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Abstract

Reconstructing three-dimensional (3D) representations from sparse image data is1

a core task that requires learning to sample plausible 3D models that correspond2

to 2D conditioning images. Despite numerous proposed frameworks, achieving3

photorealistic sparse-view 3D reconstructions remains an unresolved challenge,4

with current methods often producing blurry results on small object-centric scenes5

that fall short of the fidelity achieved by dense-view 3D reconstruction and 2D6

generative models. This paper aims to rethink the use of image generative models7

for 3D reconstruction and introduces a novel framework based on iterative refine-8

ment. Our approach infers the 3D representation by optimizing it to match images9

sampled by a 2D generative model, itself conditioned on the current progress of10

the 3D optimization. To learn this conditional generative model, we design a new11

training strategy that performs 3D reconstruction using various numbers of views12

and captures the progress at each optimization timestep. This allows the model13

to explicitly learn to sample images that are consistent with the current stage of14

3D reconstruction, supporting sampling of thousands of consistent images during15

reconstruction. Experiments on a challenging real-world dataset demonstrate com-16

petitive performance in single-view 3D reconstruction, performing on par with17

state-of-the-art 3D reconstruction methods based on 2D generative model outputs18

and dense mulitview images.19

1 Introduction20

Reconstructing a three-dimensional (3D) representation of the physical world from sparse signals,21

such a two-dimensional (2D) image, is a fundamental task in the fields of computer vision, graphics,22

and artificial intelligence. Such representations are crucial for applications in augmented and virtual23

reality (AR/VR) as they allow rendering from novel viewpoints, and in navigation, robotics and AI,24

as they support reasoning about object extents and the world around us. However, despite the plethora25

of frameworks proposed in the last decades, the reconstruction of 3D scenes from one or few images26

remains an unresolved problem.27

The challenge lies in the inherent ambiguity of the task: multiple 3D scenes can correspond to a28

single 2D image, and even more possibilities exist for the unbounded space outside the region seen29

in the image. Consequently, photogrammetry methods, including recent methods based on neural30

networks [48], which reconstruct a 3D scene using large dataset of images, fail when only few images31

are available, as they cannot sample plausible content in regions that are unobserved in the input32

images. More formally, the reconstruction task is probabilistic and generative in nature—its solution33

is a plausible 3D sample out of many possible ones, requiring learning the model capable of sampling34

from a posterior probability distribution conditioned on one or more input images.35

Inspired by the progress of generative models of images and videos, the last decade of 3D research has36

investigated using neural networks to learn a prior about how 3D scenes should look. However, unlike37

in 2D datasets that are easy to collect from widely available images on the internet, large datasets38

of unbounded 3D scenes are infeasible to create. Therefore, the research community is on a quest39

to find algorithms that learn a prior over the 3D world from only multi-view image datasets, such40

as ones captured from a consumer camera [61]. Two dominant streams of research have emerged;41

each, however, produces blurry reconstructions, significantly lagging behind techniques that utilize42
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Figure 1: Proposed framework for 3D reconstruction. Given input views and poses, xc, cc, our
framework uses generative image model to generate images xg at novel views cg, conditioned on
3D representation zt at each optimization step t. An optimization step is taken at each iteration,
where the gradient ∇zt is computed by rendering representation zt to generated image viewpoints
cg. In contrast to prior works where images are generated in one-shot manner, our approach allows
sampling thousands of images over time, each increasingly consistent with each other.

dense sets of views, such as Gaussian Splatting, and those for photorealistic 2D image generation,43

like image diffusion models [6]. Some works have proposed 3D-aware generative models [3, 9, 38]44

which learn to model 2D images by rendering a 3D representation. These methods hand-engineer45

differentiable rendering into the probabilistic model, enforcing the model to learn a prior over this 3D46

representation. However, hand-engineered representations and rendering operators cannot perfectly47

capture real-world scenes and limits the capacity of the generative model. Some works learn black-box48

generative models to generate images from novel viewpoints [43, 18], and afterwards use many-view49

photogrammetry to reconstruct 3D from generated dataset of images. However, for a reconstruction50

of an unbounded 3D scene, photogrammetry methods require hundreds of images, which current51

models cannot generate [18]. Moreover, such methods generate images in one shot, often resulting in52

inconsistencies, which lead to blurry results from the 3D reconstruction stage.53

In this work, we rethink how to best use image generative models for the task of 3D reconstruction,54

and introduce a novel framework for sampling a 3D reconstruction given one or few images. Similarly55

to most recent works, we use general many-view 3D reconstruction methods operating on generated56

images. However, instead of sampling a dataset of images in one shot, our probabilistic model57

samples images iteratively, over the course of optimization, each consistent with the current state of58

the 3D representation. Unlike 3D-aware generative models, our method supports unbounded scenes59

of unlimited resolution and can integrate any number of conditioning images. Unlike previous 2D60

generative models, our method can generate thousands of images consistent with each other and61

with the 3D representation, supporting reconstruction of large scenes. This framework effectively62

decouples representation from inference, making it scalable and general-purpose [73], allowing it to63

be used as plug-and-play component on any existing 3D reconstruction pipeline, such as Gaussian64

Splatting [34] or NeRFs [48]. In our experiments, we instantiate this framework using Gaussian splats65

as the representation and video diffusion as the generative model; we demonstrate state-of-the-art66

performance in sparse view 3D reconstruction, surpassing competing frameworks of latent variable67

generative models and 3D reconstruction from 2D generative model outputs.68

2 Prior Methods69

In this section, we analyse various frameworks that have been proposed to reconstruct 3D scene70

representations from images. We first (Sec. 2.1) summarise various methods for representing and71

2



rendering the 3D world, which can be inverted to reconstruct from a dense set of images. We then72

discuss (Sec. 2.2) generative models which can sample 3D scenes given sparse images and then73

review generative 3D models that learn to sample 3D representations whilst learning from 2D images.74

2.1 3D Representation and Rendering75

Computer graphics has developed methods for representing the physical 3D world and simulating the76

image formation process via rendering [32], enabling generation of realistic images. The core idea of77

inverse graphics is that given a dataset D of images and their poses {(xi, ci) | i = 0, . . . , N}, the78

process of rendering can be “inverted" to infer a 3D representation z that generated the images. This79

is achieved by optimization that minimizes reconstruction a loss where gradients with respect to the80

3D representation∇z are calculated using a differentiable rendering function:81

82
1 D← {(xi, ci) | i = 0, . . . , N}83

2 def reconstruct ( D , T , render() , z0 ) :84

3 f o r t in range (T ) :85

4 xg, cg ← random.choice(D)86

5 ∇zt ← render(zt, cg).loss(xg).grad87

6 zt+1 ← zt + η∇zt88

7 re turn zT8990

Under certain assumptions, such as a large number of input images N , such inference process91

results in a good 3D representation that can then be rendered to novel views. Over the years92

many representations and rendering algorithms have been proposed, the most popular being surface93

representations (such as distance fields and polygon meshes) that can be rendered to images by94

rasterization or path tracing. Since meshes are difficult to optimize using gradient descent due to non-95

local gradients, neural radiance fields (NeRFs) [48] have been introduced, which represent a volume96

with a neural network. More recent works, such as iNGP [51] and 3D Gaussian Splatting [34, 39],97

have focused on increasing the speed of training and rendering to real-time. Another direction is98

aimed to acquire physically meaningful representations [55]. However, a core limiting assumption is99

access to large amount of training images (e.g. capturing every side of the object), typically requiring100

N > 100 for a single room and N > 1000 for multi-room scenes. Consequently, when such an101

amount of images is not feasible to acquire in practice, these methods produce floating artifacts and102

empty volumes in under-sampled regions of 3D space. Some methods aim to fix reconstruction errors103

using regularizers on depth, normal, or colors, or by discriminators and image generative models104

[54, 63, 44, 31]. However, these approaches already assume access to a fully reconstructed 3D model.105

2.2 Generative Models106

Generative models learn to sample from the complex distribution of their training data. Various107

families have been proposed including Generative Adversarial Networks (GAN) [19], Variational108

Autoencoders (VAE) [62, 36], autoregressive models [81, 80, 60] and Independent Component109

Analysis (ICA) [30]. Recent success in high-dimensional data, such as images [64], videos and110

sound, have been achieved by score-based generative models [69, 71, 70], particularly denoising111

diffusion probabilistic models (DDPM) [26, 72]. These learn to estimate the gradient ∇zt of the112

log probability p(z, t) (termed "score") with respect to the data at a noise scale t. Inspired by their113

success in other modalities, DDPMs have been adopted to sample 3D representations by learning114

from datasets of ground-truth 3D representations [11, 14], such as pointclouds [46, 79], Neural Fields115

[5, 50, 29, 40, 12, 84, 35, 68, 21, 33, 20] or 3D Gaussians [89, 49]. At test-time, these methods116

support conditioning on input views xc and poses cc, and sampling a plausible 3D reconstruction z:117

118
1 def reconstruct (xc , cc , T , Pθ , σ ) :119

2 z0 ← random()120

3 f o r t in range (T ) :121

4 ∇zt ← Pθ(z
t+1 | zt,xc, cc).sample()122

5 zt+1 ← αtzt + ηt∇zt123

6 re turn zT124125

We similarly aim to perform flow matching between randomly sampled 3D representations and126

empirical distribution of 3D representations. However, unlike 2D images, large datasets of highly-127

realistic and large-scale 3D scenes are challenging or even infeasible to create. Therefore, we propose128

a method that learns to sample 3D scenes whilst learning from widely available 2D image datasets.129
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Structure-in. Some methods aim to learn to sample latent 3D representations whilst learning to130

generate 2D images. These methods typically have a 3D representation inside their architecture,131

hence often denoted as “3D-aware" or “structure-in", as the 3D representation and rendering are132

hand-engineered inside the network. These models define a likelihood over images by sampling a133

latent variable corresponding to a 3D representation and then rendering it to an image. For example,134

3D-aware diffusion [3] learns to denoise image via underlying 3D representation, 3D-aware VAEs135

learn a latent variable model where latent variable is a 3D representation [38, 23, 25, 1, 24] and136

3D-aware GANs learn a generator that generates images by first generating a 3D representation137

[53, 66, 9, 15, 52, 16]. This framework has been extended to in-the-wild datasets [2, 87, 45, 28, 74,138

78, 27, 8]. However, the core limitation of these models is that 3D representation and rendering have139

to be hand-engineered into the model. This restricts the flexibility and capacity of the model, as the140

representations are of limited flexibility and the rendering operation is only approximate. For example,141

current state-of-the-art generative methods use representations having a limited number of parameters,142

such as voxel grids, triplanes, or image-supported features. Furthermore, their renderers only consider143

the final bounce of light from one surface to the camera, e.g. without modelling reflections. Some144

approaches replace hand-engineereed rendering by a learnt “neural" renderer [17, 10], however at the145

cost of losing the 3D representation that is needed in many applications.146

Structure-out. Instead of hand-engineering the 3D representation and rendering inside the gener-147

ative model, some approaches try to extract 3D structure from 2D images generated by black-box148

generative models. The most straightforward approach is to generate a dataset of images and poses149

D = {(xi, ci) | i = 0, . . . , N} using a generative video model and then run an optimization-based150

3D reconstruction method as described in Sec 2.1. This has the benefit that advancements in graphics151

can be utilised out-of-the box, e.g. by using unconstrained and flexible 3D representations with152

reflection-aware rendering, which avoids hand-engineering generative image models, and allows153

flexible and powerful architectures trained on large amounts of 2D datasets. Most recent works154

[22, 82, 18, 86, 47, 90, 43, 77, 45, 37, 42, 75, 6] use image diffusion models fine-tuned with camera-155

pose and then generate a dataset of 2D images from which 3D is reconstructed. However, the classic156

3D reconstruction methods assume access to large amount of 3D consistent images N . In contrast,157

current approaches generate images that are slightly inconsistent, both due to limited performance of158

generative models and due to camera pose conditioning being incorrect. Consequently, this leads159

the 3D reconstruction method to “average out" these inconsistencies, resulting in blurry regions.160

Another problem is that generating hundreds or thousands of images is not possible with current161

multi-view generative models. Instead, current approaches generate small sets of images conditionally162

independently from each other, which results in inconsistent 3D scenes even assuming access to a163

perfect generative model. A concurrent work [18] generates images in sets of 8, first generating a set164

of anchor frames and then autoregressively generating the rest; it relies on ad-hoc techniques, such as165

using LPIPS loss [86, 18] to be invariant to inconsistent generated images. Consequently, current166

methods are limited to small and bounded object-centric scenes where small number of images suffice.167

In this work, we use generative image models to generate thousands of consistent images by explicitly168

training the model to output images that are consistent with previous generations.169

3 Method170

Our method tackles the problem of reconstructing a 3D representation from a small number of171

input images. The proposed framework modifies only one line in the classical 3D reconstruction172

pipeline (Sec. 2.1) – instead of using dataset of images and poses, our framework samples images xg173

iteratively throughout the optimization process. At each optimization step t, images xg are sampled174

from a learnt probabilistic generative model Pθ conditioned on the current stage of reconstruction zt175

and input (conditioning) images and poses xc, cc. Then, a gradient with respect to the representation176

∇zt is computed by rendering representation to images:177

178
1 def reconstruct (xc , cc , T , Pθ , render() , z0 ) :179

2 f o r t in range (T ) :180

3 cg ← Pλ(c
g | cc).sample()181

4 xg ← Pθ(x
g | zt,xc, cg).sample()182

5 ∇zt ← render(zt, cg).loss(xg).grad183

6 zt+1 ← zt + η∇zt184

7 re turn zT185186
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Figure 2: Qualitative results from our model on 3D reconstruction from a single image (first three
rows) and six images (next three rows). The leftmost column shows the input (conditioning), followed
by two novel views rendered from the reconstructed 3D representation and their corresponding
depth maps. The final columns present samples from our generative model at an early stage t of
optimization, illustrating its ability to generate diverse yet consistent images, each pushing the 3D
representation closer to the true posterior sample.

Note that this framework separates 3D representation and rendering from the generative image187

model, allowing out-of-the-box use of advancements in graphics (e.g. fast optimization and real-time188

rendering of 3D Gaussian Splatting [34, 39]) and unconstrained architecture of generative model189

(e.g. diffusion or flow-based models). Importantly, at each step, the generative model is conditioned190

on the current stage of reconstruction zi, allowing to sample images that are consistent with the191

3D scene and previous generations t − 1, t − 2, ..., 0. Note that we do not maximize likelihood,192

i.e., Pθ(x
g | zt,xc, cg).likelihood(render(zt, cg)), as this would lead to mode-seeking optimization193

behavior, akin to score-distillation sampling [58, 85, 83, 76, 41], resulting in poor reconstruction194

quality when the conditioning datapoint does not reside near the modes of the distribution. In this195

section, we describe this framework by providing details on the generative model (Sec. 3.1), how it is196

conditioned on current stage of reconstruction (Sec. 3.3) and input (Sec. 3.4), model training (Sec.197

3.5), and representation and rendering (Sec. 3.6).198

3.1 Generative Model199

At each optimization step t, we use a learnt probabilistic model to sample images that are consistent200

with both input conditioning and previously generated images. Specifically, the probabilistic model201

Pθ(x
g | zt,xc, cc) samples images xg at specific poses cg, conditioned on the current stage of202

reconstruction zt. The generation poses cg are sampled in such way that minimizes the prediction203

entropy of the autoregressive chain (see Sec. 3.2). For the generative model, we adopt the framework204

of Latent Video Diffusion Models (LVDM) [64, 7, 57]. LVDMs employ Denoising Diffusion205
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Probabilistic Models [69, 26, 71] to generate latent variables, which are then decoded into multi-view206

images. For simplicity, latent representations are omitted in figures. During training, the model is207

trained to denoise target images xg , conditioned on target camera poses cg , conditioning input images208

xc, and the current stage of 3D reconstruction zt. The input to the denoising model consists of noisy209

video latents xg with dimensions [G,C,H,W ], where G is the number of views, C is the number210

of channels, and H and W are the height and width of the image latents. The denoising diffusion211

model, parameterized by θ, is trained to predict the denoised latents from the noisy latents. During212

optimization, to compute the loss (as shown in line 7 of the pseudocode), we use images sampled213

from the trained posterior distribution, i.e. xg ← Pθ(x
g | zt,xc, cg).sample().214

3.2 Autoregressive Generation with Uncertainty-Guided Ordering215

The camera poses where new images are being generated are sampled from Pλ(c
g | cc), which we216

have a control over. We observed that the choice of Pλ has a profound effect on the faithfulness of the217

generated images to the conditioning input as well as numerical reconstruction results. We observed218

that a naive choice of Pλ, e.g. sampling a starting point randomly around the object as in previous219

one-shot works, leads to query poses that are far from previously generated images or from input220

poses, where Pθ struggles to generate consistent images. In contrast, we found that Pθ can easily221

generate consistent images that are close to previous generations. Therefore, we discovered that the222

optimal ordering strategy is to query views that contain the least uncertainty, i.e. would exhibit only223

small variation in generations. Thus, we prefer views near to previous generations as opposed to224

views of the opposite side of the input image which contain a lot of uncertainty in unobserved regions.225

More formally, we aim for an ordering x1 → x2 → x3 of view subsets xi such that overall entropy is226

minimized:227

H(x) = H(x1) +H(x2 | x1) +H(x3 | x1, x2) (1)

In practice, we first generate various videos (simulating similar camera motions as in the training228

data) around the input poses. These are then gradually expanded and the process repeats.229

3.3 Conditioning on Current 3D Representation230

We condition generative model Pθ on the current stage of 3D reconstruction zt to allow learning to231

generate images that are consistent with previously generated images. We achieve this by rendering232

3D representation (e.g. partially reconstructed 3D Gaussians) zt to the same viewpoints as images to233

be generated xg and encoding them with the latent diffusion’s VAE to get another set of latents. As234

these latents are of the same dimensions, we concatenate them as extra channels with noisy latents235

and feed them together to the denoising U-Net. We found that such conditioning on current stage of236

reconstruction provides the model with a rich signal about previously generated images that were used237

for the reconstruction, as the 3D scene is seen from multiple viewpoints. Furthermore, conditioning238

our model on renderings provides rich information about camera extrinsics and intrinsics.239

3.4 Conditioning on Input Images and Poses240

We condition the generative model on input images and poses. Previous methods have utilized CLIP241

conditioning, which leverages features from a large pretrained model optimized for image-to-text242

matching [59]. While these features are semantically rich, they may lack detailed information about243

high-frequency scene elements, such as precise object shapes and textures. To address this, we244

additionally condition the model on DINOv2 features [56], which extract 16x16 spatial tokens and a245

global token. However, using all tokens directly is computationally expensive. Therefore, we pool246

the 256 spatial tokens into a single token and concatenate it with the global DINO token before247

combining them with CLIP embeddings. During training, we condition on a variable number of input248

images, allowing the denoising U-Net to cross-attend over these tokens.249

The model must also understand the relationship between input views and the views it needs to250

generate. To achieve this, we add camera pose embeddings and sum them with the DINOv2 features.251

To avoid providing duplicate pose information to the generative model, the conditioning poses cg252

are made relative to the first generated image—i.e., the images provided to the generative model are253

always assumed to start at an identity pose. We then perform positional embedding of camera poses254

and sum them with other tokens, enabling the U-Net to cross-attend to image tokens based on their255

poses.256

Note that by retaining the classical 3D reconstruction, our framework naturally supports another257

pathway for conditioning on an arbitrary number of images, as we can pass them as additional images258

to be reconstructed. This is a capability that “structure-in" methods cannot easily achieve (Sec. 2.2).259
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3.5 Training for Iterative Reconstruction260

We use 2D video datasets to train our probabilistic model. However, using 2D image datasets261

directly for training is not feasible as our model requires conditioning on the reconstruction zt at262

optimization step t. Therefore, we construct a dataset by performing classical 3D reconstruction (e.g.263

Gaussian Splatting or NeRF as in Sec. 2.1) from varying numbers of input images and rendering264

these reconstructions along provided camera trajectories to track optimization progress. For each265

scene, we randomly sample the number of input images C from an exponential distribution, favoring266

smaller numbers of input images over larger ones. We track the optimization process by rendering the267

optimized 3D model every 100 steps across all provided camera trajectories. This results in a dataset268

comprising (xc, cc, zt), where t ranges from 0 to 30,000 in increments of 100 steps. Each zt is269

represented as rendered (latent) images at specific poses. During the training of the LVDM U-Net, we270

sample input conditioning images, xc, and zt (latent images rendered to poses cg), training the model271

to denoise xg at poses cg. This unrolled iterative training approach is substantially different from272

other models, which either train in a one-shot manner p(xg | cc,xc) [18] or perform super-resolution273

of images [67].274

Preventing Divergence. We noticed that during sampling, diffusion model can diverge and generate275

saturated, toyish-looking images. We speculate that this is due to conditioning becoming out-of-276

distribution than seen during training. Specifically, during training, model sees 3D reconstruction277

from sparse ground-truth images rather than model’s own samples. To address this, we add Gaussian278

noise to conditioning images during both training and test time. This has the effect of bringing test279

and training distributions closer. Furthermore, we use classifier-free with a guidance scale < 1 to280

guide the samples towards 3D-unconditional model.281

3.6 3D Representation and Rendering282

Our sampling procedure aligns closely with standard 3D reconstruction methods, as outlined in283

Section 3. This allows us to leverage recent advancements in 3D scene representations and rendering284

techniques. We employ Gaussian splatting as the 3D representation [34], incorporating enhancements285

from [13]. For the loss function, we utilize both Mean Squared Error (MSE) and Learned Perceptual286

Image Patch Similarity (LPIPS).287

Table 1: Quantitative comparison on 3D reconstruction. Our approach outperforms prior frameworks
across nearly all metrics, except compared to CAT3D and ReconFusion, which are not publicly
available and were evaluated on all categories of CO3D.

1-view 6-view

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Ours 16.23 0.423 0.501 20.06 0.531 0.360

Ablation: one-shot 15.48 0.417 0.486 19.12 0.535 0.363
Ablation: MEO 15.39 0.404 0.601 17.98 0.371 0.540
Ablation: noisy conditioning 12.84 0.108 0.695 16.99 0.441 0.446

GSplatting [34] 14.89 0.399 0.504 19.41 0.298 0.637
GIBR†[2] 16.07 0.329 0.456 20.22 0.571 0.283
VD†[74] 13.18 0.144 0.714 - - -
PixelNeRF†[88] 15.06 0.278 0.615 16.86 0.366 0.545
RD †[3] 15.70 0.317 0.598 18.60 0.399 0.533
SparseFusion †[91] 12.06 - 0.630 - - -
ReconFusion* [86] - - - 21.84 0.714 0.342
CAT3D* [18] - - - 22.79 0.726 0.292
ZeroNVS* [65] - - - 19.72 0.627 0.515
Zip-NeRF* [4] - - - 14.48 0.497 0.617

4 Experiments288

We conduct experiments on the CO3D dataset [61], which includes camera pose annotations, showing289

results on the hydrant class as in prior works [74]. Our evaluation centers on the task of sparse290

view 3D reconstruction, where we benchmark our method against several existing frameworks and291

ablations of our own approach.292
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In our experiments, we provide models with varying numbers of input frames—specifically 1 or 6293

frames—to predict the 3D scene. The reconstructed scenes are then rendered from all viewpoints in294

the original video, and the quality of reconstruction is assessed by comparing the rendered images295

with ground-truth images. As metrics we use Peak Signal-to-Noise Ratio (PSNR), Learned Perceptual296

Image Patch Similarity (LPIPS), and Structural Similarity Index (SSIM). Since 3D reconstruction297

from sparse images is probabilistic in nature, we follow baseline works and draw multiple samples298

from the model, taking the best-performing sample. Our method is compared against state-of-the-art299

structure-in frameworks, including GIBR [2], RenderDiffusion [3], pixelNeRF [88], and SparseFusion300

[91]. Additionally, we evaluate our approach against one-shot generation methods, referencing results301

from [86, 18, 65]. Since these one-shot methods do not provide open-source code or compatible302

evaluation pipelines, we cite the numbers directly from their papers. As such, they are included303

primarily for broader context, and are not strictly comparable to our hydrant-only evaluation protocol.304

We further ablate our model to demonstrate the advantages of our iterative approach over one-shot305

methods, and highlighting the impact of autoregressive generation with Uncertainty-Guided Ordering306

(Sec. 3.2). Lastly, we compare our generative approach to the classical fitting of Gaussian splatting307

[34], underscoring that it fails in our sparse-view setting.308

4.1 Sparse-View 3D Reconstruction309

Table 1 presents quantitative results on sparse view 3D reconstruction. Each method is provided with310

N input images and their corresponding camera poses, and the reconstructed 3D representation is311

evaluated by rendering novel views. We follow prior work in considering two levels of difficulty:312

N = 6 and N = 1. Our model outperforms most prior approaches across key metrics. In the more313

challenging single-image 3D reconstruction task, as measured by PSNR and SSIM, our method314

surpasses the state-of-the-art GIBR [2], which is explicitly trained for novel view prediction and315

thus less general than ours. For 6-view 3D reconstruction, our method remains highly competitive,316

achieving strong performance across all three metrics. The main exceptions are GIBR, which performs317

slightly better, and CAT3D [18]. However, CAT3D is not publicly available, and its evaluation is318

based on all categories of CO3D rather than the more challenging outdoor hydrant class used in our319

benchmarks. Consequently, direct comparison may not fully reflect relative performance.320

4.2 Ablations321

We conduct ablation studies to analyze the key technical contributions of our framework, specifically322

iterative generation, 3D conditioning, and Uncertainty-Guided Ordering, demonstrating benefits of323

each in Table 1.324

One-shot vs Iterative. During training, our probabilistic model learns to generate images at novel325

views given as input a conditioning image and its camera pose as well as a 3D representation. At326

test-time, we can use our generative model to generate a large dataset of images, similarly to one-shot327

approaches, such as CAT3D [18], ablating our iterative approach. In Table 1, we performed a328

quantitative ablation study, when the iterative approach is replaced with one-shot generation of the329

multi-view images, when other components are kept the same (e.g. Uncertainty-Guided Ordering).330

We see that such approach performs significantly worse than the iterative approach. Qualitatively, we331

see that images generated by the one-shot approach are highly inconsistent, in extreme cases, even332

changing the shape of the hydrant, which results in a blurry 3D reconstruction. In contrast, though333

our iterative approach may sample inconsistent results initially, it later converges on one particular334

3D sample, leading to a sharp and detailed 3D reconstruction.335

Ablating Conditioning Noising. To evaluate the impact of adding Gaussian noise to conditioning336

images, we conduct an ablation experiment with this component removed. Without noising, the337

conditioning images rendered from the 3D representation remain unaltered. Table 1 (“Ablation: noisy338

conditioning”) shows that this leads to a noticeable drop in performance, suggesting that noising339

helps bridge the distribution gap between training and inference, leading to more stable and realistic340

generations.341

Uncertainty-Guided Ordering. The query camera poses where new images are generated is342

sampled from Pλ(c
g | cc), which in our case, samples camera poses such that the overall entropy of343

generations is minimized (Sec. 3.2). To study the effect of such design, we ablate this component,344

replacing it with random sampling around the object (matching prior works). In Table 1, we show345

quantitative results (“Ablation: UGO"), observing that the model with Uncertainty-Guided Ordering346

achieves significantly better results across all metrics.347
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Supplementary Material609

We have introduced a novel probabilistic framework for 3D reconstruction that uses autoregressive610

image generation conditioned on a iteratively updated 3D representation. By iteratively sampling611

images consistent with the 3D representation, our approach overcomes the limitations of prior 2D612

and 3D generative models at sampling many images, enabling state-of-the-art single-image 3D613

reconstructions of unbounded scenes at arbitrary resolutions. In this section, we discuss limitations614

(A)), additional details on the generative model (B)), additional results (C), 3D representation (D)615

and pose sampling (E) used in our framework.616

Figure 3: Visualization of a training step in our generative model. The model denoises noisy latent
frames while conditioned on both input images and the 3D representation via rendered views. The
process demonstrates the model’s ability to generate content that is structurally consistent with the
evolving 3D representation, effectively filling in missing details.

A Limitations.617

Our model generates 3D scenes iteratively, which enhances the fidelity of the 3D representation.618

However, this approach incurs a trade-off in terms of generation speed, as batches must be repeatedly619

generated by the generative model. Future work could explore the use of faster generative models620

than diffusion models or investigate one-step prediction techniques to mitigate this issue. Another621
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limitation is that the transition from images x to 3D representation z occurs without priors. While this622

allows for a clear separation between reconstruction method and 3D representation, it also means that623

the 3D reconstruction process lacks inherent priors which often results in artifacts that are typically624

not present in 3D-aware methods. Future research could address this by incorporating 3D-aware625

models, to directly update 3D representation zi.626

B Additional details on Generative Model627

As described in Section 3.1, we train a latent video diffusion model conditioned on both the 3D628

representation and the input image. During training, the model denoises sequences of 20 frames,629

where 2D images – rendered from the 3D model – are concatenated along the channel dimension630

with noisy latents. These are fed into the denoising UNet. The input images are processed using631

CLIP and DINO feature extractors, and at each block of the UNet, the denoising UNet attends to632

these features via cross-attention.633

To enhance robustness, we apply random conditioning dropout during training: input images are634

dropped with a probability of 0.1, 3D conditioning is dropped with a probability of 0.1, and both are635

simultaneously dropped with a probability of 0.1. During sampling, we use classifier-free guidance636

to control the trade-off between fidelity and diversity.637

C Additional Qualitative Results638

We visualize random training steps in Figure 3, where the model is tasked with denoising noisy latents639

while conditioned on both input images and the 3D representation. The visualization highlights640

how the model learns to predict content that is structurally consistent with the 3D representation,641

successfully inferring missing details.642

D Additional Details on 3D Representation and Rendering643

Though our framework is independent of 3D representation, for all our experiments, we use 3D644

Gaussian Splatting [34] as the underlying scene representation. The 3D Gaussians are initialized using645

a depth estimator applied to the generated video frames, extracting a 3D point cloud. This approach646

aligns with prior methods such as CAT3D [18], ensuring a structured and scalable representation of647

the scene.648

E Camera Pose Sampling649

The camera poses where new images are being generated are sampled from Pλ(c
g | cc) which we650

carefully design so that that Pθ can easily generate consistent images. In practice, this involves:651

(i) Sampling views near previously generated ones rather than those on the opposite side of the652

input image, as the latter introduces high uncertainty due to unobserved regions. This is done653

autoregressively, using the previous endpoint as the new starting point. (ii) Sampling camera654

trajectories that resemble those in the CO3D dataset, which the model was trained on. For the latter,655

we also create zoom-out and zoom-in effects, by estimating world center and adding or subtracting656

small amounts of distances to each camera pose.657
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NeurIPS Paper Checklist658

The checklist is designed to encourage best practices for responsible machine learning research,659

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove660

the checklist: The papers not including the checklist will be desk rejected. The checklist should661

follow the references and follow the (optional) supplemental material. The checklist does NOT count662

towards the page limit.663

Please read the checklist guidelines carefully for information on how to answer these questions. For664

each question in the checklist:665

• You should answer [Yes] , [No] , or [NA] .666

• [NA] means either that the question is Not Applicable for that particular paper or the667

relevant information is Not Available.668

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).669

The checklist answers are an integral part of your paper submission. They are visible to the670

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it671

(after eventual revisions) with the final version of your paper, and its final version will be published672

with the paper.673

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.674

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a675

proper justification is given (e.g., "error bars are not reported because it would be too computationally676

expensive" or "we were unable to find the license for the dataset we used"). In general, answering677

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we678

acknowledge that the true answer is often more nuanced, so please just use your best judgment and679

write a justification to elaborate. All supporting evidence can appear either in the main paper or the680

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification681

please point to the section(s) where related material for the question can be found.682

IMPORTANT, please:683

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",684

• Keep the checklist subsection headings, questions/answers and guidelines below.685

• Do not modify the questions and only use the provided macros for your answers.686

1. Claims687

Question: Do the main claims made in the abstract and introduction accurately reflect the688

paper’s contributions and scope?689

Answer: [Yes]690

Justification: WRITE HERE691

Guidelines:692

• The answer NA means that the abstract and introduction do not include the claims693

made in the paper.694

• The abstract and/or introduction should clearly state the claims made, including the695

contributions made in the paper and important assumptions and limitations. A No or696

NA answer to this question will not be perceived well by the reviewers.697

• The claims made should match theoretical and experimental results, and reflect how698

much the results can be expected to generalize to other settings.699

• It is fine to include aspirational goals as motivation as long as it is clear that these goals700

are not attained by the paper.701

2. Limitations702

Question: Does the paper discuss the limitations of the work performed by the authors?703

Answer: [Yes]704

Justification: At the end of the paper.705
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Guidelines:706

• The answer NA means that the paper has no limitation while the answer No means that707

the paper has limitations, but those are not discussed in the paper.708

• The authors are encouraged to create a separate "Limitations" section in their paper.709

• The paper should point out any strong assumptions and how robust the results are to710

violations of these assumptions (e.g., independence assumptions, noiseless settings,711

model well-specification, asymptotic approximations only holding locally). The authors712

should reflect on how these assumptions might be violated in practice and what the713

implications would be.714

• The authors should reflect on the scope of the claims made, e.g., if the approach was715

only tested on a few datasets or with a few runs. In general, empirical results often716

depend on implicit assumptions, which should be articulated.717

• The authors should reflect on the factors that influence the performance of the approach.718

For example, a facial recognition algorithm may perform poorly when image resolution719

is low or images are taken in low lighting. Or a speech-to-text system might not be720

used reliably to provide closed captions for online lectures because it fails to handle721

technical jargon.722

• The authors should discuss the computational efficiency of the proposed algorithms723

and how they scale with dataset size.724

• If applicable, the authors should discuss possible limitations of their approach to725

address problems of privacy and fairness.726

• While the authors might fear that complete honesty about limitations might be used by727

reviewers as grounds for rejection, a worse outcome might be that reviewers discover728

limitations that aren’t acknowledged in the paper. The authors should use their best729

judgment and recognize that individual actions in favor of transparency play an impor-730

tant role in developing norms that preserve the integrity of the community. Reviewers731

will be specifically instructed to not penalize honesty concerning limitations.732

3. Theory assumptions and proofs733

Question: For each theoretical result, does the paper provide the full set of assumptions and734

a complete (and correct) proof?735

Answer: [NA]736

Justification: No theoretical results737

Guidelines:738

• The answer NA means that the paper does not include theoretical results.739

• All the theorems, formulas, and proofs in the paper should be numbered and cross-740

referenced.741

• All assumptions should be clearly stated or referenced in the statement of any theorems.742

• The proofs can either appear in the main paper or the supplemental material, but if743

they appear in the supplemental material, the authors are encouraged to provide a short744

proof sketch to provide intuition.745

• Inversely, any informal proof provided in the core of the paper should be complemented746

by formal proofs provided in appendix or supplemental material.747

• Theorems and Lemmas that the proof relies upon should be properly referenced.748

4. Experimental result reproducibility749

Question: Does the paper fully disclose all the information needed to reproduce the main ex-750

perimental results of the paper to the extent that it affects the main claims and/or conclusions751

of the paper (regardless of whether the code and data are provided or not)?752

Answer: [Yes]753

Justification: Details provided in the method and supplementary754

Guidelines:755

• The answer NA means that the paper does not include experiments.756
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• If the paper includes experiments, a No answer to this question will not be perceived757

well by the reviewers: Making the paper reproducible is important, regardless of758

whether the code and data are provided or not.759

• If the contribution is a dataset and/or model, the authors should describe the steps taken760

to make their results reproducible or verifiable.761

• Depending on the contribution, reproducibility can be accomplished in various ways.762

For example, if the contribution is a novel architecture, describing the architecture fully763

might suffice, or if the contribution is a specific model and empirical evaluation, it may764

be necessary to either make it possible for others to replicate the model with the same765

dataset, or provide access to the model. In general. releasing code and data is often766

one good way to accomplish this, but reproducibility can also be provided via detailed767

instructions for how to replicate the results, access to a hosted model (e.g., in the case768

of a large language model), releasing of a model checkpoint, or other means that are769

appropriate to the research performed.770

• While NeurIPS does not require releasing code, the conference does require all submis-771

sions to provide some reasonable avenue for reproducibility, which may depend on the772

nature of the contribution. For example773

(a) If the contribution is primarily a new algorithm, the paper should make it clear how774

to reproduce that algorithm.775

(b) If the contribution is primarily a new model architecture, the paper should describe776

the architecture clearly and fully.777

(c) If the contribution is a new model (e.g., a large language model), then there should778

either be a way to access this model for reproducing the results or a way to reproduce779

the model (e.g., with an open-source dataset or instructions for how to construct780

the dataset).781

(d) We recognize that reproducibility may be tricky in some cases, in which case782

authors are welcome to describe the particular way they provide for reproducibility.783

In the case of closed-source models, it may be that access to the model is limited in784

some way (e.g., to registered users), but it should be possible for other researchers785

to have some path to reproducing or verifying the results.786

5. Open access to data and code787

Question: Does the paper provide open access to the data and code, with sufficient instruc-788

tions to faithfully reproduce the main experimental results, as described in supplemental789

material?790

Answer: [Yes]791

Justification: Will be made available post publication.792

Guidelines:793

• The answer NA means that paper does not include experiments requiring code.794

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/795

public/guides/CodeSubmissionPolicy) for more details.796

• While we encourage the release of code and data, we understand that this might not be797

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not798

including code, unless this is central to the contribution (e.g., for a new open-source799

benchmark).800

• The instructions should contain the exact command and environment needed to run to801

reproduce the results. See the NeurIPS code and data submission guidelines (https:802

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.803

• The authors should provide instructions on data access and preparation, including how804

to access the raw data, preprocessed data, intermediate data, and generated data, etc.805

• The authors should provide scripts to reproduce all experimental results for the new806

proposed method and baselines. If only a subset of experiments are reproducible, they807

should state which ones are omitted from the script and why.808

• At submission time, to preserve anonymity, the authors should release anonymized809

versions (if applicable).810
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• Providing as much information as possible in supplemental material (appended to the811

paper) is recommended, but including URLs to data and code is permitted.812

6. Experimental setting/details813

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-814

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the815

results?816

Answer: [Yes]817

Justification: Provided in method, supplementary and post publication release.818

Guidelines:819

• The answer NA means that the paper does not include experiments.820

• The experimental setting should be presented in the core of the paper to a level of detail821

that is necessary to appreciate the results and make sense of them.822

• The full details can be provided either with the code, in appendix, or as supplemental823

material.824

7. Experiment statistical significance825

Question: Does the paper report error bars suitably and correctly defined or other appropriate826

information about the statistical significance of the experiments?827

Answer: [No]828

Justification:829

Guidelines:830

• The answer NA means that the paper does not include experiments.831

• The authors should answer "Yes" if the results are accompanied by error bars, confi-832

dence intervals, or statistical significance tests, at least for the experiments that support833

the main claims of the paper.834

• The factors of variability that the error bars are capturing should be clearly stated (for835

example, train/test split, initialization, random drawing of some parameter, or overall836

run with given experimental conditions).837

• The method for calculating the error bars should be explained (closed form formula,838

call to a library function, bootstrap, etc.)839

• The assumptions made should be given (e.g., Normally distributed errors).840

• It should be clear whether the error bar is the standard deviation or the standard error841

of the mean.842

• It is OK to report 1-sigma error bars, but one should state it. The authors should843

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis844

of Normality of errors is not verified.845

• For asymmetric distributions, the authors should be careful not to show in tables or846

figures symmetric error bars that would yield results that are out of range (e.g. negative847

error rates).848

• If error bars are reported in tables or plots, The authors should explain in the text how849

they were calculated and reference the corresponding figures or tables in the text.850

8. Experiments compute resources851

Question: For each experiment, does the paper provide sufficient information on the com-852

puter resources (type of compute workers, memory, time of execution) needed to reproduce853

the experiments?854

Answer: [Yes]855

Justification: Yes in supplementary856

Guidelines:857

• The answer NA means that the paper does not include experiments.858

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,859

or cloud provider, including relevant memory and storage.860
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• The paper should provide the amount of compute required for each of the individual861

experimental runs as well as estimate the total compute.862

• The paper should disclose whether the full research project required more compute863

than the experiments reported in the paper (e.g., preliminary or failed experiments that864

didn’t make it into the paper).865

9. Code of ethics866

Question: Does the research conducted in the paper conform, in every respect, with the867

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?868

Answer: [Yes]869

Justification:870

Guidelines:871

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.872

• If the authors answer No, they should explain the special circumstances that require a873

deviation from the Code of Ethics.874

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-875

eration due to laws or regulations in their jurisdiction).876

10. Broader impacts877

Question: Does the paper discuss both potential positive societal impacts and negative878

societal impacts of the work performed?879

Answer: [NA]880

Justification: We do not foresee any direct societal impact resulting from this work. While881

the proposed method involves image generation and 3D reconstruction, it is not designed882

for or applied to human subjects. Although, in theory, similar techniques could be adapted883

for misuse (e.g. in generating deepfakes), our work does not directly enable or target such884

applications.885

Guidelines:886

• The answer NA means that there is no societal impact of the work performed.887

• If the authors answer NA or No, they should explain why their work has no societal888

impact or why the paper does not address societal impact.889

• Examples of negative societal impacts include potential malicious or unintended uses890

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations891

(e.g., deployment of technologies that could make decisions that unfairly impact specific892

groups), privacy considerations, and security considerations.893

• The conference expects that many papers will be foundational research and not tied894

to particular applications, let alone deployments. However, if there is a direct path to895

any negative applications, the authors should point it out. For example, it is legitimate896

to point out that an improvement in the quality of generative models could be used to897

generate deepfakes for disinformation. On the other hand, it is not needed to point out898

that a generic algorithm for optimizing neural networks could enable people to train899

models that generate Deepfakes faster.900

• The authors should consider possible harms that could arise when the technology is901

being used as intended and functioning correctly, harms that could arise when the902

technology is being used as intended but gives incorrect results, and harms following903

from (intentional or unintentional) misuse of the technology.904

• If there are negative societal impacts, the authors could also discuss possible mitigation905

strategies (e.g., gated release of models, providing defenses in addition to attacks,906

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from907

feedback over time, improving the efficiency and accessibility of ML).908

11. Safeguards909

Question: Does the paper describe safeguards that have been put in place for responsible910

release of data or models that have a high risk for misuse (e.g., pretrained language models,911

image generators, or scraped datasets)?912

Answer: [NA]913
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Justification: See above914

Guidelines:915

• The answer NA means that the paper poses no such risks.916

• Released models that have a high risk for misuse or dual-use should be released with917

necessary safeguards to allow for controlled use of the model, for example by requiring918

that users adhere to usage guidelines or restrictions to access the model or implementing919

safety filters.920

• Datasets that have been scraped from the Internet could pose safety risks. The authors921

should describe how they avoided releasing unsafe images.922

• We recognize that providing effective safeguards is challenging, and many papers do923

not require this, but we encourage authors to take this into account and make a best924

faith effort.925

12. Licenses for existing assets926

Question: Are the creators or original owners of assets (e.g., code, data, models), used in927

the paper, properly credited and are the license and terms of use explicitly mentioned and928

properly respected?929

Answer: [Yes]930

Justification: We cite all used datasets and followed their licence.931

Guidelines:932

• The answer NA means that the paper does not use existing assets.933

• The authors should cite the original paper that produced the code package or dataset.934

• The authors should state which version of the asset is used and, if possible, include a935

URL.936

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.937

• For scraped data from a particular source (e.g., website), the copyright and terms of938

service of that source should be provided.939

• If assets are released, the license, copyright information, and terms of use in the940

package should be provided. For popular datasets, paperswithcode.com/datasets941

has curated licenses for some datasets. Their licensing guide can help determine the942

license of a dataset.943

• For existing datasets that are re-packaged, both the original license and the license of944

the derived asset (if it has changed) should be provided.945

• If this information is not available online, the authors are encouraged to reach out to946

the asset’s creators.947

13. New assets948

Question: Are new assets introduced in the paper well documented and is the documentation949

provided alongside the assets?950

Answer: [NA]951

Justification:952

Guidelines:953

• The answer NA means that the paper does not release new assets.954

• Researchers should communicate the details of the dataset/code/model as part of their955

submissions via structured templates. This includes details about training, license,956

limitations, etc.957

• The paper should discuss whether and how consent was obtained from people whose958

asset is used.959

• At submission time, remember to anonymize your assets (if applicable). You can either960

create an anonymized URL or include an anonymized zip file.961

14. Crowdsourcing and research with human subjects962

Question: For crowdsourcing experiments and research with human subjects, does the paper963

include the full text of instructions given to participants and screenshots, if applicable, as964

well as details about compensation (if any)?965
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Answer: [NA]966

Justification:967

Guidelines:968

• The answer NA means that the paper does not involve crowdsourcing nor research with969

human subjects.970

• Including this information in the supplemental material is fine, but if the main contribu-971

tion of the paper involves human subjects, then as much detail as possible should be972

included in the main paper.973

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,974

or other labor should be paid at least the minimum wage in the country of the data975

collector.976

15. Institutional review board (IRB) approvals or equivalent for research with human977

subjects978

Question: Does the paper describe potential risks incurred by study participants, whether979

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)980

approvals (or an equivalent approval/review based on the requirements of your country or981

institution) were obtained?982

Answer: [NA]983

Justification:984

Guidelines:985

• The answer NA means that the paper does not involve crowdsourcing nor research with986

human subjects.987

• Depending on the country in which research is conducted, IRB approval (or equivalent)988

may be required for any human subjects research. If you obtained IRB approval, you989

should clearly state this in the paper.990

• We recognize that the procedures for this may vary significantly between institutions991

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the992

guidelines for their institution.993

• For initial submissions, do not include any information that would break anonymity (if994

applicable), such as the institution conducting the review.995

16. Declaration of LLM usage996

Question: Does the paper describe the usage of LLMs if it is an important, original, or997

non-standard component of the core methods in this research? Note that if the LLM is used998

only for writing, editing, or formatting purposes and does not impact the core methodology,999

scientific rigorousness, or originality of the research, declaration is not required.1000

Answer: [NA]1001

Justification:1002

Guidelines:1003

• The answer NA means that the core method development in this research does not1004

involve LLMs as any important, original, or non-standard components.1005

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1006

for what should or should not be described.1007
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