
NeuralSVCD for Efficient Swept Volume Collision
Detection

Dongwon Son∗ Hojin Jung∗ Beomjoon Kim
Korea Advanced Institute of Science and Technology (KAIST)

Seoul, South Korea
{dongwon.son, hojin.jung, beomjoon.kim}@kaist.ac.kr

Abstract: Robot manipulation in unstructured environments requires efficient and
reliable Swept Volume Collision Detection (SVCD) for safe motion planning.
Traditional discrete methods potentially miss collisions between these points,
whereas SVCD continuously checks for collisions along the entire trajectory. Ex-
isting SVCD methods typically face a trade-off between efficiency and accuracy,
limiting practical use. In this paper, we introduce NeuralSVCD, a novel neural
encoder-decoder architecture tailored to overcome this trade-off. Our approach
leverages shape locality and temporal locality through distributed geometric rep-
resentations and temporal optimization. This enhances computational efficiency
without sacrificing accuracy. Comprehensive experiments show that NeuralSVCD
consistently outperforms existing state-of-the-art SVCD methods in terms of both
collision detection accuracy and computational efficiency, demonstrating its ro-
bust applicability across diverse robotic manipulation scenarios. Code and videos
are available at https://neuralsvcd.github.io/.

Keywords: Neural swept-volume collision detection, Motion planning

Figure 1: (a) Illustration of tunneling errors in discrete collision detection. Sampling only a finite
set of waypoints along the robot’s trajectory can miss collisions occurring between waypoints (high-
lighted by the dashed circle). (b) Swept Volume Collision Detection (SVCD). SVCD evaluates the
collision between the swept volume of the object along the given trajectory (pink) and obstacles.

1 Introduction
Robotic motion planning in unstructured environments, such as inserting dishes into a rack, assem-
bling parts, or navigating in a tight space, requires accurate collision checking. Traditional discrete
collision checkers sample a finite set of waypoints along a candidate path, but this can overlook
collisions that occur between samples, known as “tunneling” errors. In contrast, SVCD prevents
tunneling problems by using the swept volume of a path of the object to check collision, making it
more practical, especially in tight-tolerance tasks [1]. See Figure 1. Formally, given an object (or
robot) trajectory τ : [0, 1]→ SE(3) and geometric models of the objects, SVCD algorithms output
the maximum penetration depth. See Figure 2, (a) for an illustration.

SVCD algorithms typically have two design components: the geometric representation of entities
and a collision detector tailored for the representation. For instance, previous works [2, 3] discretize

∗Equal contribution.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://neuralsvcd.github.io/


Figure 2: (a) SVCD problem definition. (b-d) Comparison of geometric representations used in
different SVCD algorithms.

trajectories, construct convex hulls using vertices of a pair of waypoints in the trajectory, then apply
the Gilbert–Johnson–Keerthi (GJK) algorithm [4] designed for convex shapes to each convex hull
(Figure 2, (b)). Ideally, we would parallelize the collision checks on convex hulls using a GPU,
but because GJK involves branching in computation, this is difficult and it must iterate through
each convex hull to check collisions [5], which makes it inefficient. In contrast, collision detection
between spheres can be computed in parallel on a GPU, as it only involves evaluating distances
between sphere centers. Recent approaches [6, 7, 8] exploit this property to approximate complex
shapes with multiple spheres, discretize trajectories at a high resolution, and use parallelized sphere-
based collision checks at all waypoints (see Figure 2 (c)). However, this approximation sacrifices
accuracy, leading to inaccurate collision detection.

Instead, we propose a neural network (NN)-based SVCD algorithm using an encoder-decoder ar-
chitecture. Specifically, the encoder processes pairs of object shapes, poses, and trajectory data to
produce neural representations of the shapes, while the decoder predicts collision outcomes directly
from these representations. This offers two primary advantages. First, by training an encoder-
decoder network for collision prediction, the encoder learns a latent representation that preserves
only the relevant features, rather than a complete mesh. Second, since the decoder is a NN, it can
leverage GPU parallelization. However, there are two challenges involved in this approach. First,
we have a limited amount of 3D asset data [9, 10], but we need to make the model generalize across
a variety of novel shapes. Second, even for the same shapes, you can create a large variety of ob-
ject trajectories, where even seemingly similar trajectories could have different collision outcomes,
especially in tight spaces.

Figure 3: (Left - shape locality) Two different
pairs of objects have completely different global
shapes, but when we focus on the circled contact
regions, they have very similar shapes. (Right -
temporal locality) Two different object trajecto-
ries share the same collision moment, marked by
rectangles.

To overcome these limitations, we leverage two
essential insights: shape locality and temporal
locality. Shape locality addresses the scarcity
of 3D asset data by recognizing that local ge-
ometric features remain relatively consistent,
even when global shapes differ significantly,
as shown in Figure 3 (Left). So, if we re-
strict the neural decoder’s input to local ob-
ject features that are relevant for collision rather
than global object geometry, the model would
generalize collision predictions across unseen
shapes. Temporal locality is the observation
that collisions are generally influenced by short
trajectory segments rather than an entire path,
as depicted in Figure 3 (right). Consequently,
if we limit the decoder’s input to these relevant
trajectory segments instead of complete trajec-
tories, our approach would be more robust across diverse trajectories.

Based on these insights, we propose NeuralSVCD, which uses a novel geometric representation
designed to leverage shape locality and temporal locality. Specifically, we represent a shape as a
set of uniformly sampled points on the object and encode the local shape around each point into a
latent representation using a neural network. The entire shape, then, is represented with a collection

2



of these local latent representations. A decoder, instead of taking the entire object shapes as inputs,
only takes a pair of these local representations to check if there is a collision between these two local
shapes. However, naively checking a collision this way would require evaluating N2 pairs of local
representations continuously over the trajectory, where N is the number of local representations.
To avoid excessive collision checks, we propose instead to first perform a broad-phase collision
detection by approximating local shapes with spheres. Then, we transform the spheres along the
trajectory to find the time and pair of spheres that intersect. This process yields the specific pair
of local latent vectors and the corresponding collision time along the trajectory. Then, we run the
collision decoder on pairs whose corresponding spheres are in collision, supplying the corresponding
locally linearized trajectory segment. This allows us to limit the decoder’s input to these relevant
trajectory segments and local shapes rather than complete trajectories and global shapes.

We benchmark our approach against multiple state-of-the-art SVCD baselines, including mesh-
based and sphere-based methods, demonstrating significant improvements in both swept volume
collision detection accuracy and runtime. When integrated into the cuRobo trajectory optimizer
and evaluated on three challenging robotics tasks, NeuralSVCD achieves higher success rates and
reduced computation times compared to state-of-the-art approaches.

2 Related works
2.1 Explicit shape representations for swept volume collision detection

Continuous collision detection (CCD) and SVCD both answer whether a moving object intersects
a static obstacle along a given trajectory. CCD additionally returns the time of first contact (TOC),
which is the first time at which the two meshes collide [11, 12, 13, 14]. SVCD instead outputs
the maximum penetration depth encountered over the entire motion. SVCD involves two critical
challenges: (i) reconstructing the swept volume of the moving object and (ii) accurately measuring
its penetration depth against the static mesh.

There are lines of work that reconstruct swept volume as triangle mesh [15, 16, 17, 18, 19]. Even
though they can generate accurate swept volumes, computing penetration depth against a non-
convex mesh of the static object is slow due to exhaustive triangle–edge pair tests. To accelerate
queries, an alternative approach forgoes exact swept-volume reconstruction and instead approxi-
mates the swept volume with a collection of convex hulls [3, 2], which enables use of GJK [4].
We obtain the swept volume by convex-decomposing both object meshes, discretizing the trajectory
into segments, and for each segment and convex part, building the convex hull of its vertices at that
segment’s start and end poses (see Fig. 2, second column). After reconstructing the swept volume,
the penetration depth is calculated by applying the GJK algorithm for each pair of convex cells from
different objects. This hull-based approach is exact only under pure translation, and GJK’s iterative,
branch-heavy algorithm hinders parallel performance, making it inefficient for GPU-accelerated
pipelines.

An alternative for efficient penetration-depth estimation decomposes the moving object into a set of
spheres [6]. In CuRobo, these spheres query signed distances against the static mesh in parallel on
the GPU. Penetration is measured by discretizing the trajectory into piecewise-linear segments, se-
lecting all spheres that intersect the environment along each segment, and summing their penetration
depths (Fig. 2, third column). Although this approach scales linearly with the number of spheres, its
geometric fidelity suffers for thin or highly concave shapes, as accurately covering narrow features
or deep cavities requires a prohibitively large number of spheres, as demonstrated in our motion
planning experiments.

2.2 Implicit shape representations for swept volume collision detection

To support general trajectories, recent works use the implicit function, which is a function that
outputs the degree of distance to the surface from a given point, taking negative values within the
object and positive values outside. The swept volume is represented by an implicit function that,
for any point in space, takes the smallest value of the object’s original implicit function observed
over the entire motion, evaluated with respect to time along the trajectory [20]. This process is

3



referred to as time optimization because it determines the timestep at which maximum penetration
occurs between a point and a moving object along its trajectory. Penetration depth between the
swept volume and the static object is computed by evaluating the swept volume’s implicit function
on the static object’s surface and taking the pointwise minimum. This method supports arbitrary
trajectories and any implicit representation. However, accurate penetration-depth estimation via
implicit functions requires dense surface sampling and a separate time-optimization solution for
each sample, which becomes prohibitively expensive.

Instead, we can use an object collision network, which predicts contact probability based on the
shape and pose of two objects [5, 21, 22], rather than an implicit function, to accelerate the time
optimization process. Time optimization, which originally finds the moment of maximal penetra-
tion between a moving object and a single surface point, can be reframed as locating the time of
maximum penetration between the moving mesh and an entire static object (Fig. 2, fourth column).
To our knowledge, ours is the first SVCD approach to fuse an object-collision network into this
time-optimization loop for defining the swept volume.

3 Neural swept volume collision detection
Swept volume collision detection (SVCD) involves identifying potential collisions between a static
environment and the swept volumes generated by objects moving along specified trajectories. For-
mally, the swept volume (SV) of an object is defined as the spatial region occupied by its geometry
as it continuously moves along a trajectory τ : [0, 1] → SE(3). Given meshes for both a static
scene (stationary environment) and an object at a canonical pose, SVCD determines if there is a
collision between the object moving through τ and the scene. Throughout this paper, the subscript
meshstatic denotes a representation of the mesh of a static object that remains fixed during the colli-
sion detection process, and the subscript meshmov specifically indicates representation of a moving
object at its canonical pose, prior to their transformation along trajectory τ .

3.1 Distributed latent scene representation from neural encoder
Given meshes meshmov and meshstatic, our first step is to encode these meshes into distributed la-
tent object representations Z . To leverage shape locality effectively, we adopt a distributed latent
representation strategy. Specifically, we first sample surface points from each mesh and select N
representative points {pi}Ni=1 using furthest point sampling (FPS), ensuring uniform coverage across
the surface. Each sampled surface point is then assigned to its nearest representative point pi. For
each representative point pi, we input its assigned local points into a neural network to generate a
localized latent shape representation zi ∈ RK . This process yields distributed pairs {(pi, zi)}Ni=1.

For efficient broad-phase collision detection, we define bounding spheres around each representative
point pi with radius ri ∈ R. We define the radius ri for each point based on the distance to its nearest
neighboring representative point: ri = αminj∈[1,N ],j ̸=i dist(pi, pj), where α > 1, ensuring each
sphere encloses the local geometry near its representative point. Consequently, our final distributed
latent object representation is Z = {(pi, zi, ri)}Ni=1, illustrated in the upper part of Figure 4.

3.2 Two-Step SVCD via Broad-phase Filtering and Neural Refinement
Given distributed representations of the moving object Zmov = {(pmov

i , zmov
i , rmov

i )}Ni=1 at the initial
trajectory position τ(0), static scene Zstatic = {(pstatic

j , zstatic
j , rstatic

j )}Nj=1, and a trajectory τ : [0, 1]→
SE(3), we propose a two-step SVCD approach to improve computational efficiency. Our method
comprises a broad-phase that quickly identifies potential collision candidates, followed by a narrow-
phase employing a neural SVCD decoder for precise collision evaluation.

Broad-phase with Sphere Approximation: Performing collision detection between the static ob-
ject and the swept volume of one moving object typically involves checking all possible pairs of local
representations, leading to N2 checks continuously over the trajectory, which is computationally in-
tensive. To reduce complexity, we first use a broad-phase collision detection to identify potential
collision pairs and their corresponding times efficiently. Specifically, we use bounding spheres with
radii rstatic

i for the static object and rmov
j for the moving object. Throughout this section, the sub-

script ·i denotes elements of the static representation Zstatic, and the subscript ·j denotes elements

4



Figure 4: Overview of SVCD pipeline. During encoding, (top), the canonical meshes (meshmov and
(meshstatic) transform into distributed latent representations (Zmov and Zstatic, respectively) using a
neural encoder. Each representation Z consists of N representative points (pstatic

i and pmov
j ), asso-

ciated bounding spheres with radii (rstatici and rmov
j ), and local latent vectors (zstatic

i and zmov
j ).

During inference (bottom), given latent representations Zmov and Zstatic along with a trajectory
τ(t) : [0, 1] → SE(3) (bottom left), we initially evaluate all possible pairs {(i, j) | i, j ∈ [1, N ]}.
In the broad phase (middle), we use bounding spheres to quickly identify intersecting pairs (i, j)

and its time t†ij of maximum sphere overlap. The local trajectory is defined as the linearized motion

at ξt
†
ij ∈ R6 by computing its first-order linear approximation (see black box). In the narrow-phase

(right), for all identified collision candidate pairs and time (i, j, t†ij), the neural SVCD decoder

fSV CD refines collision predictions based on inputs (pstatic
i , zstatic

i ), ξt
†
, τ(t†), and (pmov

j , zmov
j ). The

final collision outcomes for rigid bodies are aggregated using max-pooling across all identified pairs.

of the moving representation Zmov. We evaluate potential collisions by checking overlaps between
each static sphere and the corresponding swept volume formed by each moving sphere as it follows
the trajectory τ(t). For each pair (i, j) within the complete set Pall = {(i, j) | i, j ∈ [1, N ]}, we
perform the following numerical optimization (e.g., via Newton’s method):

min
t∈[0,1]

dist(pstatic
i , τ(t) · pmov

j )− rstatic
i − rmov

j , (1)

where dist(·, ·) denotes the Euclidean distance between points, and τ(t) · pmov
j represents the trans-

formed position of pmov
j under the trajectory τ(t) ∈ SE(3). We denote by t†ij the time along the

trajectory at which this quantity is minimized—that is, the moment when the two bounding spheres
are in closest proximity. Negative results from Eq. (1) indicate possible collisions, forming the re-
duced candidate set of (i, j, t†ij), which requires further detailed evaluation in the narrow-phase.
Additionally, solving this optimization provides the argmin solution—the pseudo-critical collision
time t†—which serves as an approximation to the true critical collision time t∗, derived from sim-
plified spherical approximations rather than exact geometrical representations.

Narrow-phase with Neural Decoder: For each candidate pair (i, j, t†ij) identified in the broad-
phase, we refine collision predictions using a neural SVCD decoder fSV CD. The decoder takes
as input the static representation (pstatic

i , zstatic
i ) and the swept volume representation generated by

(pmov
j , zmov

j ) along the trajectory τ . To exploit temporal locality, we avoid using the entire trajec-
tory, focusing instead on a local trajectory segment around t†ij , we approximate the local trajectory

5



Figure 5: Accuracy efficiency tradeoff graph of our SVCD and other baselines for (Left) in-domain
object sets and (Right) out-of-domain object sets.

using a linear, first-order Taylor expansion parameterized by ξt
†
ij ∈ R6, representing linear and an-

gular velocities at t†ij , along with the pose τ(t†ij). We define the local swept volume segment using
(pmov

j , zmov
j ) transformed by this local trajectory approximation. The neural decoder fSV CD then

processes inputs (pstatic
i , zstatic

i ), (pmov
j , zmov

j ), ξt
†
ij , and τ(t†ij) to predict the collision probability.

We assume that the pseudo-critical collision time t†ij sufficiently approximates the true critical colli-
sion time t∗, which is time where decoded collision probability is maximized, ensuring that the local
swept volume defined by ξt

†
ij and τ(t†ij) adequately captures the critical collision region for accurate

predictions. Specifically, the neural decoder fSV CD receives the inputs (pstatic
i , zstatic

i ), (pmov
j , zmov

j ),

ξt
†
ij , and τ(t†ij). We train fSV CD to directly predict collision probabilities from these inputs. Prac-

tically, fSV CD consists of multiple multilayer perceptrons (MLPs) that process concatenated inputs
and output collision probabilities within [0, 1]. Final collision predictions for rigid bodies are ob-
tained by applying max pooling across all candidate pair probabilities identified during the broad-
phase. This inference procedure is illustrated in the lower portion of Figure 4.

3.3 Training Encoder and Decoder

In this section, we describe our procedure for training both the shape encoder and the neural
SVCD decoder. Our training dataset consists of 2556 carefully curated meshes sourced from es-
tablished 3D asset collections, including GoogleScannedObjects [9], ObjaverseXL [10], and NOCS
[23]. We create training datapoints by randomly pairing a static mesh meshstatic with a canoni-
cal moving mesh meshmov. These pairs undergo random transformations, and we sample trajec-
tories τ(·) : [0, 1] → SE(3). For training simplicity, we restrict trajectories to linear paths by
randomly selecting directions in R6 and an initial pose τ(0) ∈ SE(3). Ground-truth collision la-
bels ySV CD are computed using the FCL library [24]. Thus, each datapoint is formally defined as
d := (meshstatic,meshmov, τ(·), ySV CD). To ensure balanced training, we apply rejection sampling
to maintain an equal proportion of collision and non-collision instances, resulting in our final train-
ing dataset D. The training objective is defined as

∑
d∈D LSV CD(d), where LSV CD represents

the binary cross-entropy loss between the predicted collision outcomes and the ground-truth labels
ySV CD. To enable NN to output the degree of penetration instead of the predicted binary label, we
add a regularization loss. See Appendix A for further details.

4 Experiments

Our experiments are designed to test two main hypotheses: (1) NeuralSVCD outperforms the state-
of-the-art methods for SVCD in terms of both accuracy and computational efficiency. (2) When
integrated into a motion planning framework, our SVCD algorithm leads to higher success rates and
better efficiency compared to systems employing the baseline SVCD implementations.

6



4.1 Swept Volume Collision Detection Accuracy

Figure 6: This figure illustrates the problem
case for checking swept volume collision accu-
racy. The objective of each problem is to deter-
mine where a moving robot, starting from the ini-
tial configuration (marked in green) and moving
to the goal configuration (marked in red), will col-
lide with a static object (marked in yellow).

To quantify the accuracy of the SVCD, we per-
form a comparative experiment. We use 9-DOF
UR5 robot with mobile base as moving robot
(3-base, 6-arm). For each trial, we randomly
assign the initial and goal configurations within
a bounded workspace and select a static ob-
ject from a predefined pool, assigning it a ran-
dom pose. Visualization of the problem case
is shown in Figure 6. To evaluate generaliza-
tion, we partition the obstacles into two as-
set pools: In-Domain (ID)—objects that were
present during training—and Out-of-Domain
(OOD)—novel shapes unseen at training time.
Near-contact situations are critical for collision-
free planning in confined spaces. As in [21], we
adjust the pose of the static object to ensure a
small penetration depth. A detailed problem-generation process is described in the Appendix B.

We compare NeuralSVCD with seven baselines:

• Convex Cell/GJK: Following [3, 2], we convex-decompose moving and static meshes. The
continuous variant discretizes trajectories into segments and forms convex hulls of each moving
object part at segment endpoints. The discrete variant unions convex parts at discrete waypoints.
Both use GJK collision detection on convex cell pairs.

• Sphere/Sphere-Mesh Distance: As in [6], the moving object mesh is approximated by spheres
(Appendix B). The continuous variant samples sphere paths along trajectory segments, while the
discrete variant samples at waypoints. Collision detection involves sphere–mesh distance queries.

• Implicit-function/time optimization: Following [20], we define the moving object by its signed-
distance implicit function and densely sample surface points on the static mesh. For each point,
we solve a time-optimization problem to determine the timestamp at which the trajectory achieves
maximum penetration. This method produces accurate ground-truth collision labels, provided that
a sufficient number of surface points are sampled.

• NeuralSVCD - Discrete: This variant uses the same encoder-decoder but replaces time optimiza-
tion with fixed waypoint sampling: the trajectory is approximated by a set of discrete configura-
tions, and collision checks are evaluated only at those points.

• NeuralSVCD - Global Representation: This variant replaces multiple local latent representa-
tions z with a single global latent representation.

We randomly sample hyperparameters (e.g., interpolation length; see Table 2) and measure collision-
detection accuracy and per-query inference time. Figure 5 shows that NeuralSVCD outperforms all
baselines: it attains 90% accuracy in 6.4 × 10−5 s and peaks at 95.6% (ID) and 94.9% (OOD). In
contrast, convex-cell/GJK continuous and discrete variants are 120× and 590× slower (due to GPU-
unfriendly branching), while sphere-mesh methods require 24× more time in the continuous case
and never reach 90% in the discrete case (owing to the large number of spheres and interpolations).
NeuralSVCD using global representation achieves only 81% (ID) and 76% (OOD) of maximum
success rate. NeuralSVCD’s discrete variant degrades maximum success rate by 1.7% (ID) and
2.3% (OOD), and 5% lower success rate at same inference time of 6.4 · 10−5s in both ID and OOD
settings because grazing contacts require finer discretization.

4.2 Motion planning

To demonstrate improvements in motion planning performance, we integrate NeuralSVCD into the
cuRobo trajectory optimization framework [6], which we refer to as cuRobo-NeuralSVCD. Given
meshes of the static scene, robot links, grasped objects, and specified start and goal robot config-
urations, the motion planning algorithm generates collision-free trajectories between these config-

7



Task Robot Motion planner Suc Rate (%) Time (s) Max Pen (mm)

dish
insertion

UR5
(6 DoF)

cuRobo-sphere-50 73.6 9.99 3.73
cuRobo-sphere-400 95 12.35 0.5
cuRobo-NeuralSVCD-discrete 8.5 26.62 52.13
cuRobo-NeuralSVCD 99.3 9.64 0.01

bimanual
insertion

ARMADA [25]
(12 DoF)

cuRobo-sphere-100 70.4 5.27 3.64
cuRobo-sphere-1200 84.9 12.45 1.03
cuRobo-NeuralSVCD-discrete 82.2 3.26 2.72
cuRobo-NeuralSVCD 92.8 2.92 0.33

mining
site

navigation

mobile UR5
(9 DoF)

cuRobo-sphere-50 73.8 11.67 10.82
cuRobo-sphere-2000 83.8 60.91 5.32
cuRobo-NeuralSVCD-discrete 1.0 11.92 86.15
cuRobo-NeuralSVCD 92.2 9.84 3.81

Table 1: Motion planning performance over 500 random trials per task, reporting average success
rate (Suc Rate), planning time (Time), and maximum penetration depth (Max Pen).
urations. Initially, we represent the trajectory as a spline with a fixed number of control points.
The initial trajectory is a linear interpolation between the initial and goal states. We then apply an
optimization-based motion planner with an objective function from cuRobo but with our custom
collision cost.

We compare two baselines that use the same planner but different collision detectors. The first,
cuRobo-sphere, employs sphere approximations for SVCD; we test it with varying sphere counts
per task (denoted cuRobo-sphere-number of spheres) to explore the accuracy–efficiency trade-off.
The second, cuRobo-NeuralSVCD-discrete, uses our discrete SVCD variant (Section 4.1), approxi-
mating trajectories by fixed waypoints and performing collision checks only at those configurations.

We evaluate performance on three distinct motion-planning tasks—dish insertion, bimanual peg
assembly, and mining-site navigation—as illustrated in Figure 7. These tasks, which require nav-
igating tight spaces and interacting with shallow geometries, underscore the necessity of SVCD
throughout the entire trajectory. Each task is defined by initial and goal configurations for the robot,
a set of robot links, a set of static obstacles, and hyperparameters for the optimization, such as a
limit on the number of optimization iterations. For a detailed description, see C.

We evaluate performance by measuring success rate, execution time, and maximum penetration
depth over 500 different problem instances for each task. A task is considered successful if no
collisions occur along the entire trajectory and the goal is reached. The aggregated results are pre-
sented in Table 1. Across all three tasks, cuRobo-NeuralSVCD consistently achieves higher suc-
cess rates, faster runtimes, and lower maximum penetration depths than both cuRobo-sphere and
cuRobo-NeuralSVCD-discrete. Although increasing sphere counts in cuRobo-sphere can match our
success rate, it incurs at least 1.3× and up to 6.2× longer computation time. Adequate on biman-
ual insertion, the discrete variant falls below 10% in complex or large-scale scenarios, whereas our
continuous approach maintains a robust 92.2% success. These results highlight NeuralSVCD’s ver-
satility and safety across diverse robot platforms and environments (see Appendix D).

5 Conclusion

We introduced NeuralSVCD, a distributed latent representation and neural swept-volume collision
detector that predicts collision occurrence. By decomposing each object into a collection of locally
optimized latent representations and pairing them with a neural decoder, our approach (i) captures
only those surface features that matter for collision, (ii) exploits massive GPU parallelism through
purely tensor operations, and (iii) generalizes across previously unseen shapes and trajectories by
leveraging shape and temporal locality.

Experiments on swept-volume collision detection demonstrate that NeuralSVCD deliver up to a
24× speed-up over sphere-based GPU methods and more than a 100× speed-up over mesh-based
GJK—while simultaneously improving accuracy by ≈ 5–15 % even with the shapes unseen during
training. When embedded in a trajectory-optimization–based motion planner, these gains result in
higher success rates, lower penetration depths, and shorter planning times across tasks that span
tight-tolerance assembly, dual-arm manipulation, and mobile manipulation in a cluttered mining
tunnel.

8



6 Limitation

6.1 Limitations in collision distance prediction

Trajectory optimization methods, such as TrajOpt [3] and cuRobo [6], rely on collision distance
metrics that indicate penetration depth (negative values) during collisions and separation distances
(positive values) when no collision occurs. In contrast, our method’s function fSV CD is trained pri-
marily as a binary classifier, outputting collision probabilities. Therefore, we use logits—computed
as the inverse sigmoid of these probabilities—as approximate surrogates for collision distances.
While this approximation enables a smooth transition between collision and non-collision states and
facilitates effective gradient computations during optimization, deviations from true collision dis-
tances can occasionally lead gradient-based trajectory optimizers to local minima. In practice, a
two-stage trajectory optimization approach combining MPPI and L-BFGS has proven effective at
mitigating the issue of local minima, as validated through experiments in three challenging motion
planning scenarios. This observation aligns with findings reported by cuRobo [6].

6.2 Application to raw sensory observations

The current framework assumes access to the full mesh of the scene, including robot links, grasped
objects and static environments. In practical real-world applications, obtaining such detailed repre-
sentations is challenging. Recent advances in learning latent shape representations from raw sensory
inputs, such as point clouds [26] or RGB images [27], indicate that it is possible to estimate object
representation Z from these sources. This finding opens an exciting avenue for future research.

Acknowledgments

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant and National Research Foundation of Korea (NRF) funded by the Korea
government(MSIT) (No.2019-0-00075, Artificial Intelligence Graduate School Program(KAIST)),
(No.2022-0- 00311, Development of Goal-Oriented Reinforcement Learning Techniques for
Contact-Rich Robotic Manipulation of Everyday Objects), (No. 2022-0-00612, Geometric and
Physical Commonsense Reasoning based Behavior Intelligence for Embodied AI), (No. RS-2024-
00359085, Foundation model for learning-based humanoid robot that can understand and achieve
language commands in unstructured human environments), (No. RS-2024-00509279, Global AI
Frontier Lab).

References
[1] C. Ericson. Real-Time Collision Detection. CRC Press, 2004.

[2] P. G. Xavier. Fast swept-volume distance for robust collision detection. In Proceedings of
International Conference on Robotics and Automation, volume 2, pages 1162–1169. IEEE,
1997.

[3] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel. Finding locally opti-
mal, collision-free trajectories with sequential convex optimization. In Robotics: science and
systems, volume 9, pages 1–10. Berlin, Germany, 2013.

[4] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing the distance
between complex objects in three-dimensional space. IEEE Journal on Robotics and Automa-
tion, 4(2):193–203, 2002.

[5] D. Son and B. Kim. Local object crop collision network for efficient simulation of non-convex
objects in gpu-based simulators. arXiv preprint arXiv:2304.09439, 2023.

[6] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. Van Wyk, V. Blukis, A. Millane,
H. Oleynikova, A. Handa, F. Ramos, et al. Curobo: Parallelized collision-free robot motion

9



generation. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages
8112–8119. IEEE, 2023.

[7] C. W. Ramsey, Z. Kingston, W. Thomason, and L. E. Kavraki. Collision-affording
point trees: Simd-amenable nearest neighbors for fast collision checking. arXiv preprint
arXiv:2406.02807, 2024.

[8] S. Sui, L. Sentis, and A. Bylard. Hardware-accelerated ray tracing for discrete and continuous
collision detection on gpus. arXiv preprint arXiv:2409.09918, 2024.

[9] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Reymann, T. B. McHugh,
and V. Vanhoucke. Google scanned objects: A high-quality dataset of 3d scanned household
items. In 2022 International Conference on Robotics and Automation (ICRA), pages 2553–
2560. IEEE, 2022.

[10] M. Deitke, R. Liu, M. Wallingford, H. Ngo, O. Michel, A. Kusupati, A. Fan, C. Laforte,
V. Voleti, S. Y. Gadre, et al. Objaverse-xl: A universe of 10m+ 3d objects. Advances in Neural
Information Processing Systems, 36:35799–35813, 2023.

[11] J. Canny. Collision detection for moving polyhedra. IEEE Transactions on Pattern Analysis
and Machine Intelligence, (2):200–209, 1986.

[12] B. Kim and J. Rossignac. Collision prediction for polyhedra under screw motions. In Proceed-
ings of the eighth ACM symposium on Solid modeling and applications, pages 4–10, 2003.

[13] S. Redon, A. Kheddar, and S. Coquillart. An algebraic solution to the problem of collision
detection for rigid polyhedral objects. In Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), volume 4, pages 3733–3738. IEEE, 2000.

[14] M. Tang, Y. J. Kim, and D. Manocha. C2a: Controlled conservative advancement for con-
tinuous collision detection of polygonal models. In 2009 IEEE International Conference on
Robotics and Automation, pages 849–854. IEEE, 2009.

[15] M. Peternell, H. Pottmann, T. Steiner, and H. Zhao. Swept volumes. Computer-Aided Design
and Applications, 2(5):599–608, 2005.

[16] J. Rossignac, J. J. Kim, S. Song, K. Suh, and C. Joung. Boundary of the volume swept by a
free-form solid in screw motion. Computer-Aided Design, 39(9):745–755, 2007.

[17] S. Abrams and P. K. Allen. Computing swept volumes. The Journal of Visualization and
Computer Animation, 11(2):69–82, 2000.

[18] Y. J. Kim, G. Varadhan, M. C. Lin, and D. Manocha. Fast swept volume approximation of
complex polyhedral models. In Proceedings of the eighth ACM symposium on Solid modeling
and applications, pages 11–22, 2003.

[19] X. Zhang, Y. J. Kim, and D. Manocha. Reliable sweeps. In 2009 SIAM/ACM joint conference
on geometric and physical modeling, pages 373–378, 2009.

[20] S. Sellán, N. Aigerman, and A. Jacobson. Swept volumes via spacetime numerical continua-
tion. ACM Transactions on Graphics (TOG), 40(4):1–11, 2021.

[21] D. Son, H. Yang, and D. Lee. Sim-to-real transfer of bolting tasks with tight tolerance. In
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
9056–9063. IEEE, 2020.

[22] M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox. Object rearrangement using learned im-
plicit collision functions. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 6010–6017. IEEE, 2021.

10



[23] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas. Normalized object
coordinate space for category-level 6d object pose and size estimation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

[24] J. Pan, S. Chitta, and D. Manocha. Fcl: A general purpose library for collision and proximity
queries. In 2012 IEEE international conference on robotics and automation, pages 3859–3866.
IEEE, 2012.

[25] J. Kim, J. Kim, D. Lee, Y. Jang, and B. Kim. Design of a low-cost and lightweight 6 dof
bimanual arm for dynamic and contact-rich manipulation. arXiv preprint arXiv:2502.16908,
2025.

[26] M. Z. Irshad, S. Zakharov, R. Ambrus, T. Kollar, Z. Kira, and A. Gaidon. Shapo: Implicit
representations for multi-object shape, appearance, and pose optimization. In European Con-
ference on Computer Vision, pages 275–292. Springer, 2022.

[27] Y. Hong, K. Zhang, J. Gu, S. Bi, Y. Zhou, D. Liu, F. Liu, K. Sunkavalli, T. Bui, and H. Tan.
Lrm: Large reconstruction model for single image to 3d. arXiv preprint arXiv:2311.04400,
2023.

[28] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman. Implicit geometric regularization for
learning shapes. In Proceedings of the 37th International Conference on Machine Learning,
pages 3789–3799, 2020.

[29] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Aggressive driving with
model predictive path integral control. In 2016 IEEE international conference on robotics and
automation (ICRA), pages 1433–1440. IEEE, 2016.

[30] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

[31] H. J. T. Suh, T. Pang, and R. Tedrake. Bundled gradients through contact via randomized
smoothing. IEEE Robotics and Automation Letters, 7(2):4000–4007, 2022.

[32] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652–660, 2017.

[33] D. Son, J. Kim, S. Son, and B. Kim. An intuitive multi-frequency feature representation for
SO(3)-equivariant networks. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=5JWAOLBxwp.

[34] O. Puny, M. Atzmon, E. J. Smith, I. Misra, A. Grover, H. Ben-Hamu, and Y. Lipman. Frame
averaging for invariant and equivariant network design. In International Conference on Learn-
ing Representations, 2022. URL https://openreview.net/forum?id=zIUyj55nXR.

[35] J. Yang, C. Deng, J. Wu, R. Antonova, L. Guibas, and J. Bohg. Equivact: Sim (3)-equivariant
visuomotor policies beyond rigid object manipulation. In 2024 IEEE international conference
on robotics and automation (ICRA), pages 9249–9255. IEEE, 2024.

11

https://openreview.net/forum?id=5JWAOLBxwp
https://openreview.net/forum?id=zIUyj55nXR


A Implementation Details in training

From given training datasetD, the training objective is
∑

d∈D LSV CD(d), which is the binary cross-
entropy loss between predicted collision outcomes and ground-truth labels ySV CD. However, binary
classification loss alone results in almost zero gradients when two objects are deeply penetrated
into each other because the probability is close to 1 and nearly unchanged. This is undesirable
because The training objective is defined as

∑
d∈D

[
LSV CD(d)

]
, where LSV CD is the binary cross-

entropy loss between predicted collision outcomes and ground-truth labels ySV CD. , and Lreg is

a regularization loss given by: Lreg(d) =
(
∥∇fSV CD(d)∥ − 1

)2

, encouraging smooth gradient
variations beneficial for stable trajectory optimization [28].

B Implementation Details in SVCD Accuracy

Problem Generation. First, we compute the shortest distance vector δ between the moving robot
and the fixed object by checking the penetration depth between the robot in a large number of
intermediate configurations and the fixed object. The obstacle is then translated by δ + ϵ, where
ϵ ∼ N (0, 0.032) represents a small perturbation. After translating the fixed object, we calculate
the penetration depth as we did previously to check the collision label. During problem generation,
rejection sampling is used to balance positive and negative collision labels.

Sphere Approximation. To approximate the shape of a moving object with a set of spheres, we
follow strategies from cuRobo. A set of spheres is constructed by combining spheres placed inside
the object from voxelized interior regions with spheres centered at uniformly sampled surface points.
For this process, we can vary the size of the voxel and the number of sampled surface points as
hyperparameters.

SVCD Method Hyperparameter Sampling Range
Convex Cell

/ GJK
Trajectory Discretization Number U(2, 256) ⊂ Z

Activation Length U(−0.01, 0.01) ⊂ R

Sphere
/ Sphere-Mesh

Distance

Trajectory Discretization Number U(2, 64) ⊂ R
Activation Length U(−0.01, 0.01) ⊂ R

Voxel Size (Sphere Approximation) U(0.01, 1) ⊂ R
Number of Surface Points (Sphere Approximation) U(0, 100) ⊂ Z

Mesh Simplification Voxel Factor U(2, 32) ⊂ Z

NeuralSVCD Trajectory Discretization Number U(2, 100) ⊂ Z
Number of Collision Pairs After Broad-Phase Filtering U(2, 256) ⊂ Z

Table 2: Hyperparameter Sampling Ranges for SVCD Baselines. U (min, max) denotes uniform
distribution

Algorithm 1 Proposed SVCD Algorithm
Require: Static Mesh: meshstatic, Moving Mesh: meshmov , Trajectory: τ
Ensure: Collision prediction output: ccd output

1: Zstatic,Zmov ← encode(meshstatic,meshmov)

2: {(p(i)1 , r
(i)
1 , z

(i)
1 , p

(i)
2 , r

(i)
2 , z

(i)
2 ), t†(i)}Mi=1 ← broadPhase(Zstatic,Zmov, τ)

3: SVCD output← −∞
4: for i = 1 to M do
5: ξ(i), τ(t†(i))← LinearApproximation(τ, t†(i))
6: SVCD logit(i) ← fSV CD(p

(i)
1 , p

(i)
2 , z

(i)
1 , z

(i)
2 , ξ(i), τ(t†(i)))

7: SVCD output← max(SVCD output,SVCD logit(i))
8: end for

return SVCD output

12



Figure 7: Illustration of three robotic tasks solved by our proposed algorithm. (a) Dish insertion: A
UR5 robot precisely inserts dishes into a dish rack. (b) Peg assembly: ARMADA [25], a 12-DOF
bimanual manipulator, simultaneously holds a peg in one arm and a slot in the other, accurately
assembling the peg into the designated slot. (c) Mobile manipulation at a mine tunnel: A mobile
manipulator transports a pickaxe to their target location, carefully navigating around obstacles such
as beams and a wagon. Each task highlights the critical importance of precise, collision-free motion
planning.

C Domain Description for Motion Planning

Dish insertion: A fixed-base UR5 must insert three distinct dishes (sampled without replacement
from six shapes) into a rack. We randomly place the rack in a collision-free pose and sample a
collision-free robot start configuration. Hard-coded target poses specify both the end effector and
the final location of each dish. After each insertion, physics is enabled to let the dish settle; once
settled, it becomes a static obstacle for subsequent insertions.

Bimanual insertion: The ARMADA system, with two 6 DoF arms, performs a peg-into-slot as-
sembly. We generate collision-free start and goal configurations via rejection sampling: for each
trial, we sample a peg pose, grasp pose, and peg–hole shape, solve the inverse kinematics for joint
angles, and discard any samples that collide.

Mining site navigation: A UR5 on a mobile base carries a pickaxe through a synthetic mining
tunnel, avoiding wagons and beams. In each episode, we randomly select four meshes from eight
obstacle candidates and place them at fixed scene locations. The robot’s start configuration is sam-
pled from a bounded, collision-free region, while the pickaxe’s goal location remains constant.

D Implementation Details in Motion Planning

To demonstrate improvements in motion planning performance, we incorporate NeuralSVCD into
a trajectory optimization framework modeled after cuRobo [6]. In this framework, trajectories are
parameterized using splines with a fixed number of control points. Our method adopts a two-stage
optimization process. First, a particle-based solver (MPPI [29]) is employed to promote exploration,
and then the trajectory is refined using L-BFGS [30].

Initially, we represent the trajectory as a spline with a fixed number of control points τcontrol ∈
RM×F , where M is a number of control points, and F is a number of actuation of the robot. We
then apply an optimization-based motion planner with an objective function from cuRobo but with
custom collision cost:

Ctraj(τcontrol) = Csmooth(τcontrol) + αcolCSV CD(τcontrol) (2)

where CSV CD and αcol denotes SVCD cost computed using NeuralSVCD and its coefficient. For
Csmooth = αvelCvel + αaccCacc + αjerkCjerk, where each term indicates velocity, acceleration,
and jerk minimization cost with pre-defined coefficient. For cuRobo-NeuralSVCD and cuRobo-
NeuralSVCD-discrete, we modify the collision cost term in the loss function (2) by replacing it with
collision logits computed by fccd. For each task, we use different hyperparameters. See Table 3, 4,
5. We also modify the calculating gradient during L-BFGS to be the bundled gradient [31], which

13



Figure 8: Illustration of pre-processing for achieving invariance. Case 1 and 2 have the same relative
transform between two objects, but their global transforms are different. If we treat the two objects
as a single composite rigid body, we can assign frames {ϕ(x1)} and {ϕ(x2)} whose origin is at the
mid-point of the centers of two objects, and whose direction is determined by the line intersecting
the centers. We then apply ϕ(x1)

−1 and ϕ(x2)
−1 to these frames so that they are at the origin of the

world frame, with their orientation aligned with that of world frame as shown in the bottom. This
preprocessing step ensures consistent input irrespective of the objects’ global poses.

combines gradient evaluations from multiple samples or time steps into a single aggregated update
to improve optimization efficiency and stability, benefiting all baselines.

E Applying transformation to the latent vectors

Another critical consideration in designing latent representations and the neural SVCD decoder is
the application of rigid-body transformations. During collision evaluation, each robot link must be
positioned according to specific trajectory configurations, requiring transformations described by
SE(3)—a combination of rotations and translations. Using explicit mesh representations, apply-
ing transformations is straightforward: one simply applies transformations directly to mesh vertices
before checking for collisions. However, when using latent representations z for robot links, ap-
plying SE(3) transformations is not trivial, as latent representations do not inherently support direct
geometric transformations.

One option is to use neural network-based transformation operators [32], which receive both the
transformation and z and output the transformed z. However, they do not guarantee the rigid-
body transformation properties required. For instance, applying a 180° rotation about the z-axis
twice should reproduce the original representation, a consistency that such operators cannot reliably
ensure.

To overcome these limitations, we introduce an analytical transformation operation within a high-
dimensional latent space that explicitly preserves rigid transformation properties. Applying a rigid-
body transformation T ∈ SE(3) analytically involves separately treating translation and rotation.
Given T = (R, t), with R ∈ SO(3) being a rotation matrix and t ∈ R3 a translation vector, we
define the transformation of each point-latent pair as: T · (pi, zi) := (R · pi + t, D(R) · zi) where
D(R) ∈ RK×K is a rotation operator applied directly within the latent space, explicitly constructed
following the equivariant rotation formulation proposed in [33]. This operator D(R) ensures that
latent representations transform consistently with geometric rotations, preserving rigid-body prop-
erties. Intuitively, this means translations shift only the spatial coordinates pi, while rotations alter
the latent encodings zi, effectively rotating the local geometric feature descriptions encoded within
each latent vector.

F Implementation of encoder and neural SVCD decoder

For any two meshes and their corresponding moving direction ξ, the SVCD result is invariant under
both SE(3) transformations and scaling. In other words, if a consistent transformation T is applied

14



to the meshes and the moving direction or if a uniform scale s is applied, the collision detection out-
come remains unchanged. We leverage this property when designing our neural CCD decoder. The
inputs to the neural CCD decoder, fSV CD, include the latent representations zi, positions pi, trans-
formations Ti, and twists ξi (which contain both linear and angular velocities) at critical collision
times determined during the broad-phase.

Building on ideas from [33, 34, 35], we first preprocess these inputs to achieve invariance with
respect to additional transformations and scaling. The preprocessing pipeline is illustrated in Figure
8. Let the combined input be x = [ξ; z1; z2; p1; p2]. We define the preprocessing function as

Φ(x) =
1

max(∥z1∥, ∥z2∥)
(ϕ(x)−1 · x),

with ϕ : RM → SE(3) such that ϕ(T · x) = T · ϕ(x) ∀T ∈ SE(3), where M is the dimension
of x and ∥z∥ is Euclidean norm of z. It is straightforward to verify that Φ is invariant under any
transformation in SE(3) and scale. We define ϕ analytically by setting its translation component
to −(p1 + p2) and aligning its rotation R ∈ SO(3) with the line connecting p1 and p2, thereby
rigidly attaching the transformation to the pair of bodies. This construction ensures the property
ϕ(T · x) = T · ϕ(x) holds.

The preprocessed inputs are then passed through multiple multilayer perceptrons (MLPs). The net-
work outputs a scalar logit that represents a binary collision prediction (with positive logits indi-
cating a collision). Finally, after predicting collisions for every pi and pj pair identified during the
broad-phase, we apply max pooling to obtain the final logits indicating a collision between the rigid
bodies.

The shape encoder processes an input point cloud to produce N local representations {(zi, pi)}Ni=1.
The sample positions {pi} are selected via Furthest Point Sampling (FPS), and the corresponding
latent vectors {zi} are learned by a neural network. Concretely, every surface point is assigned
to its nearest sample pi, and all points in each partition are fed—independently but using shared
weights—through the encoder to generate the local zi. To ensure compatibility with our latent-space
transformations, we adopt the FER-VN-OccNet encoder architecture from [33].

Hyperparameter

cuRobo-
sphere-

100

cuRobo-
sphere-
1200

cuRobo-
NeuralSVCD

cuRobo-
NeuralSVCD-

discrete

Number of initial seeds 2
MPPI - interpolation number 4 100
MPPI - iteration 40
MPPI - number of samples 200 50
MPPI - number of control points 5
LBFGS - interpolation number 2 100
LBFGS - iteration 10
LBFGS - number of control points 10
αvel 10.0
αcol 1.0
αacc 2
αjerk 10
Activation distance 0.010 - -
Number of sphere for robot 891 - -
Number of sphere for grasping object 100 1200 - -

Table 3: Hyperparameter settings for the bimanual insertion task across motion planners.

15



Hyperparameter

cuRobo-
sphere-

50

cuRobo-
sphere-
2000

cuRobo-
NeuralSVCD

cuRobo-
NeuralSVCD-

discrete

Number of initial seeds 2
MPPI - interpolation number 3 100
MPPI - iteration 40
MPPI - number of samples 400 50
MPPI - number of control points 8
LBFGS - interpolation number 8 100
LBFGS - iteration 10
LBFGS - number of control points 3
αvel 1
αcol 5
αacc 10
αjerk 50
Activation distance 0.040 0.040 - -
Number of sphere for robot 397 - -
Number of sphere for grasping object 50 2000 - -
Table 4: Hyperparameter settings for the mining site navigation task across motion planners.

Hyperparameter

curobo-
sphere-

50

curobo-
sphere-

400
curobo-

NeuralSVCD

curobo-
NeuralSVCD-

discrete

Number of initial seeds 2
MPPI - interpolation number 4 50
MPPI - iteration 40
MPPI - number of samples 200 50
MPPI - number of control points 5
LBFGS - interpolation number 2 50
LBFGS - iteration 10
LBFGS - number of control points 10
αvel 10.0
αcol 1.0
αacc 2
αjerk 10
Activation distance 0.040 0.040 - -
Number of sphere for robot 397 - -
Number of spheres for grasping object 50 400 - -

Table 5: Hyperparameter settings for the dish insertion task across motion planners.

16


	Introduction
	Related works
	Explicit shape representations for swept volume collision detection
	Implicit shape representations for swept volume collision detection

	Neural swept volume collision detection
	Distributed latent scene representation from neural encoder
	Two-Step SVCD via Broad-phase Filtering and Neural Refinement
	Training Encoder and Decoder

	Experiments
	Swept Volume Collision Detection Accuracy
	Motion planning

	Conclusion
	Limitation
	Limitations in collision distance prediction
	Application to raw sensory observations

	Implementation Details in training
	Implementation Details in SVCD Accuracy
	Domain Description for Motion Planning
	Implementation Details in Motion Planning
	Applying transformation to the latent vectors
	Implementation of encoder and neural SVCD decoder

