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Abstract

Reconstructing three-dimensional (3D) representations from sparse image data is
a core task that requires learning to sample plausible 3D models that correspond
to 2D conditioning images. Despite numerous proposed frameworks, achieving
photorealistic sparse-view 3D reconstructions remains an unresolved challenge,
with current methods often producing blurry results on small object-centric scenes
that fall short of the fidelity achieved by dense-view 3D reconstruction and 2D
generative models. This paper aims to rethink the use of image generative models
for 3D reconstruction and introduces a novel framework based on iterative refine-
ment. Our approach infers the 3D representation by optimizing it to match images
sampled by a 2D generative model, itself conditioned on the current progress of
the 3D optimization. To learn this conditional generative model, we design a new
training strategy that performs 3D reconstruction using various numbers of views
and captures the progress at each optimization timestep. This allows the model
to explicitly learn to sample images that are consistent with the current stage of
3D reconstruction, supporting sampling of thousands of consistent images during
reconstruction. Experiments on a challenging real-world dataset demonstrate com-
petitive performance in single-view 3D reconstruction, performing on par with
state-of-the-art 3D reconstruction methods based on 2D generative model outputs
and dense mulitview images.

1 Introduction

Reconstructing a three-dimensional (3D) representation of the physical world from sparse signals,
such a two-dimensional (2D) image, is a fundamental task in the fields of computer vision, graphics,
and artificial intelligence. Such representations are crucial for applications in augmented and virtual
reality (AR/VR) as they allow rendering from novel viewpoints, and in navigation, robotics and Al,
as they support reasoning about object extents and the world around us. However, despite the plethora
of frameworks proposed in the last decades, the reconstruction of 3D scenes from one or few images
remains an unresolved problem.

The challenge lies in the inherent ambiguity of the task: multiple 3D scenes can correspond to a
single 2D image, and even more possibilities exist for the unbounded space outside the region seen
in the image. Consequently, photogrammetry methods, including recent methods based on neural
networks [48], which reconstruct a 3D scene using large dataset of images, fail when only few images
are available, as they cannot sample plausible content in regions that are unobserved in the input
images. More formally, the reconstruction task is probabilistic and generative in nature—its solution
is a plausible 3D sample out of many possible ones, requiring learning the model capable of sampling
from a posterior probability distribution conditioned on one or more input images.

Inspired by the progress of generative models of images and videos, the last decade of 3D research has
investigated using neural networks to learn a prior about how 3D scenes should look. However, unlike
in 2D datasets that are easy to collect from widely available images on the internet, large datasets
of unbounded 3D scenes are infeasible to create. Therefore, the research community is on a quest
to find algorithms that learn a prior over the 3D world from only multi-view image datasets, such
as ones captured from a consumer camera [61]. Two dominant streams of research have emerged;
each, however, produces blurry reconstructions, significantly lagging behind techniques that utilize
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Figure 1: Proposed framework for 3D reconstruction. Given input views and poses, x°, ¢, our
framework uses generative image model to generate images x¢ at novel views c9, conditioned on
3D representation z! at each optimization step t. An optimization step is taken at each iteration,
where the gradient Vz! is computed by rendering representation z* to generated image viewpoints
c9. In contrast to prior works where images are generated in one-shot manner, our approach allows
sampling thousands of images over time, each increasingly consistent with each other.

dense sets of views, such as Gaussian Splatting, and those for photorealistic 2D image generation,
like image diffusion models [6]. Some works have proposed 3D-aware generative models [3} 0]
which learn to model 2D images by rendering a 3D representation. These methods hand-engineer
differentiable rendering into the probabilistic model, enforcing the model to learn a prior over this 3D
representation. However, hand-engineered representations and rendering operators cannot perfectly
capture real-world scenes and limits the capacity of the generative model. Some works learn black-box
generative models to generate images from novel viewpoints [18]), and afterwards use many-view
photogrammetry to reconstruct 3D from generated dataset of images. However, for a reconstruction
of an unbounded 3D scene, photogrammetry methods require hundreds of images, which current
models cannot generate [I8]. Moreover, such methods generate images in one shot, often resulting in
inconsistencies, which lead to blurry results from the 3D reconstruction stage.

In this work, we rethink how to best use image generative models for the task of 3D reconstruction,
and introduce a novel framework for sampling a 3D reconstruction given one or few images. Similarly
to most recent works, we use general many-view 3D reconstruction methods operating on generated
images. However, instead of sampling a dataset of images in one shot, our probabilistic model
samples images iteratively, over the course of optimization, each consistent with the current state of
the 3D representation. Unlike 3D-aware generative models, our method supports unbounded scenes
of unlimited resolution and can integrate any number of conditioning images. Unlike previous 2D
generative models, our method can generate thousands of images consistent with each other and
with the 3D representation, supporting reconstruction of large scenes. This framework effectively
decouples representation from inference, making it scalable and general-purpose [73], allowing it to
be used as plug-and-play component on any existing 3D reconstruction pipeline, such as Gaussian
Splatting or NeRFs [48]]. In our experiments, we instantiate this framework using Gaussian splats
as the representation and video diffusion as the generative model; we demonstrate state-of-the-art
performance in sparse view 3D reconstruction, surpassing competing frameworks of latent variable
generative models and 3D reconstruction from 2D generative model outputs.

2 Prior Methods

In this section, we analyse various frameworks that have been proposed to reconstruct 3D scene
representations from images. We first (Sec. [2.1)) summarise various methods for representing and
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rendering the 3D world, which can be inverted to reconstruct from a dense set of images. We then
discuss (Sec. [2.2) generative models which can sample 3D scenes given sparse images and then
review generative 3D models that learn to sample 3D representations whilst learning from 2D images.

2.1 3D Representation and Rendering

Computer graphics has developed methods for representing the physical 3D world and simulating the
image formation process via rendering [32]], enabling generation of realistic images. The core idea of
inverse graphics is that given a dataset D of images and their poses {(x%,c’) | i = 0,..., N}, the
process of rendering can be “inverted" to infer a 3D representation z that generated the images. This
is achieved by optimization that minimizes reconstruction a loss where gradients with respect to the
3D representation Vz are calculated using a differentiable rendering function:

D« {(x',¢")|i=0,...,N}
def reconstruct(D, T, render(), z°):
for t in range(7):
x9, c9 < random.choice(D)
Vz! + render(z', c9).loss(xY).grad
ztl 7t + nVz!
return z’

Under certain assumptions, such as a large number of input images N, such inference process
results in a good 3D representation that can then be rendered to novel views. Over the years
many representations and rendering algorithms have been proposed, the most popular being surface
representations (such as distance fields and polygon meshes) that can be rendered to images by
rasterization or path tracing. Since meshes are difficult to optimize using gradient descent due to non-
local gradients, neural radiance fields (NeRFs) [48] have been introduced, which represent a volume
with a neural network. More recent works, such as iNGP [51] and 3D Gaussian Splatting [34}139],
have focused on increasing the speed of training and rendering to real-time. Another direction is
aimed to acquire physically meaningful representations [S5]. However, a core limiting assumption is
access to large amount of training images (e.g. capturing every side of the object), typically requiring
N > 100 for a single room and N > 1000 for multi-room scenes. Consequently, when such an
amount of images is not feasible to acquire in practice, these methods produce floating artifacts and
empty volumes in under-sampled regions of 3D space. Some methods aim to fix reconstruction errors
using regularizers on depth, normal, or colors, or by discriminators and image generative models
(54,163,144, 131]]. However, these approaches already assume access to a fully reconstructed 3D model.

2.2 Generative Models

Generative models learn to sample from the complex distribution of their training data. Various
families have been proposed including Generative Adversarial Networks (GAN) [19], Variational
Autoencoders (VAE) [62, 36], autoregressive models [81} [80, 160] and Independent Component
Analysis (ICA) [30]. Recent success in high-dimensional data, such as images [64], videos and
sound, have been achieved by score-based generative models [69, (71} [70], particularly denoising
diffusion probabilistic models (DDPM) [26} [72]]. These learn to estimate the gradient Vz! of the
log probability p(z, t) (termed "score") with respect to the data at a noise scale ¢. Inspired by their
success in other modalities, DDPMs have been adopted to sample 3D representations by learning
from datasets of ground-truth 3D representations [11,114]], such as pointclouds [46l[79], Neural Fields
15, 150L 29, 140, 12 184, [35] 168, 121}, 133, 20] or 3D Gaussians [89, 49]. At test-time, these methods
support conditioning on input views x° and poses ¢, and sampling a plausible 3D reconstruction z:

def reconstruct(x®, c¢, T, Py, o0):
20 < random()
for ¢ in range(7):
Vz! « Pp(z' Tt | 2!, x°, c¢).sample()
7+l — atzt + vzt
return z’

We similarly aim to perform flow matching between randomly sampled 3D representations and
empirical distribution of 3D representations. However, unlike 2D images, large datasets of highly-
realistic and large-scale 3D scenes are challenging or even infeasible to create. Therefore, we propose
a method that learns to sample 3D scenes whilst learning from widely available 2D image datasets.
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Structure-in. Some methods aim to learn to sample latent 3D representations whilst learning to
generate 2D images. These methods typically have a 3D representation inside their architecture,
hence often denoted as “3D-aware" or “structure-in", as the 3D representation and rendering are
hand-engineered inside the network. These models define a likelihood over images by sampling a
latent variable corresponding to a 3D representation and then rendering it to an image. For example,
3D-aware diffusion [3] learns to denoise image via underlying 3D representation, 3D-aware VAEs
learn a latent variable model where latent variable is a 3D representation [38, 23| 25} [1} 24] and
3D-aware GANs learn a generator that generates images by first generating a 3D representation
[153, 166,19, 15,152, [16]. This framework has been extended to in-the-wild datasets [2, 187, 45, 128, (74}
78,127, 18]. However, the core limitation of these models is that 3D representation and rendering have
to be hand-engineered into the model. This restricts the flexibility and capacity of the model, as the
representations are of limited flexibility and the rendering operation is only approximate. For example,
current state-of-the-art generative methods use representations having a limited number of parameters,
such as voxel grids, triplanes, or image-supported features. Furthermore, their renderers only consider
the final bounce of light from one surface to the camera, e.g. without modelling reflections. Some
approaches replace hand-engineereed rendering by a learnt “neural” renderer [17, [10], however at the
cost of losing the 3D representation that is needed in many applications.

Structure-out. Instead of hand-engineering the 3D representation and rendering inside the gener-
ative model, some approaches try to extract 3D structure from 2D images generated by black-box
generative models. The most straightforward approach is to generate a dataset of images and poses
D = {(x%,c") | i=0,..., N} using a generative video model and then run an optimization-based
3D reconstruction method as described in Sec[2.1] This has the benefit that advancements in graphics
can be utilised out-of-the box, e.g. by using unconstrained and flexible 3D representations with
reflection-aware rendering, which avoids hand-engineering generative image models, and allows
flexible and powerful architectures trained on large amounts of 2D datasets. Most recent works
[22] 1821181864 147, 190, 143L [77, 145137, 142} [75] |6]] use image diffusion models fine-tuned with camera-
pose and then generate a dataset of 2D images from which 3D is reconstructed. However, the classic
3D reconstruction methods assume access to large amount of 3D consistent images N. In contrast,
current approaches generate images that are slightly inconsistent, both due to limited performance of
generative models and due to camera pose conditioning being incorrect. Consequently, this leads
the 3D reconstruction method to “average out" these inconsistencies, resulting in blurry regions.
Another problem is that generating hundreds or thousands of images is not possible with current
multi-view generative models. Instead, current approaches generate small sets of images conditionally
independently from each other, which results in inconsistent 3D scenes even assuming access to a
perfect generative model. A concurrent work [18]] generates images in sets of 8, first generating a set
of anchor frames and then autoregressively generating the rest; it relies on ad-hoc techniques, such as
using LPIPS loss [86 18] to be invariant to inconsistent generated images. Consequently, current
methods are limited to small and bounded object-centric scenes where small number of images suffice.
In this work, we use generative image models to generate thousands of consistent images by explicitly
training the model to output images that are consistent with previous generations.

3 Method

Our method tackles the problem of reconstructing a 3D representation from a small number of
input images. The proposed framework modifies only one line in the classical 3D reconstruction
pipeline (Sec. 2.1 — instead of using dataset of images and poses, our framework samples images x9
iteratively throughout the optimization process. At each optimization step ¢, images x9 are sampled
from a learnt probabilistic generative model Py conditioned on the current stage of reconstruction z*
and input (conditioning) images and poses x¢, c®. Then, a gradient with respect to the representation
Vz! is computed by rendering representation to images:

def reconstruct(x¢, c¢, T, Py, render(), z°):
for t in range(7):
c9 + Py(cY | c°).sample()
x9 + Pp(x9 | zt,x¢, c?).sample()
Vz! + render(z’, c?).loss(x9).grad
z!t! 7zt + V2
return z’
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Figure 2: Qualitative results from our model on 3D reconstruction from a single image (first three
rows) and six images (next three rows). The leftmost column shows the input (conditioning), followed
by two novel views rendered from the reconstructed 3D representation and their corresponding
depth maps. The final columns present samples from our generative model at an early stage ¢ of
optimization, illustrating its ability to generate diverse yet consistent images, each pushing the 3D
representation closer to the true posterior sample.

Note that this framework separates 3D representation and rendering from the generative image
model, allowing out-of-the-box use of advancements in graphics (e.g. fast optimization and real-time
rendering of 3D Gaussian Splatting [34. [39]) and unconstrained architecture of generative model
(e.g. diffusion or flow-based models). Importantly, at each step, the generative model is conditioned
on the current stage of reconstruction z‘, allowing to sample images that are consistent with the
3D scene and previous generations ¢ — 1,¢ — 2, ..., 0. Note that we do not maximize likelihood,
ie., Pp(x9 | zt,x¢, c9).likelihood(render(z!, c?)), as this would lead to mode-seeking optimization
behavior, akin to score-distillation sampling [58], [41]], resulting in poor reconstruction
quality when the conditioning datapoint does not reside near the modes of the distribution. In this
section, we describe this framework by providing details on the generative model (Sec. 3.I)), how it is
conditioned on current stage of reconstruction (Sec. [3.3) and input (Sec. [3.4), model training (Sec.
[33), and representation and rendering (Sec. [3.6).

3.1 Generative Model

At each optimization step ¢, we use a learnt probabilistic model to sample images that are consistent
with both input conditioning and previously generated images. Specifically, the probabilistic model
Py(x9 | zt,x,c¢) samples images x9 at specific poses c?, conditioned on the current stage of
reconstruction z‘. The generation poses c9 are sampled in such way that minimizes the prediction
entropy of the autoregressive chain (see Sec. [3.2). For the generative model, we adopt the framework
of Latent Video Diffusion Models (LVDM) [7, 57]. LVDMs employ Denoising Diffusion
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Probabilistic Models [69] 26, [71]] to generate latent variables, which are then decoded into multi-view
images. For simplicity, latent representations are omitted in figures. During training, the model is
trained to denoise target images x9, conditioned on target camera poses c9, conditioning input images
x¢, and the current stage of 3D reconstruction z¢. The input to the denoising model consists of noisy
video latents x9 with dimensions [G, C, H, W], where G is the number of views, C is the number
of channels, and H and W are the height and width of the image latents. The denoising diffusion
model, parameterized by 6, is trained to predict the denoised latents from the noisy latents. During
optimization, to compute the loss (as shown in line 7 of the pseudocode), we use images sampled
from the trained posterior distribution, i.e. x9 < Pp(x9 | z*,x¢, ¢?).sample().

3.2 Autoregressive Generation with Uncertainty-Guided Ordering

The camera poses where new images are being generated are sampled from Py (c? | c©), which we
have a control over. We observed that the choice of Py has a profound effect on the faithfulness of the
generated images to the conditioning input as well as numerical reconstruction results. We observed
that a naive choice of P, e.g. sampling a starting point randomly around the object as in previous
one-shot works, leads to query poses that are far from previously generated images or from input
poses, where Py struggles to generate consistent images. In contrast, we found that Py can easily
generate consistent images that are close to previous generations. Therefore, we discovered that the
optimal ordering strategy is to query views that contain the least uncertainty, i.e. would exhibit only
small variation in generations. Thus, we prefer views near to previous generations as opposed to
views of the opposite side of the input image which contain a lot of uncertainty in unobserved regions.
More formally, we aim for an ordering ©1 — x2 — 3 of view subsets x; such that overall entropy is
minimized:

H(x)=H(xy) + H(xs | 1) + H(zs | 21,22) (1)

In practice, we first generate various videos (simulating similar camera motions as in the training
data) around the input poses. These are then gradually expanded and the process repeats.

3.3 Conditioning on Current 3D Representation

We condition generative model Py on the current stage of 3D reconstruction z¢ to allow learning to
generate images that are consistent with previously generated images. We achieve this by rendering
3D representation (e.g. partially reconstructed 3D Gaussians) z¢ to the same viewpoints as images to
be generated x¢ and encoding them with the latent diffusion’s VAE to get another set of latents. As
these latents are of the same dimensions, we concatenate them as extra channels with noisy latents
and feed them together to the denoising U-Net. We found that such conditioning on current stage of
reconstruction provides the model with a rich signal about previously generated images that were used
for the reconstruction, as the 3D scene is seen from multiple viewpoints. Furthermore, conditioning
our model on renderings provides rich information about camera extrinsics and intrinsics.

3.4 Conditioning on Input Images and Poses

We condition the generative model on input images and poses. Previous methods have utilized CLIP
conditioning, which leverages features from a large pretrained model optimized for image-to-text
matching [59]]. While these features are semantically rich, they may lack detailed information about
high-frequency scene elements, such as precise object shapes and textures. To address this, we
additionally condition the model on DINOVv?2 features [56], which extract 16x16 spatial tokens and a
global token. However, using all tokens directly is computationally expensive. Therefore, we pool
the 256 spatial tokens into a single token and concatenate it with the global DINO token before
combining them with CLIP embeddings. During training, we condition on a variable number of input
images, allowing the denoising U-Net to cross-attend over these tokens.

The model must also understand the relationship between input views and the views it needs to
generate. To achieve this, we add camera pose embeddings and sum them with the DINOv?2 features.
To avoid providing duplicate pose information to the generative model, the conditioning poses c9
are made relative to the first generated image—i.e., the images provided to the generative model are
always assumed to start at an identity pose. We then perform positional embedding of camera poses
and sum them with other tokens, enabling the U-Net to cross-attend to image tokens based on their
poses.

Note that by retaining the classical 3D reconstruction, our framework naturally supports another
pathway for conditioning on an arbitrary number of images, as we can pass them as additional images
to be reconstructed. This is a capability that “structure-in" methods cannot easily achieve (Sec. [2.2).
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3.5 Training for Iterative Reconstruction

We use 2D video datasets to train our probabilistic model. However, using 2D image datasets
directly for training is not feasible as our model requires conditioning on the reconstruction z’ at
optimization step ¢. Therefore, we construct a dataset by performing classical 3D reconstruction (e.g.
Gaussian Splatting or NeRF as in Sec. from varying numbers of input images and rendering
these reconstructions along provided camera trajectories to track optimization progress. For each
scene, we randomly sample the number of input images C from an exponential distribution, favoring
smaller numbers of input images over larger ones. We track the optimization process by rendering the
optimized 3D model every 100 steps across all provided camera trajectories. This results in a dataset
comprising (x¢, ¢, z*), where ¢ ranges from 0 to 30,000 in increments of 100 steps. Each z' is
represented as rendered (latent) images at specific poses. During the training of the LVDM U-Net, we
sample input conditioning images, x¢, and z* (latent images rendered to poses ), training the model
to denoise x® at poses cf. This unrolled iterative training approach is substantially different from
other models, which either train in a one-shot manner p(x2 | ¢, x°) [18]] or perform super-resolution
of images [67].

Preventing Divergence. We noticed that during sampling, diffusion model can diverge and generate
saturated, toyish-looking images. We speculate that this is due to conditioning becoming out-of-
distribution than seen during training. Specifically, during training, model sees 3D reconstruction
from sparse ground-truth images rather than model’s own samples. To address this, we add Gaussian
noise to conditioning images during both training and test time. This has the effect of bringing test
and training distributions closer. Furthermore, we use classifier-free with a guidance scale < 1 to
guide the samples towards 3D-unconditional model.

3.6 3D Representation and Rendering

Our sampling procedure aligns closely with standard 3D reconstruction methods, as outlined in
Section 3] This allows us to leverage recent advancements in 3D scene representations and rendering
techniques. We employ Gaussian splatting as the 3D representation [34], incorporating enhancements
from [[13]]. For the loss function, we utilize both Mean Squared Error (MSE) and Learned Perceptual
Image Patch Similarity (LPIPS).

Table 1: Quantitative comparison on 3D reconstruction. Our approach outperforms prior frameworks
across nearly all metrics, except compared to CAT3D and ReconFusion, which are not publicly
available and were evaluated on all categories of CO3D.

1-view 6-view
PSNR1T SSIM?T LPIPS | \ PSNR1 SSIM1T LPIPS |

Ours 16.23 0.423 0.501 \ 20.06 0.531 0.360
Ablation: one-shot 15.48 0.417 0.486 19.12 0.535 0.363
Ablation: MEO 15.39 0.404 0.601 17.98 0.371 0.540
Ablation: noisy conditioning 12.84 0.108 0.695 16.99 0.441 0.446
GSplatting [34] 14.89 0.399 0.504 19.41 0.298 0.637
GIBRT[2] 16.07 0.329 0.456 20.22 0.571 0.283
VDi[74] 13.18 0.144 0.714 - - -

PixelNeRF+[88] 15.06 0.278 0.615 16.86 0.366 0.545
RD 3] 15.70 0.317 0.598 18.60 0.399 0.533
SparseFusion {[91] 12.06 - 0.630 - - -

ReconFusion* [86] - - - 21.84 0.714 0.342
CAT3D* [18] - - - 22.79 0.726 0.292
ZeroNVS* [65] - - - 19.72 0.627 0.515
Zip-NeRF* [4] - - - 14.48 0.497 0.617

4 Experiments

We conduct experiments on the CO3D dataset [61], which includes camera pose annotations, showing
results on the hydrant class as in prior works [74]. Our evaluation centers on the task of sparse
view 3D reconstruction, where we benchmark our method against several existing frameworks and
ablations of our own approach.
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In our experiments, we provide models with varying numbers of input frames—specifically 1 or 6
frames—to predict the 3D scene. The reconstructed scenes are then rendered from all viewpoints in
the original video, and the quality of reconstruction is assessed by comparing the rendered images
with ground-truth images. As metrics we use Peak Signal-to-Noise Ratio (PSNR), Learned Perceptual
Image Patch Similarity (LPIPS), and Structural Similarity Index (SSIM). Since 3D reconstruction
from sparse images is probabilistic in nature, we follow baseline works and draw multiple samples
from the model, taking the best-performing sample. Our method is compared against state-of-the-art
structure-in frameworks, including GIBR [2], RenderDiffusion [3], pixeINeRF [88]], and SparseFusion
[91]. Additionally, we evaluate our approach against one-shot generation methods, referencing results
from [86/ [18] [65]]. Since these one-shot methods do not provide open-source code or compatible
evaluation pipelines, we cite the numbers directly from their papers. As such, they are included
primarily for broader context, and are not strictly comparable to our hydrant-only evaluation protocol.
We further ablate our model to demonstrate the advantages of our iterative approach over one-shot
methods, and highlighting the impact of autoregressive generation with Uncertainty-Guided Ordering
(Sec.[3.2)). Lastly, we compare our generative approach to the classical fitting of Gaussian splatting
[34], underscoring that it fails in our sparse-view setting.

4.1 Sparse-View 3D Reconstruction

Table [T] presents quantitative results on sparse view 3D reconstruction. Each method is provided with
N input images and their corresponding camera poses, and the reconstructed 3D representation is
evaluated by rendering novel views. We follow prior work in considering two levels of difficulty:
N =6 and N = 1. Our model outperforms most prior approaches across key metrics. In the more
challenging single-image 3D reconstruction task, as measured by PSNR and SSIM, our method
surpasses the state-of-the-art GIBR [2]], which is explicitly trained for novel view prediction and
thus less general than ours. For 6-view 3D reconstruction, our method remains highly competitive,
achieving strong performance across all three metrics. The main exceptions are GIBR, which performs
slightly better, and CAT3D [[18]]. However, CAT3D is not publicly available, and its evaluation is
based on all categories of CO3D rather than the more challenging outdoor hydrant class used in our
benchmarks. Consequently, direct comparison may not fully reflect relative performance.

4.2 Ablations
We conduct ablation studies to analyze the key technical contributions of our framework, specifically
iterative generation, 3D conditioning, and Uncertainty-Guided Ordering, demonstrating benefits of
each in Table

One-shot vs Iterative. During training, our probabilistic model learns to generate images at novel
views given as input a conditioning image and its camera pose as well as a 3D representation. At
test-time, we can use our generative model to generate a large dataset of images, similarly to one-shot
approaches, such as CAT3D [18]], ablating our iterative approach. In Table [I] we performed a
quantitative ablation study, when the iterative approach is replaced with one-shot generation of the
multi-view images, when other components are kept the same (e.g. Uncertainty-Guided Ordering).
We see that such approach performs significantly worse than the iterative approach. Qualitatively, we
see that images generated by the one-shot approach are highly inconsistent, in extreme cases, even
changing the shape of the hydrant, which results in a blurry 3D reconstruction. In contrast, though
our iterative approach may sample inconsistent results initially, it later converges on one particular
3D sample, leading to a sharp and detailed 3D reconstruction.

Ablating Conditioning Noising. To evaluate the impact of adding Gaussian noise to conditioning
images, we conduct an ablation experiment with this component removed. Without noising, the
conditioning images rendered from the 3D representation remain unaltered. Table[I](“Ablation: noisy
conditioning”) shows that this leads to a noticeable drop in performance, suggesting that noising
helps bridge the distribution gap between training and inference, leading to more stable and realistic
generations.

Uncertainty-Guided Ordering. The query camera poses where new images are generated is
sampled from Py (c? | c©), which in our case, samples camera poses such that the overall entropy of
generations is minimized (Sec. [3.2)). To study the effect of such design, we ablate this component,
replacing it with random sampling around the object (matching prior works). In Table[I] we show
quantitative results (‘“Ablation: UGO"), observing that the model with Uncertainty-Guided Ordering
achieves significantly better results across all metrics.
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Supplementary Material

We have introduced a novel probabilistic framework for 3D reconstruction that uses autoregressive
image generation conditioned on a iteratively updated 3D representation. By iteratively sampling
images consistent with the 3D representation, our approach overcomes the limitations of prior 2D
and 3D generative models at sampling many images, enabling state-of-the-art single-image 3D
reconstructions of unbounded scenes at arbitrary resolutions. In this section, we discuss limitations
(A)), additional details on the generative model (B)), additional results (C), 3D representation (D)
and pose sampling (E)) used in our framework.

3D Conditioning
Generated Sample 5 . 5 5 5 5 5 :
3D Conditioning

Generated Sample

3D Conditioning
Generated Sample

3D Conditioning

Generated Sample

Figure 3: Visualization of a training step in our generative model. The model denoises noisy latent
frames while conditioned on both input images and the 3D representation via rendered views. The
process demonstrates the model’s ability to generate content that is structurally consistent with the
evolving 3D representation, effectively filling in missing details.

A Limitations.

Our model generates 3D scenes iteratively, which enhances the fidelity of the 3D representation.
However, this approach incurs a trade-off in terms of generation speed, as batches must be repeatedly
generated by the generative model. Future work could explore the use of faster generative models
than diffusion models or investigate one-step prediction techniques to mitigate this issue. Another
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limitation is that the transition from images x to 3D representation z occurs without priors. While this
allows for a clear separation between reconstruction method and 3D representation, it also means that
the 3D reconstruction process lacks inherent priors which often results in artifacts that are typically
not present in 3D-aware methods. Future research could address this by incorporating 3D-aware
models, to directly update 3D representation z°.

B Additional details on Generative Model

As described in Section [3.1] we train a latent video diffusion model conditioned on both the 3D
representation and the input image. During training, the model denoises sequences of 20 frames,
where 2D images — rendered from the 3D model — are concatenated along the channel dimension
with noisy latents. These are fed into the denoising UNet. The input images are processed using
CLIP and DINO feature extractors, and at each block of the UNet, the denoising UNet attends to
these features via cross-attention.

To enhance robustness, we apply random conditioning dropout during training: input images are
dropped with a probability of 0.1, 3D conditioning is dropped with a probability of 0.1, and both are
simultaneously dropped with a probability of 0.1. During sampling, we use classifier-free guidance
to control the trade-off between fidelity and diversity.

C Additional Qualitative Results

We visualize random training steps in Figure 3] where the model is tasked with denoising noisy latents
while conditioned on both input images and the 3D representation. The visualization highlights
how the model learns to predict content that is structurally consistent with the 3D representation,
successfully inferring missing details.

D Additional Details on 3D Representation and Rendering

Though our framework is independent of 3D representation, for all our experiments, we use 3D
Gaussian Splatting [34] as the underlying scene representation. The 3D Gaussians are initialized using
a depth estimator applied to the generated video frames, extracting a 3D point cloud. This approach
aligns with prior methods such as CAT3D [18], ensuring a structured and scalable representation of
the scene.

E Camera Pose Sampling

The camera poses where new images are being generated are sampled from Py (c? | ¢®) which we
carefully design so that that Py can easily generate consistent images. In practice, this involves:
(1) Sampling views near previously generated ones rather than those on the opposite side of the
input image, as the latter introduces high uncertainty due to unobserved regions. This is done
autoregressively, using the previous endpoint as the new starting point. (ii) Sampling camera
trajectories that resemble those in the CO3D dataset, which the model was trained on. For the latter,
we also create zoom-out and zoom-in effects, by estimating world center and adding or subtracting
small amounts of distances to each camera pose.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: WRITE HERE
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: At the end of the paper.



706 Guidelines:

707 * The answer NA means that the paper has no limitation while the answer No means that
708 the paper has limitations, but those are not discussed in the paper.

709 * The authors are encouraged to create a separate "Limitations" section in their paper.
710 * The paper should point out any strong assumptions and how robust the results are to
711 violations of these assumptions (e.g., independence assumptions, noiseless settings,
712 model well-specification, asymptotic approximations only holding locally). The authors
713 should reflect on how these assumptions might be violated in practice and what the
714 implications would be.

715 * The authors should reflect on the scope of the claims made, e.g., if the approach was
716 only tested on a few datasets or with a few runs. In general, empirical results often
717 depend on implicit assumptions, which should be articulated.

718 * The authors should reflect on the factors that influence the performance of the approach.
719 For example, a facial recognition algorithm may perform poorly when image resolution
720 is low or images are taken in low lighting. Or a speech-to-text system might not be
721 used reliably to provide closed captions for online lectures because it fails to handle
722 technical jargon.

723 * The authors should discuss the computational efficiency of the proposed algorithms
724 and how they scale with dataset size.

725 * If applicable, the authors should discuss possible limitations of their approach to
726 address problems of privacy and fairness.

727 * While the authors might fear that complete honesty about limitations might be used by
728 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
729 limitations that aren’t acknowledged in the paper. The authors should use their best
730 judgment and recognize that individual actions in favor of transparency play an impor-
731 tant role in developing norms that preserve the integrity of the community. Reviewers
732 will be specifically instructed to not penalize honesty concerning limitations.

733 3. Theory assumptions and proofs

734 Question: For each theoretical result, does the paper provide the full set of assumptions and
735 a complete (and correct) proof?

736 Answer: [NA]

737 Justification: No theoretical results

738 Guidelines:

739 » The answer NA means that the paper does not include theoretical results.

740 * All the theorems, formulas, and proofs in the paper should be numbered and cross-
741 referenced.

742 * All assumptions should be clearly stated or referenced in the statement of any theorems.
743 * The proofs can either appear in the main paper or the supplemental material, but if
744 they appear in the supplemental material, the authors are encouraged to provide a short
745 proof sketch to provide intuition.

746 * Inversely, any informal proof provided in the core of the paper should be complemented
747 by formal proofs provided in appendix or supplemental material.

748 * Theorems and Lemmas that the proof relies upon should be properly referenced.

749 4. Experimental result reproducibility

750 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
751 perimental results of the paper to the extent that it affects the main claims and/or conclusions
752 of the paper (regardless of whether the code and data are provided or not)?

753 Answer: [Yes]

754 Justification: Details provided in the method and supplementary

755 Guidelines:

756 » The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Will be made available post publication.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Provided in method, supplementary and post publication release.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes in supplementary
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not foresee any direct societal impact resulting from this work. While
the proposed method involves image generation and 3D reconstruction, it is not designed
for or applied to human subjects. Although, in theory, similar techniques could be adapted
for misuse (e.g. in generating deepfakes), our work does not directly enable or target such
applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]


https://neurips.cc/public/EthicsGuidelines
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13.

14.

Justification: See above
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all used datasets and followed their licence.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Prior Methods
	3D Representation and Rendering
	Generative Models

	Method
	Generative Model
	Autoregressive Generation with Uncertainty-Guided Ordering
	Conditioning on Current 3D Representation
	Conditioning on Input Images and Poses
	Training for Iterative Reconstruction
	3D Representation and Rendering

	Experiments
	Sparse-View 3D Reconstruction
	Ablations

	Limitations.
	Additional details on Generative Model
	Additional Qualitative Results
	Additional Details on 3D Representation and Rendering
	Camera Pose Sampling

