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ABSTRACT

This paper presents a new approach to nonnegative matrix factorization (NMF)
that directly focuses on the subspace structure of the data instead of the specific
samples. The main idea is to find the borders of the data’s principal subspace with
the nonnegative orthant, which we call nonnegative subspace edges (NoSEs), and
construct the factorization according to these NoSEs. We introduce a deterministic
algorithm to find NoSEs in linear time, and straight-forward techniques to obtain the
desired NMF from these NoSEs. We show that this approach defines a deterministic,
optimal, unique, and well-posed solution to NMF. To understand the importance
of this result, consider the Moore-Penrose pseudo-inverse, which determines an
optimal (minimum-norm) solution to ill-posed linear systems. Analogously, NoSEs
provide an optimal (widest-cone) solution to the ill-posed problem of NMF.

1 INTRODUCTION

Nonnegative matrix factorization (NMF) aims to approximate a nonnegative data matrix X as the
product of two nonnegative factors U and V. Due to is broad applicability in critical applications,
a myriad of NMF methods have emerged over the last decades (see surveys [1-9]). However,
despite this extensive progress, NMF remains inherently ill-posed, admitting infinitely many feasible
solutions. In fact, different algorithms generally produce very different factorizations of the same data.
For instance, each of the NMF methods in Figure 1-a yields a significantly different decomposition
— an average angle of 49.5° between matching vectors in U. For reference, nonnegative gaussian
vectors in the same subspaces have an approximate cosine similarity of 17°. These significantly
different solutions inform about key features and relationships in critical applications. For example,
they are used to identify key genes in single-cell sequencing [10] or compounds in drug discovery
[11], and it is generally unclear which among the many available solutions should be favored.

The source of this ill-posedness has a geometric interpretation: NMF is equivalent to finding one of
the simplest polyhedral cones that encapsulates the given data [7, 9, 12, 13]. By simplest we mean
that the cone is spanned by as few nonnegative vertex rays as possible. By encapsulate we mean
that the columns of X can be written as conic combinations (linear combinations with nonnegative
coefficients) of the vertex rays spanning the cone. The vertex rays correspond to the columns of U.
Once U is known, V = (UTU)’lUTX is trivially given by the coefficients of X with respect to
U. The challenge is that in general, there exist infinitely many feasible cones (Figure 1-b), each
corresponding to a different factorization of X. Hence, it is not surprising that different methods
produce different results — all correct in that their factors approximate X, but inconsistent in that
they produce different coefficients and representations.

Existing approaches mitigate this type of ill-posedness by enforcing constraints that result in unique
solutions (Figure 1-c). Examples include ONMEF, sparse NMF, and many more [1-5, 7, 14-18].
However, it has been shown that the conditions for uniqueness are very strong [19, 20]. Alternatively,
other unique solutions, like the minimal-cone, have been explored [21-23]. However, these solutions
are heavily dependent on the particular sample, and are generally unstable in the sense that small
perturbations to the data produce significantly different solutions (Figure 1-d).

This paper delivers two main contributions: (i) we introduce a new solution to NMF, defined
by the principal subspace W containing the data and its one-dimensional intersections with the
nonnegative orthant, which we call nonnegative subspace edges (NoSEs). In contrast to existing



solutions, ours is well-defined, deterministic, unique, and optimal in the maximal-coverage sense
— that is, it encapsulates the entire nonnegative portion of W. To give some perspective, this is
analogous to the Moore-Penrose pseudo-inverse, which selects the optimal (minimum-norm) solution
to ill-posed least-squares problems. Our solution applies to any subspace that intersects non-trivially
with the nonnegative orthant — that is, any subspace with a nonnegative component, which is a direct
consequence of the nonnegativity condition. Moreover, our solution is stable in that it is identical
for any sample in the nonnegative portion of W. (ii) We present a deterministic algorithm to find
such solution in linear time. This algorithm can be understood as a purely geometric version of
the simplex method [24] and the Avis-Fukuda algorithm [25] with no objective function nor slack
variables, that traverses the boundary of our polyhedral cone directly on V' -representation instead of
H-representation. The main idea is to trace faces of decreasing dimension until finding one NoSE,
and then recursively traverse its adjacent faces in order to find all remaining NoSEs.

The rest of the paper is organized as follows. In Section 2 we formally define our new solution and its
properties. In Section 3 we describe our algorithm to identify such solution, and derive its theoretical
guarantees. In Section 4 we discuss some practical considerations on how to extend our approach to
noise, outliers, and more. Section 4 presents a discussion of our approach in the context of existing
work. Finally, Section 5 demonstrates the effectiveness of our approach on an extensive series of
experiments on synthetic and real data.

2 NOSES AND THE MAXIMAL-COVERAGE SOLUTION

The key feature that distinguishes our approach is that we do not focus on the specific samples that
we observe (columns in X). Instead, we focus on the low-dimensional structure of such samples, that
is, their principal subspace W, which can be trivially computed using a singular value decomposition
(SVD). Our solution is given by the vectors in W lying at the boundary of the nonnegative orthant
(see Figure 1-b for some intuition). More formally,

Definition 1. [Nonnegative subspace edges (NoSEs)] Given an m x n data matrix X, let' W denote
its principal subspace of dimension r. We define the NoSEs of X, or equivalently, the NoSEs of W, as
the vertex rays of the polyhedral cone obtained by intersecting W with the nonnegative orthant.

Letting W denote an orthonormal basis of W, it is clear that the polyhedral cone in Definition 1 is the
set Cyw :={w : w=W8 >0, 0 € R"}. To characterize its vertex rays, we will assume without
loss of generality that r > 1; otherwise NMF is a trivial problem that requires no attention, as all
columns in X are co-linear, so any column can be written as a conic combination of any other. We
will also assume that both W and the samples in X are in general position. More precisely, we will
assume that

Al. W is drawn according to an absolutely continuous distribution with respect to the Lebesgue
measure over the subset of the Grassmannian containig all subspaces that cross the nonnegative
orthant.

A2. The columns of X are drawn independently according to an absolutely continuous distribution
with respect to the Lebesgue measure over the nonnegative portion of W, that is, the intersection of
‘W with the nonnegative orthant.

A1-A2 are standard genericity assumptions [26]. In words, A1 simply requires that W is in a random
position on the nonnegative orthant, and similarly A2 requires that the columns in X are distributed
randomly over W. Most nonnegative continuous distributions, for example nonnegative gaussian data,
will satisfy these weak assumptions. All our analysis holds with probability 1 under the measures in
Al and A2.

Under these assumptions, it is easy to see that the vertex rays in Definition 1 are the elements of Cyy
that satisfy WO > 0 with exactly r equalities.

Intuitively, NoSEs are simply the 1-dimensional intersections of W with the canonical faces of the
nonnegative orthant (Figure 1-b). To simplify our analysis, we will assume that:

From this definition, we directly obtain the following
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Figure 1: (a) Averaged cosine similarity of different factorizations over 18 datasets. Different NMF algorithms
produce different factorizations. (b) NMF is equivalent to finding one of the lowest-dimensional cones that
encapsulate the data (e.g., the blue cone). There exist infinitely many solutions. We propose the maximal-
coverage solution (in gray) formed by NoSEs (¢.:, ¢,-), which we define as the intersections of the faces
of the nonnegative orthant with the principal subspace of the data, W. (c) Existing alternatives to mitigate
ill-posedness result in overly restrictive conditions. For example, ONMF [34] only allows subspaces perfectly
aligned with the canonical axes (e.g., blue), which is a set of measure zero with respect to the Lebesgue measure
over the Grassmannian that excludes all subspaces in general position (e.g., teal). In contrast, our work applies
to all subspaces with a nonnonnegative component. (d) Alternative unique solutions, like the minimal-cone
[21-23], are heavily dependent on the sample, and small perturbations can result in entirely different solutions.
In this illustration, adding a single sample results in an entirely different minimal-cone solution. In contrast, our
maximal-coverage solution is identical for any nonnegative sample in W.

we define the NoSEs of X as the vertex rays of the polyhedral cone obtained by intersecting W
with the nonnegative orthant. Equivalently, the NoSEs of X are the 1-dimensional intersections of
‘W with the canonical faces of the nonnegative orthant. The main idea is that since NoSEs lie at
the corners of the nonnegative orthant, their polyhedral cone is maximally wide (see Figure 1 for
some intuition). Moreover, given X, its set of NoSEs is unique, finite, and deterministic. In this
sense, NoSEs single out the optimal (widest-cone) solution among the infinitely many available,
thus resolving the ill-posedness problem of NMF. To give some perspective, this is analogous to
the Moore-Penrose pseudo-inverse, which selects the optimal (minimum-norm) solution to ill-posed
least-squares problems. Moreover, since NoSEs lie at the border of the nonnegative orthant, they
cannot be represented as conic combinations of any other nonnegative vectors in W. Hence, NoSEs
can be used to bound the nonnegative rank. Beyond theory, one practical advantage of our approach
is that we can leverage subspace estimation techniques developed over the years to handle a wide
range of challenging conditions, including noise [27], outliers [28], missing data [29], sparsity [30],
high dimensionality [31], mixtures [32], and more [33]. Our methodology allows us to directly use
these techniques to estimate W robustly, after which its NoSEs and NMF can be computed without
further adaptations.

As we will see, finding NoSEs is tantamount to finding the faces of the nonnegative orthant that
intersect with W. For example, in Figure 1, the (z, z) and (y, z) faces intersect with ‘W, but the
(z,y) face does not. In higher dimensions, there is a combinatorial number of feasible faces, most of
which will not intersect W. To identify the good faces efficiently we propose an explicit, entirely
deterministic geometric algorithm that can be understood as a purely geometric version of the
simplex method [24] and the Avis-Fukuda algorithm [25] with no objective function nor slack
variables, that traverses the boundary of our polyhedral cone directly on V -representation instead of
H-representation. The main idea is to trace faces of decreasing dimension until finding one NoSE,
and then recursively traverse its adjacent faces in order to find all remaining NoSEs. Our algorithm is
guaranteed to identify all NoSEs in linear time.

In general, the number of NoSEs of a given subspace W depends not only on m and its dimension r,
but also on its orientation. That is, two subspaces of R™ of the same dimension may have a different
number of NoSEs. This number will typically be larger than r, and may even be larger than m.
However, some NoSEs form fairly obtuse angles and are only required to cover corners of the orthant
that have small relative volume and hence are unlikely to contain any data (see Figure 1). In general,
a few cleverly selected NoSEs will cover large portions of the nonnegative area of their subspace,
and will suffice to represent most matrices X, revealing the desired NMF. Given all the NoSEs of
X, identifying the few that encapsulate all data can be seen as the column selection problem of
identifying the best vectors to form a basis for the data [35-37]. Fortunately, this problem can be
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Figure 2: Left: Procedure to find the first NoSE; see Section 3-(i). Center: Positive and negative directions
yield different NoSEs; see Section 4-(d). Right: Procedure to find all remaining NoSEs; see Section 3-(ii).

solved with simple methods [38—40]. We complement our analysis with a discussion on practical
considerations that highlight the advantages of our approach, and we present a comprehensive list of
experiments that demonstrate its effectiveness on synthetic and real data.

3 NONNEGATIVE SUBSPACE EDGES AND WHERE TO FIND THEM

Given a nonnegative m X n data matrix X of approximate rank r, we define its nonnegative subspace
edges (NoSEs) as the vertex rays of the polyhedral cone obtained by intersecting W, the r-dimensional
principal subspace of X, with the nonnegative orthant.

To characterize NoSEs, let the canonical face Fq be the span of the canonical vectors not in
Q c {1,...,m}, and let Py and Pg denote the projection operators onto W and Fg. Given W
and Q, we say that oo € W N Fq, is a NoSE if dim(W N Fg) = 1 and all the entries in ¢, are
nonnegative. From this definition, it is clear that whether o is a NoSE or not depends entirely
on the subspace W and the subset of coordinates 2 defining the face. It is easy to see from the
rank-nulity theorem that for r-dimensional subspaces in general position, dim(W N F) = 1 if and
only if |Q2] = r — 1, or equivalently, if dim(Fg) = m — (r — 1). In this case, ¢ can be trivially
computed as the solution to the linear system (I — PoPy)pq = 0.

From this characterization, it is clear that one way to identify NoSEs is to simply solve (I —
PaoPw)pa = 0 for every Q of size r — 1, and see if the solution ¢ has no negative entries (in
which case ¢, is a NoSE). In fact, this strategy may be useful for small problems like the example
in Figure 1, where m = 3 and r = 2, resulting in only 3 sets {2 of size 2 — 1 = 1 that need to be
tested. The catch is that in general there are (rTl) = O(m* 1) such sets §2, which makes this onerous
strategy computationally prohibitive even for problems of moderate size. In other words, the problem
is that in general, there are too many faces.

To overcome this problem we introduce the following procedure, which has two main steps: (i)
tracing faces of decreasing dimension until we find one NoSE, and (ii) recursively traversing such
NoSE’s adjacent faces in order to find all remaining NoSEs. We formalize these ideas next, for which
we will use the following notations: given a subspace, matrix, or vector that is compatible with a set
of indices {2, we use the superscript € to indicate its restriction to the coordinates/rows in €2. For
example, X*? denotes the || x n matrix that is equal to X in the rows indexed in Q C {1,..., m}.
Finally, © denotes the Hadamard (pointwise) division. We invite the reader to consult Figure 2 as we
develop our construction in order to build some geometric intuition.

(i) Finding the first NoSE. The main idea is to start at a pivot point in the nonnegative orthant,
and move in r — 1 directions of W. Each of these directions will move us to a new pivot point in a
lower-dimensional face until we reach a pivot point in a face of dimension m — (r — 1). Such point
will be the desired NoSE.

We start with our first pivot point ¢ equal to the leading left singular vector of X, which will
always be in the nonnegative orthant, as X > 0 by assumption. Since W is in general position, g
has no zero entries, so it lies in the (m — 0)-dimensional face F, given by the entire vector space,
and Qo = (. We will now proceed by induction on k € {0,...,r — 2}. Let our pivot y be a



nonnegative vector in W with k zeros in the entries indexed by Qi C {1, ..., m}, so that ¢y lies in
the (m — k)-dimensional face Fy.

Our goal is to move from ¢y along the face Fy in a new direction of W orthogonal to ¢y that leads
to a smaller face Fy 1 of dimension m — (k + 1) that lies inside Fy and contains a nonnegative
vector y11. To identify such direction dy, let {¢x, W1, ..., W11} be an orthogonal basis of W,
and let Wy, := [w, ..., w,_1]. Recall that W* denotes the k x (r — 1) matrix with the rows of
Wy indexed in €. Since k < r — 1 and W is in general position, the kernel of Wf}k is non-trivial.
Let v € R™! be any vector in such kernel, and define & := W ~. By construction, 8, € W, it is
orthogonal to ¢y, and lies in J, as 681‘ = ijk'yk =0.

We will move in the direction of dy to find the smaller face inside F that we are looking for. More
precisely, we will find the (m — (k + 1))-dimensional face Fy 1 that is closest to ¢y in the direction
of dy. To identify the distance that we need to move in the direction of dy, let ay be the smallest,
positive, well-defined entry in cv := — ¢y ©d, let i1 index its location, and let Q11 := Qi Uiky.
Since dy is orthogonal to ¢y, and all the entries of ) are nonnegative, §; must have at least one
negative entry, which implies oy, will always have at least one positive entry. Furthermore, since W
is in general position, all well-defined entries in oy are different. This implies that the smallest entry
in oy is unique, so ay is well-defined. In words, the ith entry in o, denotes the distance from ¢
that we would need to move in the direction of d; in order to touch the border of the nonnegative
orthant in the i*" coordinate. Our next pivot point (| ; is obtained by moving the smallest such
distance « in the direction of Jy, so that we touch the border of the nonnegative orthant on the if(h
coordinate but do not cross it towards the negative side on any other coordinate. By construction,
Pr+1 = @k + a0 lies in W, all its entries are nonnegative, and it has k + 1 zeros in the entries of
Qy+1, whence it lies in the (m — (k + 1))-dimensional face Fy1 1.

Taking this induction up to k = r — 2, we can obtain a vector ¢x41 = ¢, that is nonnegative, lies
in W, and has r — 1 zeros, whence lies in a face of dimension m — (r — 1). This implies ¢, _; is a
NOoSE, as desired. This procedure can be seen as a purely geometric version of the simplex method
[24] with no objective function nor slack variables that traverses the boundary of the feasible region
directly on V -representation instead of [{-representation.

(ii) Finding all remaining NoSEs. We start from a NoSE ¢, lying on an (m — (r — 1))-dimensional
face Fo with r — 1 zeros indexed by 2. The main idea is to move out of the face Fq, along all its
adjacent higher-dimensional faces {F,} in order to find all other NoSEs neighboring ¢,. It may be
useful to think of F, as the "corner" where g, is located, and {F,} as the "walls" coming out of
such corner that will in turn lead to other corners. More formally, let ¥, denote the (m — (r — 2))-
dimensional face spanned by the same vectors as F, in addition to the canonical vector corresponding
to the /*" element in . Our plan is to move from g, along F; in all directions of W orthogonal to
pq to find all its neighboring NoSEs.

To identify these directions, let {¢p, W1, ..., Ww,_1} be an orthonormal basis of W, and let A =
[d1,...,8:—_1] be a basis of the subspace spanned by {w1, ..., w;_1} that is in reduced column-
echelon form, with the identity block located in the rows of €. For example, if = {1,2,3} and
m = 5, then

Fq = span , Aqg=

o—ocoo
—oooo
FrHFoor
oo
FIF~roo

where # denotes a non-zero value. Since W is in general position, we can always construct such a
basis Agq. Let €2y index the set of r — 2 canonical vectors that are not in the span of F,. For instance,
in our example, 2; = {2, 3}.

Notice that d; is the only vector in A, that has zeros in €2y, and that adding any combination of other
vectors in A would induce nonzeros in 2. It follows that §, is the only direction of W orthogonal
to wq along Jy, so it is the only direction in F, that leads to a NoSE. To determine the distance that
we must move in this direction to obtain such NoSE, let o, be the smallest, positive, well-defined
entry in oy 1= —pq © 0y, let iy index its location, and let ) := €, Ui,. Since d; is orthogonal to
q, and all the entries of (¢, are nonnegative, , must have at least one negative entry, which implies
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Figure 3: Left: The number of NoSEs depends on m, r, and the orientation of the subspace. Average number
of NoSEs (over 20 trials) as a function of m and r. Right: Fraction of cases (over 10 trials) where at least one
subset of r NoSEs encapsulates X. In these experiments, U and V were populated with the absolute value of
i.i.d. standard normal entries.

oy will always have at least one positive entry. Furthermore, since W is in general position, all
well-defined entries in oy are different. This implies that the smallest entry in o is unique, so oy is
well-defined. In words, the i*" entry in o, denotes the distance from (¢, that we would need to move
in the direction of §, in order to touch the border of the nonnegative orthant in the i*" coordinate.
The only NoSE in F; adjacent to g, is thus obtained by moving the smallest such distance « in the
direction of &y, i.e., ¢ := pq + apdy. The point is to touch the border of the nonnegative orthant on
the i}h coordinate but to not cross it towards the negative side on any other coordinate.

With this procedure we obtain all the r — 1 NoSEs neighboring ¢q. This immediately implies that all
r-dimensional subspaces in general position have af least r NoSEs. Since W is in general position,
there is a connecting path of faces from any vertex ray in the cone to any other. hence, repeating this
procedure recursively for every newly discovered NoSE we obtain all NoSEs, as desired. Notice that
this procedure is linear in the number of NoSEs. We have thus proved the following:

Theorem 1. Suppose r > 1. Under A1-A2, X has a finite and deterministic set of N > r NoSEs,
which the procedure above is guaranteed to identify in linear time.

Notice that the procedure above is easily parallelizable implementing simple subscript management
techniques like Bland’s rule [41] to track recursion efficiently. This procedure can be seen as a purely
geometric, simplex-free version of the Avis-Fukuda algorithm [25] that traverses vertex rays directly
on V-representation instead of H-representation.

4 FRrROM NOSEs TO NMF

Let @ denote the m x N matrix containing all the NoSEs of X as columns. The procedure above
shows that N > r := rank(X). That is, any rank-r matrix will always have at least r NoSEs.
However, if r > 2, N is generally much larger than r (see Figure 3). Since NoSEs are the vertex rays
of a polyhedral cone, they cannot be represented as conic combinations of any other points in the
cone. This means that if X contains N’ < N NoSEs, its nonnegative rank is the minimum among
m, n, and N’. Nonetheless, if the columns of X are in general position (i.e., drawn according to
an absolutely continuous distribution with respect to the Lebesgue measure) over the nonnegative
portion of W, the probability that X contains a NoSE (according to such measure) is zero. In such
case, it is possible that there exists a small subset of N’ < min(m, n) NoSEs ®’ that encapsulate X.
In such case we can directly upper bound the nonnegative rank by N’, and we also obtain an NMF
using P’ as the first factor. It turns out that for Gaussian data, there typically exist such small subsets
of NoSEs that cover X (see Figure 3). Moreover, given ®, selecting such subset of N’ NoSEs can be
seen as an instance of a column subset selection problem [35-37], which can be solved with various
alternatives, for example:

a) Clustering. Partition all NoSEs into N’ clusters (e.g., using k-means clustering [42], spectral
clustering [43, 44], or subspace clustering [45]), and select one representative NoSE from each
cluster.



b) QR. Select the most representative columns using a QR decomposition [38—40].

¢) Group-lasso. Solve the following optimization:

min ||X — (I’@HF + /\||®||271, s.t. ® > 0. (1)
@e]Ran
Here || - || denotes the Frobenius norm, given by the square root of the sum of squared entries, ||« ||2,1

denotes the {5 ; norm, given by the sum of the ¢, norms of the rows, and A > 0 is a regularization
parameter. The idea behind equation 1 is to find a representation of X that only uses a few of the
NoSEs in ®@. Such NoSEs will be the columns in ® corresponding to the nonzero rows of the
solution to equation 1, which in turn will be sparse thanks to the regularization term, provided that
A > \/ n/m + \/ log N/m [46]. The higher )\, the sparser ©, so we could tune this parameter to
obtain a solution with N’ nonzero rows. In our implementation we simply set A to this bound, and
select the rows of ® with the N’ largest norms.

d) Principal NoSEs. Select the N’ NoSEs that cross the nonnegative orthant in the positive and
negative principal directions of X. This can be achieved by modifying the method that we described
above to find the first NoSE. The only difference is that instead of always moving in the direction of
Oy, we also move in the direction of —§y. It is easy to see that different combinations of positive and
negative directions will yield different NoSEs (see Figure 2).

The main advantage of (a) is its simplicity and intuitiveness, and that it allows for numerous clustering
methods, modifications, and generalizations. Its main caveat is that since it relies on clustering, it
is sensitive to initialization. In contrast, (b) is deterministic, and hence produces a unique solution.
Similarly, (c) is a convex formulation with a unique global minimizer that standard convex solvers are
guaranteed to find. Moreover, since (c) is a standard group-lasso optimization, under the well studied
assumptions of this formulation we obtain consistency guarantees [47] and tight error bounds that
carry through directly (see for example Theorem 3.1 in [48] or Theorem 2 in [49]). In other words,
under standard regularity conditions, (c) is guaranteed to reveal the smallest subset of NoSEs that
encapsulate X. In contrast, the greedy version in (d) offers no guarantees, but since it does not require
to compute all NoSEs, it can be an attractive option in applications where efficiency is paramount, or
when the data is so high-dimensional that computing all NoSEs is infeasible or impractical.

Let @’ be the m x N’ matrix containing a subset of NoSEs selected from @ using any criteria. This
matrix can be used as the first factor in our NMF. To obtain the corresponding second factor it suffices
to compute the nonnegative coefficients of X with respect to the basis ®’. This can be trivially done
by solving the following convex linear program, which can be seen as a standard refinement step of
equation 1:

@ = argmin |X — ®'O|p, s.t. ® > 0. 2)
@cRN’ xn

To summarize, the first factor U in our NMF is given by ®’, which can be obtained by selecting a
subset of N’ columns in @ using any criteria, for example methods (a)-(d). Our second factor V is
given by ©’, which can be obtained by solving equation 2. If ®’ is selected with the QR method, ®’
and ©' are guaranteed to be unique and well-posed, because the QR decomposition is deterministic
and unique for generic matrices. Moreover, this solution is optimal in the sense that it reveals the
widest cone (lying at the border of the nonnegative orthant) containing X. The same is true with the
group-lasso method, because equation 1 is convex.

PRACTICAL CONSIDERATIONS: NOISE, OUTLIERS, SPARSITY, HIGH-DIMENSIONALITY, AND
MORE

One of the main strengths of our approach lies in its focus on the principal subspace of X. Over
the past few decades, extensive research has been devoted to estimating this type of subspaces
under a wide range of challenging conditions, including noise [27], outliers [28], missing data [29],
sparsity [30], high dimensionality [31], mixtures [32], and more [33]. We can directly leverage these
advances to estimate W, and subsequently compute its NoSEs and the corresponding NMF without
requiring any further adaptations. For example, if X has outliers, W can be accurately estimated with
any Robust PCA method [28]. Similarly, if X is incomplete, W can be estimated with a low-rank
matrix completion method [50, 51]. Furthermore, if X contains a mixture of data lying in a union
of subspaces, such union can be estimated using any subspace clustering algorithm [52]. In any of
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Figure 4: Factorization error and computation time of NoSEs NMF methods (a)-(e) under noise, outliers, and
missing data, which our approach can handle seamlessly. The reconstruction error remains comparable across
all methods, including a random selection of NoSEs. This suggests that the cones formed by NoSEs are wide
enough to encapsulate most data, so most combinations will produce a reasonable approximation.
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Figure 5: Performance of our NoSEs method and other algorithms on synthetic data. The accuracy of our
method is comparable to other state-of-the-art algorithms. Its main advantages are the theoretical guarantees
and the deterministic well-posed solution it offers, which do not require strong assumptions like orthogonality
[55-57] or that the data satisfy special conditions, like the extreme data property [12]. We also point out that, as
seen in Figure 4, our group-lasso version in this plot is the slowest of our methods, so it can be seen an upper
bound on the computation time of our other strategies.

these cases, the NoSEs of each subspace (and the corresponding NMF) can be computed without any
modifications.

We illustrate this with numerical experiments on noisy data, incomplete data, and data contaminated
with outliers, all of which our approach can handle seamlessly. In these experiments we fixed
m = n = 200, r = 5, and populated the matrices U and V with the absolute value of i.i.d.
standard normal entries. Then we generated a noise matrix Z with the absolute value of i.i.d. normal
entries with variance o2, and constructed X = UV + Z. To simulate missing data, we independently
removed each entry in X with probability p. Similarly, we induced outliers by independently replacing
entries in X with standard normal values. Next we computed W either (i) using a singular value
decomposition truncating noise at the elbow point, (ii) using a robust PCA algorithm [53], or (iii) using
a low-rank matrix completion algorithm [54]. After estimating W, we calculated ®’ and ©' using
the methods above with N’ = r. Finally, we constructed our factorization X := &’©’ and measured
the normalized approximation error ||X — X ||p/||X||¢. Figure 4 shows that the reconstruction error
remains proportional to the range of noise, outliers, and missing data. Interestingly, all methods
have a comparable performance, including a random selection of NoSEs. This suggests that the
cones formed by NoSEs are wide enough to encapsulate most data, and even though there is a unique
optimal combination of NoSEs, most combinations will produce a reasonable approximation. Figure
4 also shows a speed comparison.

5 EXPERIMENTS

There exists such a plethora of NMF algorithms (see surveys [1-9] for a yet incomplete list) that
it is impossible to compare them all. So, in our experiments we compare our approach against 14
well-established methods from the literature, covering a wide range of approaches, spanning classical
methods to state-of-the-art (listed in Tables 1 and 2). To measure accuracy we use the normalized
approximation error ||X — X||g /|| X ||, where X = UV denotes the factorization obtained by each
method. To measure efficiency we report the computation time of each method. All experiments
were conducted on a computer with an AMD Ryzen 7 5800H CPU, 16 GB RAM, and an NVIDIA
RTX 3060 Ti GPU (8 GB).



Table 1: Reconstruction Errors across Datasets.

Method ‘ Heart Disease Iris Seeds ‘ Housing news20 Olivetti ORL  Jaffe ‘ COIL100 COIL20 EYaleB Flowers Oxford Pet Reuters Semeion USPS CIFARI0 MNIST
sklearn_CD[76] 0.070 0.040  0.042 0.047 0.901 0.103 0.193  0.142 0.392 0.202 0.399 0.442 0.389 0.795 0.439 0.225 0.348 0451
Pytorch NMF[77] 0.070 0.041  0.043 0.045 0.907 0.136 0.215 0.243 0.171 0.244 0.169 0.819 0.470 0.264 0.393
fastGNMF(78] 0.085 0.053  0.078 0.058 0.902 0.168 0 0.242 0.213 0.282 0.222 0.798 0.449 0.254 0.487
StdNMF[79] 0.084 0.061  0.049 0.130 0.908 0.135 0.264 0.268 0.305 0.236 0.812 0.540 0.321 0.497
CIM_NMF([80] 0.137 0.091  0.079 0.281 1.005 0.205 0.376 0.505 5 0.392 0.320 0.959 1.240 0.579 4
HuberNMF[81] 0.105 0.066  0.064 0.248 0.970 0.142 0.287 0.297 0.243 0.317 0.249 0.910 0.674 0.344 X
LINMF[82] 0.084 0.061  0.049 0.130 0.971 0.168 0.264 0.358 0.222 0.305 0.918 0.710 0.422 0.497
L2INMF[83] 0.085 0.061  0.050 0.140 0.909 0.135 0.266 0.273 0.223 0.305 0.812 0.540 0.322 0.500
RNMF_LI1[81] 0.105 0.062  0.057 0.229 0.909 0.135 0.432 0.271 0.448 0.549 0.813 0.575 0.322 0.816
RCNMF[84] 0.384 0.113  0.279 0.547 0.915 0.480 0.521 0.480 0.548 0.835 0.659 0.514 0.622
HCNMF[84 0.069 0.06' 0.044 0.041 0.93 0.138 0.19 0.141 0.216 0.852 0.525 0.259 0.325
nimfa_MU[85] 0.084 0.061  0.049 0.048 0.901 0.132 0.244 0.199 0.284 0.796 0.455 0.260 0.405
PARAFAC[86] 0.072 0.041  0.046 0.044 0.901 0.111 0.224 0.177 0.259 0.796 0.445 0.241 0.398
NoSEs (this paper) 0.069 0.040  0.042 0.058 0.967 0.155 0.154  0.191 0.323 0.397 0.407 0.310 0.909 0.683 0.492 0.315 0.427
Neural NMF[87] timed out

Table 2: Running Time (seconds) across Datasets.
Method ‘ Heart Disease Iris Seeds ‘ Housing news20 Olivetti ORL  Jaffe ‘ COIL100 COIL20 EYaleB Flowers Oxford Pet Reuters Semeion USPS CIFAR10 MNIST
sklearn_CD[76] 0.004 0.005  0.006 0.005 18.014 1.456 0.022 0.352 10.900 0.120 2.407 2.148 11.586 1.302 3.097 4.283
Pytorch NMF[77] 0.215 0.223  0.408 0.651 0.656 0.366 0.682 0.841 0.294 0.831 1.732 0.441 0.378 0.391 9.370
fastGNMF[78] 0.043 0.018  0.025 0.099  148.746 2.357 0.404 39.969 2.832 4.922 11 103.932 170.170 1.426 16.961 142.388
StdNMF[79] 0.013 0.014  0.014 0.015 25.343 5.758 1.159 33.587 5.758 9.524 132.719 7.774 1.610 6.591 324.566
CIM_NMF[80] 0.023 0.024  0.035 0.026 0.402 0.830 32.456 1.315 20.758 3.157 0.493 153.814
HuberNMF[81] 0.058 0.046  0.044 0.057 13.930 7 2.032 66.827 12.105 23.861 3.690 15.906  842.488
LINMF[82] 0.016 0.020  0.025 0.024 11.230 1.754 59.001 10.592 20.048 2.929 13.025  900.738 140.035
L2INMF[83] 0.025 0.029 0.037 0.020 9.734 49.670 2.612 10.963 168.635 94.002
RNMF_LI1[81] 0.049 0.017  0.051 0.054 6.217 42.146 2.563 8.069  580.251 95.601
RCNMF[84] 0.178 0.044  0.087 0.380 9.389 252.260 6.184 97.429 4767.069 1481.410
HCNMF[84] 0.066 0.0 0.048 13 2 51 63.57 100.267 ).174 24.251 64.065 1€ 37
nimfa_MUJ[85] 0.031 0.018  0.025 0.095 11.219 1. 314.665 3.287 13.473  696.57 132.182
PARAFAC[86] 0.048 0.025 0.083 0.044 2.380 1.128  0.595 72.613 1.396 2,535  121.054 21.215
NoSEs (this paper) 0.006 0.002  0.006 0.009 74.919 4.894 0.975 0.251 23.69 3 4.019 198.264 2.184 9.546  355.480 137.835
Neural NMF[87] timed out

Synthetic data. In these experiments we generate X the same way as we described in Section 4,
and use each of the methods above to obtain an NMF. The results are in Figure 5, together with a
discussion. To avoid clutter, we compare only against our group-lasso version (c), but the curious
reader can scrutinize the performance of the rest of our strategies (a)-(d) in Figure 4. Missing data
and outliers were artificially incorporated the same way as in our simulations. In the spirit of fairness,
we used the same low-rank matrix completion [54] or robust PCA algorithm [53] to pre-process the
data before using each NMF algorithm.

Real data. We evaluate our method on 18 real datasets related to image processing, text analysis,
document classification, and more. The datasets are Heart Disease [58], Iris [59], Seeds [60], Housing
[61], news20 [62], Olivetti [63], ORL [64], Jaffe [65, 66], COIL100 and COIL20 [67], EYaleB
[68], Flowers [69], Oxford Pet [70], Reuters [71], Semeion [72], USPS [73], CIFAR10 [74], and
MNIST [75]. More details on these datasets can be found in Appendix B. In each case, the subspace
dimension r was identified as the elbow point in a singular value decomposition. Tables 1 and 2 show
the results, with copies in larger font in Tables 3 and 4 in Appendix B. Unfortunately, Neural NMF
timed out in these larger datasets, in agreement to the high computational complexity it exhibited
in our simulations in Figure 5, and the factors obtained by HCNMF contained negative values.
Nonetheless we include these methods for completeness. It is worth noticing that while no method
dominates across all datasets, our approach outperforms the state-of-the-art in the first three, and
performs nearly as well (within a negligible margin of at most 0.04) on datasets 4 through 8.

In light of these comparable results, a skeptical reader might ask: why should one prefer our solution?
A related question provides some perspective: why is the Moore-Penrose pseudo-inverse often favored
when solving an underdetermined linear system? The reasoning in both cases is similar. The Moore-
Penrose pseudo-inverse identifies a well-posed (unique), deterministic, and optimal (minimum-norm)
solution to ill-posed linear systems with multiple solutions. Like these underdetermined systems,
NMF is also an ill-posed problem with infinitely many solutions. In fact, each of the NMF methods
tested in our real-data experiments yields a significantly different factorization — an average angle of
49.5° between matching vectors in U; see Figures 6 and 7 in Appendix C for details. For reference,
nonnegative gaussian vectors in the same subspaces have an approximate cosine similarity of 17°.
These significantly different factorizations inform about key features and relationships in critical
applications. For example, they are used to identify key genes in single-cell sequencing [10] or
compounds in drug discovery [11], and it is generally unclear which among the many available
solutions should be favored. Like the Moore-Penrose pseudo-inverse, our solution to NMF has the
desirable properties of being well-posed (unique), deterministic, and optimal (widest-cone), without
requiring strong assumptions like orthogonality [55-57] or that the data satisfy special conditions,
like the extreme data property [12].
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A RELATED WORK

Non-negative matrix factorization (NMF) has evolved markedly since its inception, reflecting growing
demands for robustness, structure, and scalability. Early work revealed that non-negativity constraints
yield interpretable, parts-based image decompositions, sparking widespread adoption [88]. Over the
following decade, researchers incorporated domain priors and computational refinements: graph-
regularized NMF preserved local manifold geometry [89], open-source libraries unified dozens of
update rules [85], and exact sparsity was enforced through ¢y-constrained formulations [90]. Multi-
layer “Deep Semi-NMF” architectures were introduced to capture hierarchical semantics [91], while
robust formulations embedded S-divergence and /5 ; penalties to mitigate outliers in hyperspectral
unmixing [92].

As GPU acceleration and toolkits matured, the NMF ecosystem diversified further. High-performance
implementations enabled efficient divergence minimization on modern hardware [77], and large-scale
factorization methods supported a variety of loss functions [93]. Simultaneously, domain-specific
pipelines emerged: graph-regularized clustering frameworks were applied to Hi-C chromatin data
[94], and multitask models incorporated network enhancement layers [95].

Between 2023 and 2025, novel NMF variants proliferated, driven by the community’s pursuit of
adaptability and performance. A comprehensive survey by [9] cataloged over a hundred algorithmic
variants and categorized modern NMF developments into structured, constrained, and generalized
classes, highlighting applications across 130 fields and calling for case-specific formulations to
address performance limitations. Building on this taxonomy, hierarchical layers were learned using
neural modules in end-to-end architectures [87], and comparative studies evaluated 1, {5, and /3 1-
norm variants under different corruption regimes, revealing no universally superior divergence [96].
Unified NMF frameworks integrated multi-omics datasets through shared latent factors [97], and
contrastive learning techniques aligned topological and attribute embeddings for community detection
[98].

In 2024, further specialization emerged: graph-regularized NMF was enhanced with {3 o row-
sparsity and provably convergent solvers [99]; deep architectures incorporated both global and local
regularization [100]; per-component stretch parameters were introduced for interpretable material
factors [101]; Bayesian priors were used to prune redundant components [102]; fairness-aware
formulations equalized reconstruction errors across demographic groups [103]; and NMF layers were
reinterpreted as implicit neural operators [104].

By 2025, adaptive graph learning and robust self-supervision took center stage. New models jointly
learned multi-hop graphs and dual sparsity [105], embedded robust PCA within symmetric NMF
[106], and combined dual graph structures with correntropy losses for handling heterogeneous noise
[107]. Hybrid pipelines matured, incorporating large language models for guided sound separation
[108] and leveraging quantum annealing for accelerating non-negative or binary factorization [109].
Tensor and geometric generalizations also emerged, including coseparable tensor factorization [110]
and curvature-corrected models [111]. Tree-guided approaches extended NMF to capture hierarchical
structure in time-series data [112].

Despite these advances, NMF remains fundamentally ill-posed. Factorizations are non-unique, highly
sensitive to initialization and model choices, and lack a systematic method for verifying correctness.
This unresolved identifiability problem is one of the main motivation of our approach.

B REAL DATASETS

Below we give a brief description of all the real datasets used in our experiments.
* ORL [64]: A facial recognition dataset containing 400 images with 40 classes(individuals),
where m, n = 1024, 400 and r = 30.

* COIL20 [67]: Columbia object image library with 1440 images of 20 objects photographed
at different angles, where m, n = 1024, 1440 and r = 45.

» Extended Yale-B [68]: A facial image dataset with 38 classes(individuals) under varying
lighting condition with 64 images per class,where m,n = 2016, 2432 and r = 40 .
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» Flowers [69]: A image classificaion dataset with 102 flower categories with 40 to 258
images per class, where m,n = 3072,8189 and r = 125.

» Oxford Pets [70]: Image based dataset of pet animals under various lighting and poses with
37 classes of 200 sample images each, where m, n = 3072, 7349 and r = 160.

* 20 Newsgroups [62]: A popular text dataset of 20k documents across 20 categories primarily
used for document classification, where m, n = 1000, 18846 and r = 50.

* Reuters-21578 [71]: A text categorization benchmark dataset consisting of Reuters newswire
articles of 90 classes, where m, n = 1000, 19043 and r = 60.

* Semeion [72]: A handwritten digit dataset of 1593 binary images, where m, n = 256, 1593
and r = 50.

» USPS [73]: THe U.S. Postal Service digit recognition dataset containing 9298 images of
digits, where m, n = 256, 7291 and r = 28.

* Heart Disease [58]: A heart disease prediction dataset with 303 samples(patient records)
and 13 clinical features, where m,n = 13,302 and r = 2.

* RIS [59]: A classification and clustering dataset comprising of 150 samples from three iris
flower species, where m,n = 4,150 and r = 2.

* Olivetti [63]: A face recognition dataset with 400 images of 40 individuals under different
posing and lightning conditions, where m, n = 4096, 400 and r = 34.

* Boston Housing [61]: A non-image regression dataset with 506 samples and 4 features used
to predict housing prices, where m,n = 14,505 and r = 3.

» Seeds [60]: A dataset containing 210 samples describing the measurements of geometrical
properties of kernels from three different varieties of wheat, where m,n = 7,210, and
r=2.

» JAFFE [65, 66]: A Japanese female facial expression dataset containing 213 images of 10
individuals, where m,n = 1024,213 and r = 13.

e COIL100 [67]: An extension of COIL20 with 100 objects, where m,n = 1024, 7200 and
r = 52.

* CIFAR-10 [74]: A popular image classification dataset with 60k, 32x32 pixel images with
10 classes. We randomly selected 20k samples for evaluation. m,n = 3072, 20000 and
r = 100.

» and MNIST [75]. An extremely popular benchmark dateset of handwritten digit dataset with
70k 28x28 images. We use a subset of 20k randomly selected samples. m, n = 784, 20000
and r = 50.

Tables 3 and 4 below contain the same results as Tables 1 and 2 in larger font.

C SOLUTIONS DISPARITY

Figures 6 and 7 show the cosine similarity of the solutions of multiple NMF algorithms. Given the
solutions U and U’ of two methods, we found the best match between the columns in U and U’,
and computed the average cosine similarity between each matching column. Notice that a simple
principal angle distance does not apply in the NMF setting, because it would be zero if the two
bases span the same subspace (which is often the case), even if the two bases U and U’ are entirely
different.
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Figure 6: Cosine similarity between NMF solutions of different methods. The overall average across all methods
and all datasets is, 0.6496, which is equivalent to a 49.5° angle.
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Figure 7: Cosine similarity between NMF solutions of different methods. The overall average across all methods
and all datasets is, 0.6496, which is equivalent to a 49.5° angle.
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