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Abstract

Recent studies propose enhancing machine learn-
ing models by aligning the geometric characteris-
tics of the latent space with the underlying data
structure. Instead of relying solely on Euclidean
space, researchers have suggested using hyper-
bolic and spherical spaces with constant curva-
ture, or their combinations (known as product
manifolds), to improve model performance. How-
ever, there exists no principled technique to de-
termine the best latent product manifold signa-
ture, which refers to the choice and dimension-
ality of manifold components. To address this,
we introduce a novel notion of distance between
candidate latent geometries using the Gromov-
Hausdorff distance from metric geometry. We
propose using a graph search space that uses the
estimated Gromov-Hausdorff distances to search
for the optimal latent geometry. In this work we
focus on providing a description of an algorithm
to compute the Gromov-Hausdorff distance be-
tween model spaces and its computational imple-
mentation.

1. Introduction
Recent research has shown a growing interest in using
concepts from differential geometry and topology to im-
prove learning algorithms (Bortoli et al., 2022; Hensel et al.,
2021; Chamberlain et al., 2021; Huang et al., 2022; Bar-
bero et al., 2022b;a). While Euclidean spaces have been
commonly used in machine learning, it has been found that
using geometries that align better with the underlying data
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structure can lead to significant improvements. One ap-
proach is to use constant curvature model spaces like the
Poincaré ball (Mathieu et al., 2019), hyperboloid (Chami
et al., 2019), or hypersphere (Zhao et al., 2019) to encode
latent representations of data. Another approach is to use
product spaces (Gu et al., 2018; Skopek et al., 2019; Sáez de
Ocáriz Borde et al., 2023b;a; Zhang et al., 2020), which
combine multiple model spaces, allowing for more complex
representations while maintaining computational tractability.
However, determining the optimal configuration of product
manifolds for representing data is currently done heuristi-
cally, lacking efficiency and a principled framework. In this
work, we propose a computational approximation of the
Gromov-Hausdorff distances between product manifolds of
model spaces. This measure of closeness between mani-
folds can be useful for machine learning applications where
finding an appropriate manifold to represent the embedding
space of data or latent representations is crucial.

2. Background
Differential Geometry and Product Manifolds. Constant
curvature model spaces refer to Riemannian manifolds that
have a consistent sectional curvature, meaning the curvature
remains the same in all directions within a 2D plane (and
can be extended to higher dimensions) (Gallier & Quain-
tance, 2020). Examples of such spaces include Euclidean
space, hyperbolic space, and the sphere. Euclidean space
has zero curvature, hyperbolic space has negative curvature,
and the sphere has positive curvature. Constant curvature
model spaces are commonly used as reference spaces for
comparative analysis and machine learning tasks involving
non-Euclidean data. A product manifold can be constructed
by taking the Cartesian product P “

ŚnP
i“1 M

di

Ki of nP
manifolds with curvature Ki and dimensionality di. It is
important to note that nP and di are hyperparameters that
define the product manifold P and need to be predetermined.
On the other hand, the curvature of each model space Ki

can be learned using gradient descent. It is worth mention-
ing that while the product manifold construction allows for
the generation of more complex embedding spaces than the
original constant curvature model spaces, it does not enable
the generation of arbitrary manifolds or provide control over
local curvature. In this study, we are interested in geometries
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that can be represented employing model space Riemannian
manifolds and Cartesian products of such manifolds.

Hausdorff and Gromov-Hausdorff distances. The
Hausdorff distance (Jungeblut et al., 2021) between
two subsets, A and B, in a metric space X with the
metric dX , can be defined as follows: dXH pA,Bq “

max psupaPA dXpa,Bq, supbPB dXpb, Aqq . This quantity
is infinite, therefore we will restrict our calculations to com-
pact subsets A and B. In this particular instance, we define
dHpA,Bq as the smallest real number c ě 0 such that for
every a P A and every b P B there exist a1 P A and b1 P B
such that both dXpa, b1q and dXpa1, bq are at most c. It is
worth mentioning that the previous definition does not im-
pose the need for differentiable structures on X , A, and
B. They can simply be metric spaces. This enables us
to tell apart the metric characteristics of Euclidean, hyper-
bolic, and spherical geometries beyond analytical concepts
like curvature. Nevertheless, the aforementioned definition
restricts the comparison of spaces A and B to instances
where they are embedded in a particular metric space X .
To assess the notion of distance between them, we will
employ the Gromov-Hausdorff distance. Given a metric
space X and two isometric embeddings f : A Ñ X and
g : B Ñ X , we define dX,f,g

H pA,Bq “ dXH pfpAq, gpBqq.
Next, considering two metric spaces A and B, we de-
note by ESpA,Bq, the “embedding spaces of A and B”,
as the triple pX, f, gq where X is a metric space and
f : A Ñ X and g : B Ñ X are isometric embeddings. The
Gromov-Hausdorff distance between A and B is defined as:
dGHpA,Bq “ infpX,f,gqPESpA,Bq d

X,f,g
H pfpAq, gpBqq.

3. Methodology: Gromov-Hausdorff Distances
for Comparing Product Manifolds

The Hausdorff distance is a measure of dissimilarity be-
tween two sets of points, in our case representing discretized
versions of continuous manifolds. An algorithm proposed
by (Taha & Hanbury, 2015) efficiently computes the exact
Hausdorff distance between point sets but assumes that the
point sets reside in the same space and have the same dimen-
sionality, which limits its applicability. Gromov-Hausdorff
distances allow for measuring the distance between metric
spaces that are not inherently embedded in a common ambi-
ent space. In the application described, distances need to be
calculated between Euclidean space, spherical space, and
hyperbolic space, as well as products of these. This work
focuses on describing an algorithm for obtaining computa-
tional upper bounds for the distances between Euclidean
space and hyperbolic space, as well as between spherical
space and hyperbolic space. The Gromov-Hausdorff dis-
tance between Euclidean space and spherical space can be
estimated analytically and it is later provided in Table 1, Sec-
tion 4. These quantities can also be used to infer Gromov-

Hausdorff distances between product manifolds.

Strategy. There exist multiple isometric embeddings of
spaces En and Sn into E6n´6. While these first two spaces
can already be embedded in En`1, considering this higher-
dimensional Euclidean space is beneficial because it allows
for the isometric embedding of Hn. This common underly-
ing space enables the computation of Hausdorff distances
between the geometries En, Sn, and Hn, ultimately lead-
ing to the estimation of their mutual Gromov-Hausdorff
distance. The embedding of Hn into E6n´6, which we de-
scribe, can be found in Henke & Nettekoven (1987) and is
made explicit in Blanuša (1955). For a broader context and
related advancements in the isometric embedding of homo-
geneous spaces into higher-dimensional ones, we recom-
mend referring to Chapter 5 of the book by Brander (2003).
In our experiments, we will primarily focus on working with
product manifolds generated based on constant curvature
model spaces of dimension n “ 2, and we will denote the
embedding of H2 as F : H2 Ñ E6. Now we can sum-
marise our strategy to estimate dGHpBE2 , BH2q as follows
(for dGHpBE2 , BH2q it will be entirely analogous). The first
step consists of approximating our infinite smooth spaces by
finite discrete ones. For this, we consider several collections
of points tPiuiPI in E2 that are sufficiently well distributed.
The exponential map can be applied to the collection of
points exp : T0H2 – R2 Ñ BH2 to get several collections
of points Q in BH2 (again, well distributed by construction).
In addition, we will consider several isometric embeddings
fk : BE2 Ñ R6. Hence, we take

dGHpBE2 , BH2q « min
i,j,k

dR
6,fk,F

H pPi, Qjq

“ min
i,j,k

dR
6

H pfkpPiq, F pQjqq. (1)

Note that here we restrict ourselves to E2, S2, and H2 for
computational simplicity, but the approach is generalizable
to En, Sn, and Hn.

Model Space Manifold Discretization. To approximate
the mutual Gromov-Hausdorff distance between the smooth
spaces E2 and H2, we adopt a discretized representation of
these spaces. We achieve this by generating well-distributed
sets of points in E2 and H2 through the application of the
exponential map to a collection of points in R2. Addi-
tionally, we consider multiple isometric embeddings of E2

into R6. The estimation of the Gromov-Hausdorff distance
involves computing the minimum Hausdorff distance be-
tween the point sets derived from the collections in R6

and the isometric embedding of H2 into R6. The same
approach applies when comparing spherical space. All
our computations will be done in dimension two, so we
will simply precise how to generate points in BE2 , BS2

and BH2 . For BE2 and BS2 , we will use very elemen-
tary trigonometry. For BH2 , we will need an explicit de-
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scription of the exponential map of H2. Using the descrip-
tions BE2 “ tpr cosptq, r sinptqq : r P r0, 1s, t P r0, 2πqu,
and BS2 “ tpsinpβq cospαq, sinpβq sinpαq, cospβqq : α P

r0, 2πq, β P r0, 1su. This way, it will be easy to generate col-
lections of points in BE2 and BS2 . As we anticipated above
in the outline of our strategy to estimate dGHpBE2 , BH2q, in
order to give explicit well-distributed collection of points
in BH2 , it is enough to give a well-distributed collection of
points in BE2 and consider its image under the exponential
map exp0 : BE2 Ñ BH2 , where we have identified BE2

with the ball of radius one of R2 – T0H2, i.e. the tangent
space of H2 at the point 0.

Mapping function to embed Hn into E6n´6. We want
to define an isometric embedding of B1

Hn into E6n´6, that
is, F . This higher dimensional space is our candidate to
fit in the three geometries En, Hn and Sn to compute their
Hausdorff distances as subspaces of E6n´6 and hence esti-
mate their Gromov-Hausdorff distances. Before describing
such embedding, we introduce several preliminary auxiliary
functions. Let χptq “ sinpπtq ¨ e´ sin´2

pπtq for non-integer
values of t. A priori, the inverse of sinp0q “ 0 does not
make sense but since limtÑ0` χptq “ limtÑ0´ χptq “ 0,
we can set χp0q “ 0 so it is still continuous. In fact, it is
smooth and, in particular, integrable. We can say the same
at all points when t is an integer, so we set χptq “ 0 for all
integers t and we obtain an smooth function χ defined on
R: A “

ş1

0
χptqdt. We also define

ψ1pxq “

d

1

A
¨

ż 1`x

0

χptqdt (2)

ψ2pxq “

d

1

A
¨

ż x

0

χptqdt (3)

We set c to be the constant c “ 2max tG1, G2u defined in
terms of

Gi “

›

›

›

›

d

dx
psinhpxq ¨ ψipxqq

›

›

›

›

L8r´2,2s

, i “ t1, 2u (4)

Further, we make use of two auxiliary functions

hpx, yq “
sinhpxq

c

´

ψ1pxq cospc ¨ yq, ψ1pxq sinpc ¨ yq,

ψ2pxq cospc ¨ yq, ψ2pxq sinpc ¨ yq

¯

(5)

ψpx, yq “

´

sinh´1
pyexq, logp

a

e´2x ` y2q

¯

. (6)

which allows us to define

f0px, yq “
´

ż sinh´1
pyexq

0

a

1 ´ εptq2dt,

logp
a

e´2x ` y2q, hpψpx, yqq

¯

, (7)

with ε being ε “
G2

1`G2
2

c2 . This way, we can set

fpx, y1, . . . , yn´1q “

“ κ
`

f0px,
?
n´ 1y1q, . . . , f0px,

?
n´ 1yn´1

˘

(8)

with κ “ 1?
n´1

. Recall that in our case, we use the function
F p¨q “ fpn “ 2, ¨q to map the set of points Q in H2 to R6,
and for computing

dGHpBE2 , BH2q « min
i,j,k

dR
6,fk,F

H pPi, Qjq

“ min
i,j,k

dR
6

H pfkpPiq, F pQjqq. (9)

4. Computational Estimation of the
Gromov-Hausdorff Distances

Given that the Gromov-Hausdorff distance between Eu-
clidean and Spherical Space can be calculated analytically,
we will focus on the numerical algorithm required to com-
pute the distances between En and Hn, and Sn and Hn.

Computational Implementation of the Gromov-
Hausdorff Distance between the Remaining Model
Spaces of Constant Curvature. In this section, we explore
the process of discretizing the model spaces to generate
points within balls of radius one, considering practical con-
siderations. The Euclidean, hyperbolic, and spherical spaces
are continuous manifolds, and in order to approximate the
Gromov-Hausdorff distance between them, we need to
discretize these spaces. For the Euclidean plane, we sample
BE2 “ tpr cosptq, r sinptqq : r P r0, 1s, t P r0, 2πqu,
with a discretization of 10, 000 points in both r and t.
In order to generate points in BH2 (hyperbolic space),
we will use the points in BE2 (Euclidean space) as a
reference. We will employ the exponential map and
coordinate transformations to convert the points in BE2

into points in BH2 . To avoid numerical instabilities, we
restrict the points to B1

E2 “ tpr cosptq, r sinptqq : r P

r0.00000001, 0.97s, t P r0, 2πqu and use a discretization
of 10, 000. To sample points for the spherical space,
BS2 “ tpsinpβq cospαq, sinpβq sinpαq, cospβqq : α P

r0, 2πq, β P r0, 1su, we use a discretization of 100 for both
α and β. The level of discretization was selected as a
balance between resolution and computational time. We
noticed that the Gromov-Hausdorff distance reached a
stable state with our chosen discretization. Nevertheless,
due to the inherent characteristics of the Gromov-Hausdorff
distance, it is challenging to determine whether increased
discretization might reveal any unexpected behavior.

Optimizing the Embedding Functions for the Euclidean
and Spherical Spaces. Next to approximate the Gromov-
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Hausdorff distances:

dGHpBE2 , BH2q « min
i,j,k

dR
6,fk,F

H pPH
i , Qjq

“ min
i,j,k

dR
6

H pfkpPH
i q, F pQjqq , (10)

dGHpBS2 , BH2q « min
i,j,k

dR
6,gk,F

H pPS
i , Qjq

“ min
i,j,k

dR
6

H pgkpPS
i q, F pQjqq , (11)

we employ the following functions to embedBE2 (Euclidean
space) and BS2 (spherical space) into E6n´6. To optimize
for fk, we explore all possible permutations of the basis vec-
tors of E6: e1, e2, e3, e4, e5, e6. For each fk, we consider
two elements ei, ej and utilize those dimensions to embed
E2 within E6. In theory, we should also take into account a
small offset represented by F p0q “ 0, but in this case, the
offset is zero. Moreover, during the optimization process,
we incorporate a small vector (with all entries, except one
dimension, set to zero) into the mapping function. This
vector allows us to translate the plane in different directions,
with an offset ranging between ´0.5 and 0.5. We consider a
total of 100 steps within this range. To optimize for gk, we
follow a similar procedure where we explore all permuta-
tions of the basis vectors. However, in this case, we consider
three basis vectors instead of two. For each permutation
family PS

i , we not only consider the original permutation
but also its negative counterpart ´PS

i . We also offset the
mapping function as described before. It is important to
note that, in practice, BE2 and BS2 are discretized as PH

i

and PS
i , respectively.

Results. The estimated Gromov-Haussdorff distances are
presented in Table 1.

Table 1. Estimated Gromov-Hausdorff distances (up to two deci-
mal places) between model spaces and corresponding edge weights
in the graph search space.

Comparison Pair dGHp¨q wp¨q

pE2,S2q 0.23 4.35
pE2,H2q 0.77 1.30
pS2,H2q 0.84 1.20

5. Applications: Graph Search Space
As outlined in previous sections of this paper, we utilize
Cartesian products of model spaces with constant curva-
ture to generate potential latent geometries. Our current
emphasis is on constructing a search space specifically tai-
lored for identifying the optimal latent geometry, where
optimal denotes the latent geometry that exhibits the high-
est performance for a given downstream task. The search

space is represented as a graph, enabling the utilization of
established search algorithms. In this setting, we focus on
a scenario where the function fp¨q to be minimized is de-
fined on the graph nodes. The objective of employing a
search algorithm is to locate the node corresponding to the
minimum value, denoted as v˚ “ argminvPV fpvq. In our
configuration, each node within the graph corresponds to
a distinct latent product manifold, and the value assigned
to the node represents the validation set performance of a
neural network architecture employing that particular latent
geometry. To determine edge weights, we utilize the inverse
of the Gromov-Hausdorff distance between product man-
ifolds. We denote the edge weight between model spaces
M1 and M2 as wM1,M2 , representing the inverse Gromov-
Hausdorff distance. Edge weights are reported in Table 1.
Further, the Gromov-Hausdorff distance between manifolds
of different dimensions is one, see Appendix B.

To provide additional structure, we suggest imposing con-
nections between only nodes corresponding to product man-
ifolds that differ by one model space. For instance, E2 ˆH2

and E2ˆS2 would be connected with edge weightingwH2,S2

while S2 ˆ S2 and E2 ˆ E2 would have no connection in
the graph. Moreover, the connectivity between product
manifolds of different dimensions adheres to a consistent
principle. For example, there would exist a connection with
a strength of one between E2 ˆ H2 and E2 ˆ H2 ˆ S2.
However, there would be no connection between E2 and
E2 ˆ E2 ˆ E2, or between H2 and E2 ˆ S2. This construc-
tion introduces a sense of directionality to the graph and
results in clusters of product manifolds sharing the same
dimension. Additionally, it is worth noting that in prac-
tice, there are only four distinct edge weights utilized. As
an illustration, the connectivity strength between E2 ˆ H2

and S2 ˆ H2 is wE2,S2 since dGHpE2 ˆ H2,S2 ˆ H2q “

dGHpE2,S2q ` dGHpH2,H2q “ dGHpE2,S2q given that
dGHpH2,H2q “ 0. Visual representations of the graph
search space can be found in Appendix A.

6. Conclusion
We have described an algorithm for estimating the Gromov-
Hausdorff distance between model spaces and product man-
ifolds of these. Our computational approximations of these
distances can be leveraged to compare and provide a mathe-
matically grounded sense of closeness between possible la-
tent geometry candidates for machine learning applications.
In particular, we suggest that a Gromov-Hausdorff-informed
graph search space can be constructed and combined with
search algorithms.
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A. Additional figures
In this appendix we provide visualizations of the suggested Gromov-Hausdorff-informed graph search space.

H2
Ś

H2

E2
Ś

H2S2
Ś

H2

E2
Ś

E2E2
Ś

S2S2
Ś

S2

Figure 1. Slice of the graph search space for latent geometries of dimension 4: product manifolds obtained using 2 models spaces of
dimension 2. The graph edges are shown in different colours to depict a different degree of connectivity (black: wE2,S2 , red: wE2,H2 , blue:
wS2,H2 ), this is determined by the inverse of the Gromov-Hausdorff distance between the different product manifolds.

Figure 2. Example graph search space for product manifolds composed of up to seven model spaces. Manifolds of different dimensionality
are connected with edges coloured grey. Node labels have been omitted for visual clarity.

B. Upper Bound for the Gromov-Hausdorff Distance
It is important to acknowledge that when considering both A and B as compact sets, there exists a straightforward upper
bound for their Gromov-Hausdorff distance, which can be expressed in terms of their respective diameters. The diameter
of a metric space Y is defined to be diampY q “ supy,y1PY dY py, y1q. Given a0 P A and b0 P b, we can define the
isometric embeddings f : A Ñ A ˆ B and g : B Ñ A ˆ B given by fpaq “ pa, b0q and gpbq “ pa0, bq. It is trivial
that dAˆB,f,g

H pA,Bq ď max pdiampAq,diampBqq. Since the triple pA ˆ B, f, gq belongs to ESpA,Bq, we can estimate
dGHpA,Bq ď max pdiampAq,diampBqq . In order to compare En, Hn, and Sn, we suggest considering closed balls with
a radius of one in each space. Since these balls, regardless of the space, are homogeneous Riemannian manifolds, they
are isometric to one another. By estimating or establishing an upper bound for their Gromov-Hausdorff distance, we can
effectively compare these spaces. With exactly an analogous argument as before, we can notice that given two compact balls
of radius one B and B1, of centres x0 and x1

0, we can embed B into BˆB1 by the mapping f : b ÞÑ pb, x1
0q. From here, it is

obvious to see that dBˆB1,f,id
H pB,B ˆB1q “ 1. Effectively, this observation provides us with the bound dGHpB,B1q ď 1.
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We will consider this as the estimation of Gromov-Hausdorff distances for product manifolds that differ solely in one model
space, such as H2 and S2 ˆ H2.
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