Workshop track - ICLR 2016

RANDOMOUT: USING A CONVOLUTIONAL GRADIENT
NORM TO WIN THE FILTER LOTTERY

Joseph Paul Cohen & Henry Z. Lo & Wei Ding

Department of Computer Science
University of Massachusetts Boston
Boston, MA 02125, USA

{joecohen, henryzlo,ding}@cs.umb.edu

ABSTRACT

Convolutional neural networks are sensitive to the random initialization of filters.
We call this The Filter Lottery (TFL) because the random numbers used to initial-
ize the network determine if you will “win” and converge to a satisfactory local
minimum. This issue forces networks to contain more filters (be wider) to achieve
higher accuracy because they have better odds of being transformed into highly
discriminative features at the risk of introducing redundant features. To deal with
this, we propose to evaluate and replace specific convolutional filters that have
little impact on the prediction. We use the gradient norm to evaluate the impact
of a filter on error, and re-initialize filters when the gradient norm of its weights
falls below a specific threshold. This consistently improves accuracy across two
datasets by up to 1.8%. Our scheme RANDOMOUT allows us to increase the
number of filters explored without increasing the size of the network. This yields
more compact networks which can train and predict with less computation, thus

allowing more powerful CNNs to run on mobile devices.

1 INTRODUCTION

When training a convolutional neural network [LeCun & Bengio| (1995) [LeCun et al.| (2015) with
different random seeds for initialization (ceteris paribus), we observe that the seed affects both the
quality of the learned convolutional filters and the amount of generalization error on the testing set.
We call this issue The Filter Lottery because the random numbers used to initialize the network
determine if you will “win” and converge to a satisfactory local minimum.

The accuracy obtained by varying random
seeds on a simple convolutional neural network
is shown in Figure [l By simply changing
the random initialization seed, we observe high
variation in testing accuracy. Although most
random seeds result in an acceptable local error
minimum, the variance around that minimum
is noticeable and sometimes the accuracy is as
low as random chance (5% in our study). These
results are to be expected because we are min-
imizing a non-convex loss function which we
expect to have many local minimums or saddle
points that cause convergence behavior similar
to that of local minimum Dauphin et al.|(2014).

Testing accuracy
00 02 04 06 08 1.0

T T T T
0 10 20 30 40 50

Random seed used for initialization

Figure 1: The testing accuracy of the network
is plotted while varying nothing but the random
seeds used to initialize the network.

We suspect this is due to the network not learning the filters needed to extract the most discriminative
features. We have observed that varying the random seed can change how the filters will converge.
With ReLU activations, later layers will reduce the contribution of underperforming filters on the
predictions. These filters have been “abandoned” by the later layers because they contribute little
or negatively to minimizing the error. Making the network wider (by adding more filters) increases
performance. We believe that this is because the addition of these filters allows the network to

Workshop track - ICLR 2016

successfully capture more discriminative features of the dataset. This would be unnecessary if all
filters were utilized instead of being abandoned.

We propose the method RANDOMOUT that ranks and replaces filters if they have been abandoned
by the network. If a filter’s contribution to the objective is insignificant then we reinitialize it with
random values and continue learning. This allows the weights to learn a completely different filter
which will give the network another chance to reach an acceptable local minimum. Our scheme
allows us to increase the number of filters explored without increasing the size of the network. This
yields more compact networks which can train and predict with less computation, thus allowing
more powerful CNNs to run on mobile devices.

2 METHOD

We use the convolutional gradient norm (CGN) to determine how much impact a
filter has on the overall classifiacation loss function by taking the derivative of the loss function with
respect each weight in the filter. We take derivatives w.r.t. overall classification error because our
desire is to determine the influence on every class and not just a specific one.

oL
owk

CGN(k)=>_

%

Here we sum the derivative of each weight w; in filter k to produce an aggregate number representing
that filter’s impact on the loss function L. When CGN (k) is low and overall network error is low,
filter k has learned converged successfully. This filter will not be modified in the future and there is
no need because the overall network performance is good. In contrast when the CGN of a specific
filter is low but the overall error is high then we say that the network has abandoned this filter.
That is, the filter will not change much as the network continues to train. This is undesirable as
overall error is high because we are most likely lacking an important filter so we should randomize
it. However, abandoned filters may not always be bad filters if they happen to be very easy to learn
and then only cause a very small error. However but randomizing these will result in the same filter
or a more needed filter to reduce the overall error. Because the overall error is high then the network
might be better off finding a different filter that can better reduce the overall error.

This approach calls for two hyperparameters, a threshold 7 and a “% of epochs active” P. During
training each filter & is checked at regular intervals to see if |[CGN (k)| < 7 and if so filter k is
randomized. The motivation for the threshold is that the CG N is hardly ever 0, because learning
rates are fractional so update rules only approach 0, but will become very close when the network has
stopped learning a filter. For example, in our study 7 = 10~2 yields good results. It is also necessary
to consider the number of epochs from the start of training should the filters be randomized; we refer
to this as % of epochs active or P. The motivation for this hyperparameter is that performing this
randomization may damage the network and it will need time to retrain itself.

3 EXPERIMENTS

In order to explore how this approach can im- il
prove the performance of a network we evalu-
ate it on a simple convolutional network shown
in Figure [2] presented in [Cohen et al]| (2016)
and explained below. We train and test the net-
work on a well known Martian Crater dataset

Bandeira et al.| (2010). We made these deci-

sions because the network and dataset are suffi- : 2 Outputs
. . . () Convolutional
meptly challenging enough to make our point (@) Input Image © Loyors (xt)
while small enough to perform the training (15x15) : ©
eyqe b) Ci luti |
of >14,000 networks (>2 million epochs) re- iy 500 Outputs

quired for this analysis. We use two subsets of)
the data (the East and West regions) for our ex- Figure 2: Crater Convolutlopal Neural Network
periments which are split 50/50 into a training (CNN) architecture computation graph.

Workshop track - ICLR 2016

01 -05 -4 26 -1.3 [l 28 -2 2o EEE
: [- - 19 09 -08
02 02 01 01 -06 01 -07 -08 -13 -21

04 02 02 02 02 02 02 02 02 02
04 02 02 02 02 02 02 02 02 02
04 02 02 02 02 02 02 02 02 02

- -]

Threshold of convolutional gradient (1)

0. 02
% of epochs active (P)

Figure 3: Resulting accuracy gain of when using two hyperparameters of extscRandomOut threshold
and % of epochs are varied. Each cell value in the heatmap is the mean gain of of 50 different random
seeds when using RANDOMOUT.

e @ﬂeﬁte%&«bweﬁ S aad

0.90
I

YT
Nt bbbttt i i e
L HBEGEOOOO00 ©

0.85

s,

0.80
I

N s

0.75

Accuracy
1
Accuracy

0.70
1
0585

cao o Baseline © Baseline
+ RandomQut oo + RandomQut

0.60
L
0.55

Random Seeds (ordered by accuracy) Random Seeds (ordered by accuracy)

Figure 4: Evaluation of 50 random seeds sorted by accuracy and shown side by side when using
RANDOMOUT and when not. Left: the East region with RANDOMOUT was run with 7 = 1 x 107°
with P = 60%. Right: the West region with RANDOMOUT was run with 7 = 1 x 107! with
P = 90%.

and test set. The East region contains 458 positive and 765 negative labeled crater examples while
the West region contains 1121 positive and 1385 negative crater examples.

The CNN is implmented in Deeplearning4j|{Team! has two convolutional layers, followed by a
fully connected layer, then softmax (see Figure2). The input is 15x15 grayscale image. Each crater
candidate example is scaled to this size. Layers (b) and (c) are convolutional layers with 20 stride-1
4x4 filters. We did not use pooling as it did not perform well. Layer (d) is a fully connected layer
where each element is a ReLU. Layer (e) has just two outputs; each corresponding to a class. A
softmax regression is used so that the results can be interpreted as a probability distribution between
the classes (craters and non-craters). The initial weights throughout the network are initialized using
the |Glorot & Bengio| (2010) scheme and trained using gradient decent.

We evaluate RANDOMOUT on 50 random seeds used for initialization over 150 training epochs. We
vary 7 and P and study the resulting test accuracy in Figure [3] We can observe that generally for
a fixed P a lower threshold 7 value results in a higher average gain in network accuracy. This is
because these have been correctly identified filters as being abandoned and brought them back to life
to improve the network. We also find that increasing P, provided a low threshold 7, yields a higher
gain. We understand this to mean that the lower the threshold is the lower the risk of randomizing a
filter that has learned an important feature. In Figure [f] we compare the best hyperparameters found
for RANDOMOUT with the baseline networks. Note that the baseline numbers shown for the East
region are those in Figure [[|and that RANDOMOUT recovered all networks that failed to converge
to an acceptable accuracy. We draw the readers attention to the effectiveness of our method in
recovering from all bad seeds and increasing accuracy overall. It is also signifcant to note that these
improvements are not brittle and just for specific hyperparameters but can be observed over large
areas of the parameter spaces as shown in the green and blue cells in Figure 3]

ACKNOWLEDGMENTS

We thank Michael Wick of UMass Amherst and Swami Iyer of UMass Boston for their feedback.
This work is partially funded by a grant from the National Science Foundation Graduate Research
Fellowship Program (grant number: DGE-1356104). This work utilized the supercomputing facili-
ties managed by the Research Computing Department at the University of Massachusetts Boston.

Workshop track - ICLR 2016

REFERENCES

L. Bandeira, W. Ding, and T. F Stepinski. Automatic Detection of Sub-km Craters Using Shape and
Texture Information. In Proceedings of the 41st Lunar and Planetary Science Conference, March
2010.

Joseph Paul Cohen, Henry Z. Lo, Tingting Lu, and Wei Ding. Crater Detection via Convolutional
Neural Networks. In Lunar and Planetary Institute Science Conference Abstracts, volume 47,
2016.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. In Advances in Neural Information Processing Systems 27, pp. 2933-2941. Curran
Associates, Inc., 2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International conference on artificial intelligence and statistics, pp. 249-256, 2010.

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10), 1995.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444,
2015.

Henry Z. Lo, Joseph Paul Cohen, and Wei Ding. Prediction gradients for feature extraction and
analysis from convolutional neural networks. In 2015 11th IEEE International Conference and
Workshops on Automatic Face and Gesture Recognition (FG), volume 1, pp. 1-6, May 2015.

Deeplearning4j Development Team. Deeplearning4j: Open-source distributed deep learning for the
JVM, 2015. URL http://deeplearning4j.ozrg.

http://deeplearning4j.org

	Introduction
	Method
	Experiments

