
SlimLLM: Accurate Structured Pruning for Large Language Models

Jialong Guo 1 Xinghao Chen 1 Yehui Tang 1 Yunhe Wang 1

Abstract
Large language models(LLMs) have garnered sig-
nificant attention and demonstrated impressive
capabilities in a wide range of applications. How-
ever, due to their enormous computational costs,
the deployment and application of LLMs are of-
ten severely limited. To address this issue, struc-
tured pruning is an effective solution to compress
the parameters of LLMs. Determining the im-
portance of each sub-module in LLMs and min-
imizing performance loss are critical issues that
need to be carefully addressed in structured prun-
ing. In this paper, we propose an effective and
fast structured pruning method named SlimLLM
for large language models. For channel and at-
tention head pruning, we evaluate the importance
based on the entire channel or head, rather than
merely aggregating the importance of individual
elements within a sub-module. This approach en-
ables a more holistic consideration of the interde-
pendence among elements within the sub-module.
In addition, we design a simple linear regression
strategy for the output matrix to quickly recover
performance. We also propose layer-based im-
portance ratio to determine the pruning ratio for
each layer. Based on the LLaMA benchmark re-
sults, our SlimLLM outperforms other methods
and achieves state-of-the-art performance.

1. Introduction
Large language models(LLMs) (Achiam et al., 2023; Tou-
vron et al., 2023), currently a popular area of research,
have garnered significant attention due to their remarkable
achievements in handling complex tasks. These models have
not only demonstrated impressive capabilities in natural lan-
guage processing but have also shown potential in a wide
range of applications, from creative writing and language

1Huawei Noah’s Ark Lab, China. Correspondence to:
Xinghao Chen <xinghao.chen@huawei.com>, Yunhe Wang
<yunhe.wang@huawei.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

translation to complex reasoning and problem-solving. With
the enhancement of model capabilities, there is often a cor-
responding surge in computational expenses. This often
limits the deployment and application of LLMs.

Several techniques have been proposed to address the issue
of computational cost in large language models, including
model pruning (Ma et al., 2023; Chen et al., 2023), quantiza-
tion (Frantar et al., 2022; Xiao et al., 2023), and knowledge
distillation (Saha et al., 2024). Among these, model pruning
stands out as a particularly effective strategy. Model prun-
ing (Anwar et al., 2017) involves the systematic removal
of redundant or less important parameters from the model,
which not only reduces the model’s size but also decreases
its computational requirements. Given these benefits, model
pruning has emerged as an ideal solution for large language
models compression, particularly for deployment in envi-
ronments with limited resources.

Pruning can be categorized into two main types: unstruc-
tured pruning and structured pruning. Unstructured prun-
ing involves removing individual weights from the model
based on their magnitude or other criteria, which can lead
to a sparse weight matrix. There are several representative
works in this field, such as SparseGPT (Frantar & Alistarh,
2023) and Wanda (Sun et al., 2023). These methods are ef-
fective in reducing the number of parameters but may not be
optimal for hardware acceleration due to the irregular spar-
sity pattern. Structured pruning, on the other hand, aims to
remove channels, attention head, or layers, which results in
a more regular and hardware-friendly sparsity pattern. For
its better compatibility with existing hardware architectures,
structured pruning has attracted much attention.

Considering the enormous computational cost required for
training LLMs, the method for LLMs pruning typically em-
ploys the strategy of post-training pruning. For instance,
LLM-Pruner (Ma et al., 2023) measures the importance
of weights based on gradient information and recovers the
performance of the pruned model through efficient tuning
techniques. Due to the necessity of computing gradients, a
significant amount of storage and computational resources
is required. To address this issue, LoRAPrune (Zhang et al.,
2023) proposes to estimate the importance of weights using
LoRA (Hu et al., 2021). LoRAP (Li et al., 2024) designs
a gradient-free strategy to prune the unimportant channels,

1

SlimLLM: Accurate Structured Pruning for Large Language Models

and combines Low-Rank matrix approximation to compress
the weights of multi-head self-attention. As LoRAP es-
timate the importance score of weight by calculating the
product of the weight magnitude and the corresponding in-
put activation’s L2 norm, it ignore the direction of weight
vector when pruning channels. To account for the influence
of weight vector direction, we construct the feature space of
the output and evaluate the importance of channels within
this feature space. For MHA, we employ Pearson similarity
to assess the significance of each head, which directly treats
the head as a whole for evaluation. Besides, we design a
simple yet effective linear regression strategy to recover the
performance loss due to pruning. At last, we propose a
criterion to determine the pruning ratio for each layer.

Based on the LLaMA series of models, we extensively evalu-
ate the effectiveness of our proposed method. As evidenced
by the experimental results obtained from the Common-
sense Reasoning datasets, our proposed method achieves
98.7% retention of the original performance on LLaMA-7B
when the pruning ratio is set at 20% and outperforms current
structured pruning methods.

Contributions. In this paper, our contributions can be sum-
marized as follows:

• For the MHA sub-layer, we propose similarity im-
portance for head pruning, which evaluates the entire
head importance according to the pearson similarity
between original output and output without correspond-
ing head’s contribution. Besides, we design a greedy
search algorithms to find better combination of heads.

• For the FFN sub-layer, we devise a feature space im-
portance method, which construct the feature space by
output activations and assess the importance by consid-
ering both direction and magnitude of the channel.

• We find a simple yet effective strategy for performance
recover. The method employs linear fitting of the out-
puts before and after pruning each layer to fine-tune the
parameters of the output matrix. Experimental results
show that the method can recover the loss caused by
pruning at an extremely low cost.

• We design a non-uniform strategy to prune the different
layers of LLMs, controlling the pruning ratio of each
layer based on the cosine similarity between their input
and output.

2. Related Work
Importance score of filters. The filter is the operational
unit for structured pruning. In traditional structured prun-
ing (Liu et al., 2017; Zhuang et al., 2020), scaling factors de-
rived from Batch Normalization or learnable inserted masks

consistently serve as indicators of filter importance. For
LLMs pruning, Sheared LLaMA (Xia et al., 2023) adopts a
similar approach, compressing the model by learning a set
of pruning masks. This method can achieve performance
comparable to models of equivalent sizes through sufficient
training. To efficiently evaluate the importance of filters,
several gradient-based methods have been proposed, such
as LLM-pruner and LoRAPrune. LLM-Pruner employs a
first-order Taylor expansion to evaluate the importance of
weights. LoRAPrune uses the gradient of LoRA parameters
to measure the importance of model’s parameters. Addition-
ally, LoRAP utilizes (Sun et al., 2023)’s methodology to
assess the significance of weights, which achieves gradient-
free importance estimation for weights. FLAP (An et al.,
2024) proposed a fluctuation-based pruning criterion, tak-
ing into account the fluctuations in activation values. Both
of these methods calculate the importance score of filters
by aggregating the importance scores of weights like sum-
mation or L2 Norm. Furthermore, SlimGPT (Ling et al.,
2024) incorporates the Optimal Brain Surgeon technique in
structured pruning for LLMs, where filters are pruned by
minimizing the squared error between the outputs before
and after pruning.

Importance score of layers. For LLMs pruning, current
methods typically employ a uniform ratio for pruning each
layer. OWL (Yin et al., 2023) finds that non-uniform layer-
wise sparsity typically obtain better performance and deter-
mine the pruning ratio by Layerwise Outlier Distribution.
Meanwhile, several works recognize the notable redundancy
across the layers of LLMs, and measure the importance of
layers through the cosine similarity between inputs and out-
puts. Some works (Men et al., 2024; Chen et al., 2024;
Muralidharan et al., 2024) apply this strategy, using the
cosine similarity to measure layer importance for pruning
entire layers of LLMs. SlimGPT highlights that the error
introduced during pruning in one layer can accumulate and
increase with model depth. To address this, SlimGPT de-
signs an incremental pruning ratio for layers.

Compression technologies. Based on the importance score
of sub-module, there are different strategies to compression
model. Specifically, unstructured pruning removes the least
important elements in the matrix, while structured pruning
typically removes entire rows (cols) or multiple rows (cols)
in the matrix. Moreover, there have been some more coarse-
grained pruning strategies recently. Some studies (Men
et al., 2024; Kim et al., 2024; Song et al., 2024) compress
models by removing entire layers, and others (Chen et al.,
2024) replace transformer blocks with a lightweight net-
work. Besides, low-rank approximation (Hsu et al., 2022;
Yu & Wu, 2023) serves as an efficient technique for model
compression. Low-rank approximation typically transforms
matrices in the model into the product of two smaller ma-
trices, thereby reducing the number of parameters. The

2

SlimLLM: Accurate Structured Pruning for Large Language Models

method proves to be highly effective when the matrix dis-
plays a pronounced low-rank property.

3. Preliminary
Principal component analysis. Principal component anal-
ysis (PCA) is a widely used dimension reduction tech-
nique in data analysis. PCA can capture the directions
of maximum variance in the original data. Given the data
X ∈ Rn×m, where n is the number of data and m repre-
sents the dimension of data. PCA requires to calculate the
covariance matrix of data, it can be describe as follows:

Cov = (X − µ)T (X − µ). (1)

where µ is the mean of data. Then, the covariance matrix
can be decomposed into the following form:

Cov = QΛQ−1. (2)

where Q is the matrix composed of eigenvectors, Λ is the
diagonal matrix, with each diagonal element representing
an eigenvalue. The eigenvalues represent the magnitude of
variance explained by each principal component. To obtain
the reduced-dimensional data, the original data is projected
onto the selected principal components.

4. Methods
We introduce a novel approach to pruning large language
models (LLMs). Our method involves compressing model
parameters by reducing the number of attention heads and
feed-forward network (FFN) channels. Specifically, we
develop two distinct criteria for pruning different sub-layers.
Then, we employ a linear regression strategy to finetune the
weights of output matrix. At the end, we apply our non-
uniform pruning ratio for each layer. We show our method
in Figure 1.

4.1. Similarity Importance for Attention Head Pruning

For multi-head self-attention (MHA), given the input acti-
vation X ∈ RN×C , where N is the length of sequence and
C is the feature dimensions. The multi-head self-attention
mechanism can be described as follows:

Qi = XW i
Q,Ki = XW i

K , Vi = XW i
V ,

headi = Softmax(QiK
T
i /

√
dk)Vi,

MHA(X) =

h∑
i=1

headiW
i
O.

(3)

Algorithm 1 Greedy Search for head pruning
Input: pruned attention heads set: Sp={headi, if headi
is pruned.}, unpruned attention heads set: S−p={headi,
if headi is unpruned.}
Output: left attention heads set Sleft

Sleft = S−p
O−p = Output(S−p)
Oall = Output(Sp + S−p)
Sim = Pearson(O−p, Oall)
for hi ∈ Sp do

for hj ∈ S−p do
O = Output(S−p − hj + hi)
s = Pearson(O,Oall)
if s > Sim then
Sim = s
Sleft = S−p − hj + hi

end if
end for
S−p = Sleft

end for

where W i
Q,W

i
K ,W

i
V are query, key and value matrices in

i-th head, dk is the dimension of head, h is the number of
head, W i

O is the weight matrix for the final linear projec-
tion correspond to i-th head. For structured pruning, when
the W i

O is pruned, it effectively means that the i-th head’s
contribution to the final output is eliminated.

As we mentioned above, we consider the influence of W i
O

to evaluate the importance of each head. Given the input
of output linear projection X , the score of i-th head can be
described as follows:

Scorei = −Pearson(XWO, XWO −XiW
i
O). (4)

We use pearson similarity to measure the linear correlation
between the original output and the output without contri-
bution of W i

O. Considering the interaction between outputs
of each head, we design a greedy search algorithms to max-
imize similarity. For each pruned head, we replace the
unpruned heads in turn and evaluate the pearson similarity.
Then we select combinations of heads with maximum simi-
larity as heads left. The algorithm 1 shows detail process of
our greedy search for head pruning.

4.2. Feature Space Importance for Channel Pruning

When performing channel pruning, it means that we remove
a row or column from the weight matrix, which represents a
vector. Current methods typically first consider the impor-
tance of individual elements in each row (or column), and
then measure the importance of individual channels in an
aggregated manner. This leads to the information loss of

3

SlimLLM: Accurate Structured Pruning for Large Language Models

Attention

Norm

FFN

Norm

Linear Regression

𝑋

𝑥

𝑦

𝑜

𝑤1

𝑤2

𝑊 𝑊′

𝐴 + 𝐵

𝑥

𝑦

𝑜 𝑜

𝑤1

𝑤2

𝑦′

𝑥′

𝑦′

𝑥′

𝑜
𝑜−ℎ𝑖

……
Pearson Similarity

Feature Space Importance

𝑊𝑑
𝑝𝑟𝑢𝑛𝑒𝑑

𝑊𝑜
𝑝𝑟𝑢𝑛𝑒𝑑

Figure 1. The overall framework of our proposed SlimLLM. o−hi denotes the output excluding the i-th head. For the MHA sub-layer,
we employ the Pearson similarity between o−hi and the sum of all heads’ output o to evaluate the importance of each head, and prune
the head with higher similarity when it is inoperative. For the FFN sub-layer, we map down matrix to the feature space of the output
activation, and calculate the channel importance based on the eigenvalues corresponding to the eigenvectors. Finally, we apply linear
regression to fine-tune the output matrix of each sub-layer.

vector direction. Different from previous works, we propose
a novel method that takes into account both the direction
and magnitude of vectors when assessing importance.

Inspired by principal component analysis, we can construct
a feature space and evaluate the importance of each direction
by calculating the eigenvectors and eigenvalues of the output
matrix. Let Y ∈ RN×D represents the output of final
linear projection, where N is the sequence length and D
is the output dimension. We can calculate its eigenvectors
and eigenvalues by PCA. Let Q ∈ RD×D represents the
matrix composed of eigenvectors, M ∈ RD represents the
vector composed of eigenvalues, and Q:,i represents the
eigenvector corresponding to the i-th eigenvalue Mi. Then,
we can map the down matrix Wdown of FFN to the space
composed of eigenvectors using the following formula:

W ′ = WT
downQ, (5)

Combining the eigenvalues corresponding to each eigenvec-
tor, the importance score of i-th eigenvector can be calcu-
lated as follows:

Ci = sigmoid(Mi/M̄), (6)

where M̄ is the mean ofM . We use the function of sigmoid
to smooth the eigenvalues, allowing channel importance to
take into account the influence of more eigenvector direc-
tions. Then, the importance score of j-th channel based on

feature space can be calculated as follows:

Idj = ||W ′j1C1,W
′
j2C2, ...,W

′
jDCD||2, (7)

where W ′ji represents the element in the j-th row and i-th
column of W ′.

Following (Li et al., 2024), we consider the dependencies
between neurons and the influence of input activation. The
formulation of j-th channel group importance is as follows:

Ij = ||Xj ||2Idj + ||XL2W
j
gate||2 + ||XL2W

j
up||2, (8)

where ||Xj ||2 is the L2 Norm of the input corresponding j-
th channel. XL2 denotes a vector comprising the L2 Norm
of the input activations corresponding to W j

gate or W j
up.

W j
gate and W j

up are the elements in the j-th row of gate
matrix and up matrix in FFN.

4.3. Linear Regression for Performance Recovery

Since we reduce the number of attention heads and chan-
nels directly, we adopted a simple and fast linear regression
strategy to restore model performance. Let O represents
the output of final linear projection of MHA or FFN. The
i-th dimension of output before and after pruning are re-
spectively expressed as Oi and Opruned

i . We apply a simple
linear fitting of the output before and after pruning. The

4

SlimLLM: Accurate Structured Pruning for Large Language Models

5 10 15 20 25 30
Layer id

0.94

0.96

0.98

1.00

1.02

1.04

1.06

M
ea

n
va

lu
e

MHA
FFN

Figure 2. Different layers’ mean value of the coefficients A in
MHA and FFN on LLaMA-7B.

formulation is as follows:

Oi = AiO
pruned
i +Bi, (9)

Where Ai and Bi are coefficients of a first-order linear
function corresponding i-th dimension of output. The coef-
ficients can be calculated using least squares. Additionally,
we select the pearson similarity to determine the importance
of attention heads, which helps maximize the linear corre-
lation between Oi and Opruned

i and reduces fitting error.
To mitigate the computational overhead, we implement our
piecewise importance score within the FFN.

After the coefficients of A and B is calculated, the formula-
tion of final linear projection can be described as follows:

O = Xin(A ·WO)T +B, (10)

where Xin is the input of final linear projection of MHA or
FFN.

We list the mean values of A obtained by linear regression
for each sub-layer under a pruning ratio of 50% on LLaMA-
7B. The results are show in Figure 2. The results reveal
that the mean values of A consistently hover around 1.0.
This observation suggests that despite a substantial pruning
ratio, the output magnitude of the sub-layer remains closely
aligned with the original output, thereby preserving the
essential characteristics of the model’s performance. By
making fine adjustments to the output matrix through linear
regression, the model can reduce the output error caused by
pruning and effectively maintain its performance.

Simultaneously, the values of B also fluctuate around zero.

4.4. Pruning Ratio for Layers

Finding an appropriate pruning ratio for each layer is crucial.
Maintaining a uniform pruning ratio across all layers often

leads to suboptimal outcomes. Inspired by the work in (Men
et al., 2024), which suggests that the impact of a transformer
block is determined by its ability to change hidden states,
we utilize the cosine similarity between the input and output
of a layer to determine the pruning ratio.

Let Xi,t represents the t-th row of input to layer i. The
pruning ratio of layer i is calculated by follows:

rlayeri = r0 · softmax(α ·E
Xi,tX

T
i+1,t

||Xi,t||2 · ||Xi+1,t||2
), (11)

Both of r0 and α are constant and their value are related to
the pruning ratio. E represents the operation of expectation.
Additionally, for smaller pruning ratios, a larger α can be
used, whereas for larger pruning ratios, α should be reduced.

Based on experimental observations, the cosine similarity
between the first layer and the last layer is found to be
relatively low. This observation is in accordance with the
prevailing notion that the first and last layers tend to be of
greater significance. Similar to many current methods (Ma
et al., 2023; Kim et al., 2024), we skip the first and last
layers during pruning. Moreover, at a pruning ratio of 20%,
we adopt the strategy from LLM-pruner and bypass addi-
tional layers to achieve higher model performance. In the
case of the LLaMA-7B model, it is observed that the co-
sine similarity exhibits a gradual upward trend as the layer
depth increases. Consequently, we employ a stratified prun-
ing strategy, wherein the pruning ratios are systematically
lower in the shallower layers and incrementally higher in
the deeper layers.

5. Experiments
5.1. Experimental Settings

Evaluation and Datasets. We evaluate the performance
of model by performing zero-shot task classification on
common sense reasoning datasets, which follow the setting
of LLM-pruner (Ma et al., 2023), including BoolQ (Clark
et al., 2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers
et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-
easy (Clark et al., 2018), ARC-challenge (Clark et al., 2018)
and OpenbookQA (Mihaylov et al., 2018). Meanwhile, a
zero-shot perplexity (PPL) evaluation is also conducted on
the WikText2 (Merity et al., 2016) and PTB datasets (Mar-
cus et al., 1993). We performed extensive experiments on
LLaMA-1 and LLaMA-2 models to rigorously validate the
efficacy of our proposed method.

Implementation Details. For the calculation of importance
score, we randomly selected 32 samples from Bookcorpus,
and the sequence length of each samples is 128. When
calculating the pruning ratio of layers, we skipped some of

5

SlimLLM: Accurate Structured Pruning for Large Language Models

Table 1. Zero-shot performance of the compressed LLaMA-7B. The average score is computed on the Commonsense Reasoning datasets.
The ”bolded” represents the best result under the same pruning ratio.

Ratio Method WikiText2 PTB BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Ratio=0% Llama-7B 12.62 22.14 73.18 78.35 72.99 67.01 67.45 41.38 42.4 63.25

Ratio=20%
w/o tune

LLM-pruner 19.09 34.21 57.06 75.68 66.8 59.83 60.94 36.52 40.0 56.69
LoRAPrune 20.67 34.12 57.98 75.11 65.81 59.90 62.14 34.59 39.98 56.50
LoRAP 15.69 25.86 71.93 76.44 69.98 65.9 60.56 38.48 40.4 60.53
Ours 15.95 26.09 72.72 75.95 69.82 66.06 64.48 39.33 40.2 61.22

Ratio=20%
w/ tune

LLM-pruner 17.58 30.11 64.62 77.2 68.8 63.14 64.31 36.77 39.8 59.23
LoRAPrune 16.80 28.75 65.62 79.31 70.00 62.76 65.87 37.69 39.14 60.05
LoRAP 16.35 27.06 72.94 76.93 70.9 65.75 64.31 39.93 41.2 61.7
Ours 15.55 26.66 74.71 76.61 71.23 66.54 66.96 40.61 40.2 62.41

Ratio=50%
w/o tune

LLM-pruner 112.44 255.38 52.32 59.63 35.64 53.20 33.50 27.22 33.40 42.13
LoRAPrune 121.96 260.14 51.78 56.90 36.76 53.80 33.82 26.93 33.10 41.87
LoRAP 56.96 87.71 57.8 63.82 46.96 57.3 40.36 27.73 36.80 47.25
Ours 37.89 67.68 63.33 65.40 49.94 58.80 45.83 30.38 37.00 50.10

Ratio=50%
w/ tune

LLM-pruner 38.12 66.35 60.28 69.31 47.06 53.43 45.96 29.18 35.60 48.69
LoRAPrune 30.12 50.30 61.88 71.53 47.86 55.01 45.13 31.62 34.98 49.71
LoRAP 30.90 48.84 63.00 69.64 54.42 58.41 51.94 32.00 35.80 52.17
Ours 26.71 42.19 62.78 68.99 54.73 61.01 54.55 33.28 36.80 53.16

the most important layers. For example, the pruning ratio of
first and last layer is set to zero when pruning model. when
finetuning, we use a single GPU with 2 epochs on cleaned
version of Alpaca (Taori et al., 2023), retaining the same
settings as LLM-pruner. We finetune the pruned model with
LoRA. The learning rate is set to 1e-4, and the batch-size is
64. For the pruning ratio assigned to each layer, when the
pruning ratio is set at 20%, the parameter α in Equation 11
is configured to be 10. When the pruning ratio is increased
to 50%, we correspondingly decrease the parameter value,
setting it to 7.

Baselines. We select the following high-performance struc-
tured pruning methods in recent years as benchmarks:

• LLM-pruner (Ma et al., 2023), as the first structured
pruning method applied to LLMs, has been widely
used as a benchmark in numerous studies. This work
groups the structures based on the dependencies be-
tween weights and prunes the least important groups
using Taylor expansion.

• LoRAPrune (Zhang et al., 2023) is the method which
reduces the gradient computation and memory con-
sumption of LLM-pruner by employing the weights of
LoRA.

• LoRAP (Li et al., 2024) employs distinct compression
strategies for MHA and FFN components within the
Transformer architecture. Specifically, it utilizes low-

rank approximation to compress the weight matrices
of MHA, while adopting a group importance strategy
for FFN. Based on this strategy, the method achieves
state-of-the-art performance.

5.2. Zero-shot Performance.

Table 1 shows the zero-shot performance of the pruned
model. On the LLaMA-7B model, employing a 20% prun-
ing ratio without post-training results in an average score
drop of 2.03%. However, through efficient post-training, the
accuracy of the pruned model can be enhanced by 1.19%.
Compared with other methods such as LoRAP, the score of
our method is improved by 0.7% with 20% pruning ratio.
When compared with PPL, LoRAP demonstrates a slight
advantage in performance on the WikiText2 dataset without
finetuning. Conversely, it shows a minor deficiency in per-
formance on PTB dataset. In the context of finetuning, our
approach attains optimal results on both PPL metrics. When
the pruning ratio reaches 50%, our method still manages
to retain more performance comparing to other methods.
Specifically, in the absence of finetuning, our method at-
tains an average accuracy on the Commonsense Reasoning
datasets that surpasses that of the LoRAP by 2.85%. In
the finetuning scenario, our method achieves a performance
improvement of 1% over other approaches. Specifically,
our approach demonstrates superior performance across the
majority of Commonsense Reasoning datasets.

Table 2 presents our evaluation results on the LLaMA2-7B

6

SlimLLM: Accurate Structured Pruning for Large Language Models

Table 2. Zero-shot performance of the compressed LLaMA2-7B. The average score is computed on the Commonsense Reasoning datasets.
The ”bolded” represents the best result under the same pruning ratio.

Ratio Method WikiText2 PTB BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Ratio=0% Llama2-7B 12.18 47.25 71.04 78.40 72.96 67.17 69.32 40.53 40.80 62.89

Ratio=20%
w/o tune

LoRAP 15.02 58.44 69.24 76.39 69.15 65.11 61.99 35.58 38.60 59.44
Ours 15.70 56.33 69.79 76.28 68.88 63.54 65.74 39.08 39.80 60.44

Ratio=20%
w/ tune

LoRAP 14.67 57.52 70.89 78.13 69.93 65.67 65.99 38.48 39.60 61.24
Ours 15.28 55.46 72.29 78.02 70.95 64.88 67.17 38.99 39.60 61.70

Ratio=50%
w/o tune

LoRAP 60.89 282.22 61.86 62.23 43.98 55.41 38.51 27.65 33.00 46.09
Ours 38.64 141.06 62.69 64.74 45.91 53.28 39.73 29.01 33.2 46.93

Ratio=50%
w/ tune

LoRAP 26.26 101.22 63.27 70.78 55.14 57.85 52.15 30.97 36.00 52.31
Ours 27.29 88.28 64.19 69.04 53.60 55.33 52.53 32.08 37.40 52.02

Table 3. Inference latency of compressed model.

Ratio #Params Prefill(s) decoding(s)

0% 6.7B 0.3008 13.12
20% 5.4B 0.1429 11.48
50% 3.4B 0.1034 9.38

model. We compare our method with LoRAP. As can be
seen from the results, our method performs better on the
majority of datasets. At a pruning ratio of 20%, our method
yields a slightly higher PPL on the WikiText2 dataset com-
pared to LoRAP, while achieving better results on the PTB
dataset and a greater average score on Commonsense Rea-
soning datasets. At a 50% pruning ratio, without fine-tuning,
our method attains an average score of 46.93%, which is
approximately 0.8% higher than LoRAP. After finetuning,
LoRAP’s average results are slightly higher, which is pri-
marily due to the inability to align the finetuning strategies.

5.3. Latency of compressed model

Table 3 illustrates the model size and inference latency of the
pruned LLaMA-7B. The prefill latency was evaluated using
an input sequence length of 256 and a single-token genera-
tion task. To test decoding latency, we set the batch size to
8 and measured the latency for generating 256 tokens. For
each specified pruning ratio, the experiment was repeated
20 times to ensure statistical robustness, and the average
latency was computed as the definitive outcome. All latency
measurements were conducted on a single NVIDIA V100
GPU. As detailed in Table 3, at a pruning ratio of 50%, the
latency for generating a single token, given a consistent in-
put sequence length of 256, decreased from 0.3008 seconds
to 0.1034 seconds. Simultaneously, the decoding latency is
reduced by 28.5% compared to the unpruned model when
the pruning ratio is set at 50%.

Table 4. Ablation Studies for the impact of our strategies at 50%
pruning ratio.

Method WikiText2 PTB Avg.

SlimLLM 37.89 67.68 50.10
w/o Greedy search 40.89 82.60 48.35
w/o feature space importance 38.26 71.21 49.74
w/o non-uniform pruning ratio 66.37 123.52 42.16

5.4. Ablation Study

To verify the effectiveness of our proposed method, we con-
ducted experiments on the LLaMA-7B model to validate
each of the strategies we introduced. Unless otherwise spec-
ified, all experiments were conducted without fine-tuning at
a pruning ratio of 50%.

Greedy search for head pruning. From Table 4, it can be
observed that without greedy search for head pruning, the
model’s performance metrics generally decline across all
evaluation criteria. Among these results, the average score
of Commonsense Reasoning datasets dropped by nearly 2%,
and the PPL metric of WikiText2 and PTB also deteriorated
significantly. This indicates that there is interdependence
among the outputs of different heads, and the linear corre-
lation of outputs before and after pruning can effectively
assess the importance of head combinations. Building on
the basis of individual head importance, greedy search can
rapidly and effectively identify superior head combinations,
thereby enabling the pruned model to retain more of its
original performance.

It is worth noting that, for FFN sub-layer, the outputs of dif-
ferent channels also exhibit direct interdependencies. How-
ever, considering that the number of channels in the interme-
diate layer of FFN is considerably larger than the number
of attention heads, and given the associated computational
overhead, we refrained from employing the greedy search
strategy in the channel pruning.

7

SlimLLM: Accurate Structured Pruning for Large Language Models

Table 5. Ablation Studies for the value of α.

Value WikiText2 PTB Avg.

α = 1 54.17 96.57 44.42
α = 4 43.36 83.91 44.95
α = 7 37.89 67.68 50.10
α = 10 44.82 75.80 46.86

The effective of feature space importance. Given that the
output values are linear combinations of the corresponding
weight vectors of each channel, we assess the importance
of each channel based on the feature distribution of the
output values. The results demonstrate that feature space
importance enhances the selection of pruning channels for
the FFN by integrating the significance of individual fea-
ture directions. Benefiting from the incorporation of feature
space importance, the pruned model achieves an average
score improvement of nearly 0.4%, while also realizing
notable enhancements in PPL results. The method primar-
ily enhances the original approach based on the magnitude
of weight vectors by incorporating the consideration of di-
rectional importance. When the magnitude of the weight
vectors is large, this strategy can combine vector direction
to further optimize the selection of pruning channels.

The pruning ratio for different layers. As indicated in
Table 4, the pruning ratio assigned to each individual layer
exerts the most substantial influence on the model’s overall
performance. By incorporating layer importance into the
pruning ratio allocation, the proposed strategy results in a
pruned model with an average performance improvement
of approximately 8 percentage points over uniform pruning,
significantly alleviating the accuracy drop induced by model
compression. Moreover, under the non-uniform pruning
strategy, the pruned model’s PPL of WikiText2 and PTB is
nearly halved. In Equation 11, we introduce the parameter α
to control the fluctuation range of the pruning ratios across
layers. The Table 5 presents the impact of different values
on model performance. As the results indicate, a pruning
ratio of 50% combined with α = 7 leads to improved model
performance after pruning.

Linear regression for output matrix. Linear regression
is the strategy we employ to rapidly restore the accuracy
of pruned models. We perform individual linear fitting for
each output dimension of the final output matrices of MHA
and FFN within the Transformer blocks, aiming to make the
model’s output as close as possible to the output before prun-
ing. As shown in Table 6, when the pruning ratio is 20%,
the average score of the model without the linear regression
strategy is 60.89, which is approximately 0.3% lower than
that of the method using this strategy. When the pruning
ratio reaches 50%, the linear regression strategy becomes
even more effective in enhancing model performance, re-
sulting in an approximate 3.4% improvement compared to

Table 6. Ablation Studies for the impact of our Linear Regression
for output matrix.

Ratio Method WikiText2 PTB Avg.

Ratio=20%
w/o tune

w/ LR 15.95 26.09 61.22
w/o LR 16.78 26.98 60.89

Ratio=50%
w/o tune

w/ LR 37.89 67.68 50.10
w/o LR 48.66 81.64 46.66

models not using this strategy. The changes in PPL exhibit
a similar pattern, with the recovery becoming increasingly
significant as the pruning ratio is elevated. For example, at
a pruning ratio of 20%, the PPL on the WikiText2 dataset is
decreased by 0.83 via the linear regression strategy. When
the pruning ratio is increased to 50%, the reduction in PPL
reaches 10.77. This indicates that our linear regression strat-
egy is effective in restoring performance under high pruning
ratios. Moreover, since we only utilize a small calibration
set for the least squares linear regression, the computational
cost of this method is extremely low. Since it is only applica-
ble when the output dimensions are identical, we currently
employ the linear regression strategy solely on the output
matrices of MHA and FFN. Further exploration is needed
for rapid fitting of other parameter matrices.

6. Conclusion
In this paper, we present SlimLLM, a novel and efficient
pruning technique specifically designed for large-scale mod-
els. For both the Multi-Head Attention (MHA) and Feed-
Forward Network (FFN) sub-layers, we adopt a holistic
importance strategy that goes beyond mere aggregation of
individual weight importance. Specifically, for head prun-
ing, we directly assess the importance of each head by estab-
lishing the linear relationship between the output of a single
head and the combined output of all heads. Furthermore,
acknowledging the interdependencies among head outputs,
we introduce a greedy search algorithm to explore more op-
timal head pruning combinations. For channel pruning, we
integrate both the magnitude and direction of each channel’s
corresponding weight vector and utilize Principal Compo-
nent Analysis (PCA) to determine the importance of each
feature direction in the output matrix, thereby deriving a fea-
ture space importance that is based on both magnitude and
direction. In addition, we devise a simple linear regression
strategy for the output matrix to rapidly and effectively re-
store model performance. Considering that different layers
of the model have varying degrees of parameter redundancy,
we utilize the cosine similarity between the input and output
of each layer to determine the pruning ratio for that layer.
This approach further enhances the pruned model’s per-
formance. Results show that SlimLLM achieves excellent
performance across different models and pruning ratios.

8

SlimLLM: Accurate Structured Pruning for Large Language Models

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

An, Y., Zhao, X., Yu, T., Tang, M., and Wang, J. Fluctuation-
based adaptive structured pruning for large language mod-
els. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024.

Anwar, S., Hwang, K., and Sung, W. Structured pruning
of deep convolutional neural networks. ACM Journal on
Emerging Technologies in Computing Systems (JETC),
13(3):1–18, 2017.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Chen, T., Ding, T., Yadav, B., Zharkov, I., and Liang,
L. Lorashear: Efficient large language model struc-
tured pruning and knowledge recovery. arXiv preprint
arXiv:2310.18356, 2023.

Chen, X., Hu, Y., and Zhang, J. Compressing large language
models by streamlining the unimportant layer. arXiv
preprint arXiv:2403.19135, 2024.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In Inter-
national Conference on Machine Learning, pp. 10323–
10337. PMLR, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Hsu, Y.-C., Hua, T., Chang, S., Lou, Q., Shen, Y., and Jin,
H. Language model compression with weighted low-rank
factorization. arXiv preprint arXiv:2207.00112, 2022.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Kim, B.-K., Kim, G., Kim, T.-H., Castells, T., Choi, S.,
Shin, J., and Song, H.-K. Shortened llama: Depth pruning
for large language models with comparison of retraining
methods. arXiv preprint arXiv:2402.02834, 2024.

Li, G., Tang, Y., and Zhang, W. Lorap: Transformer sub-
layers deserve differentiated structured compression for
large language models. arXiv preprint arXiv:2404.09695,
2024.

Ling, G., Wang, Z., Yan, Y., and Liu, Q. Slimgpt: Layer-
wise structured pruning for large language models. arXiv
preprint arXiv:2412.18110, 2024.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C.
Learning efficient convolutional networks through net-
work slimming. In Proceedings of the IEEE international
conference on computer vision, pp. 2736–2744, 2017.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. Advances in
neural information processing systems, 36:21702–21720,
2023.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. Build-
ing a large annotated corpus of english: The penn tree-
bank. Computational linguistics, 19(2):313–330, 1993.

Men, X., Xu, M., Zhang, Q., Wang, B., Lin, H., Lu, Y., Han,
X., and Chen, W. Shortgpt: Layers in large language mod-
els are more redundant than you expect. arXiv preprint
arXiv:2403.03853, 2024.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a suit of armor conduct electricity? a new dataset
for open book question answering. arXiv preprint
arXiv:1809.02789, 2018.

Muralidharan, S., Turuvekere Sreenivas, S., Joshi, R., Cho-
chowski, M., Patwary, M., Shoeybi, M., Catanzaro, B.,
Kautz, J., and Molchanov, P. Compact language models
via pruning and knowledge distillation. Advances in Neu-
ral Information Processing Systems, 37:41076–41102,
2024.

9

SlimLLM: Accurate Structured Pruning for Large Language Models

Saha, S., Hase, P., and Bansal, M. Can language models
teach? teacher explanations improve student performance
via personalization. Advances in Neural Information
Processing Systems, 36, 2024.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Song, J., Oh, K., Kim, T., Kim, H., Kim, Y., and Kim, J.-J.
Sleb: Streamlining llms through redundancy verification
and elimination of transformer blocks. arXiv preprint
arXiv:2402.09025, 2024.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Stanford
alpaca: An instruction-following llama model, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared llama:
Accelerating language model pre-training via structured
pruning. arXiv preprint arXiv:2310.06694, 2023.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Yin, L., Wu, Y., Zhang, Z., Hsieh, C.-Y., Wang, Y., Jia, Y.,
Li, G., Jaiswal, A., Pechenizkiy, M., Liang, Y., et al. Out-
lier weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. arXiv preprint
arXiv:2310.05175, 2023.

Yu, H. and Wu, J. Compressing transformers: features are
low-rank, but weights are not! In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37,
pp. 11007–11015, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, M., Chen, H., Shen, C., Yang, Z., Ou, L., Yu,
X., and Zhuang, B. Loraprune: Pruning meets low-
rank parameter-efficient fine-tuning. arXiv preprint
arXiv:2305.18403, 2023.

Zhuang, T., Zhang, Z., Huang, Y., Zeng, X., Shuang, K., and
Li, X. Neuron-level structured pruning using polarization
regularizer. Advances in neural information processing
systems, 33:9865–9877, 2020.

10

SlimLLM: Accurate Structured Pruning for Large Language Models

A. Quantity of calibration data
Table 7 illustrates the influence of calibration set size on model accuracy. As shown in the results, perplexity tends to
decrease with an increasing calibration set size. Notably, when the size is below 16, the average score on Commonsense
Reasoning datasets shows considerable variation. The optimal performance is observed when the calibration set size is set to
32. Accordingly, we adopt 32 as the default calibration set size in our pruning framework.

Table 7. Ablation Studies for the quantity of calibration data. Avg. presents the average score on Commonsense Reasoning datasets.

Number 1 4 8 16 32 64

WikiText2↓ 58.8 45.89 45.98 44.3 37.89 39.56
PTB↓ 129.95 99.64 99.25 80.06 67.68 72.05
Avg.↑ 46.50 49.14 47.89 45.06 50.10 49.31

B. Experiments on other models.
In addition, we present pruning results on the Vicuna-7B and LLaMA-13B models. The corresponding experimental results
are shown in Table 8 and Table 9, respectively. The results demonstrate that our method achieves competitive performance
across various pruning ratios. Moreover, larger models tend to suffer less performance degradation under the same pruning
ratio. Notably, compared with LoRAP, their fine-tuned models exhibit better performance in some cases under a 50%
pruning ratio. We consider this is due to the fact that LoRAP reconstructs the decomposed matrices in MHA during training,
thereby enabling the utilization of more parameters in the optimization process.

Table 8. Zero-shot performance of the compressed Vicuna-7B.

Method Ratio WikiText2 PTB BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Vicuna-7B Ratio=0% 16.23 58.12 75.69 77.91 71.04 67.80 68.98 40.70 42.20 63.47

w/o tune Ratio=20% 20.24 68.75 74.92 76.12 67.98 65.82 67.09 39.33 42.60 61.98
Ratio=50% 43.96 131.49 61.31 67.25 48.91 56.35 48.48 31.06 36.00 49.91

w/ tune Ratio=20% 17.15 59.03 76.15 76.39 69.32 64.72 68.56 39.25 41.80 62.31
Ratio=50% 29.98 87.93 62.60 69.53 53.66 57.77 55.30 31.91 37.40 52.60

Table 9. Zero-shot performance of the compressed LLaMA-13B.

Method Ratio WikiText2 BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

LLaMA-13B Ratio=0% 11.58 68.47 78.89 76.24 70.09 74.58 44.54 42.00 64.97

w/o tune Ratio=20% 13.35 74.13 77.53 74.73 69.30 70.45 42.32 41.00 64.21
Ratio=50% 25.64 62.31 72.20 60.84 60.62 55.60 33.87 37.80 54.75

11

