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Abstract

Generative retrieval represents a novel approach to information retrieval. It uses an
encoder-decoder architecture to directly produce relevant document identifiers (doc-
ids) for queries. While this method offers benefits, current approaches are limited
to scenarios with binary relevance data, overlooking the potential for documents
to have multi-graded relevance. Extending generative retrieval to accommodate
multi-graded relevance poses challenges, including the need to reconcile likelihood
probabilities for docid pairs and the possibility of multiple relevant documents
sharing the same identifier. To address these challenges, we introduce a framework
called GRaded Generative Retrieval (GR2). GR2 focuses on two key components:
ensuring relevant and distinct identifiers, and implementing multi-graded con-
strained contrastive training. First, we create identifiers that are both semantically
relevant and sufficiently distinct to represent individual documents effectively. This
is achieved by jointly optimizing the relevance and distinctness of docids through a
combination of docid generation and autoencoder models. Second, we incorporate
information about the relationship between relevance grades to guide the training
process. We use a constrained contrastive training strategy to bring the represen-
tations of queries and the identifiers of their relevant documents closer together,
based on their respective relevance grades. Extensive experiments on datasets with
both multi-graded and binary relevance demonstrate the effectiveness of GR2.

1 Introduction

Generative retrieval (GR) [51] is a new paradigm for information retrieval (IR), where all information
in a corpus is encoded into the model parameters and a ranked list is directly produced based on a
single parametric model. In essence, a sequence-to-sequence (Seq2Seq) encoder-decoder architecture
is used to directly predict identifiers (docids) of documents that are relevant to a given query. Recent
studies have achieved impressive retrieval performance on many search tasks [15, 53, 67, 92].

Current work on GR mainly focuses on binary relevance scenarios, where a binary division into
relevant and irrelevant categories is assumed [20, 52, 83], and a query is usually labeled with a single
relevant document [38, 57] or multiple relevant documents that have the same relevance grade [33].
The standard Seq2Seq objective, via maximizing likelihood estimation (MLE) of the output sequence
with teacher forcing, has been used extensively in GR due to its simplicity. However, in real-world
search scenarios, documents may have different degrees of relevance [18, 71, 72, 82, 91] as binary
relevance may not be sufficiently represent fine-grained relevance. In traditional learning-to-rank
(LTR), multi-graded relevance judgments [23, 69] are widely considered, with nDCG [35] and ERR
[12] being particularly popular. In modeling multi-graded relevance in LTR, a popular approach is
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the pairwise method [10, 84] which involves weighting different documents based on their relevance
grades and predicting the relative order of a document pair.

Compared to common LTR algorithms, the learning objective currently being used in GR differs
significantly: the standard Seq2Seq objective emphasizes one-to-one associations between queries
and docids, aiming to generate a single most relevant docid. Inspired by pairwise methods in LTR, a
straightforward approach to extending GR to multiple grades, involves having the GR model generate
the likelihood of docids with higher relevance grades being greater than that of lower relevance
grades. The docid likelihood is the product of the likelihoods of each token in the generated docid.
Docids commonly exhibit distinct lengths, as a fixed length might not adequately encompass diverse
document semantics. However, the variation in docid lengths within the corpus may lead to smaller
likelihood scores for longer docids. Although some GR work [44, 78, 92, 93, 102] use a pairwise
or listwise loss for optimization, they still only consider binary relevance or require complex multi-
stage optimization. Besides, essential topics in multi-graded relevant documents may be similar,
emphasizing the need for a one-to-one correspondence between document content and its identifier to
ensure distinctness. Consequently, harnessing a GR model’s capabilities for multi-graded relevance
ranking in a relatively succinct manner remains an non-trivial challenge.

To this end, we consider multi-graded generative retrieval and propose a novel GRaded Generative
Retrieval (GR2) framework, with three key features:

(1) To enhance docid distinctness while ensuring its relevance to document semantics, we introduce
a regularized fusion approach with two modules: (i) a docid generation module, that produces
pseudo-queries based on the original documents as the docids; and (ii) an autoencoder module,
that reconstructs the target docids from their corresponding representations. We train them jointly
to ensure that the docid representation is close to its corresponding document representation
while far from other docid representations.

(2) For the mapping from a query to its relevant docids, we design a multi-graded constrained
contrastive (MGCC) loss to capture the relationships between labels with different relevance
grades. Considering the incomparability of likelihood probabilities associated with docids of
varying lengths, we convert queries and docids into representations within the embedding space.
The core idea is to pull the representation of a given query in the embedding space towards those
of its relevant docids, while simultaneously pushing it away from representations of irrelevant
docids in the mini-batch. To maintain the order between relevance grades in the embedding
space, the strength of the pull is determined by the relevance grades of the docids. The distinction
between MGCC and pairwise methods in LTR [9, 10, 84] lies in proposing more specific grade
penalties and constraints to regulate the relative distances between query representations and
docid representations of different grades.

(3) We explore two learning scenarios, i.e., supervised learning and pre-training, to learn generative
retrieval models using our GR2 framework. Importantly, our method for obtaining docids is
applicable to both multi-graded and binary relevance data, and it can reduce to the supervised
contrastive approach in binary relevance scenarios.

Our main contributions are: (i) We introduce a general GR2 framework for both binary and multi–
graded relevance scenarios, by designing relevant and distinct docids and using the information about
the relationship between labels. (ii) Through experiments on 5 representative document retrieval
datasets, GR2 achieves 14% relative significant improvements for P@20 on Gov 500K dataset over
the SOTA GR baseline RIPOR [85]. (iii) Even in low-resource scenarios, our method performs well,
surpassing BM25 on two datasets. On large-scale datasets, it achieves comparable results to RIPOR.

2 Related Work

Learning to rank (LTR). LTR ranks candidate documents using ranking functions for queries,
employing pointwise, pairwise, and listwise approaches. In the pointwise approach, a query is
modeled with a single document, similar to using MLE in GR, making it challenging to capture global
associations. Pairwise LTR treats document pairs as instances, e.g., LambdaRank [10], LTRGR [44],
and RIPOR [92]. The MGCC loss proposed here aligns with a pairwise approach. The listwise
method [78, 88] treats entire document lists as instances, involving high optimization costs.
Generative retrieval. GR has been proposed as a new paradigm for IR in which documents are
returned using model parameters only [51]. A single model can directly generate relevant documents
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for a query. Inspired by this blueprint, there have been several proposals [7, 14, 22, 40, 43, 79, 85] to
learn a Seq2Seq model by simultaneously addressing the two key issues below.

Key issue 1: Building associations between documents and docids. The widely-used docid designs
are pre-defined and learnable docids [77]. Pre-defined docids are fixed during training, e.g., document
titles [22], semantically structured strings [56, 79, 85], n-grams [7, 14, 44], pseudo-queries [76],
URLs [68, 102, 104], product quantization code [13, 104]. Learnable docids are tailored to retrieval
tasks, e.g., discrete numbers [74], important word sets [86, 96, 97] and residual quantization code
[92, 93]. Though effective in some tasks, these docid designs have limitations. Titles and URLs rely
on metadata, while n-grams demand storage of all n-grams. Quantization codes lack interpretability.
Learning optimal learnable docids is challenging, involving a complex learning process. Considering
performance, implementation complexity, and storage requirements, the pre-defined pseudo-query is
a promising compromise choice. Unfortunately, semantically similar documents might have similar
docids or even repetitions, making it challenging for the GR model to distinguish them in the both
binary and multi-graded relevance scenarios. To generate diverse and relevant docids, we propose a
docid fusion approach based on pseudo-queries.

Key issue 2: Mapping queries to relevant docids. Given a query, a GR model takes as input a query
and outputs its relevant docids by maximizing the output sequence likelihood, which is only suitable
for binary relevance. If a query has only one relevant document, it is paired with its relevant docid. If
a query has multiple relevant documents at the same grade, it is paired with multiple relevant docids.
The relative order of relevant docids in the returned list is random. Such a learning objective cannot
handle search tasks with multi-graded relevance, which limits its efficacy for general IR problems.
While certain GR studies [44, 92, 93, 102] employ a pairwise or listwise loss for optimization, they
remain limited to binary relevance or necessitate intricate multi-stage optimization processes. In this
work, we use all available relevance labels to enable multi-graded GR. For more related work, please
refer to Appendix C.

3 Preliminaries
Document retrieval. Assume that Lq = [1, . . . , l, . . . , L] is the grade set representing different
degrees of relevance. We assume that there exists a total order between the grades l > l−1 > · · · > 1,
∀l ∈ Lq . Let q be a query from the query set Q, and Dq = {d1, d2, . . . , dN} be the set of N relevant
documents for q, which are selected from the large document collection D. DQ is the relevant
document set for Q. We write Dl

q for the documents with grade l for q. The document retrieval task
is to find a retrieval model f to produce the ranked list of relevant documents for the given query,
i.e., πf (q) := [argmax

(1)
d f(q, d), argmax

(2)
d f(q, d), . . . ], where argmax

(i)
d f(q, d) denotes the i-

ranked document d for q over D given by f via matching the query and documents. The model f is
optimized by minimizing its loss function over some labeled datasets, i.e., minf

∑
Q

∑
D L(f ; q,Dq).

Multi-graded generative retrieval. In an end-to-end architecture, the GR process directly returns
a ranked list for a given query, without a physical index component. Assume that the indexing
mechanism to represent docids is I : D → ID, where ID is the corresponding docid set. For the
observed relevant document set Dq, q ∈ Q, the indexing mechanism I maps them to the docid set
IDq

= {IDl
q
| l = 1, . . . , L}, in which the docid idl ∈ IDl

q
is at grade l. The GR model observes

pairs of a query and docid with multi-graded relevance labels under the indexing mechanism I , i.e.,
{Q, IDQ

}, where IDQ
denotes {IDl

q
| l = 1, . . . , L, q ∈ Q}. Given Q, the model g : Q → IDQ

autoregressively generates a ranked list of candidate docids in descending order of output likelihood
conditioned on each query. Mathematically, g(q; θ) = Pθ(id | q) =

∏
t∈[1,|id|] pθ(wt | q, w<t),

where wt is the t-th token in the docid id ∈ ID and w<t represents all tokens before the t-th token
in id. θ is the model parameters. During inference, the GR model produces the ranked docid list
via πg(q) := [g(1)(q), g(2)(q), . . . ] = [argmax

(1)
id Pθ(id | q), argmax

(2)
id Pθ(id | q), . . . ], where

argmax
(i)
id Pθ(id | q) denotes id for q whose generation likelihood is ranked at position i.

4 Methodology
In this section, we develop a general GR framework called GR2 to support multi-graded relevance
learning. We address two main challenges: (i) how to generate relevant and distinct identifiers given
the original documents (Section 4.1), and (ii) how to capture the interrelationship between docids in a
ranking for a query (Section 4.2). Next, we introduce the optimization process (Section 4.3).
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4.1 Docid design: regularized fusion approach

A popular docid representation method is to employ a query generation (QG) technique [60] to
generate a pseudo-query conditioned on the document as the docid [43, 76]. It is common for
different documents to share identical or similar docids when they contain similar information
[7, 14, 76]. While this similarity can aid the GR model in recognizing the likeness, it also poses
a challenge when the GR model needs to differentiate among multiple documents with varying
relevance grades to a query. Therefore, as shown in Figure 5 in Appendix A, we propose a regularized
fusion approach to optimize the trade-off between relevance and distinctness in docids.

The key idea is to jointly optimize the relevance and distinctness that fuses the latent space of a QG
model, i.e., a docid generation model, and that of an autoencoder (AE) model. The AE model is used
to reconstruct the target query, and both models are based on an encoder-decoder architecture. We
share the same decoder for both QG and AE models as in [29, 46]. Specifically, we propose two
simple yet effective auxiliary regularization terms, i.e., a relevance term and a distinctness term.

Relevance regularization term. To improve the relevance [36, 90], we encourage the representation
of a document and that of the corresponding docid (i.e., pseudo-query) to be close to each other in the
shared latent space. We also aim to increase the distance between the representation of a document
and that of irrelevant docids associated with other documents. This term is formalized as:

LRel(Q,DQ; θQG, θAE) = − 1

|Q|
∑

q∈Q,d∈DQ

exp(sim(edQG, e
q
AE))

exp(sim(edQG, e
q
AE)) + ζ

, (1)

where ζ =
∑

d∈DQ,q∈Q,q ̸=q exp(sim(edQG, e
q
AE)). For each query-document pair, edQG is the docu-

ment representation obtained by the encoder of the QG model, and eqAE is the query representation
obtained by the encoder of the AE model; q is one of the remaining queries except for q in the
batch, and the batch size is |Q|; sim(·, ·) is the dot-product function; and θQG and θAE are model
parameters of the QG model and AE model, respectively.

Distinctness regularization term. To enhance the distinctness between documents and between
docids, we push away the representations of different documents in the document space and, simul-
taneously, push away the representations of different docids in the docid space. Additionally, to
establish a connection between the two latent spaces of docids and documents, we ensure that the
representation of a document and its corresponding docid are close in the same latent space. In a
batch, the distinctness regularization term LDiv (Q,DQ; θQG, θAE) is formalized as:

LDiv (·) =
∑

d,d∈DQ,d̸=d

sim(edQG, e
d
QG)

|Q|(|Q| − 1)
+

∑
q,q∈Q,q ̸=q

sim(eqAE , e
q
AE)

|Q|(|Q| − 1)
−

∑
q∈Q,d∈DQ

sim(edQG, e
q
AE)

|Q|
,

(2)

where d is an irrelevant document with respect to q in the batch. We include a discussion on the
difference between the two regularization terms in Appendix B.

Jointly training the QG and AE model. Both models use MLE to optimize their targets based on
their inputs. Therefore, the overall optimization objective LDocid(Q,DQ; θQG, θAE) is:

LDocid(·) = LQG
MLE(Q,DQ; θQG) + LAE

MLE(Q; θAE) + αLRel(·) + βLDiv (·), (3)

where LQG
MLE(·) = −

∑
q∈Q,d∈DQ

logPθQG
(q|d), and LAE

MLE(·) = −
∑

q∈Q logPθAE
(q|eqAE).

PθQG
(q|d) and PθAE

(q|eqAE) denote the output query likelihood conditioned on the document,
and eqAE . α and β are hyperparameters.

Relevant and distinct docid generation. During inference, following [29, 100], we sample different
latent vectors to generate docids. Given a document, we obtain its representation edQG by the QG
model’s encoder. We introduce a random vector r that is uniformly sampled from a hypersphere of
radius |r| centered at edQG, denoted as zd,r = edQG + r. The value of |r| is tuned on the validation
set to optimize the trade-off between relevance and distinctness. zd,r is then used as the initial state
for the decoder of QG model. We subsequently generate a list of pseudo-queries using beam search
decoding. Initially, we choose the top 1 pseudo-query as the docid. If there are still duplicate docids,
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Figure 1: A Seq2Seq encoder-decoder architecture is used to consume queries and produce relevant
docids for GR. We employ a multi-graded constrained contrastive loss (Section 4.2) to characterize
the relationships among relevance labels based on the relevant and distinct docids (Section 4.1).

we select subsequent pseudo-queries from the list to replace these duplicates until all docids in the
corpus are unique. According to our experimental analysis, selecting up to the top 2 can ensure docid
uniqueness in the corpus. In this way, we first generate diverse docids id relevant to the original text,
serving as the basis for GR model learning. Considering learning costs, the models for docid design
and the GR model are distinct. Though not end-to-end, These fixed docids can guide the GR model
towards appropriate optimization, whereas joint optimization increases the learning difficulty.

4.2 Multi-graded constrained contrastive loss

After obtaining docids, we introduce the multi-graded constrained contrastive (MGCC) loss for the
GR model. Positive pairs and negative pairs are constructed by pairing each query with its relevant
docids drawn from all grades, and with all docids relevant to the rest of queries in the mini-batch
except it, respectively. As illustrated in Figure 1, the key idea is to force positive pairs closer together
in the representation space, but the magnitude of the force is dependent on the relevance grade. The
MGCC loss includes a grade penalty and constraint.
Grade penalty. To distinguish between multiple positive pairs, our key idea is to apply higher
penalties to positive pairs constructed from higher grades, forcing them closer than negative pairs
constructed from lower grades. We first define the loss LPair (q, id

l; θ) between a query q and its
relevant docid at grade l, as

LPair (q, id
l; θ) = log

exp(sim(fq, flid)/τ)∑
a∈Aq

1[fq ̸=fa] exp(sim(fq, fa)/τ)
, (4)

where Aq includes all positive query-docid pairs at different grades and other negative query-docid
pairs for q. fq and flid denote the representation of q and idl, respectively. They are computed based
on the encoder and decoder hidden states, respectively, i.e.,

fq = ξ(Mq; θ), flid = ξ(Hl; θ), (5)
ξ([v1, . . . ,vT ; θ]) = AvgPool([u1, . . . ,uT ]), (6)

ut = ReLU(Wvt + b), (7)

where ξ is the composition of affine transformation with the ReLU [54] and average pooling. Hl =
[hl

1, . . . ,h
l
|idl|] is a concatenation of the decoder hidden states of idl. Mq = [mq

1, . . . ,m
q
|q|] is the

concatenation of the hidden representations generated by the encoder of q. In this way, the loss
for Q is:

∑
q∈Q

1
L

∑L
l=1

−λl

|I
Dl

q
|
∑

idl∈I
Dl

q

LPair (q, id
l; θ), where idl ∈ IDl

q
is a docid at relevance

grade l for q; λl is a controlling parameter that applies a fixed penalty for each grade, contributing to
preserving the relevance level explicitly.
Grade constraint. Inspired by the hierarchical constraint in classification [30, 98], where a class
higher in the hierarchy cannot have a lower confidence score than a class lower in the ancestry
sequence, for each q, we propose to enforce a grade constraint LMax, i.e., the maximum loss from all
positive pairs at grade l:

LMax (l, q, id
l) = max

(q,idl;θ)
LPair (q, id

l; θ). (8)
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The loss between query-docid pairs constructed from a higher relevance grade will never be higher
than that constructed from a lower relevance grade. The final MGCC loss LMGCC (Q, IDQ

; θ) is:

LMGCC (·) =
∑
q∈Q

1

L

L∑
l=1

−λl
|IDl

q
|

∑
idl∈I

Dl
q

max(LPair (q, id
l; θ),LMax (l + 1, q, idl+1; θ)). (9)

For binary relevance datasets, i.e., where there is only a single level of relevance labels (i.e., L = 1),
the MGCC loss reduces to the supervised contrastive loss [16], which helps force the representation
of the query close to that of its relevant documents, while far away from other irrelevant documents.
In this way, GR2 can also tackle the GR problem for the scenarios with binary relevance data, and
this notably reduces complexity compared to multi-graded relevance.

4.3 Learning and optimization
Supervised learning. Based on the docids, we directly supervise the GR model with LMGCC , and
we denote this version as GR2S . To index all documents in a corpus, we adopt the MLE loss to learn
document-docid pairs[79]. To guarantee the generation of each relevant docid to a query, we adopt
the MLE for query-docid pairs at different grades. The final supervised learning loss is:

Ltotal(Q,D, ID; θ) = γLMGCC (Q, IDQ
; θ) + Lq

MLE (Q, IDQ
; θ) + Ld

MLE (D, ID; θ), (10)

Lq
MLE (Q, IDQ

; θ) = −
∑
q∈Q

1

L

L∑
l=1

1

|IDl
q
|

∑
idl∈I

Dl
q

logPθ(id
l | q), (11)

and Ld
MLE (D, ID; θ) = −

∑
d∈D logPθ(id | d), where γ is a hyperparameter, Pθ(id

l | q) and
Pθ(id | d) denote the output docid likelihood conditioned on the query and document, respectively.

The learning objective currently being used in GR is usually defined as Lq
MLE (Q, IDQ

; θ) +

Ld
MLE (D, ID; θ), which does not capture the relationships between labels.

Pre-training and fine-tuning. We also explore the use of GR2 in a pre-training scenario. To construct
pre-training data, we use the English Wikipedia [87] to build a set of pseudo-pairs of queries and
docids. We use the unique titles of Wikipedia articles as the docids for pre-training and assume that a
random sentence in the abstract can be viewed as a representative query of the article.

Then, for each query, we construct its relevant documents with 4 relevance grades as follows, and
leave other grades as future work: (i) grade 4: the Wikipedia article from which the query is sampled,
is regarded as the most relevant document. (ii) grade 3: We use the See Also section of a Wikipedia
article in which hyperlinks link to other articles with similar or comparable information, which
is mainly written manually. If there exists no See Also section, we use a similar section, i.e., the
Reference section. (iii) grade 2 and grade 1: Besides the See Also section, some hyperlinks link to
pages that describe the concept of some entities in detail. We randomly sample several anchor texts
from the first section and other sections, respectively, and regard the linked target pages as grade 2
and grade 1 relevant documents, respectively.

In this way, a total of 1,180,131 query-docid pairs are obtained, and we pre-train an encoder-decoder
architecture using Ltotal as defined in Eq. (10). The architecture can be fined-tuned for downstream
retrieval tasks using Ltotal , where docids are obtained via the fusion method. We denote this version
as GR2P . In the future, we could explore using large language models to automatically label data.

5 Experiments

5.1 Experimental settings

Datasets and evaluation metrics. We select three widely-used multi-graded relevance datasets:
Gov2 [18], ClueWeb09-B [19] and Robust04 [82]. And we use the classic normalized discounted
cumulative gain (nDCG@{5, 20}), expected reciprocal rank (ERR@20) and precision (P@20) as
metrics [12, 31, 49]. Furthermore, we consider two binary relevance datasets: MS MARCO
Document Ranking [57] and Natural Questions (NQ 320K) [38]. We take mean reciprocal rank
(MRR@{3, 20}) and hit ratio (Hits@{1, 10}) as metrics following [7, 79, 85, 104]. Following existing
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Table 1: Experimental results on datasets with multi-graded relevance. Results denoted with ⋆
are from [34, 55]. And ∗,†, ‡ and ≀ indicate statistically significant improvements over the best
performing SR baseline QLM, the DR baseline PseudoQ, the GR baseline RIPOR, and all the
baselines, respectively (p ≤ 0.05).

Methods

Gov 500K ClueWeb 500K Robust04

nDCG P ERR nDCG P ERR nDCG P ERR

@5 @20 @20 @20 @5 @20 @20 @20 @5 @20 @20 @20

BM25 0.4984 0.4819 0.5374 0.1848 0.2579 0.2417 0.3471 0.1362 - 0.4193⋆ 0.3657⋆ 0.1140⋆

DocT5query 0.3936 0.3861 0.4177 0.1258 0.2071 0.1631 0.2604 0.0821 0.3613 0.3229 0.3023 0.1075
QLM 0.4987 0.4822 0.5379 0.1851 0.2582 0.2423 0.3475 0.1365 0.4121 0.4195 0.3658 0.1143
SPLADE 0.4370 0.4146 0.4445 0.1575 0.2272 0.2155 0.3050 0.1109 0.4031 0.3640 0.3192 0.1088

RepBERT 0.3101 0.3351 0.4305 0.1446 0.2624 0.2431 0.3650 0.1663 0.2725 0.2212 0.1686 0.0812
DPR 0.3236 0.3408 0.4417 0.1597 0.2614 0.2576 0.3754 0.1737 0.2873 0.2316 0.1788 0.0873
PseudoQ 0.4168 0.4383 0.5134 0.1801 0.2752 0.2704 0.3926 0.1815 0.4072 0.3577 0.2823 0.0927
ANCE 0.4152 0.4379 0.5129 0.1794 0.2743 0.2696 0.3919 0.1809 0.4069 0.3573 0.2820 0.0921

DSI-Num 0.2484 0.2647 0.3237 0.1052 0.1942 0.1690 0.2520 0.1063 0.2699 0.2028 0.1524 0.0711
DSI-Sem 0.2497 0.2745 0.3392 0.1215 0.2004 0.1977 0.2669 0.1143 0.2711 0.2135 0.1649 0.0737
SEAL 0.3914 0.3255 0.4418 0.1592 0.2683 0.2293 0.2927 0.1305 0.2823 0.2287 0.1654 0.0855
DSI-QG 0.4566 0.4365 0.4602 0.1702 0.2722 0.2556 0.3625 0.1783 0.4089 0.3703 0.3267 0.1032
NCI 0.4635 0.4473 0.4722 0.1882 0.2783 0.2631 0.3734 0.1896 0.4096 0.3786 0.3349 0.1052
Ultron-PQ 0.4658 0.4496 0.4775 0.1911 0.2798 0.2652 0.3758 0.1904 0.4103 0.3797 0.3352 0.1063
LTRGR 0.4663 0.4517 0.4783 0.1923 0.2805 0.2664 0.3762 0.1916 0.4109 0.3805 0.3358 0.1071
GenRRL 0.4669 0.4524 0.4789 0.1928 0.2812 0.2669 0.3768 0.1921 0.4112 0.3810 0.3362 0.1078
GenRet 0.4672 0.4528 0.4792 0.1931 0.2824 0.2671 0.3770 0.1925 0.4116 0.3812 0.3365 0.1081
NOVO 0.4675 0.4531 0.4796 0.1935 0.2827 0.2674 0.3372 0.1928 0.4119 0.3816 0.3369 0.1084
RIPOR 0.4713 0.4578 0.4831 0.1978 0.2835 0.2707 0.3401 0.1963 0.4142 0.3849 0.3404 0.1093

GR2S 0.4869≀ 0.4784≀ 0.5364≀ 0.2125≀ 0.2886∗† 0.2791≀ 0.3788∗‡ 0.2016∗† 0.4197∗† 0.3983≀ 0.3471≀ 0.1097†

GR2P 0.5095≀ 0.4912≀ 0.5506≀ 0.2167≀ 0.3034≀ 0.2969≀ 0.3871∗‡ 0.2026≀ 0.4301≀ 0.4205≀ 0.3568≀ 0.1196≀

works [17, 74, 79, 86], for Gov2, ClueWeb09-B and MS MARCO, we primarily sampled subset
datasets consisting of 500K documents for experiments, denoted as Gov 500K, ClueWeb 500K and
MS 500K, respectively. For a detailed description of the datasets, please refer to Appendix D.

Baselines. We consider three types of baselines: sparse retrieval (SR), dense retrieval (DR), and GR
models. The SR baselines include: BM25 [70], DocT5Query [28], Query Likelihood Model (QLM)
[105], and SPLADE [24, 25]. The DR baselines include: RepBERT [95], DPR [36], PseudoQ [75],
and ANCE [89]. The GR baselines are DSI-Num [79], DSI-Sem [79], DSI-QG [106], NCI [85],
SEAL [7], GENRE [22], Ultron-PQ [104], LTRGR [44], GenRRL [102], GenRet [74], NOVO [86],
and RIPOR [92]. Additionally, we compare our method with a full-ranking method, monoBERT [61].
For a detailed description of the baselines, please refer to Appendix E.

Model variants. We consider two versions of GR2: GR2S and GR2P , for supervised learning and pre-
training, respectively. Additional variants are: (i) GR2S

−RF and GR2P
−RF omit the regularized fusion

approach, and directly use pseudo-queries generated by a single QG model as docids. (ii) GR2S
−λ and

GR2P
−λ omit the grade penalty λl in LMGCC (Eq. (9)); (iii) GR2S

−Max and GR2P
−Max omit LMax in the

MGCC loss; (iv) GR2S
MLE and GR2P

MLE only use Lq
MLE (Eq. (11)) and Ld

MLE ; (v) GR2S
CE and GR2P

CE
use the weighted cross-entropy loss, where the relevance grades are the weights; it can be viewed as
an adaption of the loss from [8, 9]; (vi) GR2S

LR and GR2P
LR directly use the LambdaRank loss [10].

Implementation details. For backbones, we choose the widely-used backbone in GR research,
i.e., T5-base model [66] to implement the GR2 and GR baselines. For docid generation, we use
the docT5query model [59] as the QG model and a transformer autoencoder [80]. For T5-base, the
hidden size is 768, the feed-forward layer size is 12, the number of self-attention heads is 12, and the
number of transformer layers is 12. GR2 and the reproduced baselines are implemented with PyTorch
1.9.0 and HuggingFace transformers 4.16.2; we re-implement DSI-Num and DSI-Sem, and utilize
open-sourced code for other baselines.

For hyperparameters, we use the Adam optimizer with a linear warm-up over the first 10% steps. The
learning rate is 5e-5, label smoothing is 0.1, weight decay is 0.01, sequence length of documents is
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Table 2: Experimental results on datasets with binary relevance. And ∗,†, ‡ and ≀ indicate statistically
significant improvements over the best performing SR baseline DocT5query or SPLADE, the DR
baseline PseudoQ, the GR baseline RIPOR and all the baselines, respectively (p ≤ 0.05).

Methods

MS 500K NQ 320K

MRR Hits MRR Hits

@3 @20 @1 @10 @3 @20 @1 @10

BM25 0.2171 0.2532 0.2385 0.3969 0.1456 0.1875 0.2927 0.6016
DocT5query 0.3378 0.3561 0.3489 0.5773 0.2612 0.2859 0.3913 0.697
QLM 0.2746 0.2805 0.2852 0.4593 0.2625 0.2864 0.3927 0.6979
SPLADE 0.3246 0.3483 0.3353 0.5637 0.3057 0.3404 0.4253 0.7146

RepBERT 0.3029 0.3382 0.3287 0.5233 0.3135 0.3421 0.4542 0.7275
DPR 0.3095 0.3264 0.3215 0.5432 0.3172 0.3493 0.5020 0.7812
PseudoQ 0.3342 0.3528 0.3452 0.5736 0.3253 0.3582 0.5271 0.7952
ANCE 0.3330 0.3520 0.3446 0.5729 0.3215 0.3576 0.5263 0.7931

DSI-Num 0.2159 0.2798 0.2676 0.4440 0.2286 0.2793 0.2185 0.4571
DSI-Sem 0.2229 0.2847 0.2753 0.4832 0.2581 0.3084 0.2740 0.5660
GENRE - - - - 0.3268 0.3467 0.2630 0.7120
SEAL 0.2977 0.3110 0.3072 0.5163 0.3367 0.3658 0.2630 0.7450
DSI-QG 0.3271 0.3457 0.3352 0.5749 0.3613 0.3868 0.6349 0.8236
NCI 0.3317 0.3566 0.3365 0.5833 0.3657 0.4053 0.6424 0.8311
Ultron-PQ 0.3326 0.3575 0.3379 0.5851 0.3663 0.4059 0.6461 0.8345
LTRGR 0.3354 0.3583 0.3381 0.5859 0.3692 0.4078 0.6511 0.8489
GenRRL 0.3359 0.3587 0.3389 0.5863 0.3698 0.4086 0.6528 0.8533
GenRet 0.3362 0.3591 0.3393 0.5867 0.3702 0.4095 0.6542 0.8567
NOVO 0.3371 0.3602 0.3405 0.5869 0.3724 0.4136 0.6613 0.8624
RIPOR 0.3384 0.3626 0.3421 0.5873 0.3741 0.4173 0.6638 0.8667

GR2S 0.3489≀ 0.3714≀ 0.3515†‡ 0.6126≀ 0.3813≀ 0.4299≀ 0.6724≀ 0.8713∗†

GR2P 0.3597≀ 0.3835≀ 0.3821≀ 0.6405≀ 0.3937≀ 0.4418≀ 0.6832≀ 0.8825≀

512, max training steps are 50K, and batch size is 60. We train GR2 on eight NVIDIA Tesla A100
80GB GPUs. For more details, please see Appendix F.

5.2 Experimental results

Note, Appendix G contains additional experimental analyses, i.e., comparisons with full-ranking
baselines (Appendix G.1) and results on large-scale datasets (Appendix G.3).

5.2.1 Comparison against baselines

Results on multi-graded relevance. Table 1 shows the performance of GR2 and baselines on
multi-graded relevance datasets. We find that: (i) QLM performs the best among sparse retrieval
and dense retrieval baselines on Robust04 and Gov 500K, confirming prior work [45, 48, 94]; these
multi-graded datasets have limited labeled training pairs, which may not be sufficient for learning
semantic relationships between queries and documents. (ii) Existing GR baselines perform worse
than QLM on Gov 500K and Robust04, indicating that developing an effective GR method remains
an open challenge. (iii) RIPOR outperforms other GR baselines; the multi-stage training strategy
appears to aid the effectiveness. (iv) By capturing the relationship between multi-graded relevance
labels, GR2 achieves significant improvements over GR baselines that only consider binary relevance
based on the standard Seq2Seq objective. For example, GR2P and GR2S outperform RIPOR by
about 11% and 14% on the Gov 500K dataset in terms of P@20, respectively. (v) Between our two
methods, GR2P outperforms GR2S , indicating that pre-training on large-scale elaborately constructed
multi-graded relevance data, is better than training a single generation model from scratch.

Results on binary relevance. The performance on binary relevance datasets is shown in Table 2. We
find that the relative order of different models on these datasets is almost consistent with that on the
multi-graded relevance data. (i) PseudoQ outperforms QLM on these datasets. The number of labeled
query-document pairs appears to be sufficient, contributing to the learning of semantic relationships.
(ii) DocT5query outperforms some dense retrieval baselines on MS 500K, which may differ from
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Figure 2: Ablation analysis. (Left) Supervised learning; (Right) Pre-training and fine-tuning.
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Figure 3: Supervised training and fine-tuning with limited supervision data. The x-axis indicates the
number of training queries.

their performance on the full MS MARCO dataset. Similar experimental findings can be found in
[74]. (iii) GR2P and GR2S perform the best, the former outperforms RIPOR by 11.7% in terms of
Hits@1 on the MS 500K dataset, while the latter surpasses RIPOR by 4.3% in terms of Hits@10.
This indicates that GR2 is a general framework for generative retrieval that can adapt to both binary
relevance and multi-graded relevance scenarios. Note, Appendix G.1 contains a comparison between
GR2 and the full-ranking method.

5.2.2 Model ablation

In Figure 2, we visualize the outcomes of our ablation analysis of GR2 on Gov 500K and MS 500K.

Docid design: regularized fusion approach. On both datasets, (i) GR2S
MLE and GR2P

MLE outperform
NCI in retrieval performance, confirming that using docids trained with the regularized fusion method
is more beneficial for retrieval performance. (ii) The performance of GR2S

RF and GR2P
RF is much lower

than that of GR2S and GR2P , suggesting that in complex relevance scenarios, docids need to possess
both relevance to the original document and distinctness.

Training: MGCC loss. For Gov 500K: (i) Without the grade penalty in the MGCC loss (GR2S
−λ

and GR2P
−λ), the query-docid pairs at different relevance grades share the same weights, which

cannot fully use information about the relationships between labels. (ii) Without the grade constraint
(GR2S

−Max and GR2P
−Max ), documents with higher relevance grades play a smaller role in optimization,

weakening the discriminative ability to distinguish between grades. For MS 500K, i.e., in binary
relevance scenarios, the MGCC loss in GR2S

−λ, GR2S
−Max and GR2S is the supervised contrastive loss

[16], showing the same performance.

For both datasets, GR2S
CE and GR2P

CE underperform GR2S and GR2P , respectively. GR2S
LR and GR2P

LR
show similar results. Both variants can be viewed as the pairwise approaches. They only distinguish
docids at different grades, while the MGCC loss not only penalizes docids at different grades to be
distinguished from each other, but also encourages docids with the same grade to be similar.

5.2.3 Zero-resource and low-resource settings
To simulate the low-resource retrieval setting, we randomly sample different fixed limited numbers of
queries from the training set. To compare GR2, NCI and RIPOR, we randomly sample 15, 30, 45
and 60 queries from multi-graded relevance datasets. For binary relevance datasets, we randomly
sample 2K, 4K, 6K and 8K queries. Zero-resource retrieval is performed by only indexing without
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Figure 4: t-SNE plots of query and document representations for GR2P (left), RIPOR (mid) and NCI
(right).

retrieval task, i.e., the ground-truth query-document pairs are not provided. See Figure 3. We observe
the following: (i) GR2S and GR2P perform better than NCI and RIPOR, indicating that GR2 is
able to use relevance signals from limited information. (ii) Under the zero-resource setting, all GR
methods perform worse than BM25, due to the requirements of learning the mapping between queries
and relevant docids. (iii) Under the low-resource setting, on ClueWeb 500K, GR2P can outperform
BM25 in terms of nDCG@20. GR2P has the pre-training stage, which helps the model to acquire a
discriminative ability for relevance. In general, GR leaves considerable room for improvement under
such settings; pre-training GR2 with diverse corpora is likely to improve its generalization ability.

5.2.4 Visual analysis

We visualize query and text representations using t-SNE [81] to better understand the MGCC loss.
Specifically, we sample the query “Radio station call letters” (QID: 848) from Gov 500K. We then plot
a t-SNE example using the representations of the sampled query and its top-100 candidate documents
given by the encoder output of GR2P and the representative GR baselines NCI and RIPOR. As shown
in Figure 4, for GR2P , documents with higher relevance grades are closer to the query than those
with lower grades. And documents at the same relevance grade gather together. For NCI and RIPOR,
the distribution of relevant documents in the latent space is relatively random: the standard Seq2Seq
objective only learns to generate a single most relevant docid, from which it is difficult to learn the
discriminative ability of multi-graded relevance.

5.2.5 Efficiency analysis

We compare the efficiency of GR2 and the dense retrieval model ANCE on the Gov 500K dataset.
The memory footprint refers to the amount of disk space required for storage. Additionally, we assess
the end-to-end inference time during the retrieval phase. (i) Regarding memory usage, GR2 primarily
consists of model parameters and a prefix tree for docids. ANCE necessitates dense representations
for the entire corpus, with the memory requirement increasing as the corpus size grows. Notably,
GR2 consumes approximately 16.7 times less memory compared to ANCE. This distinction becomes
even more significant when dealing with larger datasets. For instance, in comparison to DPR, a GR
approach uses 34 times less memory on the entire Wikipedia [15, 22]. (ii) In terms of inference times,
the heavy process on dense vectors in dense retrieval is replaced by a lightweight generative process
in GR2. Consequently, GR2 consumes roughly 1.59 times less inference time than ANCE. Similar
efficiency gains are observed in other GR-related work [15, 74, 76].

6 Conclusion
We have proposed a MGCC loss for multi-graded GR that captures the relationships between multi-
graded documents in a ranking, and a regularized fusion method to generate distinct and relevant
docids. They work together to ensure more accurate GR retrieval. Empirical results on binary and
multi-graded relevance datasets have demonstrated the effectiveness of the proposed method. There
are several directions that we wish to explore: (i) We adopt hard weights for each relevance grade;
what is the effect of a soft assignment setting in the MGCC loss? (ii) The generated docids remain
fixed after initialization; how to perform joint optimization of the docid generation and the retrieval
task? Current GR research focuses on technological feasibility, but using large language models for
IR has implications for transparency, provenance, and user interactions [73]. Investigating the impact
of scaled GR technology on users and societies is crucial.
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A Supplemental figure of the docid design

As shown in Figure 5, the regularized fusion approach includes a query generation model, i.e., docid
generation model, and an autoencoder model with shared decoders, to generate relevant and distinct
docids.

B Additional discussion

The key difference between the two regularization terms, i.e., the relevance and distinctness regular-
ization terms, lies in the following: (i) The relevance regularization term, from a global perspective,
encourages relevance between a document and its own docid, sampling docids from other documents
as negative examples to ensure their non-relevance. (ii) The distinctness regularization term focuses
on making documents distinguishable in the QG space (the first term of Eq. (2)) and, at the same
time, ensuring distinguishability between docids in the AE space (the second term of Eq. (2)). To
bridge the two spaces, we maintain a correlation between corresponding documents and docids (the
third term of Eq. (2)). Although these two terms are not jointly optimized with the GR model, they
can help generate more relevant and diverse docids. These fixed docids can guide the subsequent GR
model towards appropriate optimization during learning, whereas joint optimization increases the
learning difficulty.
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Figure 5: The regularized fusion approach to generate relevant and distinct docids.

C Additional related work

Multi-graded relevance datasets. In IR, datasets featuring multi-graded relevance annotations
contribute significantly to the evaluation and advancement of retrieval models. Datasets like Robust04
[82] and large-scale web document collections such as ClueWeb09 and ClueWeb12 [19] offer diverse
relevance grades. Gov2 [18] is a TREC test collection, containing a large proportion of pages in the
.GOV domain. Furthermore, certain NTCIR [71] evaluation tasks contribute to the landscape.

Sparse retrieval. Sparse retrieval methods typically use sparse vectors to represent queries and
documents and rely on exact matching to compute similarity scores, e.g., BM25 [70] and query
likelihood model [39]. However, these approaches only consider statistical information and fail to
incorporate semantic information. To address such limitation, some studies [3, 4, 5, 21, 26, 101] have
used word embeddings to re-weight term importance. While sparse retrieval methods can reduce the
computational complexity of the retrieval process, making retrieval faster and more efficient, they
may fail to match at a higher semantic level, resulting in the loss of information.

Dense retrieval. To address the vocabulary mismatch problem [27, 99] in sparse retrieval, many
researchers have turned to dense retrieval methods[47, 95]. These methods usually use a dual-
encoder architecture to learn dense representations of both queries and documents, which are then
processed through a matching layer to produce the final relevance score. Formally, given a query
q ∈ Q and a document d ∈ D, the two-tower retrieval model consists of two encoder functions,
ϕ : Q→ R

k1 and ψ : D → R
k2 , which map a sequence of tokens in Q and D to their corresponding

embeddings ϕ(q) and ψ(d), respectively. The scoring function f : Rk1 × R
k2 → R is then

defined to calculate the matching score between the query embedding and the document embedding:
score(q, d) = f(ϕ(q), ψ(d)). To improve efficiency, approximate nearest neighbor (ANN) search
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[2, 6] is used to accelerate retrieval. Additionally, many pre-trained models and techniques are utilized
to further enhance dense retrieval performance[1, 11, 32, 37, 41, 58].

Although this pipeline paradigm has achieved promising performance, there are still some limitations:
(i) Without fine-grained rerankers, such as [11, 49, 50], the performance of the vanilla dense retrieval
method is still far from industrial applications. Using multiple heterogeneous modules, each with a
different optimization objective, leads to sub-optimal performance. (ii) During inference, the query
needs to search for relevant documents from the entire corpus. Although there are strategies for
improving efficiency now available, such as ANN, such methods loss some semantic information.

End-to-end retrieval. Thanks to the significant success of large-scale generative models in various
natural language processing tasks [42, 62, 64, 65], generative retrieval [51] has been proposed as an
alternative paradigm in IR. The traditional external index is converted into a training process which
learns the mapping from the documents to its docids. Given a query, a single model directly generates
a list of relevant document identifiers with its parameters. This generative paradigm has potential
advantages: (i) It enables end-to-end optimization towards the global retrieval objective. (ii) During
inference, given a query, the model generates docids based on a small-sized vocabulary, achieving
higher retrieval efficiency and eliminating the need for a heavy traditional index.

Following this blueprint, GENRE[22] was the first attempt to explore this paradigm. Using the unique
titles of Wikipedia articles as document identifiers, GENRE directly generated a list of relevant article
titles for a query with constrained beam search based on BART[42] model. This method outperformed
some traditional pipelined methods on multiple tasks based on Wikipedia. And subsequent work
[7, 15, 79, 85, 106] has continued to explore and improve upon it. However, existing work focus on
binary relevance scenarios, ignoring the multi-graded relevance scenarios. In this work, we aim to
further explore how generative retrieval paradigm support fine-grained relevance.

Exploring the scalability of large data and model size in GR is an area with limited research.
Specifically, (i) there is work on scaling up GR to corpora in the millions [63, 92, 93], finding
that that as the corpus size increases, learning difficulty rises [63]. (ii) increased model parameters
enhances retrieval performance [79], which also increases latency and decreases throughput [85].
However, current research is mainly confined to datasets ranging from hundreds of thousands to
millions in scale, and exploration on an even larger scale has not been undertaken. Generalizing to
ultra-large-scale data is a future direction worth exploring in the field of GR.

D Dataset details

Multi-graded relevance datasets we used are (i) Gov2 [18] contains about 150 queries and 25M
documents collected from .gov domain web pages, from TREC Terabyte Tracks 2004–2006. Since
the whole corpus is large, following existing works [17, 74, 79, 86], we primarily sampled a subset
dataset consisting of 500K documents for experiments, denoted as Gov 500K. (ii) ClueWeb09-B [19]
is a web collection with over 50M documents, accumulated from the TREC Web Tracks 2009–2011;
we also sample a subset of 500K documents denoted as ClueWeb 500K to conduct experiments.
(iii) Robust04 [82] consists of 250 queries and 0.5M news articles, from the TREC 2004 Robust
Track.

Furthermore, We consider two moderate-scale binary relevance datasets widely used in GR [74, 79,
85, 86, 104]: (i) MS MARCO Document Ranking [57] is a large-scale benchmark dataset for web
document retrieval, with about 0.37M training queries; following [104], we sample a subset denoted
as MS 500K for experiments. (ii) Natural Questions (NQ 320K) contains 307K query-document
pairs based on the Natural Questions (NQ) dataset [38], where the queries are natural language
questions and documents are gathered from Wikipedia pages. We follow the settings of existing GR
work [7, 79, 85]. Table 3 shows the statistics of these datasets.

E Baseline details

In this section, we introduce the baselines in detail. The sparse retrieval baselines include: (i) BM25
[70] is a classical probabilistic retrieval model. (ii) DocT5Query [60] generates queries conditioned
on a document using T5 [65]. And these synthetic queries are then appended to the original documents.
Additionally, we consider two learned sparse retrieval baselines: (iii) the Query Likelihood Model
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Table 3: Data statistics. #Queries, #Documents and #Grades denote the number of labeled queries,
documents and labeled relevance grades, respectively. #Avg denotes the average number of relevant
documents for queries.

Dataset #Queries #Documents #Grades #Avg
Gov 500K 150 500K 3 108
ClueWeb 500K 150 500K 2 84
Robust04 250 500K 2 69
MS 500K 0.37M 500K 1 1
NQ 320K 290K 228k 1 1

(QLM) [105] adopts the query log likelihood conditioned on a document for a query as the relevance
score, based on T5. (iv) SPLADE [24, 25] uses a BERT-based encoder to transform a text sequence
into a sparse lexical representation.

The dense retrieval baselines include: (i) RepBERT [95] is a BERT-based two-tower model trained
with in-batch negative sampling. (ii) DPR [36] uses dense embeddings for text segments with a
BERT-based dual encoder. PseudoQ [75] generates pseudo-queries via K-means clustering based on
the token embeddings of documents to enhance learning. It is also a BERT-based two-tower model.
(iii) ANCE [89] employs an asynchronously updated approximate nearest neighbors (ANN) indexer
for extracting hard negative examples to train a RoBERTa-based dual-encoder model.

The GR baselines, covering the majority of representative GR related work: (i) DSI-Num [79]
uses arbitrary unique numbers as docids, and a MLE loss based on query-docid pairs Lq

MLE and
document-docid pairs Ld

MLE . (ii) DSI-Sem [79] builds docids by concatenating class numbers
generated by hierarchical k-means clustering algorithm and adopts the same training objective as
DSI-Num. (iii) DSI-QG [106] uses a query generation model [60] to augment the dataset, and
arbitrary unique numbers as docids. (iv) NCI [85] uses semantic structured numbers like DSI-Sem
as docids and pairs of pseudo-query and docid generated by query generation strategies for data
augmentation. (v) SEAL [7] uses arbitrary n-grams in documents as docids and retrieves documents
based on an FM-index. (vi) GENRE [22] retrieves a Wikipedia article by generating its title, and can
only be directly used for NQ. (vii) Ultron [104] starts with pre-training using document piece-docid
pairs, followed by supervised fine-tuning with labeled queries and pseudo-queries. We uses the
product quantization code as docids. (viii) GenRRL [103] uses multiple optimization strategies, i.e.,
pointwise, pairwise, and listwise relevance signals to train the model, via reinforcement learning.
We use document summaries as the docid. (ix) LTRGR [44] uses a pairwise relevance loss, e.g.,
margin-based rank loss to train the model. (x) GenRet [74] introduces an autoencoder model to
generate discrete numbers as docids. This model is learned jointly with the retrieval task. (xi) NOVO
[86] selects important word sets from the document as docids via labeled relevance signals. This
method also uses pseudo-queries to augment the effectiveness.

Additionally, we compare current GR methods with full-ranking methods, since these approach
typically yields better performance and are widely used. They consist of an initial retriever and a
finer-grained re-ranking module. Specifically, we use a cross-encoder baseline, monoBERT [61].
BM25 retrieves the top 1000 candidate documents, and monoBERT ranks them by concatenating the
query and document as the input.

F Additional implementation details

Hyperparameters.

We specify α and β in Eq. (3) as 1 and 30, respectively. And the inference radius |r| is set to 2 and
1.5 for the multi-graded and binary relevance datasets, respectively. Since documents in NQ have
unique titles, we directly use their titles as docids. We set τ in LPair to 0.1, and γ in Ltotal to 1. We
define λl = 1

l2 used in LMGCC following [98].

Training. Following [17, 74, 85, 106], we select the leading 3 paragraphs, leading 3 sentences, and
randomly sample 3 entities from each document as queries, and associate them with the docid as
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Table 4: Comparison between GR methods and the full-ranking baseline. ∗ indicates statistically
significant improvements over GR2P (p ≤ 0.05).

Methods Gov 500K MS 500K
nDCG@5 MRR@20

RIPOR 0.4713 0.3626
GR2P 0.5095 0.3835
BM25+monoBERT 0.6953∗ 0.5862∗

additional query-docid pairs for data augmentation. And inspired by [92], to enhance the model’s
effectiveness, we also adopt self-negative fine-tuning strategy.

Inference. During inference, we construct a prefix trie [22] for all docids, and adopt constrained
beam search to decode docids with 20 beams.

Safeguards for the responsible release of resources. For pretrained language models, rigorous
evaluation and testing protocols are employed to assess potential risks and biases before release.
Additionally, we plan to outline strict guidelines for access control and usage policies to mitigate
misuse upon publication. Regarding data release, anonymization techniques are used to protect
privacy, and sensitive information is redacted or excluded where necessary upon publication.

G More experimental results

G.1 Comparison between GR methods with the full-ranking baseline

From Table 4, we observe that GR is still in its early stages, and the current GR methods have some
distance to cover compared to full-ranking methods. Achieving the integration of index, retrieval, and
reranking into a single model poses a significant challenge. Possible reasons include (i) the design of
docids is still independent of the final retrieval optimization; (ii) there is a lack of explicit interaction
between query and document; (iii) the current optimization methods do not fully use the data; and
(iv) the pre-training tasks for backbone models are not specifically designed for GR. Current GR
methods can only be compared with index-retrieval frameworks, and there is still some distance from
the ideal model-based IR. We hope that future work will address these aspects.

G.2 Efficiency analysis

We compare the efficiency of GR2 and the dense retrieval model ANCE on the Gov 500K dataset.
The memory footprint refers to the amount of disk space required for storage. Additionally, we assess
the end-to-end inference time during the retrieval phase. (i) Regarding memory usage, GR2 primarily
consists of model parameters and a prefix tree for docids. ANCE necessitates dense representations
for the entire corpus, with the memory requirement increasing as the corpus size grows. Notably,
GR2 consumes approximately 16.7 times less memory compared to ANCE. This distinction becomes
even more significant when dealing with larger datasets. For instance, in comparison to DPR, a GR
approach uses 34 times less memory on the entire Wikipedia [15, 22]. (ii) In terms of inference times,
the heavy process on dense vectors in dense retrieval is replaced by a lightweight generative process
in GR2. Consequently, GR2 consumes roughly 1.59 times less inference time than ANCE. Similar
efficiency gains are observed in other GR-related work [15, 74, 76].

G.3 Results on large-scale datasets

Generalization on large-scale datasets for GR remains a significant challenge [63, 77], which requires
dedicated design and research, with only a few works exploring it [63, 92, 93]. Although they can
achieve comparable effectiveness to dense retrieval methods, their performance still lags behind
mainstream full-ranking methods. Therefore, current efforts are still focused on moderate-scale
datasets [43, 74, 79, 86, 104]. Although generalization is not the main focus of this work, we still
conduct some preliminary experiments. In the future, we plan to investigate how to generalize to
extremely large-scale datasets, such as the corpora in the industry with billions of documents.
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Table 5: Results on the MS 1M dataset.

Methods MS 1M
MRR@20

RIPOR 0.3674
GR2P 0.3659

To assess the performance of our method on million-scale datasets, specifically, we constructed a
corpus of size 1M based on the MS MARCO dataset, referred to as MS 1M. Note, it is a binary
relevance dataset, with annotation data and validation sets directly derived from the original dataset.
Initially, we pre-train GR2P on the constructed 4-grade relevance Wikipedia dataset and then fine-tune
and evaluate on MS 1M. We compare the performance of GR2P with RIPOR on MS 1M.

As shown in Table 5, we observe that (i) RIPOR performs well on large-scale datasets and exhibits
strong generalization, possibly attributed to its docids generated by its own GR model, along with
multi-stage enhancement training. (ii) Additionally, our method achieves comparable results to
RIPOR on such a large-scale corpus, indicating that our method considering multi-graded relevance
information also contributes to more accurate relevance distinction on binary relevance datasets.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and Section 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

23



Justification: Section 1, Section 3 and Section 5
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5, Appendix D, and Appendix F
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 6
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Appendix F
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: We didn’t introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We didn’t conduct crowdsourcing experiments and research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work only focuses on generative retrieval with multi-graded relevance.
And it has no potential risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28


	Introduction
	Related Work
	Preliminaries
	Methodology
	Docid design: regularized fusion approach
	Multi-graded constrained contrastive loss
	Learning and optimization

	Experiments
	Experimental settings
	Experimental results
	Comparison against baselines
	Model ablation
	Zero-resource and low-resource settings
	Visual analysis
	Efficiency analysis


	Conclusion
	Supplemental figure of the docid design
	Additional discussion
	Additional related work
	Dataset details
	Baseline details
	Additional implementation details
	More experimental results
	Comparison between GR methods with the full-ranking baseline
	Efficiency analysis
	Results on large-scale datasets


