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Abstract

Chain-of-Thought significantly enhances a001
model’s reasoning capability, but it also comes002
with a considerable increase in inference costs003
due to long chains. With the observation that004
the reasoning path can be easily compressed005
under easy tasks but struggle on hard tasks,006
we explore the feasibility of elastically con-007
trolling the length of reasoning paths with only008
one model, thereby reducing the inference over-009
head of reasoning models dynamically based010
on task difficulty. We introduce a new tun-011
ing and inference strategy named CoT-Valve,012
designed to allow models to generate reason-013
ing chains of varying lengths. To achieve this,014
we propose to identify a direction in the pa-015
rameter space that, when manipulated, can ef-016
fectively control the length of generated CoT.017
Moreover, we show that this property is valu-018
able for compressing the reasoning chain. We019
construct datasets with chains from long to020
short for the same questions and explore two en-021
hanced strategies for CoT-Valve: (1) a precise022
length-compressible CoT tuning method, and023
(2) a progressive chain length compression ap-024
proach. Our experiments show that CoT-Valve025
successfully enables controllability and com-026
pressibility of the chain and shows better per-027
formance than the prompt-based control. We028
applied this method to QwQ-32B-Preview, re-029
ducing reasoning chains on GSM8K from 741030
to 225 tokens with a minor performance drop031
(95.07% to 94.92%) and on AIME from 6827032
to 4629 tokens, with only one additional incor-033
rect answer.034

1 Introduction035

Chain-of-Thought (CoT) reasoning (Wei et al.,036

2022) has emerged as a powerful technique for037

enhancing the reasoning capabilities of large lan-038

guage models (Jaech et al., 2024; Dubey et al.,039

2024; Abdin et al., 2024), particularly in complex040

tasks such as mathematics and coding (Sprague041

et al., 2024) that require multi-step inference. By042

simulating the process of human-like thought pro- 043

gression, CoT enables models to break down com- 044

plex problems into sub-questions, improving accu- 045

racy and interpretability (Joshi et al., 2023). Those 046

reasoning abilities have also been tested in differ- 047

ent domains, such as image generation (Ma et al., 048

2025) and visual understanding (Shao et al., 2024). 049

Training reasoning models often involves gen- 050

erating extensive reasoning paths through meth- 051

ods such as sampling (Wang et al., 2023), tree 052

search (Yao et al., 2023; Guan et al., 2025; Zhang 053

et al., 2024) or reinforcement learning (DeepSeek- 054

AI, 2025) to reach the correct answer ultimately. 055

However, these long chains often incorporate re- 056

dundant intermediate steps that can be unnecessary 057

or too complex (Lightman et al., 2024), and the re- 058

dundancy in the reasoning paths for training leads 059

to inefficiencies in token usage and increased infer- 060

ence costs. However, crafting an optimal reason- 061

ing chain that omits extraneous details is challeng- 062

ing due to the limited availability of intermediate 063

rewards to guide the process and human annota- 064

tions (Zhang et al., 2025). Removing some or all of 065

the intermediate steps and then training or distilling 066

the model (Liu et al., 2024b; Yu et al., 2024) will 067

degrade the performance. Alternative approaches 068

employ information-theoretic measures (Ton et al., 069

2024) or identify an "overthinking" solution in 070

QwQ (Team, 2024b) to evaluate the contribution 071

of each sentence to the final answer. 072

We observe that current reasoning models, 073

such as QwQ (Team, 2024b) and DeepSeek- 074

R1 (DeepSeek-AI, 2025) allocate an excessive 075

number of tokens to simple tasks, while poten- 076

tially providing insufficient tokens for complex 077

tasks. Thus, a long reasoning path is still essential, 078

while maintaining the ability to compress reason- 079

ing paths for simpler questions is equally important. 080

To solve this, our goal is to fine-tune a model ca- 081

pable of generating both long and short reasoning 082

paths, rather than being restricted to a compressed 083
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So John starts with €100. He buys a roast that costs €17 and some vegetables for
€11. I need to find out how much money he has left after these purchases. First, I
should figure out the total amount he spent <Omitted> Let me add those up: 17
plus 11 is 28. So, he spent a total of €28. Now, to find out how much money he
has left, I need <Omitted>So, final answer: John has €72 left.

Question:
John goes to the
market with €100.
He buys a roast for
€17 and vegetables
for €11. How much
money does he have
left?

1. John starts with €100. 2. He buys a roast for €17: €100 - €17 = €83 remaining
3. Then he buys vegetables for €11:\n €83 - €11 = €72 remaining So, after his
purchases, John has €72 left.

John starts with €100. He makes two purchases: a roast for €17 and vegetables for
€11. To find out how much money he has left, we need to subtract the total
amount he spent from his initial amount. First, <Omitted>Yes, that seems correct.
John has €72 remaining.

Medium CoT

Short CoT #Token: 85

#Token: 232

#Token: 449Long CoT (QwQ-32B-Preview)

So John goes to the market with €100. That‘s his starting amount. Then he buys 
a roast for €17 and vegetables for €11. I need to find out how much money he 
has left after these purchases. Alright, first, I should figure out the total amount 
he spent. He bought a roast for €17 and vegetables for €11. So, the total 
expenditure is €17 plus €11. Let’s add those up. 17 plus 11 is 28. So, he spent a 
total of €28. Now, he started with €100, and he spent €28. <Omitted>Yes, that 
seems straightforward. I don’t think there‘s any trick here or additional steps I 
need to consider. So, the final answer is €72.

#Token: 833Extrapolation to Unseen LengthCoT Valve

Long Short

Figure 1: The reasoning model, after the length-compressible CoT tuning, can generate reasoning paths from long
to short, leveraging LoRA as a ‘Valve’. We show one example from our constructed dataset MixChain.

form. We offer a new way to control the length of084

CoT, which we refer to as Length-Compressible085

Chain-of-Thought Tuning.086

A central component of the proposed method087

is to identify an update direction in the parame-088

ter space, which, by manipulating it, acts as in-089

creasing or decreasing the length of CoT. Taking090

a large step in this direction leads the model to091

generate a short sequence, while a small step still092

produces a long and complex reasoning trajectory.093

We choose to incorporate this update direction by094

LoRA (Hu et al., 2022), enabling it to function095

as an additional branch that facilitates easy mod-096

ulation of intensity while imposing minimal extra097

parameters on the model. We explore methods098

to identify this direction and demonstrate that it099

offers superior controllability compared to prompt-100

based approaches, which enables the generation of101

short CoT that prompt-based methods are unable to102

achieve. Besides, we observe that the direction can103

be extrapolated, allowing the reasoning chains to104

be extended beyond or shortened to lengths unseen105

in the training set. Leveraging this compressibil-106

ity, we construct a dataset that pairs long and short107

reasoning chains for each question. This dataset is108

then utilized in two ways: (1) to refine the direction109

for more precise tuning, and (2) to compress the110

reasoning path progressively.111

We evaluate our method across different types112

of models, ranging from a pre-trained LLM113

with little reasoning ability, LLaMA-3.1-8B and114

LLaMA-3.2-1.5B-Instruct (Dubey et al., 2024),115

to post-trained reasoning models, QwQ-32B-116

Preview (Team, 2024b), and distilled reasoning117

models, DeepSeek-R1 (DeepSeek-AI, 2025). Our118

results demonstrate that, with training for one time,119

our approach enables a model to generate reasoning120

paths of varying lengths, and we can achieve better121

results than previous chain compression baselines.122

Besides, our study highlights several interesting123

findings: (1) Short reasoning paths can sometimes 124

outperform longer ones, underscoring the signifi- 125

cance of CoT-Valve in enhancing model efficiency. 126

(2) Not every reasoning chain, despite all leading 127

to the correct final answer, is conducive to model 128

optimization. Excessively long or short chains com- 129

plicate the distillation of CoT, posing challenges to 130

the model training. 131

In summary, our contributions are: (1) CoT- 132

Valve: Enables elastic control of length for CoT 133

within the parameter space, allowing a single model 134

to generate CoT from short to long. (2) MixChain 135

Dataset: A dataset with reasoning paths of varying 136

lengths for each question. (3) Improved Tuning & 137

Progressive Compression: Refines the direction- 138

tuning process based on MixChain and introduces 139

progressive compression for inference efficiency. 140

(4) Performance & Controllability: Achieves 141

controllable reasoning generation and state-of-the- 142

art results for compressed CoT. 143

2 Related Work 144

Chain-of-Thought. Chain-of-thought (Wei et al., 145

2022) reasoning has shown promising progress in 146

recent years, especially the success of OpenAi- 147

O1 (Jaech et al., 2024) and Deepseek-R1 mod- 148

els (DeepSeek-AI, 2025). This introduces the test- 149

time scaling law, apart from the traditional scaling 150

law for training (Hoffmann et al., 2022). Several 151

approaches have been proposed to boost the lan- 152

guage model to have better problem-solving abil- 153

ities, including the model has its self-reasoning 154

abilities (Team, 2024b) or use Best-of-N (Nakano 155

et al., 2021), beam search and Monte Carlo Tree 156

Search (Kocsis and Szepesvari, 2006; Guan et al., 157

2025) to search and refine the solution without fur- 158

ther finetune the large language models. The out- 159

come reward model and process reward models are 160

also introduced to evaluate the score for the entire 161

solution, especially the final answer (Cobbe et al., 162

2



2021a) and the quality of the reasoning path (Wang163

et al., 2024; Luo et al., 2024)164

Chain Compression in reasoning model. Due165

to the high computational cost associated with in-166

ference in reasoning models, particularly for long-167

chain reasoning, chain compression has become a168

critical area of research. (Yu et al., 2024) attempts169

to distill the chain-of-thought into System 1 but170

fails to observe improvements when intermediate171

steps are omitted. (Jin et al., 2024) conducts a com-172

prehensive empirical study between length and per-173

formance. (Deng et al., 2023) proposes internaliz-174

ing reasoning steps within the hidden states of mod-175

els, while several implicit-based approaches(Deng176

et al., 2024; Hao et al., 2024; Cheng and Durme,177

2024) aim to compress token-wise generation by178

transitioning from language space to hidden space.179

Other studies focus on skipping intermediate rea-180

soning steps (Liu et al., 2024b) or using summa-181

rization techniques to generate shorter reasoning182

chains (Kang et al., 2024). Additionally, (Chen183

et al., 2024) addresses the overthinking issue in184

QwQ (Team, 2024b) and employs SimPO (Meng185

et al., 2024) for optimization. Kimi K1.5 (Team186

et al., 2025) proposes merging long-CoT models187

with short-CoT models in a training-free manner.188

O1-Pruner (Luo et al., 2025) adopts reinforcement189

learning to shorten responses.190

3 Method191

In this section, we provide an in-depth discussion192

of our method. Section 3.1 introduces a simple193

yet effective approach that enables a single tuning194

process to generate models with CoT with different195

lengths. This stage also serves as an initial step for196

subsequent refinements. Next, in Section 3.2, we197

explore multiple scenarios in which we can apply198

CoT-Valve to construct the dataset MixChain. In199

Section 3.3, we propose several advanced meth-200

ods that take advantage of long-to-short datasets to201

improve precision and control over the generated202

reasoning paths in compressible fine-tuning.203

3.1 Length-Compressible CoT Tuning204

Our primary objective is to achieve a new way to205

control the length of reasoning paths after training206

a reasoning model. Existing approaches, such as207

prompt-based control, explicitly define sequence208

length in the prompt (Han et al., 2024) or utilize209

summary tokens (Ding et al., 2024) for guidance.210

However, these methods offer only limited control211

over the length of CoT generated. For instance, 212

requesting a sequence of less than 20 tokens may 213

result in the model generating over 350 tokens (see 214

Table 12 in the Appendix), and these methods strug- 215

gle to produce answers with very short lengths. To 216

address these limitations, we introduce CoT-Valve 217

for training one model but can adjust the length of 218

reasoning paths. 219

Consider a reasoning model defined by the pa- 220

rameter θ. For a given question q in the dataset 221

D, the probability of generating an answer a and 222

its reasoning thoughts {ti}ni=1 given the question q 223

can be described by: 224

p (a | t1, . . . , tn, q; θ)
n∏

i=1

p (ti | t<i, q; θ) (1) 225

where {ti}ni=1 might include errors or unnecessary 226

details. With short synthesized or human-annotated 227

explanations {ti}mi=1 with m < n, the training 228

objective is to adjust the parameter in such a way 229

that the chain is shortened while still yielding the 230

correct answer: 231

max
∆θ

E(q,a)∼Dp (a | t1, . . . , tm, q; θ +∆θ) 232

m∏
i=1

p (ti | t<i, q; θ +∆θ) (2) 233

and ∆θ denotes the change in the parameter space 234

that steers the model towards generating a more 235

concise chain. 236

Since the model, with and without ∆θ, outputs 237

the same final answer, ∆θ can be interpreted as a 238

task vector (Ilharco et al., 2023). The task here is to 239

control the length of the CoT, provided that the only 240

difference in the training set lies in intermediate 241

reasoning steps {ti}ni=1. Those reasoning paths are 242

different in length but ultimately lead to the same 243

final answer. Thus, we can control the task vector 244

to achieve the goal of adjusting the length of CoT. 245

∆θ is designed within a parameter-efficient space, 246

functioning as an external branch for inference that 247

incurs minimal overhead. Controlling this external 248

branch enables the manipulation of the length of 249

the reasoning path. 250

Task Arithmetic: Interpolation and Extrapola- 251

tion of ∆θ. To manipulate this update within the 252

parameter space, we can control the magnitude of a 253

∆θ as an arithmetic operation. We use two primary 254

operations on ∆θ here: interpolation and extrapola- 255

tion. Let α denote the magnitude of ∆θ for LoRA. 256
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Figure 2: Illustration of CoT-Valve. In Stage 1, we first determine ∆θ from distilling or post-training. Then, the
trained ∆θ is utilized to construct the MixChain dataset. Using this dataset, we can then apply two enhanced
training methods to achieve more precise control over reasoning paths or to shorten the reasoning paths as needed.

When α falls within the range of (0,1), the model257

smoothly transitions between longer and shorter258

reasoning paths, similar to weight interpolation be-259

tween two models (Frankle et al., 2020; Team et al.,260

2025). When α > 1, extrapolation is introduced,261

further shortening the reasoning path beyond what262

was observed during training. This enables an ex-263

ploration of the minimal reasoning length required264

to arrive at a given answer. Thus, by adjusting α265

at inference, we can modulate the model’s behav-266

ior, with each value of α corresponding to different267

CoT lengths.268

Application Unlike prompt-based approaches269

that can only regulate the overall length of the rea-270

soning process using prompt words, ∆θ provides271

finer granularity control. ∆θ is served in the exter-272

nal parameter space. This allows for greater flexi-273

bility in adjusting the reasoning trajectory. Specif-274

ically, it facilitates the selective retention of long-275

chain reasoning in certain thoughts while apply-276

ing stronger compression to simpler reasoning seg-277

ments. As a result, reductions in chain length can278

be localized to specific portions of the inference279

process rather than being uniformly applied across280

the entire reasoning path. We remain the design of281

this segment selection in future work.282

3.2 Construct the MixChain Dataset283

A crucial thing for the above process is the construc-284

tion of the training dataset, especially the reason-285

ing chain {ti}ni=1. To have reasoning chains with286

different lengths, previous approaches rely on mul-287

tiple rounds of sampling, selecting reasoning paths288

under different random seeds, or using some hand-289

crafted way to remove parts of the answer (Chen290

et al., 2024). 291

We introduce MixChain, a dataset inherently 292

generated by our method that contains reasoning 293

paths of varying lengths. This dataset is structured 294

such that each question is associated with multi- 295

ple reasoning paths, with lengths progressively de- 296

creasing from long to short. By simply adjusting 297

the parameter α, our approach avoids the need for 298

repeated sampling and achieves this diverse set of 299

reasoning paths. In contrast to multi-sampling tech- 300

niques, MixChain enables a more reliable and con- 301

sistent generation of shorter reasoning paths while 302

simultaneously capturing a spectrum of reasoning 303

lengths. To construct MixChain, we consider two 304

possible scenarios: 305

• If a well-annotated dataset with human- 306

labeled solutions is available, such 307

as GSM8K (Cobbe et al., 2021b) or 308

PRM800k (Lightman et al., 2024), it can 309

be leveraged to fine-tune the model for 310

generating shorter reasoning chains as a cold 311

start (θ1 → θ̃1 and θ2 → θ̃2 in Figure 2). 312

• In the absence of a dataset containing ex- 313

plicit reasoning paths, or when only final an- 314

swers are available without full explanations, 315

training solely on final answers is unlikely 316

to enable the model to generate reasoning 317

steps. To address this limitation, we propose 318

an alternative method for constructing Mix- 319

Chain. Specifically, we leverage an existing 320

base LLM (e.g., LLaMA-3.1-8B or Qwen- 321

32B-Instruct) as θ1 and use its corresponding 322

reasoning model (e.g., DeepSeek-R1-Distill- 323

Llama-8B or QwQ-Preview) to derive ∆θ. 324
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The parameter update between these models325

serves as a form of linear interpolation, en-326

abling the transition from θ1 to θ2. This tran-327

sition is then used to construct the dataset, as328

illustrated in Figure 2, where the parameter329

shift is represented by θ1 → θ2.330

3.3 Improved Tuning for CoT-Valve331

In this section, we present two enhanced variants332

of CoT-Valve: one aimed at achieving improved333

controllability and the other focused on optimizing334

the compression ratio of the reasoning paths.335

A More Precise CoT-Valve Paradigm: CoT-336

Valve++. In the previously proposed CoT-Valve337

framework, the training process only constrained338

∆θ to satisfy the final objective with α = 1. How-339

ever, during inference, we expect all positions340

along this direction to exhibit reasoning trajectories341

of varying lengths. This leads to the inconsistency342

between training and inference. With MixChain,343

we can explicitly incorporate this requirement dur-344

ing training by introducing an additional constraint,345

ensuring that the model can adapt to reasoning346

chains of different lengths across all positions in347

this direction. For each training sample, in addition348

to the question, answer, and solution, we have in-349

troduced a normalized term β, which represents the350

factor for the length of the reasoning path. Under351

this dataset, our training objective is modified to352

find a parameter update ∆θ′ such that it satisfies:353

max
∆θ′

E(q,a)∼D′p
(
a | t<m, q; θ + β∆θ

′
)

354

m∏
i=1

p(ti|t<i, q; θ + β∆θ
′
) (3)355

Where D′ is the Mixchain dataset. Each sample356

consists of the question q, the answer a, the solution357

{ti}mi=1 and β, where β is calculated as:358

β = 1− m−mmin

mmax −mmin
(4)359

Here, mmin and mmax is the length of the short-360

est solution and longest solution for this question.361

Based on synthetic samples, we introduce addi-362

tional constraints that enable us to better identify363

the updated parameter ∆θ
′
, facilitating more pre-364

cise compressibility and controllability.365

Progressive Chain Compression: CoT-Valve+P.366

The structure of MixChain, which features progres-367

sively shorter reasoning paths for each question,368

facilitates a progressive chain-length compression 369

strategy. This approach is similar to iterative prun- 370

ing in model compression (Molchanov et al., 2017). 371

In this process, the model is trained with a shorter 372

reasoning path from the dataset at each iteration, 373

rather than training directly with the shortest rea- 374

soning CoT. This gradual compression method al- 375

lows the model to progressively reduce the length 376

of its reasoning paths. 377

4 Experiments 378

4.1 Experimental Setup 379

Models. We evaluate our method under several 380

models: QwQ-32B-Preview (Team, 2024b), 381

DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI, 382

2025), LLaMA-3.1-8B (Dubey et al., 2024), 383

LLaMA-3.2-1B (Dubey et al., 2024) and Qwen- 384

32B-Instruct (Team, 2024a) with LIMO (Ye 385

et al., 2025). We tested different scenarios for 386

CoT-Valve: 387

• (Long to Short CoT) For QwQ-32B-Preview 388

(QwQ for abbreviation) and DeepSeek-R1- 389

Distill-Llama-8B (R1-Distill), we used our 390

method to control and compress the length of 391

the reasoning chain. 392

• (Short to Long CoT) For LLaMA-3.1-8B 393

and LLaMA-3.2-1B-Instruct, we applied our 394

method to distill reasoning abilities from 395

QwQ-32B-Preview and incorporated CoT- 396

Valve in the distillation process. 397

• (Short-Long-Short CoT) We tested another 398

setting to first post-train a short-CoT LLM, 399

Qwen-2.5-32B-Instruct (Team, 2024a), to gen- 400

erate Long CoT and then compress it to Short 401

CoT. CoT-Valve can be applied in both two 402

stages. 403

Metrics. We report both accuracy and the num- 404

ber of tokens in the answer for each experiment. 405

Given the trade-off between reasoning path length, 406

model size, and performance, we use a new metric, 407

Accuracy per Computation Unit(ACU), to better 408

capture this balance and evaluate model efficiency. 409

It is defined as: 410

ACU =
Accuracy

#Params × #Tokens
(5) 411

Since the ACU value typically falls within the 412

range of 10−5 to 10−2, we report it in units of 413

102 for improved readability. 414
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Figure 3: Token length and accuracy for different methods, datasets and reasoning models. Points connected by
curves in (a) and (b) represent results from one model.

Training and Evaluation. For training the415

model, we use LoRA (Hu et al., 2022) in most416

of our experiments, except in the experiment for417

LIMO on Qwen-2.5-32B-Instruct we use full pa-418

rameter fine-tuning. We also show the results using419

DoRA (Liu et al., 2024a) in the Appendix. The420

hyper-parameters for each experiment are shown in421

Appendix A. We select two math datasets to eval-422

uate the performance, for one easy math dataset,423

GSM8K (Cobbe et al., 2021b) and one hard math424

dataset, AIME24.425

4.2 Datasets426

We find in our experiments that the quality of the427

solution is important to the performance, even if all428

the human-annotated solutions or synthesized so-429

lutions reach the final answer. In our experiments,430

we use the question from the train set of GSM8K,431

the math split of PRM800K or the question from432

LIMO, and we employ three types of datasets with433

those questions in our experiments:434

• Ground-truth Dataset: The dataset provides a435

human-annotated or model-synthesized solu-436

tion. We use this as the cold start.437

• MixChain from cold-start (MixChain-C): Af-438

ter taking the ground-truth dataset to train the439

model, we can get the first model to generate440

solutions from short to long. Then we use it441

to generate the dataset.442

• MixChain from zero-shot (MixChain-Z): We443

employ CoT-Valve between a reasoning444

model (θ2) and a base LLM (θ1) to generate445

the solutions.446

For each dataset, we filter out all the solutions with447

incorrect answers. We show the statistics of the448

dataset in Table 9 in the Appendix.449

Method Accuracy #Token ACU ↑

Llama-3.3-70B-Instruct 92.6 235.4 0.56
Llama-3.1-405B-Instruct 95.6 186.7 0.13
Qwen2.5-32B-Instruct 93.1 269.3 1.09
Qwen2.5-Math-72B-Instruct 95.8 312.1 0.43
QwQ-32B-Preview 95.1 741.1 0.40

Prompt (Han et al., 2024) 93.6 355.5 0.82
Prompt (Ding et al., 2024) 95.5 617.7 0.48

In-domain Train Set: GSM8K

CoT-Valve - Ground-Truth 94.0 352.8 0.83
CoT-Valve++ - MixChain-C 94.4 276.3 1.07
CoT-Valve+P - MixChain-Z 96.1 317.1 0.95
CoT-Valve+P - MixChain-Z 94.9 225.5 1.32

Out-of-Domain Train Set: PRM12K

Overthink(Chen et al., 2024) - SFT 94.8 749.5 0.40
Overthink(Chen et al., 2024) - SimPO 94.8 326.2 0.91
O1-Pruner(Luo et al., 2025) - SFT 95.7 717 0.42
O1-Pruner(Luo et al., 2025) 96.5 534 0.56
CoT-Valve+P - MixChain-Z 95.4 288.5 1.03

Table 1: Results of QwQ-32B-Preview on GSM8K. Val-
ues of ACU are scaled by 102 for readability. We list
the dataset we use after the method name.

4.3 From Long-CoT to Short-CoT. 450

Controllable Results. We illustrate the result in 451

Figure 3a. First, using ground-truth samples as a 452

cold start, we develop a model capable of generat- 453

ing reasoning paths of various lengths, as demon- 454

strated in ‘CoT-Valve’ in Figure 3a. CoT-Valve 455

already matches the performance of prompt-based 456

control but can generate shorter reasoning chains. 457

We then extrapolate ∆θ to produce even shorter rea- 458

soning paths. Then, building on MixChain-C from 459

this first model, we conduct further training by CoT- 460

Valve++. CoT-Valve++ substantially surpasses the 461

baseline and shows greater generalization capabili- 462

ties in cases of extrapolation. 463

Compression Results. We evaluated our method 464

against previous chain compression approaches, 465

with the results detailed in Table 1, Table 2, and 466
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Method AIME24 #Token ACU↑

Qwen2.5-32B-Instruct 4/30 1794.2 0.023
Qwen2.5-Math-72B-Instruct 7/30 1204.5 0.061
Gemini-Flash-Thinking (Team et al., 2023) 15/30 10810.5 -

QwQ-32B-Preview.Train set: GSM8K

QwQ-32B-Preview 14/30 6827.3 0.021
Prompt (Han et al., 2024) 13/30 6102.5 0.022
Prompt (Ding et al., 2024) 13/30 5562.3 0.024
Overthink (Chen et al., 2024) 13/30 5154.5 0.026

CoT-Valve - GSM8K 14/30 5975.0 0.024
CoT-Valve++ - MixChain-C 13/30 5360.5 0.025
CoT-Valve+P - MixChain-Z 13/30 4629.6 0.029

Qwen-32B-Instruct. Train set: LIMO

Qwen-32B-LIMO 15/30 10498.2 0.015
CoT-Valve 11/30 6365.2 0.018
SFT - MixChain - Solution 1 13/30 5368.0 0.025
CoT-Valve - MixChain - Solution 1 15/30 8174.8 0.019

Table 2: Results of QwQ-32B-Preview and Qwen-32B-
Instruct w/ LIMO on AIME 24.

GSM8k AIME24
Model Acc #Token Acc # Token

Llama-3.1-8B (0-shot) 15.7 915.0 0/30 1517.6
R1-Distill-Llama-8B 87.1 1636.6 14/30 12359.9

CoT-Valve 87.3 1315.2 6/30 7410.5
CoT-Valve+P - MixChain-Z 84.0 755.2 11/30 9039.0

Table 3: Result of DeepSeek-R1-Distill-Llama-8B.

Table 3. For GSM8K, we adhered to the baseline467

setup to train with PRM12K. Utilizing progressive468

compression, our method surpassed the baseline by469

producing shorter reasoning paths and improved470

performance.471

We also report experimental results on AIME,472

where the model was trained using MixChain-Z de-473

rived from GSM8K. To minimize the impact of ran-474

domness on performance, we employed greedy de-475

coding in our AIME experiments. Compared to the476

baseline (Chen et al., 2024), our method reduced477

the token count from 5155 to 4630 while maintain-478

ing the same accuracy, despite being trained on an479

easier dataset.480

4.4 From Short-CoT to Long-CoT &481

Short-Long-Short CoT482

Our method can also be applied if a short-CoT483

model is distilled or post-trained to be a Long-CoT484

model. The results are shown in Figure 3b, Table485

4 and Table 5. We found that CoT-Valve can also486

effectively control the length of the chains in this487

setting. Notably, we observed that shorter chains488

could achieve higher accuracy on GSM8K. More-489

over, if the model is trained using the MixChain-Z490

dataset, the results are significantly better, whether491

using CoT-Valve (55.5 to 58.9) or just simply SFT492

Method Accuracy #Tokens ACU↑

LLaMA-3.2-1B-Instruct(8-shot) 45.9 104.3 44.008
LLaMA-3.2-1B-Instruct(0-shot) 45.9 199.8 22.973

SFT-Full Finetune - GSM8k 46.1 139.4 33.070
SFT - GSM8k 43.8 137.7 31.808
Prompt 46.7 209.9 22.249

SFT - QwQ Distill 52.7 759.3 6.941
CoT-Valve - QwQ Distill 55.5 267.0 20.786
CoT-Valve+P - MixChain-Z 55.8 291.0 19.175
SFT - MixChain-Z - Solution 1 57.0 288.4 19.764
CoT-Valve - MixChain-Z - Solution 1 58.9 275.4 21.387

Table 4: Results on LLaMA-3-2-1B-Instruct. We report
the result of Flexible Match here. QwQ Distill means
we use QwQ to synthesize the solution and distill it.

Method Accuracy #Tokens ACU↑

LLaMA-3.1-8B (8-shot) 56.9 282.1 2.521
LLaMA-3.1-8B (0-shot) 15.7 915.0 0.214

SFT-LoRA - GSM8k 59.0 191.9 3.843

SFT-LoRA - QwQ Distill 76.3 644.8 1.479
CoT-Valve - QwQ Distill 77.5 569.8 1.700
CoT-Valve+P - MixChain-Z 77.1 371.2 2.596
CoT-Valve + MixChain-Z - Solution 1 75.7 264.1 3.583

Table 5: Result on LLaMA-3.1-8B. We report the result
of Strict Match here.

(52.7 to 57.0). Additionally, after training a long- 493

chain model, we can employ the MixChain dataset 494

to reduce the length of its reasoning chains further. 495

As illustrated in Figure 3c, the results suggest that 496

initially training the chains to be long and subse- 497

quently compressing them to be shorter (Results 498

with Long-to-Short) can yield better performance 499

than directly using CoT-Valve in the short-to-long 500

stage (Results with Short-to-Long). This demon- 501

strates significant potential for compressing the 502

reasoning chains. We can also surpass the result 503

of Gemini-Flash-Thinking, with the same accuracy 504

but fewer tokens (10810.5 v.s. 8174.8) 505

Training dynamics does not have the same effect 506

as CoT-Valve. We also explore whether inter- 507

mediate training steps can achieve similar effects. 508

As depicted in Figure 3c, during the early train- 509

ing phases, the length of the CoT increases but 510

does not correspond with the same rapid improve- 511

ment in performance. As training progresses, the 512

token length begins to decrease while performance 513

improves. CoT-Valve exhibits a distinct pattern, 514

smoothly bridging the gap between the length of 515

CoT and performance. 516

4.5 Observations 517

Based on the results from LLaMA-3.1-8B, 518

LLaMA-3.2-1.5B, QwQ, DeepSeek-R1-Distill- 519
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Solution Solution Length Accuracy #Token

Ground-Truth (Solution 0) 116.0 43.8 139.4
Solution 1 279.6 57.0 288.4
Solution 2 310.7 55.1 330.0
Solution 3 386.7 56.5 414.6
Solution 4 497.2 52.5 558.3

Table 6: Train LLaMA-3.2-1B-Instruct with solutions
in MixChain-Z of different lengths on GSM8K.

Llama-8B and Qwen2.5-32B-Instruct with LIMO,520

we summarize the following observations:521

• Longer reasoning chains are not always the522

best on simple datasets. Across nearly all523

models, we find that those directly trained on524

long CoT data typically do not show the best525

performance. These models often underper-526

form compared to those generated through527

CoT-Valve, which results in shorter but more528

accurate reasoning chains. This trend is par-529

ticularly pronounced in smaller models. For530

instance, in the LLaMA-3.2-1B model, train-531

ing on QwQ synthesized data yields an accu-532

racy of 52.69 with 759.3 tokens. However,533

using CoT-Valve, we can achieve an accuracy534

of 55.50 with only 267.0 tokens. However,535

we do not observe this phenomenon in more536

complex datasets, indicating that while the537

reasoning model may be redundant for simple538

datasets, it still requires test-time scaling to539

effectively handle complex datasets.540

• Some reasoning chains are difficult for the541

model to learn, especially for small LLMs.542

We fine-tuned LLaMA-3.2-1B-Instruct using543

only one solution from MixChain, where all544

solutions lead to the same final answer but545

involve different intermediate reasoning steps.546

The results, presented in Table 6, indicate547

that neither the shortest nor the longest chains548

are optimal for learning. Instead, the model549

most effectively learns from moderately short550

chains, achieving the highest accuracy while551

maintaining a relatively low token count. This552

phenomenon is particularly evident in smaller553

models, but it is not observed in larger mod-554

els. We believe this could be beneficial for the555

distillation of CoT in small LLMs.556

4.6 Analysis557

Ablation on Progressive Compression. Table 7558

demonstrates the effect of progressive compression.559

Solution Used #Epoch #Samples Accuracy #Tokens ACU↑

- - - 95.07 741.1 0.40

4 1 6.8k 95.68 597.3 0.50
4+3 1 13.7k 94.84 458.4 0.65
4+3+2 1 20.5k 94.84 339.9 0.87
4+3+2+1 1 27.4k 96.13 317.1 0.95
4+3+2+1+0 1 34.2k 94.92 225.5 1.32

0 5 37.4k 92.19 250.5 1.15

Table 7: Ablation of Progressive Compression on QwQ.
Here, solution 0 is the human-annotated solution from
the original dataset.

QwQ-32B-Preview Llama-3.2-1B-I
Method Acc #Token Acc #Token

Prompt (Shortest) 93.6 355.5 52.5 621.0
Ours (Best) 94.4 276.3 55.5 267.0

Ours (Shortest) 87.5 133.8 50.4 247.0

Table 8: CoT-Valve can achieve shorter chains than
prompts with better performance.

We compare two settings: training directly with the 560

ground-truth solution for five epochs and applying 561

progressive compression for five epochs in total, 562

with the final epoch using the ground-truth data. 563

Our results show that progressive compression sig- 564

nificantly improves the performance of short CoT 565

(from 92.19 to 94.92). For each turn, progressive 566

compression gradually reduces the token number 567

while maintaining accuracy. 568

CoT-Valve achieves shorter chains compared to 569

prompt control We also present in Table 8 the 570

shortest chain achieved by our method and compare 571

these with those obtained using prompt control. 572

Our method outperforms prompt control methods 573

at shorter chain lengths. Additionally, we explored 574

the limits of chain length for both methods and 575

found that our approach can generate substantially 576

shorter chains than what can be achieved through 577

prompt control. 578

5 Conclusion 579

In this paper, we propose a method that enables 580

a model to generate reasoning chains of varying 581

lengths instead of the prompt control. Based on this 582

approach, we construct a dataset containing both 583

long and short reasoning chains to further enhance 584

controllability and compression efficiency. Experi- 585

mental results demonstrate the effectiveness of our 586

method in dynamic reasoning chain control and the 587

compression of CoT. Future research can further 588

explore finer-grained control strategies to improve 589

reasoning efficiency and model controllability. 590
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6 Limitations591

While CoT-Valve effectively shortens reasoning592

chains with minimal impact on performance, ex-593

treme compression can still result in accuracy594

losses, particularly affecting complex tasks. More-595

over, performance remains limited by the quality596

of the original model; if the model cannot generate597

high-quality reasoning chains, constructing and tun-598

ing a short-chain dataset becomes challenging. Ad-599

ditionally, the interpretability of this mechanism is600

limited. Although CoT-Valve enables a controlled601

reasoning chain, the theoretical understanding of602

this remains insufficiently explored.603

References604

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien605
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael606
Harrison, Russell J Hewett, Mojan Javaheripi, Piero607
Kauffmann, et al. 2024. Phi-4 technical report. arXiv608
preprint arXiv:2412.08905.609

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,610
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,611
Mengfei Zhou, Zhuosheng Zhang, et al. 2024. Do612
not think that much for 2+ 3=? on the overthinking613
of o1-like llms. arXiv preprint arXiv:2412.21187.614

Jeffrey Cheng and Benjamin Van Durme. 2024. Com-615
pressed chain of thought: Efficient reasoning through616
dense representations. Preprint, arXiv:2412.13171.617

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,618
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias619
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro620
Nakano, et al. 2021a. Training verifiers to solve math621
word problems. arXiv preprint arXiv:2110.14168.622

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,623
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias624
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro625
Nakano, et al. 2021b. Training verifiers to solve math626
word problems. arXiv preprint arXiv:2110.14168.627

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-628
soning capability in llms via reinforcement learning.629
Preprint, arXiv:2501.12948.630

Yuntian Deng, Yejin Choi, and Stuart Shieber. 2024.631
From explicit cot to implicit cot: Learning to inter-632
nalize cot step by step. Preprint, arXiv:2405.14838.633

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul634
Smolensky, Vishrav Chaudhary, and Stuart Shieber.635
2023. Implicit chain of thought reasoning via knowl-636
edge distillation. arXiv preprint arXiv:2311.01460.637

Mengru Ding, Hanmeng Liu, Zhizhang Fu, Jian Song,638
Wenbo Xie, and Yue Zhang. 2024. Break the chain:639
Large language models can be shortcut reasoners.640
arXiv preprint arXiv:2406.06580.641

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 642
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 643
Akhil Mathur, Alan Schelten, Amy Yang, Angela 644
Fan, et al. 2024. The llama 3 herd of models. arXiv 645
preprint arXiv:2407.21783. 646

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel 647
Roy, and Michael Carbin. 2020. Linear mode con- 648
nectivity and the lottery ticket hypothesis. In Inter- 649
national Conference on Machine Learning, pages 650
3259–3269. PMLR. 651

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, 652
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang. 653
2025. rstar-math: Small llms can master math rea- 654
soning with self-evolved deep thinking. Preprint, 655
arXiv:2501.04519. 656

Tingxu Han, Chunrong Fang, Shiyu Zhao, Shiqing 657
Ma, Zhenyu Chen, and Zhenting Wang. 2024. 658
Token-budget-aware llm reasoning. arXiv preprint 659
arXiv:2412.18547. 660

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, 661
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024. 662
Training large language models to reason in a contin- 663
uous latent space. Preprint, arXiv:2412.06769. 664

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, 665
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, 666
Diego de Las Casas, Lisa Anne Hendricks, Johannes 667
Welbl, Aidan Clark, Tom Hennigan, Eric Noland, 668
Katie Millican, George van den Driessche, Bogdan 669
Damoc, Aurelia Guy, Simon Osindero, Karen Si- 670
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, 671
and Laurent Sifre. 2022. Training compute-optimal 672
large language models. Preprint, arXiv:2203.15556. 673

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 674
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 675
Chen. 2022. LoRA: Low-rank adaptation of large 676
language models. In International Conference on 677
Learning Representations. 678

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts- 679
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali 680
Farhadi. 2023. Editing models with task arithmetic. 681
In The Eleventh International Conference on Learn- 682
ing Representations. 683

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard- 684
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, 685
Aleksander Madry, Alex Beutel, Alex Carney, et al. 686
2024. Openai o1 system card. arXiv preprint 687
arXiv:2412.16720. 688

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, 689
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and 690
Mengnan Du. 2024. The impact of reasoning step 691
length on large language models. In Findings of the 692
Association for Computational Linguistics ACL 2024, 693
pages 1830–1842, Bangkok, Thailand and virtual 694
meeting. 695

Brihi Joshi, Ziyi Liu, Sahana Ramnath, Aaron Chan, 696
Zhewei Tong, Shaoliang Nie, Qifan Wang, Yejin 697

9

https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2412.13171
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=6t0Kwf8-jrj
https://aclanthology.org/2024.findings-acl.108
https://aclanthology.org/2024.findings-acl.108
https://aclanthology.org/2024.findings-acl.108


Choi, and Xiang Ren. 2023. Are machine rationales698
(not) useful to humans? measuring and improving699
human utility of free-text rationales. arXiv preprint700
arXiv:2305.07095.701

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou.702
2024. C3ot: Generating shorter chain-of-thought703
without compromising effectiveness. Preprint,704
arXiv:2412.11664.705

Levente Kocsis and Csaba Szepesvari. 2006. Bandit706
based monte-carlo planning. In European Confer-707
ence on Machine Learning.708

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-709
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,710
John Schulman, Ilya Sutskever, and Karl Cobbe.711
2024. Let’s verify step by step. In The Twelfth Inter-712
national Conference on Learning Representations.713

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo714
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting715
Cheng, and Min-Hung Chen. 2024a. Dora: Weight-716
decomposed low-rank adaptation. In ICML.717

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Ji-718
ayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.719
2024b. Can language models learn to skip steps?720
In The Thirty-eighth Annual Conference on Neural721
Information Processing Systems.722

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-723
wei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,724
and Dacheng Tao. 2025. O1-pruner: Length-725
harmonizing fine-tuning for o1-like reasoning prun-726
ing. arXiv preprint arXiv:2501.12570.727

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat728
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,729
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-730
cal reasoning in language models by automated pro-731
cess supervision. arXiv preprint arXiv:2406.06592.732

Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu,733
Yu-Chuan Su, Mingda Zhang, Xuan Yang, Yan-734
dong Li, Tommi Jaakkola, Xuhui Jia, and Sain-735
ing Xie. 2025. Inference-time scaling for diffusion736
models beyond scaling denoising steps. Preprint,737
arXiv:2501.09732.738

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.739
Simpo: Simple preference optimization with a740
reference-free reward. In Advances in Neural In-741
formation Processing Systems (NeurIPS).742

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo743
Aila, and Jan Kautz. 2017. Pruning convolutional744
neural networks for resource efficient inference. In745
International Conference on Learning Representa-746
tions.747

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,748
Ouyang Long, Christina Kim, Christopher Hesse,749
Shantanu Jain, Vineet Kosaraju, William Saunders,750
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen751
Krueger, Kevin Button, Matthew Knight, Benjamin752

Chess, and John Schulman. 2021. Webgpt: Browser- 753
assisted question-answering with human feedback. 754
ArXiv, abs/2112.09332. 755

Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, 756
Zhuofan Zong, Letian Wang, Yu Liu, and Hongsheng 757
Li. 2024. Visual cot: Unleashing chain-of-thought 758
reasoning in multi-modal language models. Preprint, 759
arXiv:2403.16999. 760

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, 761
Dongwei Jiang, Manya Wadhwa, Prasann Singhal, 762
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Dur- 763
rett. 2024. To cot or not to cot? chain-of-thought 764
helps mainly on math and symbolic reasoning. arXiv 765
preprint arXiv:2409.12183. 766

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean- 767
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 768
Schalkwyk, Andrew M Dai, Anja Hauth, Katie 769
Millican, et al. 2023. Gemini: a family of 770
highly capable multimodal models. arXiv preprint 771
arXiv:2312.11805. 772

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, 773
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun 774
Xiao, Chenzhuang Du, Chonghua Liao, et al. 2025. 775
Kimi k1. 5: Scaling reinforcement learning with llms. 776
arXiv preprint arXiv:2501.12599. 777

Qwen Team. 2024a. Qwen2.5: A party of foundation 778
models. 779

Qwen Team. 2024b. Qwq: Reflect deeply on the bound- 780
aries of the unknown. 781

Jean-Francois Ton, Muhammad Faaiz Taufiq, and 782
Yang Liu. 2024. Understanding chain-of-thought 783
in llms through information theory. Preprint, 784
arXiv:2411.11984. 785

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai 786
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. 787
2024. Math-shepherd: Verify and reinforce LLMs 788
step-by-step without human annotations. In Proceed- 789
ings of the 62nd Annual Meeting of the Association 790
for Computational Linguistics (Volume 1: Long Pa- 791
pers), pages 9426–9439, Bangkok, Thailand. Associ- 792
ation for Computational Linguistics. 793

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, 794
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, 795
and Denny Zhou. 2023. Self-consistency improves 796
chain of thought reasoning in language models. In 797
The Eleventh International Conference on Learning 798
Representations. 799

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 800
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 801
et al. 2022. Chain-of-thought prompting elicits rea- 802
soning in large language models. Advances in neural 803
information processing systems, 35:24824–24837. 804

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 805
Thomas L. Griffiths, Yuan Cao, and Karthik R 806
Narasimhan. 2023. Tree of thoughts: Deliberate 807

10

https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2412.11664
https://api.semanticscholar.org/CorpusID:15184765
https://api.semanticscholar.org/CorpusID:15184765
https://api.semanticscholar.org/CorpusID:15184765
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=w4AnTVxAO9
https://arxiv.org/abs/2501.09732
https://arxiv.org/abs/2501.09732
https://arxiv.org/abs/2501.09732
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://api.semanticscholar.org/CorpusID:245329531
https://api.semanticscholar.org/CorpusID:245329531
https://api.semanticscholar.org/CorpusID:245329531
https://arxiv.org/abs/2403.16999
https://arxiv.org/abs/2403.16999
https://arxiv.org/abs/2403.16999
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2411.11984
https://arxiv.org/abs/2411.11984
https://arxiv.org/abs/2411.11984
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.acl-long.510
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h


problem solving with large language models. In808
Thirty-seventh Conference on Neural Information809
Processing Systems.810

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie811
Xia, and Pengfei Liu. 2025. Limo: Less is more for812
reasoning. arXiv preprint arXiv:2502.03387.813

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. 2024.814
Distilling system 2 into system 1. arXiv preprint815
arXiv:2407.06023.816

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang817
Li, and Wanli Ouyang. 2024. Accessing gpt-4818
level mathematical olympiad solutions via monte819
carlo tree self-refine with llama-3 8b. Preprint,820
arXiv:2406.07394.821

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen822
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-823
gren Zhou, and Junyang Lin. 2025. The lessons of824
developing process reward models in mathematical825
reasoning. Preprint, arXiv:2501.07301.826

11

https://openreview.net/forum?id=5Xc1ecxO1h
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2501.07301


A Implementation Details827

A.1 Evaluation Metric.828

For experiments on LLaMA, we use lm-eval-829

harness1 to evaluate the model performance. For830

LLaMA-3.1-8B, we report the strict matching met-831

ric due to observed repetition in the model’s re-832

sponses, which causes the flexible match to ex-833

tract incorrect numerical values. For LLaMA-3.2-834

1B-Instruct, we report results using the flexible835

match metric. For QwQ-32B-Preview, DeepSeek-836

R1-Distill-Llama-8B and Qwen-2.5B-LIMO, we837

first extract the result enclosed within \boxed{}. If838

no such boxed answer is found, we default to using839

the last digit in the response as the final answer.840

A.2 Training Setting.841

LLaMA-3.1-8B The model is trained using eight842

A5000 24GB GPUs. We set the batch size to 64 and843

the peak learning rate to 4e-5, following a cosine844

decay schedule. A weight decay of 0.01 is applied.845

For the progressive chain compression experiment,846

we train the model for two epochs with each type847

of solution. For all other experiments, we train for848

a maximum of eight epochs. For LoRA, the rank849

is set to 32, and the lora_alpha for training is set850

to 64. During inference, the maximum number of851

tokens is set to 2048.852

LLaMA-3.2-1B-Instruct The model is trained853

using 8 A5000 24GB GPUs. We set the batch size854

to 8 for the CoT-Valve experiment and 64 for all855

other experiments. The peak learning rate is 4e-5,856

following a cosine decay schedule, except for the857

SFT - GSM8K experiment, where the peak learning858

rate is 1e-5. A weight decay of 0.01 is applied. For859

the ‘CoT-Valve’ and ‘SFT-Full Finetune - GSM8k’860

experiment, we train for a maximum of four and861

six epochs, respectively. For the progressive chain862

compression experiment, we train the model for863

two epochs with each type of solution. For all864

other experiments, training is conducted for up to865

8 epochs. For LoRA, the rank is set to 32, and866

the lora_alpha for training is set to 64. During867

inference, the maximum number of tokens is set to868

2048.869

QwQ-32B-Preview. The model is trained on two870

H100-80G GPUs. We set the batch size to 64 and871

trained for a maximum of five epochs. The learning872

rate is 1e-5, with a weight decay of 0.01 applied873

1https://github.com/EleutherAI/lm-evaluation-harness

during training. For LoRA, the rank is set to 2, 874

and the lora_alpha for training is set to 8. During 875

inference, we set the maximum token to be 4192 876

for GSM8K and the maximum token as 8192 for 877

AIME correspondingly. 878

DeepSeek-R1-Distill-Llama-8B. Our exper- 879

iment on DeepSeek-R1-Distill-Llama-8B2 is 880

conducted using the MixChain-zero-shot-GSM8K 881

dataset. The batch size is set to 128, and training 882

is performed for a maximum of five epochs. To 883

ensure that the inference process successfully 884

generates the final answer, we set the maximum 885

token limit to 30K. 886

Qwen2.5-32B-LIMO. We fine-tuned Qwen- 887

32B-Instruct using LIMO, training on four H100 888

GPUs for 10 epochs with a batch size of 4 and a 889

maximum sequence length of 16K. The learning 890

rate was set to 5e-6. We define Qwen-32B-Instruct 891

as θ0 and the trained model as θ1, treating the up- 892

date direction between them as ∆θ. By adjusting 893

α, we generated the MixChain-C-LIMO dataset, 894

which includes two solutions: solution 1 (α=0.8) 895

and solution 0 (α=0.6). 896

Based on this, we further trained θ2 for 5 epochs 897

with a batch size of 32, a learning rate of 5e-6, 898

and a weight decay of 0.01, obtaining the results of 899

MixChain-Solution 0 in Table 2. This model can be 900

further refined through CoT-Valve (Results: CoT- 901

Valve + MixChain - Solution 0). Unlike previous 902

experiments, we applied full fine-tuning instead of 903

LoRA. The maximum generated sequence length 904

in this experiment was 15K. 905

A.3 Dataset Explanation 906

As detailed in Section 4.2, we constructed two 907

types of datasets: MixChain-C and MixChain-Z. 908

The statistics for the datasets are shown in 9. For 909

these datasets, we select α values ranging from 910

[0.6, 0.8] for LIMO and [0.2, 0.4, 0.6, 0.8] for 911

other datasets, ensuring all incorrect responses are 912

excluded. For MixChain-Z, while the training tran- 913

sition from θ1 to θ2 remains a black box, we can 914

still identify numerous model pairs such as Qwen- 915

32B-Instruct → QwQ-32B-Preview, and LLaMA- 916

3.1-8B → R1-Distill-Llama-8B, as documented in 917

the technical report. We find that the performance 918

of the base model significantly influences the qual- 919

ity of the dataset. We follow the licenses of the 920

original datasets. 921

2https://huggingface.co/deepseek-ai/DeepSeek-R1-
Distill-Llama-8B
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Dataset Solution Index #Samples #Avg Token

GSM8K

Ground-Truth 1 7473 121.8
MixChain-C 1 22419 294.8

0 (Ground-Truth) 116.0
1 279.6
2 310.7
3 386.7

MixChain-Z

4

6863

497.2

PRM12K

Ground-Truth 1 12000 223.1
0 (Ground-Truth) 172.3

1 583.2
2 613.7
3 739.3

MixChain-Z

4

8841

1003.2

LIMO

Ground-Truth 1 817 6984.1
1 474 2994.7

MixChain-C
2 564 4890.6

Table 9: Dataset Statistic. Here we use the tokenizer
from QwQ-32B-Preview to count the number of tokens.

α 0 0.125 0.25 0.5 0.75 1.0

# Tokens 199.8 219.4 233.4 257.7 466.3 772.7
Accuracy 45.9 47.5 50.2 57.1 55.0 54.5

Table 10: Results of LLaMA-3.2-1B-Instruct trained
with DoRA using different α values for interpolation.

B More Analysis922

Experiments on DoRA. In addition to LoRA, we923

also train LLaMA-3.2-1B using DoRA (Liu et al.,924

2024a) and control the magnitude of ∆θ by adjust-925

ing the α for DoRA. The model is trained on QwQ926

synthesized data for a maximum of five epochs. We927

set the batch size to 8 and the peak learning rate to928

4e-5, following a cosine decay schedule. A weight929

decay of 0.01 is applied. For DoRA, the rank is set930

to 32, and the lora_alpha for training is set to 64.931

As shown in Table 10, the chain length increases932

with the α value, demonstrating the effectiveness of933

interpolating ∆θ for DoRA. Furthermore, similar934

to our observations with LoRA, the best result is not935

obtained by directly training the model on long CoT936

data. Specifically, training on QwQ synthesized937

data (α = 1.0) achieves an accuracy of 54.5 with938

772.7 tokens, whereas the best model obtained via939

CoT-Valve (α=0.5) achieves an accuracy of 55.72940

with only 257.7 tokens.941

Attention has less effect on the length of the942

reasoning path than MLP. We experimented943

Modules GSM8K #Tokens #Params ACU ↑

- 95.1 741.1 - 0.40

K+V 95.0 687.7 0.005% 0.43
Q 95.2 621.4 0.004% 0.48
O 95.2 484.2 0.004% 0.61
Attention 94.2 284.2 0.013% 1.04
MLP 93.5 221.8 0.038% 1.32

All Linear 92.4 227.6 0.051% 1.27

Table 11: LoRA on Different Modules.

with applying LoRA fine-tuning to only specific 944

model components in QwQ. Table 11 shows that 945

fine-tuning only the query, key, or value projec- 946

tion had less effect than other linear projections 947

on shortening the reasoning chain. This suggests 948

that attention computation may have less impact on 949

controlling chain length, whereas the MLP layers 950

and the final projection in attention play a more 951

significant role. We find this to be an intriguing 952

phenomenon, and further investigation into its un- 953

derlying causes could provide deeper insights into 954

optimizing reasoning chain compression. 955

Prompt Control. We evaluate the length of CoT 956

under constraint in prompts. Table 12 presents the 957

number of tokens generated when using various 958

prompts across two models. For these two models, 959

the prompts used here are: 960

Prompt Template for QwQ-32B-Preview

System: You are a helpful and harmless assistant.
You are Qwen developed by Alibaba. You should
think step-by-step.
User: Generate the solution in less than <to-
ken_count> tokens. <Question>

961

Prompt Template for LLaMA-3.2-1B-Instruct

System:
Cutting Knowledge Date: December 2023
Today Date: 01 Jan 2025
User:
Given the following problem, reason and give a final
answer to the problem using less than <token_count>
tokens.
<Question>

962

From the results, we observe that while these 963

prompts provide control over the length, there re- 964

mains a significant discrepancy between the gener- 965

ated token count and the intended target. 966
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Generated Answer for the Same Question

Question: Amanda had 10 notebooks. This week, she ordered 6 more and then lost 2. How many notebooks does
Amanda have now?

Ground Truth Solution - 49 Tokens:
This week, Amanda added 6 notebooks - 2 notebooks = «6-2=4»4 notebooks. Now, Amanda has 10 notebooks + 4
notebooks = «10+4=14»14 notebooks.

Extrapolation - 300 Tokens: So Amanda started with 10 notebooks. Then, she ordered 6 more. So, I think I need
to add those 6 to the original 10. That should be 10 plus 6, which is 16. Okay, now she lost 2 notebooks. So, I need
to subtract those 2 from the 16. That should be 16 minus 2, which equals 14. So, Amanda has 14 notebooks now.
Wait a minute, let me double-check that. She had 10, ordered 6 more, so that’s 10 + 6 = 16. Then lost 2, so 16 - 2 =
14. Yeah, that seems right.Alternatively, maybe I can think of it differently. Maybe consider the net gain of notebooks.
She ordered 6 and lost 2, so net gain is 6 - 2 = 4. Then, add that net gain to the original 10: 10 + 4 = 14. Same answer.
Or, maybe another way: starting with 10, losing 2 would bring her to 8, and then ordering 6 more would bring her to
14. Again, the same result. I think no matter how I look at it, the answer is 14 notebooks. **Final Answer** \boxed{14}

QwQ-32B-Preview - 257 tokens: So Amanda started with 10 notebooks. Then, she ordered 6 more. So, I need to
add those 6 to the original 10. That should be 10 plus 6, which is 16. Okay, now she lost 2 notebooks. So, I need to
subtract those 2 from the 16 she had after ordering more. That means 16 minus 2, which equals 14. So, Amanda has
14 notebooks now. Wait a minute, let me double-check that. She had 10, ordered 6 more, so that’s 10 + 6 = 16. Then
lost 2, so 16 - 2 = 14. Yeah, that seems right. Alternatively, maybe I can think of it differently. Maybe combine the
ordered and lost notebooks first. She ordered 6 and lost 2, so overall, she gained 6 - 2 = 4 notebooks. Then, add that to
the original 10: 10 + 4 = 14. Same answer. I think that’s correct. Amanda has 14 notebooks now. **Final Answer**
\boxed{14}

Interpolation - 207 Tokens: Let’s break this down step by step. Amanda started with 10 notebooks. Then, she ordered
6 more. So, I need to add those 6 to the original 10. That would be 10 plus 6, which equals 16 notebooks. Okay, so now
she has 16 notebooks. But then, she lost 2. So, I need to subtract those 2 from the 16. That would be 16 minus 2, which
equals 14 notebooks. Therefore, Amanda now has 14 notebooks. Wait a minute, let me double-check that. She started
with 10, ordered 6 more, so that’s 10 + 6 = 16. Then lost 2, so 16 - 2 = 14. Yeah, that seems right. I think that’s the
answer: Amanda has 14 notebooks now.

Interpolation - 133 Tokens: Let’s solve this step-by-step: 1. **Initial number of notebooks**: Amanda started with
10 notebooks. 2. **Notebooks ordered**: This week, she ordered 6 more notebooks. - So, we add these 6 notebooks
to her initial 10 notebooks. - 10 + 6 = 16 notebooks. 3. **Notebooks lost**: Then, Amanda lost 2 notebooks. - We
need to subtract these 2 lost notebooks from the total she had after ordering more. - 16 - 2 = 14 notebooks. Therefore,
Amanda now has 14 notebooks.

Extrapolation - 103 Tokens: To find out how many notebooks Amanda has now, we can break the problem into steps:
1. Amanda initially had 10 notebooks. 2. This week, she ordered 6 more notebooks, so we add 6 to the initial amount:
10 + 6 = 16 notebooks. 3. Amanda then lost 2 notebooks, so we subtract 2 from the total: 16 - 2 = 14 notebooks. So,
Amanda has 14 notebooks now.

Figure 4: An example of the generated solution for the same question.

C Examples967

Here we show in Fig.4 an example of the generated968

CoT from short to long, including two extrapola-969

tion cases to exhibit our method’s generalization970

ability for outputs of 300 tokens and 103 tokens.971

Our method extends the reasoning process beyond972

QwQ, and the outputs incorporate an extra reflec-973

tion phase than QwQ. During the shortening pro-974

cess, the reasoning path is first reduced to fewer975

reasoning rounds, then the language is streamlined.976

This refinement allows us to produce a concise and977

coherent answer in only 103 tokens through extrap-978

olation, showcasing the ability to maintain logical979

integrity with content reduction.980

QwQ-32B-Preview Llama-3.2-1B Instruct

Token in Prompt #Token Generated Token in Prompt #Token Generated

20 355 50 118
50 422 100 132
100 511 200 141
200 569 300 160
300 623 400 183
400 666 500 186

Table 12: Significant discrepancies exist between the
conditions specified in the prompt and the number of
generated tokens on GSM8k.

D Potential Risks 981

The potential risks of CoT-Valve primarily origi- 982

nate from the inherent limitations of the base model, 983

rather than the compression process itself. If the 984
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original model contains biases, generates mislead-985

ing information, or produces harmful content, CoT-986

Valve cannot inherently eliminate these risks. Addi-987

tionally, if the model itself incorporates supervised988

signals during the reflection process to correct po-989

tentially harmful outputs, it may be unable to rec-990

tify these errors due to shortened reasoning steps.991

E AI Assistant in Research992

In this research, we utilized ChatGPT4 to refine the993

writing of this manuscript.994
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