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ABSTRACT

In this work, we focus on the challenge of temporally consistent human-centric
dense prediction across video sequences. While progress has been made in per-
frame predictions of depth, surface normals, and segmentation, achieving stability
under motion, occlusion, and illumination changes remains difficult. For this, we
design a synthetic data pipeline that produces large-scale photorealistic human
images and motion-aligned video sequences with high-fidelity annotations. Un-
like prior static data synthetic pipelines, our pipeline provides both frame-level
and sequence-level supervision, supporting the learning of spatial accuracy and
temporal stability. Building on this, we introduce a model that integrates human-
centric priors and temporal modules to jointly estimate temporally consistent seg-
mentation, depth, and surface normals within a single framework. Our two-stage
training strategy, combining static pretraining with dynamic sequence supervision,
enables the model to first acquire robust spatial representations and then refine
temporal consistency across motion-aligned sequences. Extensive experiments
show that we achieve state-of-the-art performance on THuman2.1 and Hi4D and
generalize effectively to in-the-wild videos.

1 INTRODUCTION

In recent years, human-centric vision has advanced in both 2D and 3D applications (Xiu et al.,
2022; Weng et al., 2022; Zhang et al., 2023; Hu, 2024; Khirodkar et al., 2024; Drobyshev et al.,
2022; Zhang et al., 2019; Lin et al., 2014). Current methods can estimate human pose (Cao et al.,
2017), and predict dense maps such as depth (Khirodkar et al., 2024; Saleh et al., 2025) and surface
normals (Khirodkar et al., 2024; Saleh et al., 2025; Saito et al., 2020; Xiu et al., 2023). Despite recent
progress, achieving accurate and temporally consistent predictions in unconstrained videos remains
difficult. The main challenges are: (i) the lack of large-scale human-centric video data with paired
annotations for dense predictions such as depth, surface normals, and segmentation masks; and (ii)
the difficulty for models to simultaneously achieve temporal stability and multi-task learning.

More recently, several methods have shown strong single-image results in estimating depth, sur-
face normals, and segmentation masks from a single image. However, most of these approaches
remain optimized for per-frame accuracy and rarely introduce explicit temporal constraints when
applied to video. As a result, their predictions often suffer from temporal inconsistency, manifest-
ing as flickering or abrupt discontinuities across frames. For instance, DAViD (Saleh et al., 2025)
uses post-processing to mitigate flickering, but artifacts persist under fast motion, occlusion, and
lighting changes. VDA (Chen et al., 2025) achieves temporally consistent depth estimation, due to
it is trained on general-purpose datasets, it struggles to reconstruct fine-grained human geometry,
including hair strands or clothing wrinkles. Jointly predicting depth and surface normals is also
challenging. Although these presentations are geometrically related, their supervision emphasizes
different spatial scales, which can destabilize shared representations in multi-task learning. Fur-
thermore, current models are typically trained without human-centric priors, which leads to limited
modeling of human structure. Finally, the absence of paired human video annotations that simulta-
neously provide segmentation masks, depth, and surface normals makes it difficult to learn shared
features that generalize reliably across tasks.

In this work, we address these issues from both data and modeling perspectives to achieve temporally
consistent and multi-task human-centric dense prediction. We propose a human-centric data synthe-
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sis pipeline that generates photorealistic images with high-fidelity ground-truth annotations. Beyond
static renderings, we incorporate AMASS (Mahmood et al., 2019) to produce dynamic sequences
with motion-aligned temporal annotations. Each synthesized sample provides static RGB frames
with masks, depth, and surface normals, together with dynamic sequences for temporal supervi-
sion. Unlike prior works such as Sapiens (Khirodkar et al., 2024) and DAViD (Saleh et al., 2025),
which primarily scale data on generic architectures, we design a model that explicitly leverages
human-centric priors (i.e., CSE (Neverova et al., 2020)). Our model supports multiple temporally
consistent dense prediction tasks, including segmentation, depth, and surface normals, within a sin-
gle architecture and without task-specific fine-tuning. Trained solely on synthetic data, it achieves
state-of-the-art results across benchmarks and generalizes effectively to in-the-wild human images
and videos. Our contributions are summarized as follows.

• We build a scalable data synthesis pipeline for human-centric frames and videos with pixel-
accurate depth, normals, and segmentation. We will release it to support community re-
search on temporal consistency and multi-task learning.

• We introduce a ViT-based architecture that integrates human geometry priors to jointly
predict temporally consistent segmentation, depth, and surface normals.

• To alleviate artifacts arising from feature fusion, we propose an adaptive channel re-
weighting module that enhances the reliability of geometry representations.

• The method achieves state-of-the-art results on THuman2.1 and Hi4D for both depth and
surface normal estimation, and transfers well to in-the-wild videos.

2 RELATED WORK

2.1 HUMAN VISION DATA

Recent progress in computer vision largely depends on the availability of high-quality training data
(Yang et al., 2024a;b; Siméoni et al., 2025; Miao et al., 2025), and this also applies to human-centric
applications (Khirodkar et al., 2024). Tasks such as face detection (Viola & Jones, 2004), pose
estimation (Andriluka et al., 2014), landmark localization (Zhu & Ramanan, 2012), and semantic
segmentation (Kirillov et al., 2023) rely on existing annotation tools. In contrast, dense prediction
tasks such as depth (Wang et al., 2025a) and surface normal (Ye et al., 2024) estimation remain
difficult to annotate manually. To address this challenge, several works use multi-view capture (Yin
et al., 2023b; Yu et al., 2021; Martinez et al., 2024) to reconstruct human meshes. These datasets
provide useful supervision, but they show limited subject and scene diversity due to high acquisition
costs, and they often lose fine-scale details because they rely on model fitting or photogrammetry.
More recently, DAViD (Saleh et al., 2025) combines data generation strategies with updated facial
models to produce realistic human datasets with precise ground-truth annotations. However, even
with large-scale datasets, most of these data are static, and data for dense dynamic prediction is still
scarce. Our data synthesis pipeline directly targets this gap and enables high-fidelity synthesis for
dynamic scenarios.

2.2 HUMAN VISION TASK

Early research focused primarily on tasks such as human keypoint estimation (Chen et al., 2018b;
Fang et al., 2017; Huang et al., 2017; Khirodkar et al., 2021; Newell et al., 2016; Papandreou et al.,
2017; Sun et al., 2019; Xiao et al., 2018) and body-part segmentation (Xia et al., 2017; 2016; Luo
et al., 2018; Gong et al., 2018; 2017; Fang et al., 2018). Representative methods such as OpenPose
(Cao et al., 2019) tackled multi-person 2D pose estimation. By jointly modeling body, hand, and
facial joints, they achieved strong performance in pose and part detection on static images. Recent
work has expanded to broader dense prediction tasks beyond keypoints and segmentation, includ-
ing depth estimation (Bhat et al., 2023; Yin et al., 2023a; Jafarian & Park, 2021; Birkl et al., 2023)
and surface normal prediction (Eigen & Fergus, 2015; Ladickỳ et al., 2014; Saito et al., 2020; Xiu
et al., 2023). For example, Sapiens (Khirodkar et al., 2024) leverages large-scale in-the-wild human
images for pre-training and fine-tuning on 2D pose estimation, part segmentation, depth, and nor-
mal prediction, showing strong generalization to natural scenes. DAViD (Saleh et al., 2025) further
achieves competitive results by fine-tuning DINOv2 (Oquab et al., 2023) on synthetic data. De-
spite their broad task coverage, these methods remain limited in stability when applied to dynamic
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video scenes. In this work, we go beyond static image training by introducing supervisory signals
from video sequences. This improves stability under motion, occlusion, and illumination variations,
leading to more robust and generalizable predictions in natural scene videos.

2.3 DENSE PREDICTION ARCHITECTURES

Dense prediction has transitioned from CNN encoder–decoder baselines (Ronneberger et al., 2015;
Chen et al., 2018a) with skip connections to transformer backbones trained with strong pretraining
and scalable supervision. DPT (Ranftl et al., 2021) shows that a ViT encoder (Dosovitskiy et al.,
2020) with a lightweight convolutional decoder yields fine-grained and globally consistent outputs
for depth and segmentation, and it generalizes well across datasets. Large-scale self-supervised pre-
training further improves transfer, and features from DINOv2 (Oquab et al., 2023) are widely used
as a shared backbone for dense tasks without heavy task-specific heads. The Depth Anything fam-
ily, especially Depth Anything V2 (Yang et al., 2024b), scales supervision using a stronger synthetic
teacher and large pseudo-labeled collections of real images. The models span tens of millions to
over one billion parameters and achieve improved accuracy and speed. Marigold (Ke et al., 2024)
adapts a pretrained latent diffusion model to monocular depth with lightweight fine-tuning on syn-
thetic data and reports strong cross-dataset results. For human-centric dense estimation, Sapiens
(Khirodkar et al., 2024) uses a ViT backbone with lightweight task heads. In contrast, DAViD
(Saleh et al., 2025) employs a dual-branch design with a ViT encoder branch and a shallow fully
convolutional branch, and the features are fused in a DPT-style decoder before lightweight heads.
We propose a model that injects explicit human priors into the backbone to encode body topology
and part correspondence, which improves human-centric dense prediction.

3 METHODOLOGY

3.1 HUMAN-CENTRIC SYNTHETIC DATA PIPELINE

Our data synthesis pipeline consists of two stages: composition and rendering.

Composition stage. We leverage some character generation software (i.e., DAZ 3D1, MakeHu-
man2, Character Creator 3) to compose clothed human models. Assets are divided into four cate-
gories—body, top, bottom, and shoes—so that they can be sampled independently. We randomize
body shape and pair tops, bottoms, and shoes to generate diverse outfits. This independent sampling
strategy increases the coverage of outfit combinations without requiring manual curation. For asset
textures, we apply three categories of augmentations to the diffuse maps. The first introduces ap-
pearance variations through hue adjustment, per-channel intensity scaling, and low-magnitude noise.
The second generates uniform solid-color textures to diversify simple surface representations. The
third replaces textures using external resources, including the Describable Textures Dataset (Cimpoi
et al., 2014), the ALOT dataset (Burghouts & Geusebroek, 2009), and an internal texture collection.
For these replacements, we apply preprocessing operations such as resizing, tiling, mirrored tiling,
and HSV-based recoloring to accommodate both colored and grayscale inputs. In total, we compose
about 200K unique identities for rendering.
Rendering stage. We import the composed models into Blender 4 to render RGB images, depth
maps, surface normal maps, and segmentation masks, from which we generate both static and dy-
namic data (In Figure 1). For image data, we follow the Sapiens protocol (Khirodkar et al., 2024)
by randomly sampling camera viewpoints to render three perspectives: face, upper body, and full
body. For video data, we animate the models with motion capture sequences from the AMASS
dataset (Mahmood et al., 2019), which provides skeletal trajectories. We exclude sequences with
poses such as lying and uniformly sample up to 500 frames per sequence. Each model is paired with
a randomly selected trajectory. To further increase diversity, we randomize the camera focal length,
enable subject-tracking, and apply camera rotations around the animated model during rendering.

1https://www.daz3d.com/
2http://www.makehumancommunity.org/
3https://www.reallusion.com/character-creator/
4https://www.blender.org/
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Figure 1: Synthesis Data sample. Ground-truth synthetic annotations of depth, surface normals,
and masks for image and video sample data.

3.2 MODEL ARCHITECTURE

We build upon the recent paradigm of ViT-based dense prediction and adapt it to human-centric
tasks. While approaches such as Sapiens (Khirodkar et al., 2024) and DAViD (Saleh et al., 2025)
achieve strong performance, they remain largely task-agnostic and do not explicitly incorporate hu-
man geometry. Our objective is to introduce human geometric priors into the representation learning
process, enabling a framework for human-centric dense prediction tasks (Figure 2).
Encoder and Decoder. We adopt the DINO series (Oquab et al., 2023) as the encoder EDINO,
which extracts global representations from the input image x ∈ RH×W×3 as Fenc = EDINO(x).
The DPT (Ranftl et al., 2021) decoder DDPT transforms this representation into multi-scale fea-
tures FDPT = DDPT(Fenc). On top of these features, we leverage three lightweight task heads
H that produce predictions for depth, surface normals, and foreground/background segmentation
{D̂, N̂, Ŝ} = H(FDPT). To capture the temporal relationship between frames, we inject four tem-
poral blocks T into the decoder as bridges connecting different frames. The structure of the temporal
blocks in the model is similar to that in AnimateDiff (Guo et al., 2023) and VDA (Chen et al., 2025),
consisting of several temporal attention blocks.
Local Geometry Enhancement. While DINO tokens effectively encode semantic information and
capture long-range dependencies, they generally lack fine details such as edges and textures. In-
spired by the Resizer module in DAViD (Saleh et al., 2025), we introduce a lightweight CNN branch
ECNN. This branch directly extracts edges and textures from the input image as FCNN = ECNN(x).
The final fused representation is then obtained by concatenating the decoder features with the CNN
features, followed by a nonlinear mapping: Ffusion = ϕfusion([FDPT,FCNN]), where [ · , · ] denotes
channel concatenation and ϕ denotes a nonlinear mapping.
Channel Weight Adaptation (CWA). While the fusion design preserves global semantics and
strengthens texture cues, the lightweight CNN branch can introduce redundant appearance signals.
DAViD observed similar issues, with appearance details such as tattoos and lighting patterns some-
times being mistaken for geometric shapes. To alleviate this, we introduce a channel weight adap-
tation module to reweight the channel weights of the fused features. Specifically, given the fused
feature map Ffusion ∈ RC×H×W , we introduce a light-weight channel-wise reweighting block to
adjust the contribution of each channel. We first apply global average pooling over the spatial di-
mensions to obtain a channel descriptor

qc =
1

HW

H∑
h=1

W∑
w=1

Ffusion(c, h, w), c = 1, . . . , C, (1)

which forms a vector q ∈ RC . This vector is then passed through a small two-layer MLP with a
non-linear activation and a sigmoid function σ(·) to produce per-channel weights

a = σ(MLP(q)) ∈ (0, 1)C . (2)
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Figure 2: Pipeline overview. Given a sequence of RGB frames, our model extracts DINO features,
global image features, and human geometric priors. These features are fused and re-weighted to
generate enhanced representations for predicting temporally consistent depth, surface normals, and
segmentation masks.

Finally, the fused features are rescaled channel-wise as
F′

fusion(c, h, w) = ac Ffusion(c, h, w), (3)
where ac denotes the weight of channel c. The CWA is trained jointly with depth and normal objec-
tives, guiding the network to assign larger weights to channels. In this way, it reduces the weights of
texture- and lighting-dominated channels while increasing the weights of geometry-related channels,
thereby weakening the influence of appearance information on geometry prediction and maintaining
the consistency of global representation.
Human Geometric Prior. Previous approaches mainly rely on general designs and data-centric
scaling (larger and cleaner datasets), which raises the capacity from the data side but leaves model-
side priors underused. We therefore inject a human-specific prior to strengthen the representation
of the human body structure. A straightforward option is to use DensePose-like UV maps (Güler
et al., 2018) so that the network predicts geometry for different body parts. However, due to the
lack of such supervised data and in the multi-task setting, this option usually fails to achieve stable
convergence. Instead, we adopt CSE (Neverova et al., 2020) as a stable geometric prior. Given a
human image, the CSE encoder ECSE produces continuous geometric embeddings z = ECSE(x),
which we fuse with decoder features to impose shape-aware constraints on the predictions. Let FDPT
denote the decoder features. To inject the human geometric prior into the representation, we project
z to the same channel dimension and spatial resolution as FDPT using a 1× 1 convolution followed
by bilinear upsampling, and then fuse it with the decoder features by element-wise addition:

z̃ = ψ(z) ∈ RC×H×W . (4)
The prior is then fused with the decoder features by element-wise addition:

F′
DPT = FDPT + z̃. (5)

3.3 TRAINING PIPELINE

To achieve multi-task human-centered temporal consistency, we adopt a two-stage training strategy.
In stage 1, the model is pretrained on synthetic image data to learn spatially consistent fundamental
representations. In stage 2, we inject the temporal module and continue training on synthetic video
data with flow-guided stabilization term to capture temporal information and maintain consistency.

3.3.1 STAGE 1: STATIC IMAGE MODEL TRAINING

Monocular Depth Estimation. For depth estimation, given a depth map d∗, we normalize it to the
range [0, 1] by d = d∗−min(d∗)

max(d∗)−min(d∗) . Let D̂ be the predicted relative depth. We follow previous
work (Birkl et al., 2023) to estimate per-image scale and shift (s, t). The depth loss is:

Ldepth = ∥s D̂+ t− d
∥∥
2
+ ωgrad Lgrad(sD̂+ t, d), (6)

where Lgrad is the gradient term (Hu et al., 2019) to encourage sharp boundaries and local continuity.
Surface Normal Estimation. The normal head outputs 3-channels (x, y, z). Let N be the ground-
truth normal and N̂ the prediction. The base loss combines a L1 term with a cosine term:

Lbase = ∥N− N̂∥1 +
(
1−N · N̂

)
. (7)
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Table 1: Quantitative comparison for depth estimation on THuman2.1 and Hi4D dataset. Note
that the parameter size of Sapiens-0.3B is equivalent to that of large models of ViT-based methods.

Methods
TH2.1-Face TH2.1-UpperBody TH2.1-FullBody Hi4D

RMSE ↓ AbsRel ↓ RMSE ↓ AbsRel ↓ RMSE ↓ AbsRel ↓ RMSE ↓ AbsRel ↓

DA-B 0.0267 0.0157 0.0324 0.0175 0.0366 0.0176 0.0954 0.0251
DA2-B 0.0328 0.0204 0.0423 0.0241 0.0404 0.0209 0.0930 0.0262
MoGe2-B 0.0274 0.0165 0.0326 0.0179 0.0451 0.0208 0.1104 0.0281
DAViD-B 0.0254 0.0147 0.0262 0.0143 0.0304 0.0148 0.0947 0.0266
Ours-B 0.0193 0.0112 0.0228 0.0126 0.0293 0.0146 0.0928 0.0277

DA-L 0.0236 0.0138 0.0297 0.0162 0.0323 0.0160 0.0845 0.0228
DA2-L 0.0303 0.0187 0.0381 0.0216 0.0379 0.0197 0.0844 0.0239
MoGe-L 0.0222 0.0132 0.0276 0.0145 0.0361 0.0159 0.0915 0.0216
MoGe2-L 0.0231 0.0136 0.0294 0.0154 0.0349 0.0149 0.0892 0.0208
DAViD-L 0.0256 0.0149 0.0262 0.0144 0.0293 0.0142 0.0889 0.0244
Sapiens-0.3B 0.0150 0.0089 0.0184 0.0105 0.0239 0.0117 0.1349 0.0412
Ours-L 0.0147 0.0086 0.0174 0.0098 0.0218 0.0110 0.0700 0.0208

Sapiens-0.6B 0.0152 0.0087 0.0183 0.0104 0.0236 0.0119 0.1317 0.0407
Sapiens-1B 0.0119 0.0067 0.0145 0.0080 0.0179 0.0087 0.1151 0.0356
Sapiens-2B 0.0112 0.0061 0.0156 0.0086 0.0172 0.0082 0.1060 0.0327

We observe that when depth and normal heads are trained jointly, the predicted normals often lose
fine texture details. This occurs because depth supervision relies on global geometric consistency
and largely ignores high-frequency signals that are uninformative for relative depth. Since depth
typically converges faster and more stably than normal estimation, it tends to dominate the shared
representation during training. Consequently, the learned features emphasize smooth, low-frequency
structures while suppressing texture cues, leading to over-smoothed surface normals, particularly on
clothing, accessories, and hair. To mitigate this effect and enhance spatial coherence, we introduce
an edge-aware gradient loss and a multi-scale Laplacian loss. Let ∇ denote the Sobel operator and ∆
the discrete Laplacian. Define an edge weight using the magnitude of ground-truth normal gradients
wedge = 1 + η ∥∇N∥−min∥∇N∥

max∥∇N∥−min∥∇N∥ . The regularizers are:

Ln
grad = wedge

∥∥∇(N̂)−∇(N)(x)
∥∥
1

Llap = wedge

∥∥∆(N̂)−∆(N)
∥∥
1
. (8)

The surface normal loss is:

Lnormal = Lbase + α Ln
grad + βLlap, (9)

where α and β are regularizers weights.
Foreground Segmentation. To provide human-centric foreground guidance for geometry-related
tasks, we introduce a lightweight segmentation head that predicts a soft mask Ŝ over the human
region. Designed as an auxiliary branch that shares the same backbone as the depth and normal
heads, this head supplies soft human masks that guide the depth and normal predictors to focus
on the foreground and obtain cleaner supervision near human boundaries. The segmentation head
predicts a soft mask Ŝ. We use binary cross-entropy to supervise them:

Lseg = LBCE(Ŝ,S), (10)

and use S as the mask for depth and surface normal supervision. Finally, the Stage-1 objective is:

Lstage1 = λdLdepth + λnLnormal + λsLseg. (11)

3.3.2 STAGE 2: DYNAMIC VIDEO MODEL TRAINING

To address frame-to-frame instability in dense video prediction, existing methods can be broadly
divided into two categories. The first category is the TGM loss proposed in VDA (Chen et al.,
2025), which enforces temporal consistency by constraining the depth gradient between adjacent

6
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Ours-L DAViD-L Sapiens-2B

Figure 3: Qualitative comparison on challenging images in the wild.

frames. The second category is flow-based temporal consistency. Since our work involves not only
depth but also normal estimation, with supervision primarily focused on human foreground regions,
TGM is not directly suitable. It is restricted to depth prediction and tends to weaken supervision
on fast-moving or occluded foreground regions. In contrast, flow-based methods explicitly establish
correspondences across frames, which enables stable supervision in the foreground and naturally
extends to enforcing directional consistency for surface normals.

Based on this, we keep all spatial losses and introduce optical-flow-based stabilization. For adjacent
frames k and k+1, we denote the forward and backward flows as Ok→k+1 and Ok+1→k. Warp-
ing with flow O is denoted as W(·,O). To ensure reliable correspondences, we further apply a
cycle-consistency mask Mcyc = 1

(
∥Ok→k+1(Ok+1→k) − x∥2 ≤ τc

)
. We also suppress unsta-

ble boundary pixels using a non-edge mask from predicted depth edges. Let Ek be the edge map
extracted from the current predicted depth, and let its dilated form be used to compute the edge
mask Medge = 1− Dilate(Ek). The valid set is M = Mcyc ∩Medge. Depth stabilization uses a
bidirectional, flow-aligned L1 loss:

Ld
temp =

1

|M|
∥∥M⊙

(
D̂k −W(D̂k+1,Ok→k+1)

)∥∥
1

+
1

|M|
∥∥M⊙

(
D̂k+1 −W(D̂k,Ok+1→k)

)∥∥
1
,

(12)

which reduces flicker and drift in where corresponding. Similarly, surface normal stabilization term:

Ln
temp =

1

|M|
M⊙

(
1− cos⟨W(N̂k,Ok→k+1), N̂k+1⟩

)
+

1

|M|
M⊙

(
1− cos⟨W(N̂k+1,Ok+1→k), N̂k⟩

)
.

(13)

This term uses a smaller weight than the depth temporal term to suppress random directional jitter
without oversmoothing true edges. Finally, the Stage-2 objective is:

Lstage2 = Lstage1 + λdtempLd
temp + λntempLn

temp. (14)

7
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Table 2: Quantitative comparison for surface normal estimation on THuman2.1 and Hi4D dataset.
Note that the parameter size of Sapiens-0.3B is equivalent to that of large models of ViT-based
methods.

Methods
THuman2.1 Hi4D

Angular Error (◦) ↓ % Within t◦ ↑ Angular Error (◦) ↓ % Within t◦ ↑

Mean Median 11.25◦ 22.5◦ 30◦ Mean Median 11.25◦ 22.5◦ 30◦

MoGe2-B 20.31 17.94 27.04 64.96 81.30 19.29 15.52 33.52 72.03 85.31
DAViD-B 19.85 16.89 31.38 67.40 81.56 20.64 16.10 32.14 69.69 82.70
Ours-B 17.89 15.56 32.98 73.69 87.15 16.08 12.03 47.76 81.49 89.98

MoGe2-L 18.21 16.00 31.95 72.01 86.41 17.26 13.60 40.40 78.61 88.92
DAViD-L 19.59 16.64 30.02 68.18 82.09 20.74 16.11 31.94 69.42 82.55
Sapiens-0.3B 14.34 11.84 49.60 83.79 92.07 20.01 15.42 34.41 71.58 83.90
Ours-L 16.00 13.51 41.00 79.79 90.04 15.00 10.84 53.56 84.27 91.15

Sapiens-0.6B 14.34 11.92 49.19 83.82 92.22 17.87 13.50 41.43 77.79 87.79
Sapiens-1B 13.36 10.91 54.06 86.31 93.38 15.50 10.96 52.93 83.74 90.66
Sapiens-2B 13.13 10.66 55.38 86.81 93.57 15.58 11.05 52.47 84.02 90.79

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

As described in Section 3.3, we train our model using both static and dynamic data. The static data
consists of 2M samples from our synthetic dataset and 300K samples from the SynthHuman dataset
(Saleh et al., 2025), while the dynamic data uses 4M samples from our synthetic dataset. We adopt
the latest DINOv3 (Siméoni et al., 2025) as the pretrained weights. For the static image model, we
train a ViT-L with a batch size of 128 for 50K steps, which takes about 2.5 days. For the dynamic
video model, we use a batch size of 8 with 32 frames and train for 35K steps, which requires about
1.5 days. The detailed hyperparameters for both training stages are provided in the Section A.6.

4.2 EVALUATION PROTOCOL

Table 3: Qualitative comparison for video depth
and surface normal estimation on Hi4D.

Methods
Depth Normal

OPW↓ TC-RMSE↓ OPW↓ TC-Mean↓ TC-Abs↓

MoGe2-B 0.0176 0.0283 0.0362 4.26 0.162
MoGe2-L 0.0176 0.0288 0.0363 4.27 0.146
DAViD-B 0.0176 0.0283 0.0423 4.92 0.170
DAViD-L 0.0176 0.0288 0.0423 4.93 0.170
Sapiens-0.3B 0.0145 0.0226 0.0594 6.91 0.164
Sapiens-0.6B 0.0165 0.0266 0.0486 5.64 0.147
Sapiens-1B 0.0141 0.0240 0.0452 5.26 0.147
Sapiens-2B 0.0122 0.0221 0.0421 4.89 0.149
NormalCrafter - - 0.0277 3.20 0.143
DepthCrafter 0.0111 0.0304 - - -
VDA-B 0.0111 0.0304 - - -
VDA-L 0.0102 0.0300 - - -

Ours-B 0.0072 0.0189 0.0280 3.27 0.140
Ours-L 0.0070 0.0166 0.0261 3.04 0.133

Evaluation Datasets. We evaluate our method
on two challenging real-world datasets, THu-
man2.1 (Yu et al., 2021) and Hi4D (Yin et al.,
2023b), for validating depth estimation and
surface normal estimation. Following the
evaluation protocol in Sapiens (Khirodkar
et al., 2024), we construct three subsets on
THuman2.1, including face, upper-body, and
full-body. Unlike prior works that mainly
relied on THuman2.0 with only 500 mod-
els and 1,500 images, we adopt the latest
THuman2.1 dataset, which contains 2,445
models. Based on these models, we synthesize
7,335 images, resulting in a dataset with
a significantly larger scale. For Hi4D, we
select sequences from subjects 28, 32, and
37 captured by camera 4, covering 6 different
subjects and yielding 1,195 multi-person real
images. For image evaluation, we employ both
THuman2.1 and Hi4D to assess depth and surface normal estimation under static poses. For video
evaluation, we utilize Hi4D, which also provides temporally continuous dynamic sequences, en-
abling us to further examine the adaptability and generalization of our method in dynamic scenarios.
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Input Video Ours-L DepthCrafter VDA-L DAViD-L Sapiens-2B

Figure 4: Qualitative comparison on video depth estimation. For better visualization, we also show
the time slice on the red lines of each video on their right side.

Input Video Ours-L NormalCrafter DAViD-L Sapiens-2B

Figure 5: Qualitative comparison on video surface normal estimation. For better visualization, we
also show the time slice on the red lines of each video on their right side.

Evaluation Metric. Following previous work (Khirodkar et al., 2024), to evaluate image depth esti-
mation, we report the mean absolute value of the relative depth (AbsRel) and the root mean square er-
ror (RMSE). To evaluate image surface normal estimation, we use the standard metrics of mean and
median angular error, as well as the percentage of pixels within t◦ error for t ∈ {11.25, 22.5, 30}.
For video depth and surface normal estimation, we further consider temporal consistency across
frames. We employ optical flow-based metrics computed using RAFT (Teed & Deng, 2020). We
report the optical flow-based warping metric (OPW) (Wang et al., 2022), which measures the dis-
crepancy between consecutive frames after warping. For depth frames, we report the flow-based
temporal consistency error (TC-RMSE), which measures the stability of depth predictions across
time. For normal frames, we report the flow-based angular error (TC-Mean), which evaluates the
temporal consistency of surface normals. However, it should be noted that TC-Mean may be in-
accurate if the predicted surface normals are globally biased or too smooth, especially when only
evaluating the foreground. Thus, we introduce a new temporal consistency metric for surface nor-
mals. Based on the flow-based angular error, we compute the ground truth angular error and compare
it with the predicted angular error using the absolute difference (TC-Abs). This metric reflects the
discrepancy between predicted and ground truth temporal changes in surface orientation. Unlike
purely flow-warped metrics, it can partly mitigate the influence of flow inaccuracies and place more
emphasis on whether the temporal variations in predictions follow the ground truth.

4.3 COMPARISON TO THE STATE-OF-THE-ART

For static depth estimation, we evaluate several SOTA models, including general-purpose ap-
proaches (the Depth Anything family (Yang et al., 2024a;b) and the Moge family (Wang et al.,
2025a;b)) as well as human-centric methods (Sapiens Khirodkar et al. (2024) and DAViD (Saleh
et al., 2025)). As shown in Table 1, both variants of our model outperform these baselines on both
datasets. Notably, our Large model achieves comparable or even superior accuracy on Hi4D static
depth compared to the larger Sapiens-0.6B/1B/2B, highlighting its parameter efficiency and strong
cross-dataset generalization. For static surface normal estimation, the results in Table 2 show that
Sapiens performs particularly well on the THuman2.1 dataset, likely due to its similarity to Ren-
derPeople, which was used during fine-tuning. On the Hi4D dataset, however, our Large model
even surpasses Sapiens-2B. For soft foreground segmentation, we follow the experimental setting
of DAViD to compare Zhong et al. (Zhong & Zharkov, 2024), BGMv2 (Lin et al., 2020), P3M-Net

9
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Table 4: Comparison on the P3M-500-NP, P3M-500-P and PPM-100 benchmarks.

Method
P3M-500-NP P3M-500-P PPM-100

SAD ↓ SAD-T ↓ Conn ↓ SAD ↓ SAD-T ↓ Conn ↓ SAD ↓ Conn ↓

Zhong et al. 10.60 6.83 9.77 10.04 6.44 9.41 90.28 84.09
BGMv2 15.66 7.72 14.65 13.90 7.23 13.13 159.44 149.79
P3M-Net 11.23 7.65 12.51 8.73 6.89 13.88 142.74 139.89
MODNet 20.20 12.48 18.41 30.08 12.22 28.61 104.35 96.45
DAViD 14.83 10.23 14.76 12.65 9.19 12.47 78.17 74.72

Ours 13.12 11.88 12.72 11.63 9.95 11.51 70.71 68.32

(Ma et al., 2023), and MODNet (Ke et al., 2022), and we quantitatively evaluate our segmentation
head on the P3M-500-NP, P3M-500-P, and PPM-100 benchmark datasets. As shown in Table 4, our
method shows competitive results on both P3M validation sets and gives clear gains over DAViD
and the other baselines on PPM-100, where our approach decreases SAD from 78.17 to 70.71 and
Conn from 74.72 to 68.32. Since there is currently no released video human-centric model for depth
or surface normal estimation, we compare against SOTA models designed for general scene videos,
such as NormalCrafter (Bin et al., 2025), DepthCrafter (Hu et al., 2025), and VDA (Chen et al.,
2025). As shown in Table 3, our model demonstrates superior performance in scenes containing
humans. Figure 3 demonstrates the robustness of our method when tested on person-centric images,
covering normal images, shadows, lighting changes, and multi-person scenes. Figure 4 and Figure 5
demonstrate the excellent performance of our method on human-centric in-the-wild Internet videos
and the temporal consistency, respectively.

4.4 ABLATION STUDIES

Table 5: Ablation on Hi4D dataset.

Methods
Depth Normal

RMSE ↓ AbsRel ↓ Mean ↓ Median ↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑

Baseline 0.0964 0.0279 20.51 16.00 32.22 70.12 82.74
w/ CSE 0.0932 0.0274 17.97 14.33 40.57 76.98 88.00
w/ CWA 0.0944 0.0271 18.32 15.82 42.31 77.43 88.56
Full 0.0928 0.0277 16.08 12.03 47.76 81.49 89.98

We mainly conduct the ablation studies on
the Hi4D dataset. As shown in Table 5,
we compare our full model against three
variants: A) DPT head with an additional
CNN branch as the baseline; B) w/ Human
CSE prior; C) w/ channel weight adapta-
tion. The results indicate that incorporat-
ing human structural priors through CSE
encourages the model to capture geometry that aligns with human body shape and articulation,
which strengthens local surface details and orientation consistency. On the other hand, CWA em-
phasizes adaptive feature reweighting across channels, which improves the prediction stability. More
detail ablation please refer to Section A.4.

5 CONCLUSION

This work presented a framework for human-centric dense prediction with temporal consistency.
By constructing a synthetic pipeline that produces static frames and dynamic sequences with pixel-
accurate annotations, we enabled joint learning of segmentation, depth, and surface normals with
both spatial accuracy and stable video performance. Our model achieves strong results on THu-
man2.1 and Hi4D, and generalizes to in-the-wild videos. The results indicate that large-scale syn-
thetic data, together with temporal supervision and human priors, can be an effective approach for
improving human-centric video perception. In future work, we plan to extend the framework to
more complex scenes and examine its use in downstream tasks such as human 3D reconstruction.

6 ETHICS STATEMENT

This research does not involve human subjects, personally identifiable information, or sensitive data.
The datasets and models used are publicly available and commonly adopted in the research com-
munity. No experiments were conducted that could directly or indirectly cause harm to individuals,
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groups, or the environment. We have taken care to ensure fairness, reproducibility, and compliance
with ethical research standards.

7 REPRODUCIBILITY STATEMENT

We detail our data pipeline and model components in the Section 3 and the training parameters in
the Section A.6. Furthermore, we will release the source code and pretrained model weights upon
the paper’s acceptance.
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A APPENDIX

A.1 DATA SYNTHESIS PIPELINE

The full data synthesis pipeline is illustrated in Figure 6. The process begins with the construc-
tion of clothed human models using character-generation tools such as DAZ 3D, MakeHuman, and
Character Creator. These tools provide parametric control over body shape and garment categories,
forming the base set of assets used for large-scale identity sampling.

To expand the appearance diversity, we apply texture augmentations on the diffuse maps. These
operations include color-based perturbations and material replacement, which allow the same ge-
ometry to support a wide range of surface styles. After texture augmentation, each identity is paired
with motion data by retargeting AMASS skeletal trajectories. This step assigns realistic human
motion while maintaining consistent rigging across different characters.

The animated models are then placed into Blender, where we define camera poses, focal lengths,
and tracking behavior. Randomization in these settings increases viewpoint variety in both static
and dynamic supervision. During rendering, Blender outputs synchronized RGB images, depth
maps, surface normals, and segmentation masks.

Daz 3D MakeHuman
Character 
Creator Retargeting and Setting Camera PoseGenerating Assets Texture Augment

Figure 6: We first generate clothed human models using DAZ 3D, MakeHuman, and Character
Creator. Texture augmentations are applied to increase appearance diversity. Each model is then
animated by retargeting AMASS motion sequences. Finally, models are placed in Blender with ran-
domized cameras for rendering RGB images together with depth, surface normals, and segmentation
masks.

A.2 DISCUSSION

Existing synthetic data pipelines for human-centric learning tasks primarily focus on static image
generation or structural parameter supervision. SURREAL (Varol et al., 2017) combines SMPL
models with MoCap sequences to produce synthetic videos with depth, surface normal, and part
segmentation annotations. However, it lacks realistic clothing or hair geometry, relying on simpli-
fied texture mappings. PeopleSansPeople (Ebadi et al., 2021) leverages Unity to render large-scale,
domain-randomized human images, supporting segmentation and keypoint labels but does not gen-
erate temporally aligned sequences or pixel-level geometric cues. SynBody (Yang et al., 2023)
substantially improves the scale and diversity of identities and actions using SMPL-XL and layered
clothing models, providing multi-view video sequences and mesh-level supervision. However, its
released data focuses on RGB and pose annotations, with depth and normal modalities not included
in the official release. More recent pipelines such as SynthMoCap (Hewitt et al., 2024) emphasize
high-fidelity single-frame supervision for dense prediction tasks. They provide detailed annotations
like depth, surface normals, and masks, but are limited to frame-level modeling without temporal
continuity. Our pipeline is explicitly designed to generate temporally aligned, multi-modal human
video sequences, enabling supervision for both per-frame and sequence-level tasks. We synthesize
high-quality clothed human characters using commercial modeling tools with randomized sampling
over body types, clothing, and textures to construct a large and diverse identity set. Motions from
the AMASS dataset are retargeted to these characters and rendered in Blender to produce videos
along with per-frame RGB, depth, surface normal, and segmentation maps. Unlike most prior work,
our pipeline produces frame-consistent annotations, supporting dense, temporally stable supervision
across tasks such as point tracking, normal prediction, and temporally coherent segmentation.

A.3 ADDITIONAL QUALITATIVE RESULTS

In Figure 8 and Figure 9, we provide additional qualitative results. We also provide some video
results in the supplementary materials.
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Input image W/ CWA W/O CWA

Figure 7: Ablation for Channel Weight Adaptation.

A.4 ADDITIONAL ABLATION STUDY

Investigate channel weight adaptation. The motivation for introducing a CNN branch in the dual-
branch structure is to compensate for the limited capability of the Transformer backbone in modeling
local textures, similar to the design adopted in the DAViD (Saleh et al., 2025). CNNs are effective
at capturing local patterns and edge details, which helps refine the quality of depth or normal pre-
dictions. In our experiments, we observed that adding the CNN branch improves surface continuity
and local smoothness. However, this advantage also comes with a drawback, since CNNs tend to
capture redundant texture signals that are not related to geometry, such as shadows, clothing pat-
terns, or tattoos. When such signals are fused into the prediction, they interfere with the recovery of
the underlying geometry and may produce artifacts or instability in challenging scenarios.

To address this issue, we introduce the CWA module into the CNN branch. CWA adaptively adjusts
the channel-wise feature weights, suppressing those that contribute little or negatively to geometry
recovery while emphasizing features that are strongly correlated with shape. In practice, CWA acts
as a dynamic filter placed between the CNN branch and the final prediction, enabling the model to
better distinguish between texture information and geometric cues. Comparative results in Figure 7
show that incorporating CWA effectively reduces artifacts in local regions, especially in cases with
complex lighting or decorative textures, and leads to more stable and consistent predictions.

Table 6: Ablation for DINOv2 and DINOv3 on Thuman2.1 and Hi4D datasets using the depth task.

Methods
TH2.1-Face TH2.1-UpperBody TH2.1-FullBody Hi4D

RMSE↓ AbsRel↓ RMSE↓ AbsRel↓ RMSE↓ AbsRel↓ RMSE↓ AbsRel↓

DINOv2-B 0.0207 0.0105 0.0251 0.0116 0.0321 0.0136 0.0862 0.0228
DINOv3-B 0.0193 0.0108 0.0234 0.0116 0.0302 0.0135 0.0871 0.0212
DINOv2-L 0.0167 0.0088 0.0211 0.0102 0.0293 0.0123 0.0771 0.0193
DINOv3-L 0.0158 0.0085 0.0198 0.0098 0.0243 0.0111 0.0768 0.0195

Investigate DINOv2 and DINOv3. To ensure a fair comparison, we are using 518 × 518 input
resolution for DINOv2 (Oquab et al., 2023) and 592× 592 input resolution for DINOv3. As shown
in Table 6, DINOv3 (Siméoni et al., 2025) achieves consistent improvements over DINOv2 across
multiple benchmarks, particularly on Thuman-FullBody and Hi4D, where the results are more sta-
ble. While these gains partially benefit from the stronger encoder, it is important to highlight that the
overall performance improvements of our approach do not stem solely from replacing the backbone.
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Instead, they result from the joint contribution of our carefully designed model and the curated data
used for training. This synergy allows the network to better handle the challenges of real-world
scenarios, leading to more reliable geometry recovery and stronger generalization across datasets.

Investigate human prior. We investigate human priors on the depth task. As shown in Table
Table 7, adding a Fourier UV map improves over the baseline, suggesting that canonical UV coordi-
nates provide useful geometric cues for depth estimation. While our human prior achieves the more
excellent results on both Thuman and Hi4D, reducing both RMSE and AbsRel. These results high-
light that human-structure-aware priors enable more accurate and stable depth predictions compared
to purely positional encodings.

Table 7: Ablation on human priors using the depth task with DINOv3-B.

Methods
TH2.1 Hi4D

RMSE↓ AbsRel↓ RMSE↓ AbsRel↓

Baseline 0.0223 0.0119 0.0964 0.0279
+ Fourier UV 0.0192 0.0110 0.0922 0.0273
+ CSE 0.0189 0.0108 0.0912 0.0271

Investigate human prior fusion strategies. We compare two strategies for integrating human pri-
ors, concatenation (cat) and addition (add). As shown in Table 8, both strategies improve depth and
normal estimation, but addition consistently achieves better results. Specifically, add reduces both
RMSE and AbsRel while also lowering the mean and median angular error for surface normals. The
improvement can be attributed to the fact that addition enforces direct feature alignment between the
prior and the learned representations, whereas concatenation requires the network to learn how to
fuse heterogeneous features. This suggests that additive integration provides a more effective way
to inject human-structure priors, yielding more stable and geometry-aware predictions.

Table 8: Ablation on different integration strategies of human priors on Hi4D with DINOv3-B.

Methods
Depth Normal

RMSE↓ AbsRel↓ Mean↓ Median↓ 11.25◦↑ 22.5◦↑ 30◦↑

Cat 0.0955 0.0284 16.96 14.23 38.20 76.13 87.86
Add 0.0933 0.0280 16.41 13.66 40.83 77.57 88.67

Investigate the impact of loss weight on multi-task. We further investigate the effect of balancing
depth and normal losses by varying the weights λd and λn. As shown in Table 9, setting equal
weights (λd=1, λn=1) gives the weakest performance, suggesting that treating the two tasks uni-
formly introduces conflicts in optimization. Reducing the normal weight to λn=0.5 keeps the depth
metrics almost unchanged but leads to a noticeable drop in normal estimation accuracy, indicating
that the depth signal dominates training. Increasing the normal weight (λd=0.5, λn=1) slightly im-
proves surface normals compared to the 1:1 setting but does not yield significant gains. The best
results are obtained when λd=1 and λn=0.1, where both depth and normal predictions improve.
This demonstrates that depth supervision should remain the primary training signal, while a lightly
weighted normal loss provides complementary regularization without overwhelming the optimiza-
tion.

Investigate the impact of training data size. Table 10 reports the impact of training data size on
Hi4D using ViT-B. We observe a consistent improvement across both depth and normal prediction
as the number of training samples increases. For depth estimation, RMSE and AbsRel gradually
decrease when scaling from 300K to 2M, showing that additional data helps the model capture finer
geometric cues. A similar trend is observed in surface normal prediction, where both Mean and
Median angular errors become smaller, while the percentage of pixels within 11.25◦, 22.5◦, and
30◦ steadily increases. These results suggest that enlarging the training set enhances generaliza-
tion ability and reduces overfitting, even when the backbone is fixed. However, the gain becomes
marginal when moving from 600K to 2M, indicating that data scaling alone may saturate and further
improvements may require stronger architectures or better data diversity.
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Table 9: Ablation for depth and normal loss weights on Hi4D with DINOv3-B.

Methods
Depth Normal

RMSE↓ AbsRel↓ Mean↓ Median↓ 11.25◦↑ 22.5◦↑ 30◦↑

λd=1, λn=1 0.0955 0.0284 16.96 14.23 38.20 76.13 87.86
λd=1, λn=0.5 0.0932 0.0281 17.25 14.50 37.60 75.98 87.40
λd=0.5, λn=1 0.0947 0.0283 16.70 14.05 38.85 76.80 87.95
λd=1, λn=0.1 0.0929 0.0279 16.61 13.76 40.03 77.37 88.55

Table 10: Ablation for different data size on Hi4D with DINOv3-B.

DataSize
Depth Normal

RMSE↓ AbsRel↓ Mean↓ Median↓ 11.25◦↑ 22.5◦↑ 30◦↑

Our [300K] 0.0963 0.0286 17.10 14.40 38.10 76.10 87.80
Our [600K] 0.0954 0.0284 16.90 14.20 38.80 76.60 88.05
Our [2M] 0.0943 0.0282 16.70 13.90 39.50 76.90 88.15
SynthHuman 0.0971 0.0287 17.25 14.55 37.80 75.90 87.40
SynthHuman + Our [300K] 0.0958 0.0285 17.00 14.32 38.45 76.30 87.95
SynthHuman + Our [600K] 0.0946 0.0283 16.72 14.05 39.30 76.95 88.25
SynthHuman + Our [2M] 0.0940 0.0281 16.58 13.70 40.10 77.20 88.30

Investigate the impact of normal regularization term. Table 11 evaluates the effect of introducing
a normal regularization term (NRT) in training. While the depth estimation metrics remain nearly
unchanged, we observe a significant improvement in surface normal prediction. This indicates that
the NRT provides strong geometric guidance, making the network more sensitive to local surface
orientation without sacrificing depth accuracy. The results highlight that explicit geometric priors
can complement photometric supervision and lead to better normal recovery, even under the same
backbone capacity.

Table 11: Ablation for normal regularization term on Hi4D with DINOv3-B.

Methods
Depth Normal

RMSE↓ AbsRel↓ Mean↓ Median↓ 11.25◦↑ 22.5◦↑ 30◦↑

w/o NRT 0.0938 0.0282 16.85 14.12 38.10 76.05 87.70
w/ NRT 0.0935 0.0281 15.40 12.95 45.25 79.85 89.45

Investigate the impact of the flow stable term. Table 12 investigates the role of different tempo-
ral losses. Without temporal regularization, both depth and surface normal predictions are unstable,
yielding results on par with Sapiens-1B. Introducing the GMT loss improves depth consistency, with
OPW and TC-RMSE reduced compared to the variant without temporal loss. However, the overall
performance remains worse than VDA-B, and the normal metrics show almost no improvement.
This is because GMT originates from the TGM loss in VDA, which constrains only depth gradients
across adjacent frames. Such a method is limited to depth prediction and weakens supervision on
fast-moving or occluded human foreground regions, making it unsuitable for surface normal estima-
tion. In contrast, our flow-based temporal loss explicitly establishes correspondences across frames,
enabling stable supervision in the foreground and naturally extending to directional consistency for
surface normals.

Investigate the impact of the proposed module. We further evaluate the effect of the proposed
components on the Thuman 2.1 dataset with DINOv3-B. As shown in Table 13, adding Human
CSE prior consistently improves both depth and normal estimation over the baseline, for example
reducing RMSE from 0.0266 to 0.0231 and lowering the mean normal error from 20.21◦ to 19.45◦,
while also increasing the percentage of normals within small angular thresholds. The CWA module
also brings clear gains, especially on normal metrics (e.g., 11.25◦ and 22.5◦), indicating that adaptive
channel reweighting helps the network produce more stable and accurate surface orientation. These
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Table 12: Ablation for video depth and surface normal estimation with different losses on Hi4D
dataset.

Methods
Depth Normal

OPW↓ TC-RMSE↓ OPW↓ TC-Mean↓ TC-Abs↓

w/o Ltemp 0.0144 0.0242 0.0450 5.22 0.148
w/ LGMT 0.0120 0.0310 0.0455 5.28 0.150
w/ Ltemp 0.0075 0.0191 0.0286 3.30 0.140

results confirm that the proposed modules generalize well beyond Hi4D and remain effective on
Thuman 2.1.

Table 13: Ablation on Thuman 2.1 dataset with DINOv3-B.
Methods

Depth Normal

RMSE ↓ AbsRel ↓ Mean ↓ Median ↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑

Baseline 0.0266 0.0154 20.21 17.83 28.20 66.18 83.33
w/ CSE 0.0231 0.0134 19.45 16.52 30.10 69.72 85.02
w/ CWA 0.0248 0.0138 18.65 16.13 31.75 72.10 86.10
Full 0.0225 0.0122 17.89 15.56 32.98 73.69 87.15

Investigate the impact of the temporal layer. We conduct an ablation study to evaluate the contri-
bution of the temporal layer (TL) to temporal consistency in depth and normal prediction. As shown
in Table 14, removing the TL leads to clear degradation across all temporal metrics. In particu-
lar, TC-RMSE increases from 0.0189 to 0.0276 in depth, and TC-Mean rises from 3.27 to 4.55 in
normal estimation. This confirms that the TL improves temporal stability by leveraging sequential
information, especially for frames with fast motion or occlusion.

Table 14: Ablation on the effect of the temporal layer (TL) on Hi4D dataset with DINOv3-B.

Methods
Depth Normal

OPW↓ TC-RMSE↓ OPW↓ TC-Mean↓ TC-Abs↓

w TL 0.0072 0.0189 0.0280 3.27 0.140
w/o TL 0.0155 0.0276 0.0405 4.55 0.158

Investigate the impact of the CNN branch. We evaluate the effect of adding a dedicated CNN
branch to complement the transformer backbone. As shown in Table 15, removing the CNN branch
results in performance drops across both depth and normal estimation tasks. For depth, RMSE
increases from 0.0964 to 0.0998 and AbsRel rises from 0.0279 to 0.0320. For normal prediction,
the angular error metrics (Mean and Median) also degrade, and accuracy under angular thresholds
(11.25◦, 22.5◦, 30◦) drops consistently. These results confirm that the local inductive bias brought
by the CNN branch helps refine fine-grained structures, especially around object boundaries, which
complements the global modeling ability of the transformer backbone.

Table 15: Ablation for CNN branch on Hi4D dataset with DINOv3-B.
Methods

Depth Normal

RMSE ↓ AbsRel ↓ Mean ↓ Median ↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑

w/ CNN 0.0964 0.0279 20.51 16.00 32.22 70.12 82.74
w/o CNN 0.0998 0.0320 23.33 19.21 28.05 66.49 77.03

Investigate the impact of the foreground segmentation branch. We investigate how the auxiliary
foreground segmentation head influences depth and normal prediction on Hi4D and THuman2.1
(Table 16). With the segmentation branch, depth RMSE / AbsRel decrease from 0.0963 / 0.0301 to
0.0928 / 0.0277 on Hi4D and from 0.0237 / 0.0130 to 0.0225 / 0.0122 on THuman2.1. For surface
normals, the segmentation branch also reduces mean and median angular errors and increases the
percentage of pixels within 11.25◦, 22.5◦, and 30◦ on both datasets. These consistent gains show
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that the soft human masks predicted by this branch provide effective foreground guidance, allowing
the geometry heads to focus on human regions and boundaries and thus improve overall geometry
estimation quality.

Table 16: Ablation for foreground segmentation (FS) branch with DINOv3-B.

Methods Datasets
Depth Normal

RMSE ↓ AbsRel ↓ Mean ↓ Median ↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑

w/o FS Hi4D 0.0963 0.0301 16.84 12.67 44.12 79.83 88.21
w/ FS Hi4D 0.0928 0.0277 16.08 12.03 47.76 81.49 89.98

w/o FS Thuman 2.1 0.0237 0.0130 18.42 16.21 30.91 70.82 85.94
w/ FS Thuman 2.1 0.0225 0.0122 17.89 15.56 32.98 73.69 87.15

A.5 MODEL PARAMETERS COMPARISON

We provide a comparison of model size and computational cost for representative state-of-the-art
human-centric methods. Specifically, we report the number of parameters and GFLOPs for each
model in Table 17, which highlights the relative complexity of our models compared with existing
approaches.

Table 17: Model parameters comparison of SOTA human-centric methods.
Methods Params GFLOPs

Sapiens-0.3B 0.336 B 1242
Sapiens-0.6B 0.664 B 2583
Sapiens-1B 1.169 B 4647
Sapiens-2B 2.163 B 8709
DAViD-B 0.120 B 344
DAViD-L 0.340 B 663

Ours-B 0.097 B 471
Ours-L 0.337 B 753

A.6 IMPLEMENTATION DETAILS

We use AdamW in both stages with weight decay 0.05 and (β1, β2) = (0.9, 0.95). The learning rate
schedule is a 2000-iteration linear warmup (start factor = 1/100), followed by a polynomial decay
(power = 1.5) until the end of training. More detail in Table 18 and Table 19.

A.7 EVALUATION METRIC DETAILS

We employ standard metrics to quantitatively evaluate both static and video-based depth and surface
normal estimation. Below we provide detailed definitions.

Depth metrics. Given predicted depth D̂ and ground truth D, over valid pixels M , we adopt Root
Mean Squared Error (RMSE) and Absolute Relative Error (AbsRel):

RMSE =

√
1

|M |
∑
i∈M

(
D̂i −Di

)2

, (15)

AbsRel =
1

|M |
∑
i∈M

∣∣∣D̂i −Di

∣∣∣
Di

. (16)

Normal metrics. Let N̂i and Ni denote predicted and ground truth normals at pixel i, both normal-
ized to unit vectors. We report mean and median angular error, as well as threshold accuracies at
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Table 18: Stage-1 (image) training hyperparameters.

Hyperparameter Value

Training step 50,000
Batch size 128
Learning rate (Encoder) 1× 10−4

Learning rate (Others) 1× 10−5

Weight decay 0.05
Optimizer AdamW
Optimizer betas (0.9, 0.95)
LR schedule Linear + Polynomial
Freeze backbone optional
Mask loss weight 0.05
Normal loss weight 0.1

Table 19: Stage-2 (video) training hyperparameters.

Hyperparameter Value

Training step 35,000
Batch size (GPU) 1
Frames per clip 32
Learning rate (Temporal modules) 1× 10−4

Learning rate (Others) 1× 10−6

Weight decay 0.05
Optimizer AdamW
Optimizer betas (0.9, 0.95)
LR schedule Linear + Polynomial
Freeze Encoder True
Mask loss weight 0.05
Normal loss weight 0.1
Temporal Depth loss weight 1
Temporal Normal loss weight 0.1

11.25◦, 22.5◦, and 30◦:

Mean =
1

|M |
∑
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arccos
(
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)
, (17)
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(
arccos
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))
, (18)
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∑
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1
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]
. (19)
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Video depth metrics. For adjacent frames k and k+1, with optical flow Ok→k+1 and warping
operator W (·, O), we define temporal consistency for depth as:

OPW =
1

|M |
∑
i∈M

∣∣∣D̂k(i)−W (D̂k+1, Ok→k+1)(i)
∣∣∣ , (20)

TC-RMSE =

√
1

|M |
∑
i∈M

(
D̂k(i)−W (D̂k+1, Ok→k+1)(i)

)2
. (21)

Video normal metrics. Similarly, temporal consistency for normals is measured as:

TC-Mean =
1

|M |
∑
i∈M

arccos
(
⟨N̂k(i),W (N̂k+1, Ok→k+1)(i)⟩

)
, (22)

TC-Abs =
1

|M |
∑
i∈M

∣∣∣ arccos(⟨N̂k(i),W (N̂k+1, Ok→k+1)(i)⟩
)

(23)

− arccos
(
⟨Nk(i),W (Nk+1, Ok→k+1)(i)⟩

)∣∣∣. (24)

These metrics collectively measure accuracy at the frame level and temporal stability across frames
for both depth and surface normal estimation.

A.8 LIMITATIONS

Although the proposed approach improves overall stability and visual consistency, several limi-
tations remain. The CNN branch, while effective at capturing local patterns, can also introduce
redundant texture signals such as clothing patterns, decorative elements, or shadows. These sig-
nals interfere with the recovery of true geometry and may result in pseudo-geometric artifacts. The
CWA module alleviates this issue by adaptively suppressing less informative channels and empha-
sizing features that are more relevant to geometry, but in scenes with highly complex textures, the
effect is not completely eliminated. In addition, when large and rapid movements occur, such as
turning, jumping, or swinging of limbs, occlusions and large displacements weaken temporal cor-
respondences and lead to local instabilities in depth and normal predictions. A further difficulty
arises in regions undergoing non-rigid deformations, including fluttering skirts, moving sleeves, or
hair, where the complexity of local geometry and frequent occlusions still cause fluctuations and
prediction biases.

A.9 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used only to assist with language editing and minor text im-
provements in the preparation of this manuscript. They were not involved in the design of the
research, the development of methods, the execution of experiments, or the interpretation of results.
All scientific content, including analyses, conclusions, and contributions, remains the work of the
authors.
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Ours-L DAViD-L Sapiens-2B

Figure 8: Additional qualitative comparison on challenging images in the wild.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Ours-L DAViD-L Sapiens-2B

Figure 9: Additional qualitative comparison on challenging images in the wild.

25


	Introduction
	Related Work
	Human vision data
	Human vision Task
	Dense Prediction Architectures

	Methodology
	Human-centric Synthetic Data Pipeline
	Model Architecture
	Training Pipeline
	Stage 1: Static Image Model Training
	Stage 2: Dynamic Video Model Training


	Experiments
	Implementation details
	Evaluation protocol
	Comparison to the state-of-the-art
	Ablation Studies

	Conclusion
	Ethics statement
	Reproducibility statement
	Appendix
	Data synthesis pipeline
	Discussion
	Additional qualitative results
	Additional ablation study
	Model parameters comparison
	Implementation details
	Evaluation metric details
	Limitations
	The Use of Large Language Models (LLMs)


