM on the 3rd frame
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DTM on the 7nd frame
(a)

DTM on the 1st frame

DTM on the 3rd frame

DTM on the 5nd frame

Retained Tokens

DTM on the 7nd frame
(b)

Figure 8: Segment boundaries are marked by brown vertical lines. Tokens generated by DTM
and ATS are highlighted in red and blue, respectively. Anchor frames, indicated by red boxes, are
processed by DTM individually. In DTM, patches with matching inner and border colors are merged.
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DTM on the 1st frame

DTM on the 3rd frame

DTM on the 5nd frame

Retained Tokens

DTM on the 7nd frame
(a)

DTM on the 1st frame

DTM on the 3rd frame

DTM on the 4nd frame

Retained Tokens

DTM on the 5nd frame

DTM on the 7nd frame

(b)
Figure 9: Segment boundaries are marked by brown vertical lines. Tokens generated by DTM
and ATS are highlighted in red and blue, respectively. Anchor frames, indicated by red boxes, are
processed by DTM individually. In DTM, patches with matching inner and border colors are merged.
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DTM on the 1st frame

DTM on the 3rd frame

DTM on the 6nd frame

Retained Tokens

DTM on the 8nd frame

DTM on the 4nd frame

(a)

DTM on the 1st frame

DTM on the 3rd frame

DTM on the 6nd frame

Retained Tokens

DTM on the 7nd frame

DTM on the 4nd frame

(b)
Figure 10: Segment boundaries are marked by brown vertical lines. Tokens generated by DTM
and ATS are highlighted in red and blue, respectively. Anchor frames, indicated by red boxes, are
processed by DTM individually. In DTM, patches with matching inner and border colors are merged.
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