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ABSTRACT

The advancement of speech technologies has been remarkable, yet its inte-
gration with African languages remains limited due to the scarcity of African
speech corpora. To address this issue, we present AfroDigits, a minimal-
ist, community-driven dataset of spoken digits for African languages, cur-
rently covering 38 African languages. As a demonstration of the practi-
cal applications of AfroDigits, we conduct audio digit classification experi-
ments on six African languages [Igbo (ibo), Yoruba (yor), Rundi (run), Os-
hiwambo (kua), Shona (sna), and Oromo (gax)] using the Wav2Vec2.0-Large
and XLS-R models. Our experiments reveal a useful insight on the effect
of mixing African speech corpora during finetuning. AfroDigits is the first
published audio digit dataset for African languages and we believe it will,
among other things, pave the way for Afro-centric speech applications such
as the recognition of telephone numbers, and street numbers. We release the
dataset and platform publicly at https://huggingface.co/datasets/
chrisjay/crowd-speech—-africaandhttps://huggingface.co/
spaces/chrisjay/afro-speech|respectively.

1 INTRODUCTION

Datasets are essential for the advancement of robust and beneficial deep neural networks in natu-
ral language processing (NLP) technologies |Bender et al.| (2021); [Nekoto et al.|(2020). The Ima-
geNet (Deng et al.,2009) dataset is a prime example as it revealed the power of deep neural networks
in image recognition (Krizhevsky et al., 2012} Russakovsky et al., [2015). That is to say, the more
datasets there are for a given deep learning task, the better (in terms of robustness, fairness, and
diversity) the model can get.

End-to-end deep learning models have pushed the state-of-the-art on speech processing tasks like au-
tomatic speech recognition (ASR) (Baevski et al.,[2020; |Babu et al., [202 1} Radford et al.,|2022)), and
speech synthesis (TTS). However, due to data scarcity, existing speech recognition technologies do
not support African languages (Muhire| |2020; Dossou & Emezue} [2021;|Afonja et al.,[2021bza). We
believe that our voice defines who we are and therefore when languages are omitted from speech
technologies, the identities and cultures of the speakers are gradually obscured. The AfroDigits
project was created to fill this void of African speech corpora by using a community-based partic-
ipatory approach (Nekoto et al., 2020) to build AfroDigits — a spoken digit dataset for all African
languages. This dataset has a number of potential use cases, ranging from being used to easily in-
troduce concepts in speech processing, to real-life applications like recognition of spoken telephone
digits, street house numbers, etc.

The rest of the paper is structured as follows: we motivate AfroDigits and give an overview of our
data collection efforts aimed to bridge the gap for languages in speech technology. Then we detail
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the AfroDigits project in section[3.1] and present the AfroDigits dataset as well as some of its useful
properties in section Finally, to demonstrate a possible use-case of the dataset we perform
finetuning experiments and discuss their results in section 4]

2 RELATED WORK

We focus on related efforts in building speech corpora for speech processing tasks. Some popular
large-scale open-source monolingual speech datasets, which have dominated research in speech pro-
cessing, include LibriSpeech (Panayotov et al., [2015)) (as well as its variants like LibriCSS (Chen
et al., 2020), LibriLight (Kahn et al., 2019) ) and TIMIT (Garofolo, John S. et al., [1993). However
they do not have support for African and other non-English languages. Then came the wave of mul-
tilingual speech corpora, like Vox-Forge (vox|), Babel (Gales et al.|[2014)), MAILABS (cai)) and most
notably, Mozilla’s Common Voice (Ardila et al.,[2019), to enable support for many more languages.
However, the number of African languages supported is still meager. Out of the 2000+ African
languages, only Kinyarwanda has 1000+ hours of audio on Common Voice (Muhire} 2020). Babel,
the only project that contains a number of African languages, is 1) not open-source which limits its
use to only those who can pay, and 2) has been shown to contain outdated styles of conversation that
make it necessary to supplement models trained on it with datasets representing modern styles of
communication for African languages (Dossou & Emezuel, [2021).

Over the years many efforts have emerged, specially to fill the void of African speech corpora (van
Niekerk et al., [2017; | Dossou & Emezuel [2021}; [Umuganda; Meyer et al., 2022; |Afonja et al.,|2021a;
Oyewusi et al. 2022; |Babirye et al., [2022). One notable property of some of these projects has
been their use of a community-based, participatory approach to data collection. One advantage of
community-based data collection is that, while being cost effective, it has been shown to ensure
sustainability and scalability (Adelani et al., [2022aj; [Emezue & Dossou, 2020; Scao et al., 2022
Joshi et al., 2020; Bender et al.| 2021; Nweya et al.||2022bja)). These works have mostly focused on
text-speech corpora and not digits, which is what sets our work apart.

The FSDD dataset (Jackson et al.||2018) which is most similar to ours in terms of the proposed use
case, is English-based. Through AfroDigits, we contribute to the existing community-based efforts
to build more African speech corpora, with a focus on digits.

3 AFRODIGITS

In this section, we expound on AfroDigits. This section begins with a description of the project, the
interface and data curation process, and ends with an outline of the AfroDigits dataset.

3.1 THE PROJECT

The dataset presented in this paper was a result of the AfroDigits project. The AfroDigits project
is meant to be a life-long community-driven tool for audio digit data collection. Our motivation for
choosing the domain of spoken digits lies in our desire to create an Afro-centric minimalist dataset
which can easily be used for speech processing tasks (e.g for making tutorials, introducing concepts
or new models, training and evaluating a model), similar to the way MNIST (Lecun et al., |1998)
is for the field of computer vision. The FSDD dataset (Jackson et al., 2018) which is most similar
to ours in terms of the proposed use case, is English-based. The idea is that AfroDigits will 1)
inspire African researchers to learn speech processing while working on their native languages, and
2) improve the discoverability of African languages to non-African researchers and practitioners.
Another advantage of the digits domain is that while it’s harder to find sentences (especially for
African languages (Team et al., [2022} |Adebara et al., [2022)), numerical digits are universal, which
makes recording straightforward.

Our first challenge was the platform to use for recording the digits. We wanted a platform that
required no technical expertise to use, since we were also targeting rural communities. To this end,
we created the African Digits Recording platform on HuggingFace Space Figure |1| shows the
recording platform. To make the recording entertaining, and inspired by the MNIST handwritten
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numbers dataset, we randomly displayed images of the numbers 0-9 for the participants to record.
At the end of each recording session, when they had recorded numbers 0O through 9, the participants
were shown a congratulatory image GIF and encouraged to do another round. Furthermore, we wrote
down very simple instructions, displayed in Figure 2] at the top of the platform so that participants
would quickly understand the task.

Email (Your emailis not made public. We need it to consider you for the prize)

Choose language Your age (optional) Gender (optional) Accent (optional) Country you are recording from (optional)

How s the number called in your language (optional)

Record from microphone

Submit

Figure 1: The AfroDigits recording platform. The participant is shown an image of the number, and
recites it, while recording. The platform requires no log-in or sign-up making it very easy to use.

To encourage participation during the launch of the platform, we created the African Digits Record-
ing Sprint which lasted for one month. Through widespread advertisement, especially within com-
munities, such as Masakhane, with native speakers of African languages, we ensured active par-
ticipation during the sprint. We further included prizes that were given to the top ten recording
contributors. In order to obtain additional meaningful metadata besides the audio, we included op-
tional fields for users to indicate their age, gender, accent, and country of residence. Additionally, we
did not require the name, address, or any other personal information of the participants, following
standard practice in audio data collection (Ardila et al.| 2019).

Record

Fill in your email. This is completely optional. We need this to track your proj for the prize. Note: You should record all numbers shown till the end. |
Choose your African language

Fill in the speaker metadata (age, gender, accent). This is optional but important to build better speech models.

You will see the image of a number (this is the number you will record).

Fill in the word of that number (optional). You can leave this blank.
Click record and say the number in your African lan, €.

Click ‘Submit’. It will save your record and go to the next number.
Repeat 4-7

Leave a W in the Space, if you found it fun.

Figure 2: The set of instructions which the participant sees on entering the platform.
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3.2 THE DATASET

Table [1| shows the current statistics of AfroDigits, which currently has 2,185 audio samples cov-
ering 38 African languages. AfroDigits is freely available for download. Following existing data
governance principles (Benjamin et al., 2019; Jernite et al.| 2022)), the dataset is gated, meaning
that one needs to provide details like name, email address and affiliation before getting access to
the dataset. The whole dataset is housed in a data directory, which consists of sub-directories,
each of which is named with randomly generated audio ids and contains an audio.wav file and a
metadata. jsonl file where the metadata (audio id, language name, language id, digit, text of
the digit, audio frequency, age, gender, and country of residence of the participant) for the specific
audio file can be retrieved. All audios are mono-channel with a sampling rate of 48kHz. From Table
we see that Oshiwambo (kua) language has the highest number of recordings contributed (1,721).
Using the HuggingFace Dataset and Transformer (Wolf et al., [2019) libraries, one can integrate
the dataset directly into their training pipeline.

Table 1: Current data statistics of AfroDigits. The table is sorted by the language ISO-639-3 code
in alphabetical order.

Language Code #Clips Duration (seconds)
aasax aas 1 222
abua abn 10 17.1
abon abo 1 2.34
adamorobe sign language  ads 1 19.2
arabic, tunisian spoken aeb 10 23.94
afrikaans afr 11 25.02
gimant ahg 2 5.27
ambharic amh 10 25.26
arabic, sudanese spoken apd 5 12.96
arabic, moroccan spoken ary 10 20.4
arabic, egyptian spoken arz 1 2.64
bambara bam 1 2.88
basaa bas 10 33.6
andaandi dgl 2 5.04
ezaa eza 11 76.38
fon fon 3 9.6
oromo, borana-arsi-guji gax 40 83.1
hausa hau 1 1.74
igbo ibo 138 355.95
kinyarwanda kin 21 84.96
oshiwambo kua 1721 3376.34
dholuo luo 1 1.92
luwo Iwo 10 47.34
massalat mdg 1 10.8
ndebele nde 12 51.3
ndonga ndo 1 1.38
1X60 nmn 1 2.58
rundi run 35 142.79
shona sna 30 70.89
somali som 12 11.54
swabhili swa 11 11.28
turkana tuv 1 1.8
tswapong two 10 9.81
makhuwa vmw 10 40.38
wolof wol 10 9.81
maay ymm 1 342
yoruba yor 28 27.48
zulu zul 1 2.68

4 EXPERIMENTAL SETTING

To demonstrate the use-case of the AfroDigits dataset, we run finetuning experiments using pre-
trained speech models. In this section we discuss the focus languages for our experiments, as well
as the models utilized.

Zhttps://huggingface.co/docs/datasets/index
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4.1 Focus LANGUAGES

For our experiments, we focused on the six African languages with the most significant number of
audio samples in AfroDigits — Igbo (ibo), Yoruba (yor), Rundi (run), Oshiwambo (kua), Shona (sna),
and Oromo (gax). The distribution of the digits and gender for each language is shown in Figures 3]
-[T6)in the Appendix section. Figure[3|shows the gender distribution across the number of recorded
clips for the focus languages. We see representation of both male and female voices in yor, ibo and
kua. Together with the pie chart on the right, there is a comparably similar representation of male
and female voices in all our audio samples. All this is in line with previous work (Ardila et al.} 2019}
[Bender et al. 2021} [Adelani et all 2021)) opining that community-based crowd-sourcing fosters a
wide representation of participants and improves diversity in data collection, thereby making the
dataset more representative and less biased to a particular gender, race or location.

Bar plot of number of clips per language across gender

gender
mm Female
m Male

Female . female
. Male

dips

dips

gax ibo kua un sna yor
lang_code

Figure 3: Left: Barplot of the number of clips for each of our focus languages segmented by the
gender. Right: Gender distribution of audio samples for our focus languages

Table [2] shows information about each of our focus languages. XLS-R pretraining contained audio
data from three of the six focus languages (namely yor,run,and sna) while Wav2Vec2-Large has
none. The African audio data used in pretraining XLS-R came mostly from Babel
(2014), which is not a free dataset. AfroDigits, being open-source and free for all, offers a major
contribution to creating open-source and free speech data for African languages.

Table 2: Information about the languages used in our experiments, and their number of training and
evaluation clips. For each pretrained model, we denote (v') if the model was pretrained on audio
data from that language and (X) otherwise. mixed refers to the setting where we mix all the audio
data from all languages.

Code #Train / #Eval  XLS-R  Wav2Vec2-Large

ibo 96 /42 X X
yor 19/9 v X
run 24 /11 v X
kua 1204 /517 X X
sna 21/9 4 X
gax 28 /12 X X

mixed 1392 / 600

4.2 MODELS

Pretrained speech models are powerful large neural network-based models that have been trained
on a gigantic speech corpora. They are trained to learn and capture meaningful abstract features
from speech (Schneider et all,[2019; [Hsu et al.| 2021} [Radford et al[2022)). The knowledge learned
can then be transferred to downstream tasks (Bengiol |2012; [Wang & Zheng] [2015), and they are
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particularly useful in low-resource settings (Zoph et al., [2016; [Radford et al., [2022; |Adelani et al.|
2022a). This motivates our choice of using pretrained speech models on the downstream task of
spoken digit classification. For our finetuning experiments, we utilized two large pretrained speech
models: Wav2Vec2.0-Large (Baevski et al.,2020) and XLS-R (Babu et al.| 2021).

Wav2Vec2.0-Large: The Wav2Vec2.0-Large model was pre-trained through a self-supervised
learning of representations from raw audio data by masking spans of its discretized latent speech
representations, similar to masked language modeling (Devlin et al. 2018)), and using contrastive
learning, where the true latent is to be distinguished from the false ones (van den Oord et al.| 2018;
Baevski et al.l 2020; Riviere et al., 2020} [Schneider et al.l [2019). The authors note that jointly
learning discrete speech units with contextualized representations helps Wav2Vec2.0 outperform the
original Wav2Vec model (Schneider et al.,|2019) in downstream recognition tasks. The Wav2Vec2.0
model was pretrained on an English-only LibriSpeech corpus (Panayotov et al.,[2015)

XLS-R: In automatic speech recognition, researchers (Riviere et al.l [2020; |Schultz & Waibel,
2001} |Stolcke et al.| |2006; [Huang et al., 2013 Hsu et al., [2021)) have shown that it is beneficial to
finetune with models that were pretrained on multilingual audio data — especially if the multilin-
gual corpora contains some of the languages (or language family) of your downstream language.
Motivated by this, we decided to include this model in our experiments. While the Wav2Vec2.0
model was pretrained on an English-only LibriSpeech corpus (Panayotov et al., [2015)), XLS-R —
built on the Wav2Vec2.0 backbone — was pretrained on a combined multilingual dataset of 128 lan-
guages, including 17 African languages. Table [2] shows which of our target African languages are
represented in the XLS-R model.

XLS-R-Mix:  Some studies have underlined the relevance of mixing training datasets in NLP,
particularly for low-resource languages. In machine translation, Adelani et al.| (2022b) showed
that as low as 2000 translation sentences were sufficient to effectively finetune a large pre-trained
model and obtain a significantly good performance. In the speech domain, [Babu et al.| (202 1)); Chan
et al.|(2021) demonstrated that combining audio data from several languages and domains improves
transfer learning capabilities in settings where the training data is very small or noisy. Inspired by
this, we set out to answer the following: since the individual train samples for each language are very
small (see Table E]), can we have some improvement, for each language, if we finetune one model
on the mix of audio samples from all the languages? For this, we finetuned XLS-R on a combined
dataset from all the languages using the same hyperparameters above. The resulting model is called
XLS-R-Mix.

4.3 TRAINING SETTINGS

Relatively Equal Model Parameters:  The XLS-R model consists of 315,703,690 model pa-
rameters while the Wav2Vec2.0-Large model has 315, 693, 962 — a requirement enforced in order to
ensure that neither model has an edge over the other based on their size.

Handling Class Imbalance: The AfroDigits dataset currently has very small audio samples for
our focus languages, with an unequal balance of digits for each language (see Figures [5] - [I6). In
order to prevent the model from overfitting on the classes with many samples, we implemented
weighted sampling (Monaco, |2013)). With weighted sampling in the data loading process, different
from the normal sampling which favors the majority classes (Caswell et al., [2020; [Dunn, 2020;
Fan et al., |2020), the labels are chosen with a probability inversely proportional to their size in
the training set. This means that at each training step and for each language, the labels with few
samples are more likely to be chosen for training the model. This is similar to studies (Arivazhagan
et al.| 2019; [Team et al.} ja1) that have leveraged upsampling for under-represented languages during
pre-training large language models in machine translation.

Training Setup: All audio samples were resampled to 16kHz for the finetuning experiments. We
froze the encoders of each model and finetuned for 100 epochs. We used the Adam optimizer
Kingma & Bal (2015), with a learning rate of 3e — 5 for both models. We did not do any search
for optimal hyperparameters but instead used the recommended settings from the authors. We ran
our finetuning experiments with five different seeds, then we took the average over the different
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runs as well as the standard deviation. Training for each language took less than 30 minutes with
a GPU, indicating the feasibility of the AfroDigits dataset as a ‘Hello World’ dataset for speech
processing, just like MNIST is for computer vision. Finetuning the dataset on large speech models
like Wav2Vec2.0-Large and XLS-R, however, needs a larger GPU resource. Where needed, we used
an NVIDIA A100-SXM GPU.

5 RESULTS & DISCUSSION

In Table [3] we report the weighted F1 values on the held-out evaluation averaged over the 5 runs.
Figure [] shows the evolution of the finetuning performance on the held-out test set. We discuss our
findings in the sub-sections below.

Table 3: Weighted F1 scores of each target language’s evaluation set averaged over 5 runs. We see
that in most cases, XLS-R performs better than Wav2Vec2-Large. XLS-R-Mix outperforms all other
models in all languages.

Method ibo yor run kua sna gax

Wav2Vec2.0-Large 0.64+0.29 0.13£0.12 0.09£0.08 0.40+0.47 0.03£0.06 0.37+0.07
XLS-R 0.85+0.03 0.16£0.05 0.18+0.07 0.98+0.00 0.01+0.03 0.56=+0.04
XLS-R-Mix 0.86 £0.02  0.27 £0.07 0.55+£0.10 0.98 +0.00  0.65 +0.08  0.57 £0.01

Bridging the gap for African Speech Datasets We observe, first of all, that despite being large
pretrained models and finetuned for 100 epochs, the performance on some languages like yor, run,
and sna is very low. This supports the claim by many research (Nekoto et al., 2020; Team et al.,
2022; |[Fan et al., [2020; |[Kreutzer et al., 2021; Babirye et al., [2022} |Oyewusi et al.l 2022; Nweya
et al.,[2022bjja)) that there is need to build more African datasets to improve the generalization of large
pretrained models to low-resource African languages, and therefore the relevance of AfroDigits.

Effect of having African speech data in the model pretraining: We observe from Table [3|that
the XLS-R model, which was pretrained on a larger set of African languages than Wav2Vec2-Large,
performed better across all languages (except sna) than Wav2Vec2-Large which is Anglo-centric.
Furthermore, Figure ] shows the evolution of each of the model’s performance (F1 metric) while it
was being finetuned on each language. Each evaluation point is actually an average of the 5 rounds,
with the confidence interval. Using kua as an example, we clearly see that the XLLS-R model was
able to quickly attain a high performance very early on in the finetuning, unlike Wav2Vec2.0-Large.

We also see that both models had difficulty with languages like sna, yor, and run: for XLS-R, we see
a slight improvement for these languages only after the 50th epoch of finetuning for XLS-R, while
for Wav2Vec2.0-Large, their performance oscillates between a rather low F1 score of 0.0 and 0.2.
Both models perform very poorly on sna.

Effect of mixing audio samples during finetuning: XLS-R-Mix, which is XLS-R finetuned on
a mix of training audio samples from the six focus languages, outperforms all the other models as
shown in Table|3] More interestingly, even in sna, run, and yor, where the previous models perform
very poorly, we see a significant boost in the performance of XLS-R-Mix. While the effect of
a multilingual speech corpora has been shown in pretraining models |[Conneau et al.| (2020); |Chan
et al.[(2021); Radford et al.[(2022), we present a useful insight on the effect of the mixing (especially
for low-resource African languages) while finetuning on spoken digit classification.

6 LIMITATIONS OF AFRODIGITS

The primary constraint observed in the initial release of the AfroDigits dataset is its small size,
particularly for certain languages where only one sample is available. It is noteworthy that this
project is a continuing effort and the platform used for recording voices is accessible to the general
public. As such, it is anticipated that the number of recorded samples for certain languages in the
dataset will expand in the future.
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Evolution of F1 on held out set (wav2vec)
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Figure 4: 1 F1 scores for each evaluation epoch during finetuning on held-out evaluation set for each
of our focus African languages. Top is for Wav2Vec2.0-Large and Bottom is for XLS-R

7 CONCLUSION

In this work, we present AfroDigits: a minimalist, community crowd-sourced dataset of recorded
digits in African languages, which can scale to any African language through community effort.
AfroDigits, the first African digits dataset of its kind, was created with the aim of filling the void in
African speech corpora and is released as a freely accessible public dataset. We further present the
current contents and statistics of AfroDigits and show spoken digits classification experiments on
six African languages using the speech corpus.
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A APPENDIX

Analysis of gender and digits distribution in the recorded audio samples: In the figures below,
we plot their distribution, for both gender and the digits, across the Igbo, Oshiwambo and Rundi
languages.

Distribution of audio samples over digits for IGBO

Digit

T
o] 5 10 15 20 25
Number of audio samples

Figure 5: Distribution of recorded audio samples across the digits (ibo)
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Distribution of audio samples over gender for IGBO
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Figure 6: Distribution of recorded audio samples across the gender (ibo)
Distribution of audio samples over digits for OSHIWAMBO
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Figure 7: Distribution of recorded audio samples across the digits (kua)
Distribution of audio samples over gender for OSHIWAMBO
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Figure 8: Distribution of recorded audio samples across the gender (kua)
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Distribution of audio samples over digits for YORUBA
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Figure 9: Distribution of recorded audio samples across the digits (yor)

Distribution of audio samples over gender for YORUBA
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Figure 10: Distribution of recorded audio samples across the gender (yor)

Distribution of audio samples over digits for OROMQO, BORANA-ARSI-GUJI

Digit
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Figure 11: Distribution of recorded audio samples across the digits (gax)
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Gender
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Distribution of audio samples over gender for OROMO, BORANA-ARSI-GU]I
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Figure 12: Distribution of recorded audio samples across the gender (gax)
Distribution of audio samples over digits for SHONA
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Figure 13: Distribution of recorded audio samples across the digits (sna)

Distribution of audio samples over gender for SHONA
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Figure 14: Distribution of recorded audio samples across the gender (sna)
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Distribution of audio samples over digits for RUNDI
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Figure 15: Distribution of recorded audio samples across the digits (run)
Distribution of audio samples over gender for RUNDI
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Figure 16: Distribution of recorded audio samples across the gender (run)
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