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Abstract

Lorentz-equivariant neural networks are becoming the leading architectures for
high-energy physics. Current implementations rely on specialized layers, limiting
architectural choices. We introduce Lorentz Local Canonicalization (LLoCa), a
general framework that renders any backbone network exactly Lorentz-equivariant.
Using equivariantly predicted local reference frames, we construct LLoCa-
transformers and graph networks. We adapt a recent approach for geometric mes-
sage passing to the non-compact Lorentz group, allowing propagation of space-time
tensorial features. Data augmentation emerges from LLoCa as a special choice of
reference frame. Our models achieve competitive and state-of-the-art accuracy on
relevant particle physics tasks, while being 4× faster and using 10× fewer FLOPs.

1 Introduction

Many significant recent discoveries in the natural sciences are enhanced by Machine Learning
(ML) [2, 14, 23, 46]. In particular, High Energy Physics (HEP) experiments profit from ML as a
vast amount of data is available [12, 22, 25]. For instance, the Large Hadron Collider (LHC) at
CERN collects data at rates which are unmatched in the natural sciences, seeking to explain the most
fundamental building blocks of nature [13].

The collision between two highly-energetic particles produces a multitude of scattered particles. The
physical laws which govern the dynamics of these particles respect Lorentz symmetry, the symmetry
group of special relativity. Incorporating the Lorentz symmetry in neural networks, in the form of
Lorentz equivariance, has proven to be critical for physics tasks which require data efficiency and
high accuracy [7, 21, 39, 42]. However, existing Lorentz-equivariant architectures often rely on
task-specific building blocks which impede the general applicability of Lorentz-equivariant networks
in the field. Other more versatile equivariant architectures impose prohibitive computational costs,
limiting usability at scale, and increasing the energy footprint from training. In this work, we address
these limitations by introducing a method that guarantees exact, but also partial and approximate,
Lorentz equivariance with minimal additional computational costs. Our approach is agnostic to the
architecture of the model, enabling the adaptation of existing graph neural networks (GNNs) and
transformers to Lorentz-equivariant neural networks. We make the following contributions:
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Figure 1: Lorentz Local Canonicalization (LLoCa) for making any architecture Lorentz-equivariant. The
input consists of a set of particles each associated with an energy and momentum (and possibly other particle
features). The particle features are transformed into learned local reference frames, turning them into Lorentz-
invariant local features. The local features can then be processed by any backbone architecture to produce exactly
Lorentz-equivariant outputs for a variety of possible tasks. Without including additional domain-specific priors,
our approach elevates the performance of domain-agnostic models, such as a vanilla transformer, to the SOTA in
the field (see e.g. Fig. 3).

• To the best of our knowledge, we introduce the first (local) canonicalization framework for
Lorentz-equivariant deep learning, a novel approach that does not rely on specialized layers
to achieve internal representations of space-time tensors. We present a novel approach for
Lorentz-equivariant prediction of local reference frames and adapt a recently proposed ap-
proach [30] for geometric message passing to the non-compact Lorentz group. In particular,
we propose a variant of scaled dot-product attention based on the Minkowski product that
leverages efficient off-the-shelf attention implementations.

• Our framework is readily applicable to any non-equivariant backbone architectures. It is
easy to integrate and can significantly improve the training and inference times over Lorentz-
equivariant architectures that use specialized layers.

• In several experiments, we demonstrate the efficacy of exact Lorentz equivariance by achiev-
ing state-of-the-art or competitive results using a powerful Lorentz-equivariant transformer
and by making several domain-specific networks Lorentz-equivariant.

• Our framework allows for a fair comparison between data augmentation and exact Lorentz
equivariance. Our experiments support the superiority of Lorentz-equivariant models when
ample training data is available in HEP, while data-augmentation achieves competitive
accuracy when training data is scarce.

• Unlike prior equivariant models, our approach incurs only a moderate computational over-
head, with a 10–50% increase in FLOPs and a 60–100% increase in training time compared
to non-equivariant baselines. Compared to other SOTA Lorentz-equivariant architectures, our
models train 4× faster and use 10× fewer FLOPs. Our implementation of LLoCa is publicly
available on https://github.com/heidelberg-hepml/lloca, and experiments can be
reproduced with https://github.com/heidelberg-hepml/lloca-experiments.

2 Background

Lorentz group. The theory of special relativity [19, 35] is built on two postulates: (i) the laws of
physics take the same form in every inertial reference frame, and (ii) the speed of light c is identical
for all observers. Together they imply that every inertial observer must agree on a single scalar
quantity, the spacetime interval ∆s2 = c2∆t2 −∆x⃗2. Adopting natural units (c = 1), we formalize
it with the Minkowski product

⟨x, y⟩ = x0y0 − x1y1 − x2y2 − x3y3 . (1)

The Minkowski product acts on column four-vectors x = (x0, x⃗)T ∈ R4, which can be decomposed
into a temporal part x0 and a spatial part x⃗ = (x1, x2, x3)T . Equation (1) can be compactly written
as xT gy using the Minkowski metric g = diag(1,−1,−1,−1) [34]. Hence, frame-to-frame trans-
formations can be represented as matrices Λ ∈ R4×4 that preserve the Minkowski product, i.e. that
fulfill ΛT gΛ = g. The inverse transformation is given by Λ−1 = gΛT g. Lorentz transformations
Λ act on four-vectors x as x→ x′ = Λx. The collection of all Lorentz transformations constitutes
the Lorentz group O(1, 3). In the following we will focus on the special orthochronous Lorentz
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group SO+(1, 3),2 which emerges as a subgroup from the constraints that detΛ = 1 and Λ00 > 0.

A convenient parametrization of a Lorentz transformation Λ ∈ SO+(1, 3) is obtained via polar
decomposition,3 which factors the transformation into a purely spatial rotation R and a boost B

Λ = RB =

(
1 0⃗T

0⃗ R̃

)(
γ −γβ⃗T

−γβ⃗ I3 + (γ − 1) β⃗β⃗
T

β⃗2

)
, γ = (1− β⃗2)−1/2. (2)

In this decomposition, R leaves the time component of a four-vector untouched while the submatrix
R̃ ∈ R3×3 rotates its spatial coordinates. Meanwhile, B performs a hyperbolic “rotation” that mixes
time with a chosen spatial direction determined by the dimensionless velocity vector β⃗. The Lorentz
factor γ = (1− β⃗2)−1/2 encodes the amount of time-dilation and length-contraction introduced by
the boost. Every four-vector p = (p0, p⃗), with positive norm m = ∥p∥ = (⟨p, p⟩)1/2, defines such a
boost B(p) with velocity β⃗ = p⃗/p0.

Group representations. To characterize how transformations of a group G act on elements of a
vector space V , we use the notion of a group representation. A group representation is a map ρ that
assigns an invertible matrix ρ(g) ∈ GL(V ) to each group element such that ρ(g1g2) = ρ(g1)ρ(g2)
holds for any pair of group elements g1, g2 ∈ G. In this expression, g1g2 is the group product and
ρ(g1)ρ(g2) the matrix product. For instance, four-vectors transform under the 4-dimensional vector
representation of the Lorentz group, x′ = Λx, or in components, x′µ =

∑
ν Λ

µ
νx

ν . Higher-order
tensor representations follow the pattern

f ′µ1...µn = (ρ(Λ)f)
µ1...µn =

∑
ν1...νn

Λµ1
ν1
... Λµn

νn
fν1...νn . (3)

A tensor with n indices is said to have order n; each index runs over four spacetime directions, so the
associated representation acts on a 4n-dimensional space.

Equivariance. Geometric deep learning takes advantage of the symmetries already present in a
problem instead of forcing the model to “rediscover” them from data [11, 15]. An operation h is
equivariant to a symmetry group G when the group action commutes with the function, i.e. h(g ·x) =
g · h(x) for any g ∈ G. Invariance of h emerges as a special case of equivariance if the output is
invariant under group actions, h(g · x) = h(x).

High-energy physics. In most steps of a HEP analysis pipeline, the data takes the form of a set of
particles. Each particle is characterized by its discrete particle type as well as its energy E and three-
momentum p⃗ which make up the four-momentum p = (E, p⃗)T ∈ R4. Four-momenta transform in
the vector representation of the Lorentz group. Examples for particle types are fundamental particles
like electrons, photons, quarks and gluons as well as reconstructed objects like “jets“ [40]. In addition
to the particle mass m = (⟨p, p⟩)1/2, particles might be described by extra scalar information such as
the electric charge depending on the application. Particle data is typically processed with permutation-
equivariant architectures such as graph networks and transformers, with each particle corresponding
to one node or token in a fully connected graph.

Lorentz symmetry breaking. Although the underlying dynamics of high-energy physics respect
the unbroken Lorentz group SO+(1, 3), the experimental environment in HEP introduces explicit
symmetry breaking. The proton beams as well as the detector geometry single out a preferred spatial
axis, breaking the symmetry of rotations around axes orthogonal to the beam direction. Further,
reconstruction algorithms use the transverse momentum (p2x + p2y)

1/2 to define jets, a quantity which
is only invariant under rotations around the beam axis. As a result, many collider observables retain
at most a residual SO(2) symmetry of rotations about the beam axis. In particular, the classification
score in Sec. 5.1 is only SO(2)-equivariant, while the regression target in Sec. 5.2 is fully Lorentz-
equivariant.

Nevertheless, Lorentz-equivariant networks outperform SO(2)-invariant networks in tasks with

2“Special” and “orthochronous” means that spatial and temporal reflections are not included in the group.
3More generally, a polar decomposition describes the factorization of a square matrix into a hermitian and a

unitary part.
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partial Lorentz symmetry breaking [7, 21, 39, 42]. This is achieved through a flexible symmetry
breaking strategy that preserves Lorentz-equivariant hidden representations. Typically, fixed reference
four-vectors such as the global time direction (1, 0, 0, 0) and beam axis (0, 0, 0, 1) are provided as
additional inputs, restricting equivariance to transformations that leave these vectors invariant.

3 Related work

Lorentz-equivariant architectures. Neural networks with exact Lorentz equivariance have
emerged as a powerful tool for HEP analyses. A basic approach achieves Lorentz invariance by pro-
jecting the particle cloud onto all pairwise Minkowski inner products and processing the results with
an MLP [10, 42]. The lack of permutation equivariance in this design is overcome by PELICAN [7],
which uses layers that capture all permutation-equivariant mappings on edge features. In order to
predict non-scalar quantities such as four-vectors, existing architectures use internal features that
transform in Lorentz group representations. LorentzNet [21] uses scalar and vector channels, while
CGENN [39] and L-GATr [9, 42] adopt geometric algebra representations, including antisymmetric
second-order tensors. CGENN and LorentzNet use message passing, whereas L-GATr relies on self-
attention. Unlike these models, LLoCa supports arbitrary representations with fewer architectural
constraints and improved efficiency.

Equivariance by local canonicalization. An alternative approach to achieve equivariance is to
transform the input data into a canonical reference frame. An arbitrary backbone network then
acts on the canonicalized input, before a final transformation back to the initial reference frame
provides the equivariant output. Such canonicalization can be achieved in two different ways: a) via
global canonicalization [24], which uses a global reference frame for the whole point cloud, which
is not used in our method, or b) via local canonicalization, where each point in the point cloud is
equipped with its own reference frame. In contrast to global canonicalization, local canonicalization
facilitates that similar local substructures will yield similar local features. Several methods have
been proposed to find a global canonical orientation for 3D point cloud data [6, 28, 49, 50], or a
local canonicalization for the compact group of 3D rotations and reflections [17, 31, 47]. However,
to the best of our knowledge, there exist no equivalents for the non-compact Lorentz group. As
shown in [30], properly transforming tensorial objects between different local reference frames during
message passing substantially increases the expressivity of the architecture. We extend their solution
to the Lorentz group. While the mentioned approaches use one global reference frame or one local
reference frame per node, it is possible and in some cases advantageous to extend the framework of
canonicalization to multiple different reference frames (per entity), as presented in the form of frame
averaging in [18, 29, 36]. Extending these methods to our framework could be a promising direction
for future research.

Scaling of exact equivariance vs. data augmentation. Recent work has begun to probe approxi-
mate symmetries in neural networks [27] and to question whether exact equivariance improves data
scaling laws of neural networks [8, 30]. Building on local canonicalization, our framework enables a
controlled comparison: it allows us to evaluate an exactly Lorentz-equivariant model and an equally
engineered, non-equivariant counterpart trained with data augmentation on equal footing. We conduct
several experiments to investigate how both types of models scale with the amount of training data.

4 Methods

The general idea of our framework is the following (cf. Fig. 1): for every particle, or node, we predict a
local reference frame which transforms equivariantly under general Lorentz transformations. Then, we
express the particle features in the predicted local reference frames, therefore transforming them into
Lorentz-invariant features which can be processed by any backbone network. In the end, we obtain a
Lorentz-equivariant prediction by transforming the space-time objects back to the global reference
frame. In its minimal version, only local scalar information is exchanged between nodes, a constraint
that significantly limits the expressivity of the architecture. We instead propose to group particle
features into tensor representations to enable the exchange of tensorial space-time messages between
different reference frames, extending the method proposed by Lippmann, Gerhartz et al. [20, 30].
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4.1 Local reference frames

A local reference frame L is constructed from a set of four four-vectors u0, u1, u2, u3 (“vierbein”)
that form an orthonormal basis in Minkowski space, i.e. they satisfy the condition∑

µ,ν

ua
µub

νgµν = gab . (4)

The transformation behavior of four-vectors ui → Λui implies that the local reference frames L
transform as L→ LΛ−1 if constructed from row vectors in the following way4

L =


uT0 g
uT1 g
uT2 g
uT3 g

 Λ→ L′ =


uT0 Λ

T g
uT1 Λ

T g
uT2 Λ

T g
uT3 Λ

T g

 = LΛ−1. (5)

In the final step, we insert two Minkowski metrics as I4 = gg, allowing us to identify the inverse
transformation Λ−1 = gΛT g. With this relation, the orthonormality condition (4) becomes LgLT =
g, the defining property of Lorentz transformations. In Sec. 4.5, we explicitly construct local reference
frames that satisfy both conditions introduced above. When working with sets of particles, a separate
local reference frame can be assigned to each particle, see Fig. 1.

4.2 Local canonicalization

Local four-vectors xL = Lx are defined by transforming global four-vectors x into the local reference
frame L. Thanks to the transformation rule L→ LΛ−1, these local vectors remain invariant under
global Lorentz transformations Λ, i.e. xL = Lx → x′L = LΛ−1Λx = Lx = xL. This property
readily generalizes to general Lorentz tensors f (cf. Eq. (3)), which transform as f → f ′ = ρ(Λ)f .
For features in the local reference frame fL = ρ(L)f we find

fL
Λ→ f ′L = ρ(L′)f ′ = ρ(LΛ−1)ρ(Λ)f = ρ(LΛ−1Λ)f = ρ(L)f = fL. (6)

The local particle features fL can be processed with any backbone architecture without violating their
Lorentz invariance, cf. Fig. 1. Finally, output features y in the global reference frame are extracted
using the inverse transformation y = ρ(L−1)fL. These output features y are equivariant under
Lorentz transformations

y
Λ→ y′ = ρ(L′−1)f ′L = ρ(ΛL−1)fL = ρ(Λ)ρ(L−1)fL = ρ(Λ)y. (7)

4.3 Tensorial messages between local reference frames

Global frame

Figure 2: Tensorial message passing in LLoCa.
Lorentz-invariant local messages are transformed be-
tween local reference frames.

Consider a system of N particles, where a mes-
sage is sent from particle j to particle i. The
message mj,Lj in the local reference frame Lj

is Lorentz-invariant, as it is constructed from
the invariant particle features fLj

. To commu-
nicate this message to particle i in reference
frame Li, we apply the reference frame trans-
formation matrix LiL

−1
j , which gives the trans-

formed message:

mj,Li = ρ(LiL
−1
j )mj,Lj . (8)

The message representation ρ is a hyperparam-
eter that can be chosen according to the problem. Our implementation supports general tensor repre-
sentations following Eq. (3), though in practice, we find an equal mix of scalar and vector representa-
tions sufficient for our applications. Regardless of the chosen representation, the received message
mj,Li

remains invariant since the transformation matrix LiL
−1
j is invariant:

LiL
−1
j

Λ→ L′
iL

′−1
j = LiΛ

−1(LjΛ
−1)−1 = LiΛ

−1ΛL−1
j = LiL

−1
j . (9)

4The object u♭ = uT g is called the covector of the vector u, with the transformation behavior u′♭ = u♭Λ−1.
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This formalism can be easily integrated into any message passing paradigm. Writing ϕ and ψ for
unconstrained neural networks and

⊕
for a permutation-invariant aggregation operation, the updated

features for particle i can be written as:

f updated
Li

= ψ

(
fLi

,

N⊕
j=1

ϕ
(
ρ(Li L

−1
j )mj,Lj

))
. (10)

We extend this framework proposed by Lippmann, Gerhartz et al. [30] to the Lorentz group, see Fig. 2.

Tensorial scaled dot-product attention. A particularly prominent example of message passing
is scaled dot-product attention [44]. We obtain scaled dot-product attention with tensorial message
passing as a special case of Eq. (10)

f updated
Li

=

N∑
j=1

softmax

(
1√
d

〈
qLi

, ρ(LiL
−1
j )kLj

〉)
ρ(LiL

−1
j ) vLj

. (11)

The objects qLi
, kLj

, vLj
are the d-dimensional queries, keys and values, each computed in the

respective local reference frame from the respective local node features fLi
, fLj

. The softmax
normalizes the attention weights over all sending nodes. The Minkowski product ⟨·, ·⟩ reduces to
the Euclidean product if the queries, keys and values are assigned to scalar representations ρ. For
higher-order representations, we find that Minkowski attention outperforms Euclidean attention, see
App. E. Since the Minkowski product is Lorentz-invariant,

⟨qLi
, ρ(LiL

−1
j )kLj

⟩ = ⟨ρ(L−1
i )qLi

, ρ(L−1
i )ρ(LiL

−1
j )kLj

⟩ = ⟨ρ(L−1
i )qLi

, ρ(L−1
j )kLj

⟩. (12)
That is, keys and queries can simply be transformed into the global frame of reference, in which all
Minkowski products can be efficiently evaluated. This facilitates the use of highly optimized scaled
dot-product attention implementations [16].

4.4 Relation to data augmentation

Architectures with local canonicalization achieve Lorentz equivariance if the local reference frames
satisfy Eq. (5), imposing strong constraints on their construction. Non-equivariant networks emerge
as a special case where the local reference frames are the identity, L = 1. Data augmentation also
emerges as a special case, where one global reference frame is drawn from a given distribution of
Lorentz transformations. Implementing non-equivariant networks and data augmentation as special
cases of equivariant networks enables a fair comparison between these three choices.

4.5 Constructing local reference frames

We now describe how to construct local reference frames for a set of particles, the typical data type
in high-energy physics. Each local reference frame L has to satisfy the Lorentz group condition
LT gL = g and transform as L→ L′ = LΛ−1 under Lorentz transformations Λ. The local reference
frames are constructed in two steps: first we use a simple Lorentz-equivariant architecture to predict
three four-vectors for each particle. The four-vectors are then used to construct the local reference
frames L following a deterministic algorithm.

In a system of N particles, each particle is described by its four-momentum pi and additional scalar
attributes si, such as the particle type. For each particle i, the three four-vectors are predicted as

vi,k =

N∑
j=1

softmax
(
φk(si, sj , ⟨pi, pj⟩)

) pi + pj
∥pi + pj∥+ ϵ

for k = 0, 1, 2. (13)

This operation is Lorentz-equivariant because it constructs four-vectors as a linear combina-
tion of four-vectors with scalar coefficients [45]. The function φ is an MLP with three out-
put channels that operates on Lorentz scalars. Empirically, we find that a network φ that
is significantly smaller than the backbone network is already sufficient, see App. D. To en-
sure positive and normalized weights, a softmax is applied across the weights of all sending
nodes and the four-momenta are rescaled by their norm. This constrains the resulting vec-
tors vi,k to have positive inner products ⟨vi,k, vi,k⟩ > 0, given that the input particles have
positive inner products and positive energy p0i > 0. We observe that the softmax operation
significantly improves numerical stability during the subsequent orthonormalization procedure.
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Algorithm 1 Local reference frames via
polar decomposition

Require: v0, v1, v2 ∈ R4 with v′i = Λvi,
⟨v0, v0⟩ > 0

Ensure: LT gL = g and L→ L′ = LΛ−1

1: B ← B(v0) using Eq. (2)
2: wk ← Bvk for k = 1, 2
3: u⃗1, u⃗2, u⃗3 ← GramSchmidt(w⃗1, w⃗2)

4: R̃← (u⃗1, u⃗2, u⃗3)
T

5: R←
(
1 0⃗T

0⃗ R̃

)
6: L← RB

Indeed, large boosts B may lead to numerical insta-
bilities. However, although the particles pi are highly
boosted, we find that the predicted vectors vi,k typi-
cally are not, resulting in stable training. Appendix D.1
holds a detailed discussion on the numerical stability
of the local frame prediction. In tasks where symmetry
breaking effects reduce full Lorentz symmetry to a sub-
group, we incorporate reference particles (cf. Sec. 2)
which are needed only for the local frame prediction.

For each particle i, the local reference frame Li is
constructed from the three four-vectors vi,k, k = 0, 1, 2
using polar decomposition, cf. Eq. (2). For readability,
we omit the particle index i from here on. As outlined
in Alg. 1, the boost B(v0) is built from v0, while the
rotationR is derived from v1 and v2. These two vectors
are first transformed with the same boost and then orthonormalized via the Gram-Schmidt algorithm.
Alg. 1 is equivalent to a Gram-Schmidt algorithm in Minkowski space; see App. C for details
and a proof that L satisfies the transformation rule L → LΛ−1. The above construction contains
equivariantly predicted rotations for SO(3)-equivariant architectures as a special case with v0 =
(1, 0, 0, 0), though this restricted variant yields inferior performance, see App. E. In App. B we
describe how the LLoCa framework can be extended to the Poincaré group and O(1, d).

Limitations. The Gram-Schmidt orthogonalization requires linear independence of v1 and v2. In
practice, we find this holds reliably for systems with N ≥ 3 particles as we carefully address the
numerical stability of the local frames prediction (see App. D.1). For systems with N < 3 particles,
it is not possible to construct equivariant local frames from the information contained in the input set
of particles. We handle this very special case by sampling the missing spatial directions w⃗1 and w⃗2

(cf. Alg. 1), randomly from an SO(3)-invariant distribution, at the cost of formally breaking Lorentz-
equivariance to SO(3) or SO(2)-equivariance. In situations with partial Lorentz symmetry breaking,
see Sec. 2, the reference particles encoding the time and beam direction can lift the number of input
vectors pi to 3 or higher.

5 Experiments

We now demonstrate the effectiveness of Lorentz Local Canonicalization (LLoCa) for a range of
different architectures on two relevant tasks in HEP. We start from the classification of jets, or “jet
tagging”. Then, we present extensive studies on QFT amplitude regression.

5.1 Jet tagging

Jet tagging is the identification of the mother particle which initiated the spray of hadrons, a “jet”,
from a set of reconstructed particles. This task plays a key role in HEP workflows, where even
marginal gains in classification performance lead to purer datasets – ultimately saving experimental
resources. For this application the big-data regime is most interesting, because simulating training
data is cheap. Therefore, we use the JetClass dataset [38], a modern benchmark dataset that contains
125M jets divided into 10 classes.

The ParticleNet [37] and ParT [38] networks are established jet tagging architectures in the high-
energy physics community. ParticleNet uses dynamic graph convolutions, and ParT is a transformer
with class attention [43] and a learnable attention bias based on Lorentz-invariant edge attributes. We
use the LLoCa framework to make both architectures Lorentz-equivariant with minimal adaptations
to the official implementation, see Tab. 1. Further, we compare against a vanilla transformer and its
LLoCa adaptation (cf. Sec. 4.3), see App. D for details.

Without any hyperparameter tuning, the Lorentz-equivariant models based on LLoCa consistently
outperform their non-equivariant counterparts, at the cost of some extra training time and FLOPs (see
Tab. 1). Interestingly, LLoCA can elevate the performance of the domain-agnostic transformer to
the performance of the domain-specific ParT architecture. This indicates that LLoCa provides an
effective inductive bias, without the need for specialized architectural designs.
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Table 1: LLoCa consistently improves the performance of non-equivariant architectures. For classification
on the JetClass dataset we compare accuracy, area under the ROC curve (AUC) as well as training time on a H100
GPU and FLOPs for a forward pass with batch size 1 for the JetClass dataset from [38]. For our models, accuracy
and AUC metrics are significant up to the last digit. LLoCa improves domain-specific architectures and elevates
a vanilla transformer to competitive accuracy (* indicates Lorentz equivariance). For more metrics, see Tab. 5.

Model Accuracy (↑) AUC (↑) Time FLOPs

PFN [26] 0.772 0.9714 3h 3M
P-CNN [41] 0.809 0.9789 3h 12M
LorentzNet [21] 0.847 0.9856 64h 676M
MIParT-L [48] 0.861 0.9878 43h 225M
L-GATr* [9] 0.866 0.9885 166h 2060M
ParticleNet [37] 0.844 0.9849 25h 413M
LLoCa-ParticleNet* 0.845 0.9852 43h 517M
ParT [38] 0.861 0.9877 33h 211M
LLoCa-ParT* 0.864 0.9882 66h 315M
Transformer 0.855 0.9867 15h 210M
LLoCa-Transformer* 0.864 0.9882 31h 301M

Z + 1g Z + 2g Z + 3g Z + 4g

10−9

10−8

10−7

10−6

10−5

10−4

10−3

M
SE

on
lo

g
am

pl
it

ud
es

MLP-I

L-GATr

GNN

LLoCa-GNN

Transformer

LLoCa-Transf.

Model MSE×10−5 (↓) FLOPs Time

MLP-I [10, 42] 137.0 ± 2 0.1M 0.4h
L-GATr [42] 1.8 ± 0.2 528.0M 8.3h
GNN 10.5 ± 0.2 20.7M 0.9h
LLoCa-GNN 5.0 ± 0.2 22.3M 1.5h
Transformer 8.3 ± 0.3 14.9M 1.3h
LLoCa-Transformer 1.2 ± 0.2 16.3M 2.1h

Figure 3: LLoCa surpasses SOTA performance while being 4× faster. The collisions of two particles
produces a single Z boson and n = 1, 2, 3, 4 gluons g (x-ticks Z + ng). LLoCa significantly improves the
prediction of interaction amplitudes of the non-equivariant GNN and transformer. Left: Our LLoCa-Transformer
achieves state-of-the-art results over all four multiplicities. Right: Accuracy and compute for Z + 4g. The
LLoCa-Transformer uses a tenth of the FLOPs and a fourth of the training time relative to the second most
accurate model. Uncertainties are standard deviations over three runs. See App. D for more details.

5.2 QFT amplitude regression

In collisions of fundamental particles, the occurrence of a specific final state is governed by a
probability. This probability is a function of the four-momenta of the incoming and outgoing particles,
as well as their particle types. Using the framework of Quantum Field Theory (QFT), we can calculate
this probability or “amplitude” in a perturbative expansion. Neural surrogates [3–5, 10, 32, 33, 42]
can greatly speed up this process, since the factorial growth of possible interactions with increasing
particle number often makes exact evaluation unfeasible. The exact Lorentz invariance of amplitudes
makes them a prime candidate for a LLoCa surrogate model.

We follow [42] and benchmark our Lorentz Local Canonicalization (LLoCa) approach on the process
qq̄ → Z + ng, the production of a Z boson with n = 1, . . . , 4 additional gluons from a quark-
antiquark pair. The surrogates are trained for each value of n separately. We evaluate the neural
surrogates in terms of the Mean Squared Error (MSE) between the predictions and the ground truth
of the logarithmic amplitudes. Architectures and training details are described in App. D.

LLoCa allows us to upgrade any non-equivariant baseline and directly study the benefits of built-in
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Figure 4: Data efficiency of LLoCa networks. Lorentz-equivariant amplitude regression for Z +4g production
is more data efficient in the large data regime for both graph networks (left) and transformers (right). Perhaps
surprisingly, data augmentation (DA) outperforms equivariance for small datasets.

Lorentz equivariance. To that end, we construct LLoCa adaptations of a baseline graph neural net-
work (GNN) and a vanilla transformer as described in Sec. 4.3. For comparison, we consider a simple
MLP acting on Lorentz-invariants (MLP-I) [10] and the performant L-GATr [42]. LLoCa consistently
improves the accuracy of non-equivariant architectures, see Fig. 3. Crucially, without including addi-
tional domain-specific priors, our LLoCa-Transformer achieves state-of-the-art-performance, outper-
forming the significantly more expensive L-GATr architecture over the entire range of multiplicities.

Table 2: Effectiveness of tensorial messages. LLoCa-
Transformer with different hidden tensor representations
on Z + 4g QFT amplitude regression.

Method MSE (×10−5)

Non-equivariant 8.3 ± 0.5
Global canonical. 4.4 ± 1.0
LLoCa (16 scalars) 40 ± 4
LLoCa (single 2-tensor) 2.0 ± 0.4
LLoCa (4 vectors) 1.4 ± 0.2
LLoCa (8 scalars, 2 vectors) 1.0 ± 0.1

Message representations. Beyond the im-
provements obtained through exact Lorentz
equivariance, we have identified the tensorial
message passing in LLoCa (cf. Sec. 4.3) as a
crucial factor for expressive message passing
based on local canonicalization. We compare
the performance of the LLoCa-transformer
with different message representations in the
16-dimensional attention head, see Tab. 2. We
compare 16 scalars against four 4-dimensional
vectors, a single 16-dimensional second-order
tensor representations as well as our default of
eight scalars combined with two four-vectors.
All tensorial representations significantly out-
perform the scalar message passing. For reference, we include the non-equivariant transformer and
the same model with global canonicalization (one shared learned reference frame to every particle).

Lorentz equivariance at scale. Lorentz equivariance introduces a strong inductive bias in neural
networks, typically at the cost of extra compute. Data augmentation provides a cheap alternative
which aims at learning approximate Lorentz equivariance directly from data. LLoCa includes data
augmentation as a special case, allowing us to directly compare exact Lorentz equivariance (LLoCa)
with data augmentation (DA) using the same backbone architecture and training parameters. For
this purpose, we focus on the most complicated process Z + 4g and train surrogate models with
different fractions of the training dataset, see Fig. 4. Augmented trainings outperform the non-
equivariant baseline for small training datasets due to the symmetry group information encoded in
data augmentations, but the two approaches agree for large dataset sizes where model expressivity
becomes the limiting factor. The Lorentz-equivariant models surpass the competition in this big-data
regime due to their increased expressivity at fixed parameter count. Interestingly, we observe that
trainings with data augmentation outperform even the Lorentz-equivariant models for small training
dataset sizes. We include extensive ablation studies on the method used for local canonicalization,
tensorial message representations, and data augmentation in App. E.

9



5.3 Computational efficiency

While Lorentz-equivariant architectures offer valuable inductive biases, they often come with sig-
nificant computational overhead compared to the corresponding non-equivariant architectures. To
evaluate this trade-off, we report both nominal FLOPs – which capture architectural complexity –
and empirical training time, which also reflects implementation efficiency, in Tab. 1 and Fig. 3. Our
LLoCa networks introduce a modest increase in computational cost, with FLOPs rising by 10–50%
and training time by 60–100%, depending on the task and architecture. The computational overhead
of LLoCa networks is split about evenly between (i) the initial prediction of local frames and (ii) the
frame-to-frame transformations in tensorial message passing. A more efficient implementation is
likely to further reduce both sources of training-time overhead within LLoCa networks. In contrast,
the state-of-the-art L-GATr architecture [42] incurs significantly higher costs, with a 10× increase in
FLOPs and a 4× increase in training time relative to our LLoCa-Transformer, see App. E.2.

6 Conclusion

Particle physics provides ample data and studies systems that exhibit Lorentz symmetry. Neural net-
works that respect Lorentz symmetry have emerged as essential tools in accurately analyzing the data
and modeling the underlying physics. However, existing Lorentz-equivariant architectures introduce
large computational costs and rely on specialized building blocks, which limits the architectural de-
sign space and hinders the transfer of deep learning progress from other modalities. We address these
issues by introducing Lorentz Local Canonicalization (LLoCa), a novel framework that can make
any off-the-shelf architecture Lorentz-equivariant. In several experiments, we have demonstrated
the effectiveness of LLoCa by achieving state-of-the-art results even with domain-agnostic back-
bone architectures. Furthermore, our approach significantly improves established domain-specific
but non-equivariant architectures, without any hyperparameter tuning. While the LLoCa framework
introduces a computational overhead, our LLoCa models are still significantly faster at training and
inference than other SOTA Lorentz-equivariant networks. We hope that LLoCa facilitates the design
of novel Lorentz-equivariant architectures and helps to bridge innovations between machine learning
in particle physics and other domains.
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A Tensor representation

The tensor representation is introduced in Eq. (3). The tensor representation is a group representation
of the Lorentz group O(1, 3) and is used in this paper to define the transformation behavior of
tensorial space-time features when transformed in or out of local reference frames.

Proof representation property. The representation property follows from the fact that the 4× 4
Lorentz transformation matrices itself form a representation. For any Λ1,Λ2 ∈ SO+(1, 3) we have

[ρ(Λ1)ρ(Λ2)T ]
µ1...µn = Λ1

µ1
ρ1
... Λ1

µn
ρn
Λ2

ρ1
ν1
... Λ2

ρn
νn
T ν1...νn

= (Λ1Λ2)
µ1

ν1
... (Λ1Λ2)

µn
νn

= [ρ(Λ1Λ2)T ]
µ1...µn (14)

Representation hidden features. The input and output representations are determined by the input
data and the prediction task. Contrarily, the internal representations are chosen as hyperparameters. In
our framework, we choose a direct sum of tensor representations, which again forms a representation.
A feature f will transform under ρf = ρ1 ⊕ ...⊕ ρk with a block diagonal matrix:

ρf(Λ)f =

ρ1(Λ) . . .
ρk(Λ)

 f (15)

So that the composition of scalar, vectorial and tensorial features can be chosen freely. The feature
dimension of f will be given by dim(f) = dim(ρ1) + ...+ dim(ρk).

B Extension of LLoCa to O(1, d) and the Poincaré group

First, note that LLoCa does not cover the full Lorentz group including parity and time reversal, but
only the fully-connected subgroup denoted by SO+(1, 3). An extension to O(1, 3) requires to also
predict extra parity and time reversal transformations, similar to what has been done in [30] for
extending local canonicalization from SO(3) to O(3). Afterwards, extending LLoCa to O(1, d) is
straightforward. Using Eq. (13), one may predict d many d+ 1-dimensional vectors. Then, a trivial
extension of Alg. 1 with d-dimensional Gram-Schmidt algorithm for the spatial rotation can be used
to predict orthonormal local frames for canonicalization w.r.t. O(1, d). Furthermore, the tensorial
message passing based on the tensor representations defined by Eq. (3) can be extended directly to
the case of O(1, d).

In addition, invariance w.r.t. translations could be obtained in the LLoCa framework simply by
operating only on differences of four-vectors. In all our experiments, the input is provided in
momentum space where translation equivariance/invariance is not preferable. However, an extension
to the Poincaré group is possible by modifying Eq. (13) to

vi,k =

N∑
j=1

softmax(φk(si, sj , ∥xi − xj∥))(xi − xj), (16)

where we assume to work in position space with four-vectors xi. One possible challenge may be to
ensure that at least one of the predicted vi,k has a positive norm from which one can construct the
boost B, cf. Alg. 1.

C Background information on the construction of local reference frames

C.1 Gram-Schmidt algorithm in Minkowski space

In this section we discuss how to construct reference framesL that satisfy the transformation behaviour
L→ LΛ−1 of Eq. (5). This can be achieved via Gram-Schmidt orthonormalization algorithm adapted
for Minkowski vectors. Similar to Alg. 1, this algorithm starts from three Lorentz vectors v0, v1, v2
and returns a local reference frame L. While, in Alg. 1, L is decomposed into a rotation and a boost,
here we construct L directly from a set of four orthonormal vectors, as illustrated in Eq. (5).

Starting from three Lorentz vectors v0, v1, v2, we apply the following algorithm to obtain four four-
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vectors u0, u1, u2, u3 that satisfy Eq. (4)

norm4(v) :=
v

∥v∥+ ϵ
,

u0 = norm4(v0),

u1 = norm4

(
v1 − u0

⟨v1, u0⟩
⟨u0, u0⟩

)
,

u2 = norm4

(
v2 − u0

⟨v2, u0⟩
⟨u0, u0⟩

− u1
⟨v2, u1⟩
⟨u1, u1⟩

)
,

uµ3 =
∑

ν,ρ,σ,κ

gµνϵνρσκu
ρ
0u

σ
1u

κ
2 . (17)

We use ϵ = 10−15 and the absolute value of the Lorentz inner product ∥x∥ =
√
|⟨x, x⟩|. The last

line uses the Minkowski index notation to construct u3 using the totally antisymmetric tensor ϵµνρσ ,
the extension of the cross product to Minkowski space. This tensor is defined as ϵ0123 = 1, and it
flips sign under permutation of any pair of indices and is zero otherwise.

We identified two advantages to the polar decomposition approach (PD) described in Alg. 1 compared
to the Gram-Schmidt algorithm in Minkowski space (GS4) described in Eq. 17 above. First, the PD
has the conceptional advantage of explicitly separating the boost and rotation. This allows to easily
study properties of the boost and rotation parts independently, to identify the special cases of a pure
boost and a pure rotation, and, if necessary, to constrain the magnitude of the boost vector v0. Second,
we find that the PD approach of boosting into a reference frame typical for the particle set and then
orthonormalising two vectors in that frame is numerically more stable than the GS4 approach of
directly orthonormalising a set of three vectors, although the approaches are formally equivalent, see
App. C.2.

When constructing the local reference frame L from this orthonormal set of vectors u0, u1, u2, u3,
it is important to additionally transform them into covectors uTk g, where uk denote the vectors
constructed in the algorithm above.

C.2 Proof that polar decomposition via Alg. 1 is equivalent to a Gram-Schmidt algorithm in
Minkowski space

Let us first consider the Gram-Schmidt algorithm in Minkowski space (denoted by GS4). As for
Alg. 1 we start from the set of four-vectors vk, k = 0, 1, 2 as predicted by Eq. (13), assuming
⟨v0, v0⟩ > 0. Now, we use the Gram-Schmidt algorithm in Minkowski space described in Eq. (17), to
orthonormalize the three vectors: {uk}k=0,1,2,3 = GS4(v0, v1, v2). Then, the transformation matrix
constructed from these orthonormal vectors is

LGS =


uT0 g
uT1 g
uT2 g
uT3 g

 (18)

Equation (18) has the correct transformation behavior L → LΛ−1 as shown in Eq. (5) since
{uk}k=0,1,2,3 are also four-vectors due to the Lorentz-equivariance of GS4. According to the po-
lar decomposition, we can decompose a proper Lorentz transformation into a pure rotation R and a
general boost B. By realizing that

L = RB =

(
1 0
0 R̃

)(
γ −γβ⃗T

−γβ⃗ ...

)
=

(
γ −γβ⃗T

... ...

)
, (19)

we can identify the boost part of a Lorentz transformation from the first row, i.e. if we consider
LGS = RGSBGS

BGS = B(β⃗ = −u⃗0/u00) =: B(u0). (20)
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Also note that u0 = v0/⟨v0, v0⟩ due to the design of GS4, therefore B(u0) = B(v0). Consequently,
the pure rotation RGS is given by

RGS = LGS(BGS)
−1

=


uT0 gB(v0)

−1

uT1 gB(v0)
−1

uT2 gB(v0)
−1

uT3 gB(v0)
−1

 . (21)

We now show that the local frame LPD obtained from polar decomposition (PD) via Alg. 1 is
equal to LGS. Starting from the same set of four-vectors vk, k = 0, 1, 2, we first construct the rest
frame boost of B(v0). Since B(u0) = B(v0), the boosts in polar decomposition and Minkowski
Gram-Schmidt are equal, BPD = BGS. To prove that the rotation parts agree as well, i.e. that
RPD = RGS, we first show that the set of GS3 vectors obtained from the spatial parts of B(v0)v1
and B(v0)v2, embedded in a set of four-vectors with zero energy component, is equal to the set given
by the last three orthonormal four-vectors obtained from GS4 of B(v0)v0, B(v0)v1, and B(v0)v2, i.e.
{(0,GS3(

−−−−−→
B(v0)v1,

−−−−−→
B(v0)v2)k)}k=0,1,2 = {GS4(B(v0)v0, B(v0)v1, B(v0)v2)k}k=1,2,3. Indeed,

u0 = norm4(B(v0)v0) = (1, 0⃗) ,

u1 = norm4(v1 − (v01 , 0⃗)) = (0,norm3(v1))

u2 = norm4(v2 − (v02 , 0⃗)− (0, u⃗1(v⃗2 · u⃗1)) = norm4((0, v⃗2)− (0, u⃗1(v⃗2 · u⃗1))
= (0,norm3(v⃗2 − u⃗1(v⃗2 · u⃗1))

uµ3 =
∑

ν,ρ,σ,κ

gµνϵνρσκu
ρ
0u

σ
1u

κ
2 =

∑
ν,i,j

gµkϵk0ij u00︸︷︷︸
=1

ui1u
j
2 =

∑
k,i,j

gµkϵk0iju
i
1u

j
2

=

{
0 if µ = 0∑

k,i,j ϵ0kiju
i
1u

j
2 = [u⃗1 × u⃗2]k if µ = k

. (22)

Note that ⟨u0, u0⟩ = 1 and ⟨ui, ui⟩ = −1 for i = 1, 2, 3. Therefore, the first component of the GS4

vectors other than u0 is always zero while the spatial components are equal to those obtained from GS3

(cf. Eq. (25) below). Since GS4 is Lorentz-equivariant, we have GS4(B(v0)v0, B(v0)v1, B(v0)v2) =
B(v0)GS4(v0, v1, v2) = B(v0){uk}k=0,1,2,3. Taken together, we have thus shown that the pure
rotation RPD is the Lorentz transformation which in its rows contains the covectors corresponding to
the orthonormal four-vectors {B(v0)uk}k=0,1,2,3, namely:

RPD =


uT0 B(v0)

T g
uT1 B(v0)

T g
uT2 B(v0)

T g
uT3 B(v0)

T g

 =


uT0 gB(v0)

−1

uT1 gB(v0)
−1

uT2 gB(v0)
−1

uT3 gB(v0)
−1

 = RGS, (23)

where in the last step we have inserted I4 = gg and then identified B(v0)
−1 = gB(v0)

T g. We
indeed find that also the rotational part of the two local reference frames is the same which concludes
the proof.

Since LPD = LGS, the correct transformation behavior L → LΛ−1 of the local reference frame
based on Alg. 1 immediately follows from the correct transformation behavior of LGS.

D Experimental details

D.1 Constructing local reference frames

Here we give additional details on the local reference frame construction presented in Sec. 4.5. We
use double precision for precision-critical operations to minimize sources of equivariance violation.
In particular, we use double precision for all operations in the vector prediction (13) and the polar
decomposition in Algorithm 1, except for the neural network φk(si, sj , ⟨pi, pj⟩) which is evaluated
in single precision.
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Equivariant vector prediction. We use the same architecture for the network φk in all experiments,
an MLP with 2 layers and 128 hidden channels. We find that normalizing the result of Eq. (13)
improves numerical stability. The modified relation reads

v′i,k = vi,k

/√√√√ n∑
i=1

∥vi,k∥2, (24)

where ∥a∥ =
√
⟨a, a⟩ and i = 1 . . . N runs over the N particles in the set. Note that ∥ vi,k∥ ≥ 0 and

∥pi + pj∥ ≥ 0 by construction.

3D Gram-Schmidt orthonormalization. Here we describe the operation GramSchmidt(w⃗1, w⃗2)
(or GS3(w⃗1, w⃗2)) in Algorithm 1 in more detail

norm3(w⃗) :=
w⃗

∥w⃗∥+ ϵ
,

u⃗1 = norm3 (w⃗1) ,

u⃗2 = norm3 (w⃗2 − u⃗1(w⃗2 · u⃗1)) ,
u⃗3 = u⃗1 × u⃗2. (25)

We use ϵ = 10−15, and× denotes the cross product. The resulting vectors u⃗1, u⃗2, u⃗3 are orthonormal,
i.e. they satisfy u⃗i · u⃗j = δij .

Numerical stability of local frame prediction. Most particles at the LHC can be considered
massless as the typical energy scale is much larger than the mass of single particles. When operating
on four-momenta using single precision, the particle mass value is often modified due to numerical
underflows, leading to particles with zero mass in some cases. To avoid downstream instabilities,
we enforce a minimal particle mass mϵ by increasing the energy of all input particles pi as E′ =√
m2

ϵ + E2, hence m′2 = m2
ϵ + m2. We use mϵ = 10−5 and mϵ = 5 · 10−3 for the amplitude

regression and tagging experiments, respectively.

Furthermore, we have carefully designed Eq. (13) to avoid vectors vi,0 with small or negative norm
which would cause instabilities due to large boosts. The reason that local frames with large boosts B
are problematic is that they multiply the latent features in each message passing step, possibly leading
to exploding gradients. Such large boosts are caused by vectors vi,0 constructed in Eq. (13) that have
small but positive norm, because they yield large values for γ in Eq. (2). These small-norm vectors vi,0
can be caused by the typically small-norm particle 4-momenta pi in Eq. (13) either if all 4-momenta pi
point in a similar direction, or if the coefficient softmax(φk(. . . )) is small for all except one particle.

Even bigger problems could occur if the vectors vi,0 had zero or negative norm, because the boost
matrix B in Eq. (2) is ill-defined due to β⃗2 ≥ 1. In practice, such pathological vectors vi,0 do not
occur with our implementation.

Moreover, we have identified several techniques to avoid large boosts already at initialization, where
such instabilities are most likely to occur. First, we include a softmax operation in Eq. (13) to prevent
any negative-norm vectors in the process. Second, we use regulator masses to enforce a lower limit
on the norms of the input particles pi. Third, we multiply by pi + pj instead of simply pi in Eq. (13),
because pi + pj typically is not strongly boosted anymore.

Lastly, the SO(3) Gram-Schmidt orthonormalization used in Alg. 1 requires two linearly independent
vectors. We ensure that the two vectors w⃗1, w⃗2 are not collinear nor null by calculating the cross-
product between the two vectors. Concretely, if ∥w⃗1 × w⃗2∥ < ϵcollinear, we replace w⃗1 and w⃗2 by
w⃗1 + ϵcollinear δ⃗1 and w⃗2 + ϵcollinear δ⃗2, respectively, where δ⃗1,2 are random normal directions, i.e.
δi ∼ N (0, 1). In our experiments, we set ϵcollinear = 10−16 and we observe that, besides a handful
of exceptions at initialization, the predicted vectors are never regularized. This indicates that our
orthonormalization procedure is well under control.

D.2 QFT amplitude regression

Dataset. The amplitude regression datasets are publicly available on https://zenodo.org/
records/16793011. They are generated in complete analogy to Spinner et al. [42]. The Monte
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Carlo generator MadGraph [1] is used to generate particle configurations for a given process following
the phase-space distribution predicted in QFT. Each data point contains the kinematics of the two
colliding quarks, the intermediate Z bosons, and the additional gluons. The events have unit
weight and, therefore, closely simulate the distributions which can be observed in the experiments.
The amplitude is re-evaluated using a standalone MadGraph package and stored with the particle
kinematics. Physics-motivated cuts are needed to avoid divergent regions. We apply a cut on the
transverse momentum, pT > 20 GeV, and on the angular distance between gluons, ∆R > 0.4.

The Z + {1, 2, 3}g datasets contain 10M events each, while we generate 100M events for the more
challenging Z + 4g dataset to complete our scaling studies. For validation and testing, we use
the same independent dataset as in [42], from which we use 100k events for validation and 500k
events for the final evaluation. The amplitudes A are preprocessed with a logarithmic transformation
followed by a standardization,

A′ =
logA− logA

σlogA
. (26)

The input four-momenta are rescaled by the standard deviation of the entire dataset. Finally, we
remove the alignment along the z-axis in two steps. First, we boost the inputs in the reference frame
of the sum of the two incoming particles, also called center-of-mass frame. Then, we apply a random
general Lorentz transformation.

Models. Our GNN and LLoCa-GNN use standardized four-momenta and one-hot encoded particle
types as inputs. For LLoCa-GNN, the four-momenta are transformed into their local frames. Both
networks share the same graph neural network backbone. The GNN consists of three edge convolution
blocks. In each convolution, the message passing network is an MLP with three hidden layers with
128 hidden channels. The message between nodes is constructed from the hidden node representations
and one additional edge feature defined as the Minkowski product of the two particle’s four-momenta.
The aggregation of the messages is done with a simple summation. For the LLoCa-GNN, we use 64
channels each for scalar and vector representations, i.e. 64 scalars and 16 vectors. The GNN and the
LLoCa-GNN have 2.5 · 105 parameters and 2.7 · 105 parameters, respectively.

Our Transformer and LLoCa-Transformer networks use the same inputs as the GNN and LLoCa-
GNN described above. These features are encoded with a linear layer in a latent representation
with 128 channels. Each transformer block performs a multi-head self-attention with eight heads
followed by a fully-connected MLP with two layers and GELU nonlinearities. Similar to the LLoCa-
GNN, the latent representation of the LLoCa-Transformer is divided into 50% scalar and 50% vector
features. We stack eight transformer blocks, totaling 106 parameters for both networks. The LLoCa-
Transformer has 2× 104 additional parameters.

The other Lorentz-equivariant baseline, L-GATr, is taken from its official repository5. We only
modify the number of hidden multivector channels to 20, such that the number of parameters of all
our transformer models is roughly 106, matching the LLoCa-Transformer. The inputs of the MLP-I
baseline are all the possible Lorentz-invariant features. The neural networks consists of five hidden
layers with 128 hidden channels each, summing up to 5.5× 104 learnable parameters.

Training. All models are trained with a batch size of 1024 and using the Adam optimizer with
β = [0.99, 0.999] to optimize the network weights for 2 · 105 iterations. We use PyTorchs
ReduceLROnPlateau learning rate scheduler to decrease the learning rate by a factor 0.3 if no im-
provements in the validation loss are observed in the last 20 validations. We validate our models
every 103 iterations; if 103 iterations are less than 50 epochs then we validate every 50 epochs. We
use the same settings for the L-GATr baseline after finding improved accuracy over the original L-
GATr training parameters. The models are trained on a single A100 GPU.

Data augmentation. In our framework, to train with data augmentation we have to sample global
reference frames that are elements of the respected symmetry group. We follow the polar decom-
position discussed in App. C to define global frames. We sample uniformly distributed rotations
represented as quaternions. While it is feasible to uniformly sample rotation matrices on the 3-sphere,
the non-compactness of the Lorentz group makes it impossible to uniformly sample boost matrices.
We therefore sample each component of the boost velocity from a Gaussian distribution N (0.0, 0.1),

5https://github.com/heidelberg-hepml/lgatr
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truncated at three standard deviations. The mean and standard deviation of the Gaussian is estimated
based on the training dataset. Finally, we define the global reference frames as the combination of a
boost to the center-of-mass frame of the two incoming particles and the random Lorentz transforma-
tion described above.

Timing and FLOPs. We evaluate the total training time and the FLOPs per forward pass for the
amplitude regression networks. Training times are measured within our code environment on an
H100 GPU, excluding overhead from validation and testing. FLOPs per forward pass are computed
for Z + 4g events using PyTorch’s torch.utils.flop_counter.FlopCounterMode. The results
for both training time and FLOPs are summarized in Fig. 3.

D.3 Jet tagging

Dataset. We use the JetClass tagging dataset of Qu et al. [38].6 The data samples are organized
as point clouds, simulated in the CMS experiment environment at detector level. For details on the
simulation process, see Qu et al. [38]. The number of particles per jet varies between 1 and 128,
typically averaging 30–50 depending on the jet type. Each particle is described by its four-momentum,
six features encoding particle type, and four additional variables capturing trajectory displacement.
The dataset comprises 10 equally represented classes and is split into 100 million events for training,
20 million for testing, and 5 million for validation. Accuracy and AUC are used as global evaluation
metrics, and class-specific background rejection rates at fixed signal efficiency are reported in Tab. 5.

Models. Our implementations of LLoCa-ParticleNet and LLoCa-ParT are based on the latest
official versions of ParticleNet and ParT.7 We apply minimal modifications to the original codebases.
In LLoCa-ParticleNet, we transform the sender’s local features from its own local frame to that of the
receiver, and perform the k-nearest-neighbors search using four-momenta expressed in each node’s
local frame. In LLoCa-ParT, we similarly evaluate edge features – used to compute the attention bias
– based on four-momenta in local frames. Additionally, we implement tensorial message passing in
the particle attention blocks, as described in Sec. 4.3, while retaining standard scalar message passing
for class attention. Unlike the official ParT implementation, which uses automatic mixed precision,
our LLoCa-ParT implementation employs single precision throughout to avoid potential equivariance
violations caused by numerical precision limitations.

Our baseline transformer is a simplified variant of ParT, maintaining a similar overall network
architecture. Whereas ParT aggregates particle information using class attention, our baseline instead
employs mean aggregation. Furthermore, the learnable attention bias present in ParT is omitted
in our design, leading to a significant gain in evaluation time. Consistent with ParT, we use 128
hidden channels and expand the number of hidden units in each attention block’s MLP by a factor of
four. While ParT includes eight particle attention blocks followed by two class attention blocks, our
baseline transformer consists of ten standard attention blocks, followed by mean aggregation.

The inputs to all our models are the particle four-momenta pi combined with the 17 particle-
wise features described in Tab. 3. Following Eq. (13), the Frames-Net φ receives pairwise inner
products based on the four-momenta pi combined with the 17 particle-wise features in Tab. 3 as
scalars si. Note that the 7 kinematics features are not invariant under Lorentz transformations,
we discuss this aspect below in more detail. For the backbone network, the kinematic features
∆η,∆ϕ, log pT , logE, log pT /pT,jet, logE/Ejet,∆R are all expressed in the respective local refer-
ence frames. The 6 particle identification features and the 4 trajectory displacement features are
treated like scalars, i.e. they are not transformed when moving to the local reference frames. The
backbone network input is then constructed from these combined 17 features.

For all models, we break Lorentz equivariance by including additional symmetry-breaking inputs
in two ways. First, the 7 kinematic features listed in Tab. 3 are only invariant under the unbroken
SO(2) subgroup of rotations around the beam axis, but included in the list of Lorentz scalars si that
serves as input to the Frames-Net. Second, we append additional three “reference particles” to the
particle set that serves as input for the local reference frame prediction described in Sec. 4.5. These
reference particles are the time direction (1, 0, 0, 0) as well as the beam direction and its counterpart
(1, 0, 0,±1). Together, they define the time and beam directions as two reference directions which will

6Available at https://zenodo.org/records/6619768 under a CC-BY 4.0 license.
7Available at https://github.com/hqucms/weaver-core/tree/dev/custom_train_eval.
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Category Variable Definition

Kinematics

∆η difference in pseudorapidity η between the particle and the jet axis
∆ϕ difference in azimuthal angle ϕ between the particle and the jet axis
log pT logarithm of the particle’s transverse momentum pT
logE logarithm of the particle’s energy
log pT

pT (jet) logarithm of the particle’s pT relative to the jet pT
log E

E(jet) logarithm of the particle’s energy relative to the jet energy
∆R angular separation between the particle and the jet axis

(
√

(∆η)2 + (∆ϕ)2)

Particle identification

charge electric charge of the particle
Electron if the particle is an electron (|pid|=11)
Muon if the particle is a muon (|pid|=13)
Photon if the particle is a photon (pid=22)
CH if the particle is a charged hadron (|pid|=211 or 321 or 2212)
NH if the particle is a neutral hadron (|pid|=130 or 2112 or 0)

Trajectory displacement

tanh d0 hyperbolic tangent of the transverse impact parameter value
tanh dz hyperbolic tangent of the longitudinal impact parameter value
σd0 error of the measured transverse impact parameter
σdz error of the measured longitudinal impact parameter

Table 3: Input features for the JetClass dataset [38]. Kinetic features in the global frame are used as symmetry
breaking during prediction of the local frames.

stay fixed for all inputs, effectively breaking the Lorentz-equivariance down to the transformations
that keep these two directions unchanged. We note that two of the three reference vectors would
already be sufficient, and also already one of the two ways of Lorentz symmetry breaking would be
sufficient in principle. The effect of symmetry-breaking inputs is discussed in App. E.

Training. For both LLoCa-ParT and LLoCa-ParticleNet, we adopt the same training hyperparame-
ters as the official implementations, without any additional tuning. Specifically, models are trained
for 1,000,000 iterations with a batch size of 512, using the Ranger optimizer as implemented in the
official ParT and ParticleNet repositories. A constant learning rate is applied for the first 700,000
iterations, followed by exponential decay. We use a learning rate of 0.001 for all networks.

Our Transformer and LLoCa-Transformer models are trained with the same number of iterations,
batch size, and initial learning rate as LLoCa-ParT, but use the AdamW optimizer in conjunction with
a cosine annealing learning rate schedule.

Timing and FLOPs. To compare the training costs of the different tagging networks, we eval-
uate both training time and FLOPs per forward pass. Training times are measured within our
code environment on an H100 GPU, excluding overhead from data loading, validation, and test-
ing. FLOPs per forward pass are computed for events containing 50 particles using PyTorch’s
torch.utils.flop_counter.FlopCounterMode. The results for both training time and FLOPs
are summarized in Tab. 1.

E Additional results

In this section, we present additional results for the QFT amplitude regression and jet tagging
experiments.

E.1 QFT amplitude regression

More Lorentz-equivariant architectures. Following the guiding principle of our contribution,
we present other architectures that are turned into Lorentz-equivariant via local canonicalization.
We study the same graph network without including the Lorentz-invariant edge features ⟨pi, pj⟩
as arguments for the main network. The other baseline we consider is a simple MLP with four-
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Figure 5: Comparison between LLoCa models and their non-equivariant counterparts. We consider a
simple MLP (left) and a graph network that does not use additional Lorentz invariant edge features (right). The
global frames for the data augmentation (DA) results are sampled as described in App. D.

momenta as inputs. We do not include non-trivial frame-to-frame transformations as in Eq. (10),
effectively allowing only scalar messages. The architecture is still Lorentz-equivariant due to Sec. 4.2.
In Fig. 5 we repeat the same scaling study as presented in Sec. 5. Although these two models are
not competitive with the models presented in Sec. 5, we observe significant improvements from
introducing Lorentz-equivariance.

Frames-Net regularization. Besides the message representations discussed in Tab. 2, the main
design choice of LLoCa is the architecture of the Frames-Net φ described in Sec. 4.5. We consider
several choices and train LLoCa-Transformers on the Z + 4g dataset for different training dataset
sizes, see Fig. 6. First, we find that the default Frames-Net (“Learnable LLoCa”) tends to overfit at
larger training dataset sizes than the main network. We tackle this by using a dropout rate of 0.2 when
less than 105 training events are available (“Learnable LLoCa + Dropout”). We do not use dropout
for larger training dataset sizes because we find that it affects the network performance. A similar
effect can be achieved by decreasing the size of the Frames-Net (“Learnable small LLoCa”), where
we use 16 instead of 128 hidden channels. However, we find that decreasing the network size slightly
degrades performance in the large-data regime. We find that a Frames-Net with parameters fixed after
initialization (“Fixed LLoCa”) still outperforms the non-equivariant counterpart. When little training
data is available, a fixed Frames-Net combined with a dropout rate of 0.2 (“Fixed LLoCa + Dropout”)
even achieves the best performance.

Constructing local reference frames. Our default approach for constructing local reference frames
based on a polar decomposition is equivalent to a direct Gram-Schmidt algorithm in Minkowski
space and removing the boost yields the special case of local reference frames for SO(3)-equivariant
architectures, see Sec. 4.5 and App. C. We now put these observations to the test and train LLoCa-
Transformers on different training dataset sizes of the Z + 4g dataset, see Fig. 6. First, we find that a
direct Gram-Schmidt algorithm in Minkowski space (GS4) shows very similar performance to our
default polar decomposition approach (PD). The special case of SO(3)-equivariance obtained by
only including the rotation part (GS3) yields significantly worse performance due to the reduced
symmetry group. All approaches show a very similar scaling behaviour with the training dataset size.

Attention inner product. For the scaled dot-product attention discussed in Eq. (11), we use
the Minkowski product to project keys onto queries. We find that this design choice significantly
outperforms the naive choice of Euclidean attention, see Tab. 4.

E.2 Jet tagging
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Figure 6: Design choices when constructing local reference frames. Left: Effect of the network architecture
used for the Frames-Net φ. We use “Learnable LLoCa” in all other experiments, and “Learnable LLoCa +
Dropout” when less than 105 training events are available. Right: Comparison of different orthonormalization
schemes. We use “PD” in all other experiments.

H → bb̄ H → cc̄ H → gg H → 4q H → lνqq̄′ t → bqq̄′ t → blν W → qq̄′ Z → qq̄
Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN [26] 2924 841 75 198 265 797 721 189 159
P-CNN [41] 4890 1276 88 474 947 2907 2304 241 204
ParticleNet [37] 7634 2475 104 954 3339 10526 11173 347 283
ParT [38] 10638 4149 123 1864 5479 32787 15873 543 402
MIParT-L [48] 10753 4202 123 1927 5450 31250 16807 542 402
L-GATr [9] 12987 4819 128 2311 6116 47619 20408 588 432

Transformer (ours) 10753 3333 116 1369 4630 24390 17857 415 334
LLoCa-Transf.* (ours) 11628 4651 125 2037 5618 39216 17241 548 410
LLoCa-ParT* (ours) 11561 4640 125 2037 5900 41667 19231 552 419
LLoCa-ParticleNet* (ours) 7463 2833 105 1072 3155 10753 9302 403 306

Table 5: Background rejection rates 1/ϵB for the JetClass dataset [38]. For each class, RejN% represents
the inverse signal fraction at fixed background rejection rate N%. Lorentz-equivariant methods are marked with
an asterisk*. See Tab. 1 for the global accuracy and AUC.

Table 4: Benefit of Minkowski at-
tention compared to Euclidean atten-
tion. We show results for the LLoCa-
Transformer on the full Z + 4g dataset.

Attention MSE (×10−5)

Euclidean 2.5 ± 0.4
Minkowski 1.0 ± 0.1

More evaluation metrics. In addition to the global evalu-
ation metrics reported in Tab. 1, we report class-wise back-
ground rejection rates in Tab. 5.

Effect of Lorentz symmetry breaking. We follow the ap-
proach of Ref. [9, 42] of using fully Lorentz-equivariant mod-
els and breaking their symmetry instead of considering models
that are only equivariant under the SO(2) symmetry of rota-
tions around the beam direction. Note that the baseline models
ParticleNet, ParT, MIParT and our Transformer are all SO(2)-
invariant, because their inputs are invariant under SO(2) trans-
formations.

As described in App. D, we use two independent methods to break the Lorentz symmetry down to
the SO(2) subgroup of rotations around the beam direction. They are (a) including features in the
list of Lorentz-invariant inputs si in Eq. (13) that are only invariant under the unbroken subgroup
(non-invariant scalars, or NIS), and (b) including reference vectors (RV) pointing in the directions
orthogonal to the unbroken subgroup as additional particles. The additional NIS and RV inputs are
described in more detail in App. D. In Tab. 6 we study the effect of this design choice.

To study the impact of Lorentz symmetry breaking, we directly compare the cases of “No symmetry
breaking” with only “RV”, only “NIS”, and our default of including both “RV & NIS”. The Lorentz-
equivariant model that does not include any source of symmetry breaking is significantly worse and
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Symmetry breaking All classes H → bb̄ H → cc̄ H → gg H → 4q H → lνqq̄′ t → bqq̄′ t → blν W → qq̄′ Z → qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

Non-equivariant 0.855 0.9867 10753 3333 116 1369 4630 24390 17857 415 334
SO(3)-equi. RV & NIS 0.863 0.9880 11976 4619 124 2030 5571 37037 16394 545 407
No symmetry breaking 0.856 0.9870 9756 3781 113 1660 4762 24692 15385 465 351

RV 0.861 0.9877 11494 4444 122 1923 5222 34483 17391 521 398
NIS 0.863 0.9881 11300 4630 124 1983 5249 40817 17544 547 405

RV & NIS (default) 0.864 0.9882 11628 4651 125 2037 5618 39216 17241 548 410

Table 6: Impact of symmetry breaking for jet tagging. LLoCa-Transformer accuracy, AUC, and background
rejection 1/ϵB for different symmetry-breaking approaches. We compare the effect of symmetry breaking with
reference vectors (RV) and non-invariant scalars (NIS) with the case of no symmetry breaking as well as a non-
equivariant and a SO(3)-equivariant model (which also uses symmetry breaking with RV&NIS).

Table 7: LLoCa significantly lifts the performance of non-equivariant backbone architectures even when using
the same computational resources. See Tab. 1 for more baselines.

Network Training time Accuracy AUC

Transformer 15 h 0.855 0.9867
LLoCa-Transformer (0.5× iterations) 15 h 0.861 0.9877

Transformer (2× iterations) 31 h 0.855 0.9868
L-GATr (0.2× iterations) 33 h 0.855 0.9869
ParT 33 h 0.861 0.9877
LLoCa-Transformer 31 h 0.864 0.9882

only marginally better than the non-equivariant approach, because it constrains the model to assign an
equal tagging score to input jets with different physical meaning. The models trained with symmetry
breaking through the “RV”, “NIS” and “RV & NIS” approaches all have a sufficient amount of
symmetry breaking included, but still yield slightly different results. We also compare to a SO(3)-
equivariant model using the same reference vectors and non-invariant scalars to break the symmetry
down to the unbroken subgroup of rotations around the beam direction.

Efficiency of LLoCa taggers at equal computational cost. As demonstrated in Tab. 1, LLoCa
taggers consistently improve the performance of backbone networks such as vanilla transformers, at
the cost of increased computational cost. In Tab. 7, we present additional results for networks trained
with equal computational cost. The main baselines are ParT [38], widely used by experimental
collaborations, and the recently proposed L-GATr [42], which improves upon ParT but requires
4× longer training (166h). Our most compute-efficient LLoCa tagger is the LLoCa-Transformer.
It almost matches L-GATr’s accuracy yet trains in only 31h (vs 33h for ParT), delivering extra
performance at lower cost – one of the key results of this paper.

We also matched GPU hours by training the plain transformer for 2× iterations and the LLoCa-
Transformer for 0.5× iterations. Again, we find that the LLoCa-Transformer consistently achieves
improvements at fixed training time (see Tab. 7).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Both theoretical and practical claims listed in abstract and introduction are
adequately addressed in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss LLoCa’s shortcomings in the main paper in Sections 4.5 and 5.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Proofs for all theoretical results can be found either in the main paper or the
appendix, including the full set of assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In App. D, we list the details of our used architectures and the training setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is open-public, the github link is in the introduction. The datasets
used in the classification and generation experiment are already public, the regression dataset
is linked in Appendix D.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: In the experiment section of the main text and in App. D, we list the details of
our architectures and the training setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide an estimate of epistemic uncertainty through the variance between
multiple independent results in the regression and generation experiments. We do not report
uncertainties for the classification experiment due to limited computational resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: We report the compute resources used in our experiments together with
execution times in the main paper as well as App. D. Our experiments are of a sufficiently
small scale that they should be reproducible in a typical academic environment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We fully conform to the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Since this work is specific to high-energy physics, we expect societal impact
through the effect that our architecture has on research in that field. We do not anticipate
any particular risk of negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are not aware of any such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the existing assets we use in the paper. Licenses are mentioned in
Appendix D.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code and new datasets are both publicly available and properly documented,
the links are in the manuscript.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
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tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not make use of LLMs beyond writing, editing, or formatting
purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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