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Abstract

The clinical trial process, a critical phase in drug development, is essential for
developing new treatments. The primary goal of interventional clinical trials is
to evaluate the safety and efficacy of drug-based treatments on human bodies for
specific diseases. However, these trials are often lengthy, labor-intensive, and ex-
pensive. The duration of a clinical trial significantly impacts overall costs, making
efficient timeline management crucial for controlling budgets and ensuring the
economic feasibility of research. To address this issue, we propose TrialDura, a
multimodal neural network architecture that estimates the duration of clinical trials
using multimodal data (mostly text feature), including disease, drug molecules,
trial phases, and eligibility criteria. These are encoded into Bio-BERT embeddings
specifically tuned for biomedical contexts to provide a deeper and more relevant
semantic understanding of clinical trial data. Finally, the model’s hierarchical atten-
tion mechanism integrates all of the text embeddings to capture their interactions
and predict clinical trial duration. Our proposed model demonstrated superior
performance with a mean absolute error (MAE) of 1.04 years and a root mean
square error (RMSE) of 1.39 years compared to other models, indicating more
accurate clinical trial duration prediction. The publicly available code can be found
at: https://github.com/LeoYML/TrialDura.

1 Introduction

The clinical trial process, an essential step in drug development, constitutes a critical phase in bringing
new medical treatments to fruition. These trials serve as the pivotal gateway for assessing the safety
and efficacy of drug-based interventions in addressing various diseases [Vijayananthan and Nawawi,
2008]. However, despite their paramount significance, clinical trials are characterized by many
challenges, ranging from their time-consuming nature to their huge costs and relatively low approval
rates. Spanning a duration of 7 to 11 years on average, the clinical trial timeline emerges as a
prominent obstacle in the drug development landscape [McDowell, 2024]. This protracted duration
not only prolongs the time-to-market for potential treatments but also escalates the associated expenses
significantly. With an average cost exceeding 2 billion dollars per trial, the financial burden imposed
by these endeavors is significant. Furthermore, the low approval rates, around only 15%, underscore
the complexity and uncertainty inherent in the clinical trial process [Huang et al., 2022].

One of the primary determinants influencing the overall cost of clinical trials is their duration. Ex-
tended trial periods necessitate more resources, more staffing, more medical supplies, and more
facility usage, thus increasing operational expenses. Moreover, the prolonged data collection and
analysis phases entail more financial investment in technology and personnel. Consequently, effi-
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ciently managing the timeline of clinical trials is paramount in controlling the budget and optimizing
the economic feasibility of research endeavors in the pharmaceutical domain. Against this backdrop,
integrating machine learning methodologies emerges as a promising avenue for enhancing the effi-
ciency and accuracy of clinical trial duration estimation. By leveraging computational algorithms to
analyze intricate datasets, machine learning facilitates the prediction of trial duration with improved
precision and reliability.

In this paper, we investigate the application of various machine learning techniques [Yue et al., 2024a],
including traditional methodologies such as Linear Regression (LR) [Weisberg, 2005], Gradient
Boosting Decision Tree (GBDT) [Ke et al., 2017], Adaptive Boosting (AdaBoost) [Ying et al., 2013],
Random Forest (RF) [Breiman, 2001], and a cutting-edge hierarchical deep learning framework that
we designed specifically for the clinical trial eligibility criteria to predict the duration of clinical trials.

Our research also produces a comprehensive dataset explicitly tailored for clinical trial duration
prediction. This dataset encapsulates diverse eligibility criteria of various clinical trials, including
patient demographics, treatment protocols, and regulatory parameters, thereby offering a holistic
perspective for predictive modeling. Through extensive experimentation and analysis, we evaluate the
efficacy of seven distinct machine learning methodologies in predicting clinical trial duration. The
overarching objective of this study is to demonstrate the potential of machine learning in optimizing
the clinical trial process, thereby offering insights into the expected duration of clinical trials. By
showing the efficacy of various predictive methods, we aim to provide insights that can inform
decision-making processes within the pharmaceutical industry, ultimately fostering more efficient
and cost-effective drug development practices. Through our empirical findings, we strive to pave the
way for adopting data-driven approaches in the landscape of clinical trial management and accelerate
the translation of scientific innovations into tangible pharmaceutical solutions.

The main contributions of this paper are summarized as follows:

1. Problem: We are the first to identify and propose the problem of clinical trial duration prediction,
an essential issue in clinical trial planning, and formulate it as an AI-solvable problem.

2. Method: We propose multiple traditional machine learning models to address this problem and
design a novel hierarchical attention mechanism, a specialized end-to-end deep learning framework
tailored for predicting clinical trial duration. This framework captures multi-modal data elements
within clinical trials and leverages large-scale biomedical language models (Bio-BERT).

3. Results: The proposed method (TrialDura) demonstrated superior performance, achieving an
MAE of 1.044 years and an RMSE of 1.390 years. In comparison to the best baseline method,
TrialDura achieves relative reductions of 9% and 7% in MAE and RMSE, respectively.

4. Interpretability: Our method exhibits desirable interpretability thanks to the hierarchical attention
mechanism, which can assist clinicians in making informed decisions by providing insights into
how predictions were reached.

2 Methodology

2.1 Formulation of Clinical Trial Duration Prediction

A clinical trial is an organized endeavor to evaluate the safety and efficacy of a treatment set aimed
at combating a target disease set, according to the guidelines laid out in the trial eligibility criteria,
for a select group of patients.

Clinical Trial Phases. The phases of clinical trials signify distinct stages in the trial process, each
with a specific focus and set of objectives. These phases are:

• Phase 1: Initial evaluation of the new drug’s safety and profiling of its pharmacological profile.

• Phase 2: Assessment of the drug’s efficacy and side effects in a larger patient group.

• Phase 3: Confirmation of the drug’s effectiveness, monitoring of side effects, comparison to
commonly used treatments, and collection of information that will allow the drug to be used safely.

• Phase 4: Post-marketing studies delineate additional information, including the drug’s risks,
benefits, and optimal use.
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The phase information is denoted as P , which is a one-hot vector.

Treatment Set. The treatment set encompasses a variety of drug candidates, denoted as
M = {m1, · · · ,mKm

}, where m1, · · · ,mKm
are Km drug molecules engaged in this trial. This

study concentrates on trials to identify new applications for these drug candidates, while trials focus-
ing on non-drug interventions like surgery or device applications are considered outside the scope of
this research.

Target Disease Set. For a trial addressing Kδ diseases, the Target Disease Set is represented by
D = {δ1, · · · , δKδ

}, with each δi symbolizing the diagnostic code2 for the i-th disease.

Trial Eligibility Criteria. The trial eligibility criteria encompass both inclusion (+) and exclusion
(-) criteria, which respectively outline the desired and undesirable attributes of potential participants.
These criteria provide details on various key parameters such as age, gender, medical background,
the status of the target disease, and the present health condition.

E = [π+
1 , ...,π

+
Q,π

−
1 , ...,π

−
R ], π

+/−
k is a criterion, (1)

where Q (R) is the number of inclusion (exclusion) criteria in the trial. The term π+
k (π−

k ) designates
the k-th inclusion (exclusion) criterion within the eligibility criteria. Each criterion π is a sentence in
unstructured natural language.

Clinical Trial Duration. The duration of a clinical trial refers to the number of years the trial lasts.
It is represented as a continuous value y > 0.

Problem (Clinical Trial Duration Prediction). The estimation of y, represented as ŷ, can be
formulated through the machine learning model fΘ, such that

ŷ = fΘ(P,M,D, E),

where ŷ > 0 denotes the estimated duration of a trial; Θ denotes the learnable parameter. In this
context, P , M, D, and E refer to the phase information, treatment set, the target disease set, and the
trial eligibility criteria, respectively.

2.2 Development of Network

Our novel approach consists of three primary phases that form an end-to-end deep learning framework.
These consist of embedding generation, hierarchical attention mechanism, and neural network training.
We construct a hierarchical interaction graph G to connect all input data sources affecting clinical trial
duration ŷ. The interaction graph G is constructed to reflect the real-world trial development process
and consists of four inputs, including drugs, diseases, phase, and eligibility criteria with node features
of input embedding Im, Id, Ip, Ie ∈ Rd. The phase of each clinical trial, represented categorically
from 1 to 4, is converted into a one-hot encoded vector. Ip represents the one-hot encoded phase of a
clinical trial:

Ip =


[1, 0, 0, 0]⊤, if Phase = 1,
[0, 1, 0, 0]⊤, if Phase = 2,
[0, 0, 1, 0]⊤, if Phase = 3,
[0, 0, 0, 1]⊤, if Phase = 4.

(2)

Formally, we represent drug molecules graphs with node features of input embedding as M =
{m1, · · · ,mKm} (Equation 3), disease codes as D = {δ1, · · · , δKδ

} (Equation 4), and eligibility
criteria as E = [π+

1 , . . . ,π
+
Q,π

−
1 , . . . ,π

−
R ], where π

+/−
k is a criterion (Equation 1) as follows:

Molecule Embedding, Im =
1

Km

Km∑
j=1

fm(mj), Im ∈ Rd (3)

We need to use a pretrained Bio-language model( [Luo et al., 2022, Yue et al., 2024b]) to embed
the drug names, where fm is the molecule embedding function. In this paper, we utilized the

2In this paper, we use ICD10 codes (International Classification of Diseases) [Anker et al., 2016]
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Figure 1: Overview of our model. Our model takes phase information, disease, drug molecule,
and eligibility criteria as input and predicts the trial duration. We design a hierarchical attention
mechanism to model semantic features from eligibility criteria. The lower-level attention mechanism
aggregates word embeddings while higher-level attention gathers sentence embeddings.

widely recognized Bio-BERT model [Lee et al., 2020]. The embedding for each token generated by
Bio-BERT is averaged to produce a single 768-dimensional vector representing the drug.

Disease Embedding, Id =
1

Kδ

Kδ∑
i=1

fδ(δi), Id ∈ Rd, (4)

where fδ represents an embedding of the disease using Bio-BERT, similar to the drug name embedding.
The mean of these embeddings provides a 768-dimensional vector representing the disease.

Word Embedding, Is = BioBERTCLS(π), Is ∈ Rd (5)
where Is denotes the sentence embeddings derived from the CLS token outputs of Bio-BERT. The
symbol π represents individual sentences within the eligibility criteria.

Sentence Embedding, Ig = ftransformer(Is), Ig ∈ Rd (6)
The function ftransformer encapsulates the transformer model’s mechanism, which processes these
sentence embeddings Is. This function enhances inter-sentence relationships, culminating in the
generation of the paragraph embedding Ig, which integrates the comprehensive context of the
eligibility criteria.

The eligibility criteria text was initially processed using n-word embeddings from the CLS token of
Bio-BERT to generate sentence embeddings. To create paragraph embeddings, a transformer with
an attention mechanism was used to enhance sentence-to-sentence relations, which is essential for
capturing the comprehensive context of the eligibility criteria that often include multiple independent
rules. The procedure involved padding sentences to 32 tokens, concatenating the inclusion and
exclusion criteria embeddings to form a 64 × 768 matrix, and prefixing with a CLS token embedding
to obtain a 65 × 768 matrix. After processing the inputs, the embeddings representing the drug,
disease, eligibility criteria (inclusion and exclusion), and trial phases were concatenated to form a
unified feature vector. The dimensions of the concatenated vector were 4 × 768, with the addition of
four. The concatenation of input embeddings as an intermediate step:

Iconcat = CONCAT(Ip, Im, Id, Ig), Iconcat ∈ Rd. (7)

This comprehensive feature vector was then fed into a multiple-layer perceptron (MLP) for regression
analysis. The estimated trial duration prediction using the concatenated embedding as input to the
MLP:

Trial Duration, ŷ = MLP(Iconcat). (8)
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We employed the Mean Squared Error (MSE) loss function to quantify the discrepancy between
predicted and actual trial duration. The objective function is defined by the following equation:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (9)

where yi and ŷi represent the true and predicted duration for the ith clinical trial, respectively, and n
is the total number of trials in the training dataset. The Adam optimizer [Kingma and Ba, 2015] was
utilized to minimize the objective function and update the network weights iteratively based on the
training data. The architecture of the whole model is illustrated in Figure 1.

3 Experiment

3.1 Dataset Setting

We collected a dataset from https://clinicaltrials.gov/, a comprehensive global database of
clinical trials, to determine the duration of these trials. We only consider trials that last less than 10
years, which account for 98% of all the trials, because some extremely long values significantly affect
model performance. Each trial was represented as an XML file, from which we extracted several
pieces of information, including the NCT ID, disease name, drug molecule, trial phase, time duration,
and eligibility criteria. After extracting the data, we engaged in data processing to prepare the data
for machine learning applications. The statistics for trial duration are summarized in Table 1.

Table 1: Statistics for trial duration (Unit: Year).
Phase Average Minimum 1st Quartile Median 3rd Quartile

All Phases 2.14 0.003 0.83 1.73 3.00
Phase 1 1.52 0.003 0.25 0.87 2.26
Phase 2 2.47 0.003 1.09 2.00 3.34
Phase 3 2.42 0.005 1.08 1.92 3.20
Phase 4 2.06 0.003 0.92 1.67 2.83

The data shows that predicting duration is challenging, with 75% of the training data spanning up to
3 years and a maximum cap of 10 years.

Our final dataset comprised two distinct sets: a training set with 77,818 clinical trial records and a
testing set with 36,786 records. We partitioned the data by using January 1, 2019 as boundary, using
the data from trials that started before that date for training and validation, and the data from trials
that started after that date for testing. This approach ensures that the completion dates of the trials in
the training and validation sets precede the start dates of the trials in the testing set.

We studied the general trial duration problem across different trial phases for many diseases, as shown
in Table 2.

Table 2: Distribution of clinical trial phases.

Phases 1 2 3 4

# Trials 31,641 44,622 28,250 25,060

3.2 Baseline Methods

We choose multiple widely-recognized models as baselines: Linear Regression (LR), Gradient
Boosting Decision Tree (GBDT), Adaptive Boosting (AdaBoost), Random Forest (RF), and Multi-
Layer Perceptron (MLP). GBDT, AdaBoost, RF, and MLP have shown initial effectiveness in clinical
trial outcome prediction [Fu et al., 2022, 2023, Lu et al., 2024].

We use MEAN as a basic reference, which employs the average duration as a direct estimation for all
trials and offers a basic point of reference. Linear Regression (LR) was selected due to its simplicity
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and effectiveness in revealing linear relationships within the dataset, serving as a fundamental point of
reference for performance evaluation. This provides an essential baseline that allows us to appreciate
the incremental value added by more complex models. The Gradient Boosting Decision Tree (GBDT)
was chosen for its proficiency in managing diverse and complicated datasets through the sequential
correction of prediction errors. Its inclusion as a baseline underscores our commitment to assess our
model against sophisticated state-of-the-art algorithms. Similarly, the Random Forest (RF) model
was incorporated into our baseline comparison due to its robustness and effectiveness in handling
high-dimensional data. The risk of overfitting is reduced by aggregating the outcomes of numerous
decision trees, offering a reliable baseline for performance comparison.

By benchmarking TrialDura against these distinct and well-established models, we aim to demonstrate
the specific advancements our model brings to the domain of clinical trial duration prediction. This
comparison not only validates TrialDura’s effectiveness but also situates its performance within the
broader landscape of machine learning applications in clinical research, highlighting its contribution
to enhancing predictive accuracy and decision-making in clinical trial management.

3.3 Experimental Results

Table 3: Summary of model performance (units in years). Results averaged over five runs; standard
deviations are shown. Asterisk (*) denotes statistical significance (p-value < 0.05). NA: not
applicable.

Model MAE (years) (↓) RMSE (years) (↓) R2 (↑) Pearson Corr. (↑)

MEAN 1.240 1.551 -0.090 NA
Linear Regression 1.162 ± 0.005 1.511 ± 0.003 0.043 ± 0.002 0.275 ± 0.001

GBDT 1.148 ± 0.001 1.494 ± 0.002 0.080 ± 0.001 0.288 ± 0.001
RF 1.167 ± 0.001 1.502 ± 0.001 0.053 ± 0.001 0.232 ± 0.003

XGBoost 1.152 ± 0.004 1.497 ± 0.004 0.069 ± 0.001 0.279 ± 0.001
AdaBoost 1.200 ± 0.003 1.514 ± 0.002 -0.258 ± 0.001 0.169 ± 0.002

MLP 1.144 ± 0.008 1.502 ± 0.011 -0.749 ± 0.049 0.197 ± 0.000
TrialDura 1.044 ± 0.009* 1.390 ± 0.005* 0.191 ± 0.001* 0.463 ± 0.001*

The performance of various predictive models for clinical trial duration is detailed in Table 3. Metrics
used for evaluation include Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), the
coefficient of determination (R2), and the Pearson correlation coefficient. The MEAN model serves
as a basic reference, highlighting the enhanced accuracy of more advanced models. For example,
Linear Regression, although simplistic, achieves an MAE of 1.16 years and an RMSE of 1.511 years,
demonstrating a basic yet effective capacity to model trial duration.

More sophisticated models such as Gradient Boosted Decision Trees (GBDT), and Random Forest
(RF) show further reductions in prediction errors, illustrating their capability in managing complex
data structures. Notably, GBDT achieves an MAE of 1.14 years and an RMSE of 1.494 years. Models
like XGBoost and Multi-Layer Perceptrons (MLP), while displaying similar MAE values, exhibit
variations in other metrics, which may indicate differences in model sensitivity and the distribution of
errors.

Our model, TrialDura, significantly outperforms all benchmarks, achieving the lowest MAE and
RMSE, which are statistically significant improvements of 9% and 7% respectively over the best
baseline model. This superior performance is corroborated by its R2 and Pearson correlation scores,
confirming its robust predictive capability.

We also show TrialDura’s prediction performance for each of the four phases in Table 4. Results show
the model’s lowest MAE in Phases 1 and 4, highlighting its strengths and areas for improvement.

Figure 2 visually summarizes these findings, illustrating the superior performance of TrialDura in
both MAE and RMSE compared to the other models. The graph provides a clear visual representation
of the comparative predictive accuracies, reinforcing the textual data presented in Table 3.

In addition to quantitative metrics, qualitative analysis of these models suggests that the integration
of domain-specific features into TrialDura, such as trial phase and therapeutic area, contributes
significantly to its enhanced performance. Future work will focus on refining these features and
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Table 4: Summary of model performance across different phases.

Phase MAE (years) (↓) RMSE (years) (↓) R2 (↑) Pearson Corr. (↑)

All 1.044 ± 0.009 1.390 ± 0.005 0.191 ± 0.001 0.463 ± 0.001
1 0.836 ± 0.001 1.181 ± 0.000 0.342 ± 0.000 0.593 ± 0.000
2 1.130 ± 0.001 1.459 ± 0.002 0.061 ± 0.002 0.334 ± 0.001
3 1.194 ± 0.003 1.593 ± 0.002 0.159 ± 0.002 0.415 ± 0.002
4 1.099 ± 0.001 1.402 ± 0.001 -0.003 ± 0.002 0.228 ± 0.002

Figure 2: Model performance comparison on prediction accuracy.

exploring the incorporation of real-time data updates to further improve the model’s predictive
accuracy and operational utility in clinical trial management.

3.4 Ablation Study

This ablation study assesses the empirical impact of different model components on predicting clinical
trial duration. We evaluate models separately trained for Phases 1 through 4 and compare them
against a unified model, TrialDura, which integrates data across all phases.

The results, detailed in Table 5, indicate that the performance varies across phases. For example,
Phase 1, tested on 9,816 data points, yielded a Mean Absolute Error (MAE) of approximately 1.12
years and a Root Mean Squared Error (RMSE) of about 1.42 years. The negative R2 values and
negligible Pearson correlation coefficients across all phases suggest challenges in phase-specific
predictions. Conversely, the unified TrialDura model demonstrates superior performance with a
significant positive R2 and Pearson correlation, indicating a robust model that effectively captures
the underlying patterns across different trial phases.

Table 5: Ablation study: model performance across phases compared to the unified TrialDura model.
Phase MAE (years) (↓) RMSE (years) (↓) R2 (↑) Pearson Corr. (↑)

1 1.117± 0.030 1.424± 0.011 −0.146± 0.017 −0.002± 0.002
2 1.227± 0.038 1.513± 0.024 −0.186± 0.045 0.005± 0.006
3 1.327± 0.010 1.732± 0.008 −0.123± 0.017 0.005± 0.004
4 1.125± 0.010 1.386± 0.005 −0.148± 0.036 −0.001± 0.006
TrialDura 1.044 ± 0.009 1.390 ± 0.005 0.191 ± 0.001 0.463 ± 0.001

Additionally, we explored various methods for aggregating sentence embeddings into inclusion and
exclusion criteria embeddings. Table 6 compares the efficacy of maximum pooling, mean pooling, and
the CLS token method. The results are closely comparable, with mean pooling slightly outperforming
the others by a narrow margin in R2 value, suggesting that each method effectively captures essential
features for the prediction task.

This systematic analysis underscores the importance of each component’s contribution to the model’s
overall predictive performance and provides insights for future enhancements.
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Table 6: Ablation study: comparison of aggregation methods for sentence representation.
Method MAE (years) (↓) RMSE (years) (↓) R2 (↑) Pearson Corr. (↑)

Max Pooling 1.048± 0.001 1.391± 0.002 0.189± 0.005 0.463± 0.002
Mean Pooling 1.048± 0.001 1.389± 0.002 0.191± 0.001 0.463± 0.001
CLS Token 1.048± 0.001 1.390± 0.002 0.191± 0.002 0.463± 0.001

3.5 Case Study

Table 7: Comparison of predicted and actual duration of clinical trials.
NCTID Phase Disease Drug y (Actual Years) ŷ (Predicted Years)

NCT03553810 II Hypertensive heart disease Entresto 5.00 4.64
NCT03681093 III Asthma Fevipiprant 4.00 3.95
NCT02198209 IV Type 2 diabetes Sitagliptin 2.37 2.11
NCT03636373 IV Gout attack Etanercept 1.77 1.80
NCT04126317 II Neovascular macular degeneration Aflibercept 2.51 1.92
NCT04249882 III Depression Naltrexone 3.22 2.49
NCT04050488 II Retinopathy of prematurity Bevacizumab 3.00 2.87
NCT04388852 I Prostate carcinoma Bendamustine 4.03 4.04
NCT04483778 II Neuroblastoma Fludarabine 4.99 5.00
NCT04023669 I Brain tumor Prexasertib 3.71 3.73

Clinical trials are crucial for advancing medical science, providing essential data on the efficacy and
safety of new treatments. Structured into four phases—Phase I (safety), Phase II (efficacy and side
effects), Phase III (comparative effectiveness), and Phase IV (post-market surveillance)—each phase
plays a vital role in the comprehensive assessment of new treatments. Accurate predictions of trial
duration are essential for effective planning, resource allocation, and regulatory compliance, making
this a key area for the application of machine learning.

Examples of successful trials: Our model, TrialDura, was applied to a series of recent clinical trials,
demonstrating its utility in accurately estimating trial duration. The trials, detailed in Table 7, include
various drugs and conditions, showing the model’s broad applicability. For instance, the trial for
Entresto, a heart failure drug developed by Novartis, involved 4,822 patients and was predicted to
last 4.9 years, closely matching the actual duration of five years. Despite the trial not meeting its
primary endpoints, the accurate prediction underscores the financial implications and potential for
improved planning and resource allocation. Similarly, the phase III trial for Fevipiprant, aimed at
treating asthma, lasted four years, with our model’s prediction being just under 3.95 years. Although
the trial did not meet its anticipated goals, the precision of our predictions highlights the model’s
capability to aid the financial forecasting and strategic planning of clinical trials.

0.85 Increased left ventricular mass on cardiovascular magnetic resonance

0.55 Known secondary causes of hypertension

0.50 Previous intolerance to angiotensin receptor blockers

Figure 3: Visualization of text segments in the TrialDura model’s output, illustrating Shapley values
derived from Clinical Trials (NCT03553810). Shapley values correspond to attention weights, with
darker colors indicating higher weights. The number and color at the beginning of each sentence
represent the attention weight for the entire sentence.

3.6 Interpretability Analysis

The visualization of word and sentence importance in the TrialDura model’s eligibility criteria
can be clearly demonstrated using Shapley values, which are depicted in Figure 3. The Shapley
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value [Winter, 2002], from game theory, fairly distributes total gains or costs among players based on
their contributions. In machine learning, Shapley values measure each feature’s impact on a model’s
prediction. These values show the incremental contribution of each word and sentence in the text as
it transitions from a fully masked to an unmasked state, highlighting the impact of each component
on the model’s final output. This process is quantified starting from a base logit value obtained when
all the input text is masked, moving to specific word and sentence contributions as each is revealed.

In our model, attention is focused on words and sentences with higher Shapley values, as shown by
darker colors in the visual representation. This highlights the impact of specific terms in the eligibility
criteria on the model’s predictions. By visualizing these values, we identify the most critical words or
phrases influencing trial duration, offering insights into the model’s decision-making process and
guiding further refinement or feature engineering. This method enhances interpretability, ensuring
the model’s focus aligns with clinical expectations and relevant input data.

4 Discussion

This study advances the use of machine learning to predict clinical trial durations by integrating
multimodal data through TrialDura’s architecture. The model processes complex datasets, including
drug characteristics, disease categories, and eligibility criteria, offering valuable insights into factors
influencing trial timelines.

Technical Implications Technically, TrialDura introduces a novel use of hierarchical attention
mechanisms, specifically designed to address the multifaceted nature of clinical trial data. This
approach enhances interpretability, a key feature in clinical applications where understanding the
rationale behind model predictions is as critical as the predictions themselves. Additionally, the
incorporation of Bio-BERT for processing biomedical text significantly improves the model’s ability
to interpret complex medical documentation. This specificity could be beneficial in other healthcare
applications where accurate interpretation of technical language is essential.

Clinical Implications From a clinical perspective, the predictive accuracy of TrialDura can signifi-
cantly improve the management of clinical trials. By providing reliable estimates of trial durations,
the model aids in optimizing resource distribution, refining recruitment strategies, and reducing
overall costs and development times for new medical treatments. These capabilities are crucial
for enhancing the efficiency of clinical trials, especially in an environment where delays are both
common and costly.

Limitations Despite its advancements, TrialDura faces challenges in achieving precise predictions,
evidenced by a mean absolute error (MAE) of over one year. This inaccuracy stems from the
inherent complexity of clinical trial data, the limited availability of robust training datasets, and the
model’s current inability to adapt to ongoing changes in regulatory and legal frameworks. Future
improvements should focus on refining data processing techniques, enhancing the model’s sensitivity
and specificity, and increasing its adaptability to continuously evolving conditions.

In conclusion, TrialDura represents a key advancement in applying machine learning to clinical trials,
improving accuracy and offering deeper insights, thus promoting a data-driven approach to more
efficient trial management.
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A Appendix

A.1 Evaluation Metrics

To evaluate the prediction performance of our TrialDura model, we employed the Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE), defined by the following equations:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (10)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (11)

where yi and ŷi represent the true and predicted duration for the ith clinical trial, respectively, and n
is the total number of trials in the test dataset.

R-squared (R2) score is defined as the proportion of the variation in the dependent variable that is
predictable from the independent variable(s). It is also known as the coefficient of determination in
statistics. Suppose we have N continuous ground truth y1, · · · , yN and N corresponding predictions
ŷ1, · · · , ŷN . The difference yi− ŷi is called residual. Then, we defined the residual sum of squares as

SSres =
1

N

N∑
i=1

(yi − ŷi)
2, (12)

and define the total sum of squares as

SStotal =
1

N

N∑
i=1

(yi − ȳ)2, (13)
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where ȳ = 1
N yi is the mean of the ground truth. Then R2 score is defined as

R2 = 1− SSres

SStotal
. (14)

Higher R2 scores indicate better performance. In a perfect prediction model, the prediction exactly
matches the ground truth, then SSres = 0 and R2 = 1. A weak predictor that always predicts ȳ would
cause R2 = 0. Some predictors would even lead to a negative R2 score.

Pearson Correlation (PC) is defined as the covariance of the prediction and the ground truth divided
by the product of their standard deviations. For two random variables x and y, Pearson Correlation is
formally defined as

PC =
E[(x− µx)(y − µy)]

σxσy
, (15)

In the regression task, suppose there are N data points in the test set, yi is the ground truth of the i-th
data sample, ŷi is the prediction for i-th data, Pearson Correlation becomes

PC =

∑N
i=1

(
(yi − µy)(ŷi − µŷ)

)
σyσŷ

, (16)

where µy = 1
N

∑N
j=1 yj and µŷ = 1

N

∑N
j=1 ŷj are mean of ground truth and prediction, respectively.

σy =
∑N

i=1(yi −
1
N

∑N
j=1 yj)

2 and σŷ =
∑N

i=1(ŷi −
1
N

∑N
j=1 ŷj)

2 are the standard deviations of
ground truth and prediction, respectively. The value ranges from -1 to 1. A higher Pearson correlation
value indicates better performance.

Also, we conduct hypothesis testing by evaluating the p-value to showcase the statistical significance
of our method over the best baseline results. If the p-value is smaller than 0.05, we reject the null
hypothesis and claim our method significantly outperforms the best baseline method.

A.2 Data Example

For ease of exposition, Table 8 shows an example of a real clinical trial and all the related features.

A.3 Implementation Details and Hyperparameter Tuning

Hardware and Software Configuration

• CPU: Intel(R) Xeon(R) Gold 6248
• RAM: 128GB
• GPU: NVIDIA RTX A5000
• Operating System: Ubuntu 20.04
• Python Version: 3.8
• PyTorch Version: 2.3

We employed Bayesian Optimization with TPE (Tree-structured Parzen Estimators) for hyperparame-
ter tuning using the Optuna [Akiba et al., 2019] library. In our configuration, we set the number of
epochs to 1500 and allowed the number of attention heads to vary among [2, 3, 4]. The number of
hidden units was set to (2*768) for the first linear layer, 768 units for the second linear layer, and
768 units for the transformer feed-forward layer. We maintained the dropout ratio at 0.1 and set the
learning rate at 0.001 to optimize our model’s performance efficiently. The model was trained for 200
epochs at a learning rate of 0.001 to optimize the network weights and biases to effectively reduce
the loss function.

A.4 Broad Impact

Accurately forecasting the duration of clinical trials offers significant benefits for trial management.
By predicting trial duration, resource allocation such as staffing, budget, and facilities can be opti-
mized, ensuring resources are available when needed to prevent inefficiencies and bottlenecks [Kerali,
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Table 8: A real example of a clinical trial record.

Feature Descriptions

NCTID NCT00610792
disease Ovarian Cancer
phase II
title Phase 2 Study of Twice Weekly VELCADE and CAELYX

in Patients With Ovarian Cancer Failing Platinum Containing
Regimens

summary This is a Phase 2, multicenter open-label, uncontrolled 2-step
design. Patients will be arranged in two groups based on the re-
sponse to their last platinum-containing therapy. The two groups
are: 1) Platinum-Resistant Patients: patients with progressive
disease while on platinum-containing therapy or stable disease
after at least 4 cycles; patients relapsing following an objective
response while still receiving treatment; patients relapsing after
an objective response within 6 months from the discontinuation
of the last chemotherapy, and 2) Platinum-Sensitive Patients:
patients who relapsed following an objective response.

study type Interventional
Inclusion Criteria ECOG performance status grade 0 or 1; Age ≥ 18 and ≤ 75

yrs; Life expectancy of at least 3 months; LVEF must be within
normal limits; ...

Exclusion Criteria Chemotherapy, hormonal, radiation, or immunotherapy or par-
ticipation in any investigational drug study within 4 weeks of
study entry; Pre-existing peripheral neuropathy > Grade 1; Pres-
ence of cirrhosis or active or chronic hepatitis; ...

drug Bortezomib and pegylated liposomal doxorubicin
start date July 2006

completed date September 2009
duration 3.2 years
sponsor Millennium Pharmaceuticals, Inc.
outcome Withdrawn

2018]. This capability is crucial for planning financial aspects, enhancing the accuracy of budgets,
and ensuring efficient use of capital [Baskin, 2019].

Understanding trial timelines aids in devising effective participant recruitment and retention strategies,
which are vital in maintaining engagement and compliance in longer trials. This strategic approach
minimizes dropout rates and improves trial outcomes. Accurate forecasts also enable precise budget-
ing for personnel, equipment, and operational expenses, thus managing costs more effectively and
reducing waste [Prasad, 2024].

Further, forecasting facilitates improved communication with stakeholders such as sponsors, reg-
ulatory bodies, and participants, setting realistic expectations and fostering trust, which leads to
more effective collaborations [Yu et al., 2024]. It also aids in securing funding by providing reliable
financial plans to sponsors and grant committees.

Recognizing potential delays and their impact allows for proactive risk management, including the
development of contingency plans for recruitment challenges, regulatory delays, or unforeseen events.
This proactive approach is supported by retrospective analyses of past trials and potentially enhanced
by prospective data collection during ongoing trials [Charles A. Knirsch, 2012].

For pharmaceutical companies, accurate forecasting of trial duration is essential for strategic planning,
including market entry and product launch strategies. It determines the timing of drug approval and
market availability, crucial for competitive positioning and financial planning [Joseph A DiMasi,
2016]. Forecasting also supports planning for regulatory submissions, leading to smoother interactions
with regulatory bodies and a more efficient approval process, ultimately speeding up market access
for new treatments [Alsultan et al., 2020].
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In summary, the ability to forecast the duration of clinical trials provides strategic advantages in
managing the complexity, costs, and risks associated with clinical research. It enhances the efficiency
and effectiveness of trial execution and plays a critical role in advancing medical innovation by
bringing new treatments to market more reliably and swiftly.

B Related Works

Earlier works in the area of machine learning for clinical trial predictions involve two major directions:
predicting individual patient outcomes and predicting the probability of trial success [Askin et al.,
2023], [Yue and Fu, 2024].

In terms of predicting individual patient outcomes, the early approaches use traditional methods
in machine learning. For instance, Wu et al. [2012] utilized support vector machines (SVMs) to
forecast genetic lesions based on cancer clinical trial documents. Rajpurkar et al. [2020] employed
gradient-boosted decision trees (GBDTs) to predict improvements in symptom scores by integrating
treatment symptom scores and EEG measures in the context of antidepressant treatment for depressive
symptoms. Meanwhile, Hong et al. [2020] focused on projecting clinical drug toxicity based on
features related to drug properties and target properties, employing an ensemble classifier consisting
of weighted least squares support vector regression. Machine learning can also play a pivotal role in
generating simulated data to identify more efficient statistical outcome measures [Sangari and Qu,
2020]. One study proposes that employing an AI algorithm to forecast individual patient outcomes
and pinpoint those likely to progress rapidly, leading to earlier trial endpoints, could result in shorter
trial duration [Lee and Lee, 2020]. Moreover, Berchialla et al. [2022] developed a machine learning
framework to conduct a heterogeneous treatment analysis on type 2 diabetes using randomized
clinical trials that share similar inclusion and exclusion criteria as well as a set of common clinical
patient characteristics.

In terms of predicting the probability of trial success, machine learning has been utilized to generate
early detections and prognoses of disease, which can increase the probabilities of success in a clinical
trial [Sangari and Qu, 2020]. Beyond that, machine learning can be employed to predict molecular
features, target sensitivity, bioavailability, and toxicity [Zhavoronkov et al., 2020] in order to minimize
potential trial failures in later stages. This can contribute to designing phase-II and phase-III trials
that have a higher chance of success. Qi and Tang [2019] designed a Residual Semi-Recurrent
Neural Network (RS-RNN) to forecast phase III trial outcomes based on phase II results. Lo et al.
[2019] explored different imputation techniques and a range of traditional machine learning models,
including logistic regression, random forest, and SVM, to forecast drug approval within 15 disease
categories. Similarly, Siah et al. [2021] assessed various traditional machine learning models for
predicting clinical trial outcomes. In more recent works, Fu et al. [2023, 2022], Lu et al. [2024]
predicted outcomes across all clinical trial phases, utilizing comprehensive trial features such as
drug molecules and trial eligibility criteria and integrating multimodal data sources. Wang et al.
[2024] designed a TWIN-GPT model to synthesize patient electronic records to simulate clinical
trials. Kavalci and Hartshorn [2023] introduced an improvement to the predictive model for clinical
trial termination by incorporating eligibility criteria search capabilities derived from unstructured
text and disease categorization characteristics into the existing study features, showing a statistically
significant improvement in predicting early termination of clinical trials. Moreover, Aliper et al.
[2023] created a platform that utilizes transformer technology and generative AI, incorporating
multimodal data such as omics, text, clinical trial design, and small-molecule properties to forecast
the results of phase II clinical trials.

Earlier works in machine learning for clinical trial predictions primarily focus on two aspects:
predicting individual patient outcomes and predicting the probability of trial success. However, these
approaches, while innovative and beneficial in their respective domains, did not directly address the
issue of clinical trial duration. Our approach, however, seeks to fill this gap by specifically targeting
the trial duration problem. We cannot simply adapt the methodologies from prior works because our
task encompasses a broader scope. Our model integrates Bio-BERT embeddings, specifically tuned
for biomedical contexts, providing a deeper and more relevant semantic understanding of clinical trial
data. Additionally, the hierarchical attention mechanism in our model enables a nuanced analysis of
relationships between various data elements, a feature not commonly addressed in previous studies.
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