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Abstract
This paper presents a new method for effi-001
ciently decoding multiple queries over the same002
content in Transformer language models. This003
is particularly useful for tasks that have many004
prompts with the shared prefix, as document005
question answering with a large number of006
questions for each document. Traditional meth-007
ods prompt the language model with each query008
independently in a batch or combine multi-009
ple questions together into one larger prompt.010
However, both approaches are based on the au-011
toregressive fashion with one token per homo-012
geneous forward pass, which uses inefficient013
matrix-vector products for every sequence in014
the batch. These methods also encounter issues015
such as a duplicate key-value cache, quality016
degradation, or redundant memory when large017
key-value (KV) caches are accessed from mem-018
ory, which leads to wasted GPU memory and019
decreased performance. Our proposed method020
addresses these challenges by decoding queries021
in parallel, replacing matrix-vector products022
with more efficient matrix-matrix products, im-023
proving efficiency without compromising result024
quality. Experimental results demonstrate that025
our method increases throughput effectively in026
multiple downstream tasks, providing a reli-027
able solution for prompt inference in language028
models.029

1 Introduction030

As transformer-based large language models031

(LLMs) (Vaswani et al., 2023) are deployed at in-032

creasingly large scales, optimizing the inference033

has been a key focus for many recent works such as034

FlashAttention (Dao et al., 2022), speculative de-035

coding (Chen et al., 2023) and multi-token predic-036

tion (Gloeckle et al., 2024). As research continues037

to expand its capabilities and applications, the im-038

portance of efficiency in LLM inference becomes039

increasingly critical.040

The remarkable ability of LLMs has led to their041

widespread adoption across various domains (Zhou042

Figure 1: CodeLlama-7b-Instruct attention inference
Throughput w.r.t. number of unique documents (A100-
SXM4-80GB GPU). We set the length of content to
256, the number of total queries is 512, for each unique
content is 64, the length of each query to 12, the length
of generated token to 5.

et al., 2024; Yuan et al., 2024; Miao et al., 2023a). 043

As a result, while LLMs are increasingly deployed 044

in environments demanding high reliability such 045

as in healthcare (Qureshi et al., 2023), legal inter- 046

pretations (Sun, 2023), finance (Wu et al., 2023), 047

education (Kasneci et al., 2023), and code assis- 048

tant (Chen et al., 2021) settings, the ability to 049

streamline processing while maintaining accuracy 050

becomes paramount (Hadi et al., 2023; Zhou et al., 051

2024; Yuan et al., 2024; Miao et al., 2023a). 052

In many applications, tasks often involve mul- 053

tiple queries over the same content. This sce- 054

nario is prevalent in fields such as education, med- 055

ical care (Qureshi et al., 2023), and legal consult- 056

ing (Sun, 2023), where LLMs must be queried mul- 057

tiple times over the same content. The motivation 058

for developing and refining LLMs to handle this 059

scenario is rooted in the practical demands and ef- 060

ficiency required across several critical fields. In 061

education, for instance, students might query an 062
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Figure 2: Prompting methods of LLM.

LLM multiple times to gain deeper insights into063

a particular topic or to understand complex con-064

cepts through varied perspectives. This facilitates065

an enriched learning experience, allowing users to066

engage more thoroughly with the content without067

starting from scratch for each new question. In068

the medical field, consistency and continuity in in-069

formation are vital. Doctors, nurses, and medical070

researchers may need to run successive queries on071

patient data or medical literature to make informed072

decisions, diagnose conditions, or explore treat-073

ment options. Ensuring the LLM can process these074

queries efficiently and contextually aware can sig-075

nificantly streamline workflows, reduce errors, and076

ultimately enhance patient care. Legal consulting077

requires navigating complex, often massive, bod-078

ies of text. Legal professionals frequently need to079

parse through large documents and discuss vari-080

ous aspects of a legal case in a precise and consis-081

tent manner. Leveraging LLMs to handle multiple082

queries over shared contexts can save significant083

time and reduce the cognitive load on legal practi-084

tioners, allowing them to focus on nuanced legal085

strategies and client interactions. An LLM capable086

of processing these tasks across a static shared con-087

text can refine its responses, offering more precise088

and relevant answers, which is particularly benefi-089

cial in dynamic fields where real-time information090

processing is critical.091

Improving the efficiency of prompting with 092

shared content for LLMs can have a significant 093

impact. With growing demand comes the necessity 094

for LLMs to efficiently handle long prompts con- 095

taining more shared content, many recent works 096

focus on optimizing LLM inference in this scenario, 097

such as RelayAttention (Zhu et al., 2024), Prompt- 098

Cache (Gim et al., 2024), Hydragen (Juravsky 099

et al., 2024). Many LLM serving systems such 100

as vLLM (Kwon et al., 2023) and SGLang (Zheng 101

et al., 2024) also optimize the inference in this sce- 102

nario by caching the previous queries. 103

Overall, the ability of LLMs to seamlessly han- 104

dle multiple queries over the same content en- 105

hances their utility, efficiency, and reliability, mak- 106

ing them indispensable tools across various profes- 107

sional fields. This capability not only optimizes the 108

user experience by maintaining context and conti- 109

nuity but also expands the potential applications of 110

LLMs in solving complex, real-world problems. 111

2 Patterns of prompting 112

The traditional inference process of LLMs in the 113

scenario poses limitations due to its autoregressive 114

nature. The naive approach is to either prompt the 115

LLM with each prompt independently in a batch or 116

to combine them all into one bigger prompt(Cheng 117

et al., 2023; Lin et al., 2023). Both approaches do 118

not exploit the parallel capabilities of a GPU in 119

the generation stage due to the fact that generating 120

every new token for each sequence requires one 121

forward pass. Additionally, each method has its 122

own additional drawbacks. Naive batched infer- 123

ence stores the KV cache multiple times for every 124

sequence, even they share the exact same content 125

prefixes, leading to redundant storage of the prefix 126

key and value vectors, a problem which we will 127

call KV cache duplication. Some related works, 128

including vLLM with PagedAttention (Kwon et al., 129

2023) and the Prompt Caching technique (Gim 130

et al., 2024), which consolidates identical input 131

KV caches into one physical block across different 132

queries. Another related work, SGLang (Zheng 133

et al., 2024) with the RadixAttention algorithm, ex- 134

amines incoming requests to identify the longest 135

previously processed subsequence, thereby prevent- 136

ing redundant computations of overlapping keys 137

and values. Despite the fact that the system prompt 138

is common to all requests, the hidden states, rep- 139

resented as key-value pairs, are repeatedly read 140

from DRAM by current attention algorithms like 141
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PagedAttention, RadixAttention, and FlashAtten-142

tion (Dao et al., 2022), separately for each request143

in the batch. Consequently, this approach only min-144

imizes the time needed for query processing (the145

prefilling phase) but does not decrease the time146

required for generating new tokens (the decoding147

phase).148

Recent works like Hydragen (Juravsky et al.,149

2024) and RelayAttention (Zhu et al., 2024) opti-150

mize the attention computation for LLM generation151

with shared content by utilizing the benefit of effi-152

ciency of matrix multiplications in modern GPUs.153

For document question tasks, Hydragen’s multiple154

levels of sharing system does not work well since it155

requires each document to ask the same number of156

questions, and the length of questions is restricted157

in the current version of their current released code,158

which is the initial release. Incorporating a sim-159

ilar idea into vLLM service systems, relayAtten-160

tion (Zhu et al., 2024) assumes that all requests161

share the same system prompt, which implies the162

serving process provides only one application. For163

prompting questions with different documents in a164

batch, a hybrid batch with multiple sharing groups165

is still not supported based on the current imple-166

mentation.167

Generating reliable outputs for multiple queries168

with one prompt makes it even more challenging.169

SeqBatch Prompting in Figure 2 with many queries170

sequentially all at once within a bigger prompter171

often causes the degraded performance (Cheng172

et al., 2023; Lin et al., 2023), which we will refer173

to as prompt interference. This inevitably leads174

to a severe performance decrease in the language175

model (Liu et al., 2024), and improving efficiency176

in this setting will have a significant impact.177

To address these bottlenecks, we introduce a178

novel and simple method for efficient parallel de-179

coding of multiple prompts to a transformer lan-180

guage model. These prompts can be done all at181

once in parallel. Our approach benefits from in-182

creased parallelization ( textbfparallel decoding),183

and removes both problems of prompt interference184

and KV cache duplication. Specifically, our work185

not only increases the throughput of generation and186

reduces memory consumption during processing187

but also maintains the generation quality of lan-188

guage models.189

To summarize, we make the following contribu-190

tions:191

• We propose a simple and effective method192

leveraging parallel prompting in LLM that 193

allows a single LLM prompt to infer multiple 194

answers for various questions simultaneously. 195

196

• We provide a mechanism to further optimize 197

generation latency and throughput with batch 198

parallel generation. 199

• We conduct experiments with multiple down- 200

stream datasets, generate synthetic data, and 201

show our method achieves improvements in 202

throughput and computational resource man- 203

agement, offering a robust solution for differ- 204

ent tasks in LLMs. 205

3 Method 206

We formulate the problem as follows. Suppose 207

we have a context C and N sentence queries 208

q1, . . . , qn for the context. 209

Let the generation function of original model be 210

LLM.GEN(), and suppose the current batch of 211

data with batch size N is Q = {q1, q2, ..., qn}, the 212

answers to each data are A = {a1, a2, ..., an}. In 213

the situation of standard batch prompting multiple 214

questions Q based on the same context C from the 215

auto-regressive language model, the final answer 216

for qn can be formulated as: 217

ai = LLM.GEN(C, qi) (1) 218

In order to improve the inference efficiency, Seq- 219

Batch Prompting in Figure 2 combines all question 220

into one bigger prompt. The final answer for qn 221

with Seq-Batch Prompting can be formulated as: 222

ai = LLM.GEN(C,Q, a1:i−1) (2) 223

However, the answer An to the data Qn is not 224

only conditioned on the task specification but also 225

on {a1, a2, ...an−1}, which can be viewed as the 226

context of an. Therefore, all of the generated an- 227

swers have a unique effect for the following ones 228

in the batch prompting method, which we refer to 229

as the prompt interference problem. 230

To tackle this problem, the simplest way is to 231

construct a mask matrix MASK for each answer 232

that makes sure that that answer only pays atten- 233

tion to its corresponding question and the shared 234

context. With the specialized attention mask, we 235

are able to compute attention over the shared con- 236

text and corresponding question as a standalone 237

operation for every answer. While this specialized 238

attention mask does not improve efficiency on its 239
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own (in fact, it introduces additional work to ini-240

tialize a mask for each answer), it can allow us to241

compute cross-attention much more efficiently over242

a batch of sequences in the following generation243

stage.244

ai = LLM.GEN(C,Q,M, a1:i−1) (3)245

However, though the prompt interference prob-246

lem is solved, we still face the efficiency problem.247

Since next-token prediction remains an inefficient248

way of generating answers for all independent ques-249

tions and restricts the LLM’s world knowledge and250

reasoning capabilities. More precisely, next-token251

prediction assumes left-to-right dependencies in252

language, i.e., a later-appearing token depends on253

all earlier-appearing tokens but overlooks the exis-254

tence of independent dependencies.255

We explore a parallel prediction method in which256

we merge each independent query vector together257

into one attention operation over a single prompt-258

ing sequence, then feed it into the language model259

to predict future tokens in parallel. The follow-260

ing sections will succinctly introduce our method,261

encompassing both the prefilling and generation262

stages.263

3.1 Prefilling prompt with Independent264

questions265

In the prefill stage of our method , the model en-266

codes the prompt in parallel within a single for-267

ward pass. During this phase, the LLM takes a268

prepacked prompt sequence with a modified mask-269

ing in Figure 3 and position encoding to extract the270

corresponding KV-cache values. Each question’s271

position index follows the end token index of con-272

text, which ensures the correct position embedding273

passing into the model. If the attention status of274

context is already precached, the prefill process can275

also be done by providing the context attention sta-276

tus as past kv-cache. We provide the pseudo-codes277

for our generation process in algorithm 1 and a278

detailed parallel process in algorithm 2.279

3.2 Parallel Generation280

Recall that given the sequence of queries Q ∈281

RNq×d, keys K ∈ RNkv×d, values V ∈ RNkv×d ,282

the transformer model computes the attention out-283

put O ∈ RNq×d as follows:284

O = Attention(Q,K, V ) = softmax(
QKT

√
d

)V

(4)

285

During generation, the Q matrix is 1× d, a vector. 286

With causal masking, this usually becomes: 287

O = Attention(Q,K, V ) (5) 288

= softmax

(
QKT

√
d

+M

)
V (6) 289

Each entry in M is −∞ or 0 for masked or non- 290

masked entries in the attention matrix, respectively. 291

Since all questions are independent and share a 292

common context, we are able to generate the prob- 293

ability distribution of answers simultaneously. To 294

achieve this, we need to allow the model to gener- 295

ate N tokens at once in each forward pass of the 296

generation stage, which means increasing the num- 297

ber of query vectors in the attention computation 298

by making Q a matrix of dimension N × d. 299

Figure 3: Overview of independent masking prefill and
parallel generation.

During the decoding phase, our method gener- 300

ates tokens for different questions simultaneously. 301

In the process of parallel generation, each forward 302

pass would generate N new tokens which is also 303
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the number of questions. In Figure 3, the num-304

ber of questions is three and different colors repre-305

sent different questions, the number in block repre-306

sents the position of tokens in the normal prompt307

sequences. Since the position of each generated308

token should be followed by the provided prefix309

tokens, we have to record the position of all last310

input tokens and add 1 for them. Also, in order311

to seamlessly generate the full answers to the pro-312

vided questions, we update the generated tokens to313

their corresponding positions in the inputs prompt.314

Since all the mask attention structures are already315

defined from the prefill stage, the model only needs316

to update them with the same pattern in the genera-317

tion stage.318

Algorithm 1 Parallel_Batch_Prompting
Function Parallel_Batch_Prompting(shared prefix Doc, unique suffixes Qall,
batch size N , parallel size P , LLM)

Initialize i← 0
Initialize Np ← N/P
Initialize 3d_mask ← Np ∗ torch.tril()
while i ≤ len(Qall) do

Qn ← Qall[i : i + N ]
Qnp ← parallize_interleave(Qn, P )
prompts← prepare_input(Doc,Qnp, Np)
masks← 3d_mask ∗ padding.mask
answers, output_mask ← LLM.parallel_generate()
for n← 1 to Np do

for p← 1 to P do
final_answer.append(LLM.decode())

end
end
i = i + N

end

Algorithm 2 Parallel_Generate
Function Parallel_Generate(self, inputs prompts, 3d masks masks, parallel
size P , LLM)

Initialize finished← False
Initialize self.inputs_ids← self.prompts
Initialize self.position_ids
Initialize self.masks
while True do

outputs← self.LLM()
parallel_logits← outputs[−P :]
parallel_tokens← argmax(parallel_logits)
input_ids← concat(input_ids, parallel_tokens)
if stopping_criteria(input_ids, P ) then

finished← True
break

self.prepare_parellel_mask(P )
self.prepare_parellel_position(P )

end
return self.input_ids, self.masks

3.3 Batching319

The use of batching is a crucial technique to en-320

hance throughput in LLM inference. Through321

batched decoding, each forward pass of the model322

processes the latest token from multiple sequences323

concurrently rather than just one. This approach324

amplifies the arithmetic intensity of transformer325

components, such as the multilayer perceptron326

(MLP) blocks, and facilitates the use of hardware- 327

friendly matrix multiplications. 328

However, the computation intensity of attention 329

does not inherently benefit from batching, as each 330

sequence possesses its distinct key and value ma- 331

trix. Consequently, while other model components 332

can leverage tensor cores during batched decoding, 333

attention is required to be computed using numer- 334

ous independent matrix-vector products. Our par- 335

allel generation technique aims to address this by 336

enhancing the computation intensity of attention. 337

RealyAttention (Zhu et al., 2024) does not sup- 338

port batching with different prefixes, as it neces- 339

sitates a more complex implementation of fused 340

operators in CUDA for hybrid batching with mul- 341

tiple sharing groups. Hydragen (Juravsky et al., 342

2024) requires a batched document with the same 343

number of questions, and it also has a question 344

length constraint with its implementation. 345

Our method integrates seamlessly with the batch- 346

ing technique. By batching texts with multiple 347

unique documents and corresponding questions, 348

efficiency can be improved further. Parallel genera- 349

tion with batching provides two distinct advantages: 350

firstly, inference throughput is further amplified by 351

batching with multiple unique prefix documents; 352

secondly, it enables the balancing of batch size 353

and sequence length for model input, optimizing 354

overall performance. 355

4 Experiments 356

The experiments are organized into three subsec- 357

tions: main experiments, analytical study, and abla- 358

tion study. 359

The main experiments focus on the throughput of 360

our generation method compared to various base- 361

line techniques in reading comprehension tasks 362

with Llama 3-8B model (Grattafiori et al., 2024). It 363

serves to validate the motivating principles behind 364

our approach. Initially, we compare the accuracy of 365

token predictions made using our method against 366

baseline methods like standard batch prompting 367

and seq-batch prompting. Our findings show that 368

our method maintains high prediction accuracy 369

across different datasets. Additionally, we analyze 370

the throughput in the generation phase relative to 371

the more advanced methods to further substantiate 372

our motivation. 373

Both the analytical experiments and the ablation 374

study are conducted on smaller model sizes such 375

as CodeLlama-7b-Instruct (Rozière et al., 2024) 376
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Dataset Avg. #tokens(Doc) Avg. #tokens(Q) Avg. #Q per Doc
SQuAD 556 24 5
QuAC 2,628 18 7
DROP 761 26 16

Table 1: Average number of shared tokens of each document with one shot demonstration, average number of tokens
for questions, and average number of questions each shared document .

and Sheared-LLaMA-1.3B (Xia et al., 2024) and377

LLaMa-160m (Miao et al., 2023b). These subsec-378

tions aim to demonstrate the reliability and effec-379

tiveness of our approach. It optimizes the process-380

ing efficiency of LLMs to manage larger, more381

context-rich inputs without a loss in performance.382

More detailed information is available in the383

Appendix A. Across all models, we employ a con-384

sistent parallel generation method to predict the385

next set of multiple-answer tokens.386

All experiments are conducted on a single387

NVIDIA A100-80GB GPU. Our implementations388

rely on PyTorch, using the HuggingFace architec-389

ture (Wolf et al., 2020).390

4.1 Datasets391

We evaluate our method on three popular datasets:392

SQUAD(Rajpurkar et al., 2016), QuAC(Choi et al.,393

2018), and DROP(Dua et al., 2019) with Llama 3-394

8b (Grattafiori et al., 2024). Many recent works like395

RelayAttention with vLLM (Zhu et al., 2024)and396

Hydragen (Juravsky et al., 2024) have a huge per-397

formance improvement when the number of ques-398

tions is huge ( bigger than 100) and the shared399

content is very long ( tokens bigger than 1000).400

However, we noticed that the popular downstream401

tasks with parallel questions have a much shorter402

shared document length and a much smaller size of403

questions. The statistic is summarized in Table 1.404

The benefits of their methods can not be fully uti-405

lized under this circumstance. Instead, our parallel406

generation method can work better in this scenario.407

To further show the effectiveness of our parallel408

prompting method, we also evaluate our method409

on one constructed synthetic data following the410

Hydragen paper (Juravsky et al., 2024) with dif-411

ferent lengths and numbers of unique documents412

and various numbers of questions. To demonstrate413

the throughput benefits of using our method to an-414

swer questions about a long document, we generate415

data that contains arbitrary facts from which ques-416

tion/answer pairs can be easily generated. The417

content of the document is a subset of War and418

Peace (Tolstoy, 1869), modified to include pro-419

Dataset Method Time(s) F1(%)

SQuAD
Standard 590 87.2
SeqBatch 393 84.2
Hydragen 1077 87.1
vLLM 351 87.4
vLLM-RA 365 87.3
Parallel 168 87.2

QuAC
Standard 1799 34.0
SeqBatch 462 29.1
Hydragen 832 34.0
vLLM 843 32.8
vLLM-RA 468 32.8
Parallel 317 33.9

DROP Standard 654 58.1
SeqBatch 834 42.5
Hydragen 316 58.2
vLLM 393 58.5
vLLM-RA 203 58.5
Parallel 111 58.1

Table 2: Comparison of generation time and perfor-
mance with different methods on average of five times
with Llama 3 8B model on A100-80G.

cedurally generated sentences of the form “The 420

{animal} named {name} has {body part} that is 421

{color}.” The questions are of the form “What 422

color is the {body part} of the {animal} named 423

{name}?”, where the answer is {color}. We con- 424

struct various questions inference tasks and various 425

lengths of shared content from War and Peace (plus 426

five for the few-shot examples) and concatenate 427

these few shot examples at the end of the docu- 428

ment. 429

4.2 Evaluation on Downstream Tasks 430

The Table 2 compares the generation time of stan- 431

dard, batch prompting, Hydragen, vLLM, vLLM 432

with relay attention and our parallel prompting 433

methods. The result shows that parallel prompt- 434

ing performs consistently better than standard and 435

batch prompting on the latency of generation while 436

remains the same quality of outputs as the standard 437

prompting over all datasets. 438
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We use the current latest version, 0.6.4, of the439

vLLM package, which uses the PagedAttention al-440

gorithm. vLLM avoids redundant storage of the441

prefix, allowing much larger batch sizes to be tested.442

Additionally, because of this non-redundant stor-443

age, PagedAttention can achieve a higher GPU444

cache hit rate when reading the prefix, reducing445

the cost of redundant reads. We consider com-446

paring the vLLm with the Prefix Cache method447

in our constructed synthetic data since it will not448

be a fair comparison with other methods without449

the caching technique, especially when we use the450

same one-shot example for the downstream tasks451

in each dataset.452

4.3 Analytical Study on Synthetic Data453

We constructed synthetic data with various docu-454

ment lengths and a number of unique documents455

with questions to evaluate our method. The Fig-456

ure 4 compares the throughput of standard, batch457

prompting, Hydragen, vLLM, vLLM with Relay-458

Attention, vLLM with prefix cache and our parallel459

prompting on the generated synthetic data. As the460

number of unique shared docs increases, our paral-461

lel generation method outperforms other methods462

without the decrease in generation quality.463

The performance of LLM’s generation can be af-464

fected by various factors. We also run experiments465

with various configurations with CodeLlama-7b-466

Inst (Rozière et al., 2024) and Sheared-LLaMA-467

1.3B (Xia et al., 2024). For example, the length of468

shared documents, questions, and answers. Differ-469

ent model sizes and GPUs could also affect gen-470

eration performance. More detailed results can be471

found in Appendix A.472

Number of Questions We run our benchmarks473

on CodeLlama-7b-Instruct (Rozière et al., 2024)474

with one A100-80GB GPU with various numbers475

of questions and documents. In Table 3, we fix the476

document length to 512 tokens and sweep over the477

question size from a range while generating five478

tokens per question. When the batch size is small,479

non-attention operations contribute significantly to480

decoding time, with all methods reaching at least481

half of the throughput of no-attention upper bound.482

At these small batch sizes, most methods have sim-483

ilar throughputs, and some methods spend more484

time staging document KV cache. However, as the485

batch size grows at a certain level, attention over486

the prefix becomes increasingly expensive, and our487

parallel generation save more time for attention488

computation. As a result, our method begins to 489

outperform the other baselines. A certain number 490

of parallelized questions work better than others 491

in our experiment; more detailed analysis is in Ap- 492

pendix A. 493

Batch Size We ran a few experiments on query- 494

ing a range of fixed prompts with different batch 495

sizes. Interestingly, maximizing the parallel 496

size(minimizing the batch size) is only some- 497

times ideal. This situation happens for all of our 498

models with various sizes (7B (Grattafiori et al., 499

2024),1B (Rozière et al., 2024),160m (Miao et al., 500

2023b)). In Table 3 , we see the best throughput 501

performance is reached by 256 parallel sizes when 502

queries 128 prompts. In Table 5and Table 6, the 503

parallel size also not always be the maxized one 504

in different GPUs ( NVIDIA-A100-SXM4-80GB 505

i, NVIDIA-GeForce-RTX-3090). We assume that 506

the best number of parallel sizes balances the cost 507

of computation in the arithmetic intensity of the 508

transformer components such as the multilayer per- 509

ceptron (MLP) blocks and intensity of attention. 510

Document Length Now, we run a similar experi- 511

ment, except now we hold the number questions in 512

the list [2, 4, 8, 16, 32, 64] of each document as one 513

constant number 128 and sweep over the shared pre- 514

fix length among the list [128, 256, 512] in Figure 5 515

Figure 6 Figure 7. Even though the throughput 516

decreases as the prefix grows, with our parallel gen- 517

eration method, throughput is less unaffected when 518

the prefix content grows under a certain level below 519

1000 tokens. We perform more in-depth sweeps 520

over different models, prefix lengths, batch sizes, 521

and numbers of generated tokens in Appendix A - 522

for smaller models and more parallel questions, the 523

speedup can exceed Table 4. 524

5 Related work 525

Recent advancements in language modeling have 526

delved into the prediction of multiple tokens simul- 527

taneously to enhance both efficiency and perfor- 528

mance. Notable works such as (Miao et al., 2024; 529

Leviathan et al., 2023; Wu et al., 2024) focus on 530

speculative decoding methods, where potential fu- 531

ture sequences are built and verified to expedite 532

inference. Similarly, (Gloeckle et al., 2024) and 533

(Cai et al., 2024) propose predicting multiple fu- 534

ture tokens using different output heads, thereby 535

speeding up the inference process. 536

Efforts to increase throughput in LLM inference 537
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Figure 4: Throughputs of different methods when the number of unique documents changes in the LLM inference.
CodeLlama-7b-Instruct attention inference Throughput w.r.t. number of unique documents (A100-SXM4-80GB
GPU). We set the length of context to 256, the number of total queries is 512, for each context is 64, the length of
each query to 12, the length of generated token to 5.

have led to various innovative techniques aimed at538

optimizing GPU utilization and improving through-539

put. (Dao et al., 2022) and (Sheng et al., 2023)540

aim to improve memory usage efficiency, enabling541

higher throughput in generative inference tasks.542

(Jin et al., 2023) schedules prompts based on esti-543

mated output sequence lengths to optimize GPU544

usage. (Gim et al., 2024) proposes reusing precom-545

puted caches in a predefined schema to reduce la-546

tency. (Sun et al., 2024) applies dynamic sparse KV547

caching in decoding to accelerate long sequence548

generation.549

Efficient prompting techniques could also in-550

crease the throughput of LLM.(Cheng et al., 2023)551

groups multiple questions in a single prompt,552

though it will lead to performance degradation553

when the number of questions increases. (Zhao554

et al., 2024) enhances throughput during the prefill-555

ing stage by prepacking data. (Ning et al., 2024)556

uses the skeleton of the answer to batch-generate557

the final answer.558

To avoid the KV cache duplication, existing559

work (Kwon et al., 2023) vLLM uses its PagedAt-560

tention and paged memory management to point561

multiple identical input prompts to only one physi-562

cal block across multiple queries. Also, (Juravsky563

et al., 2024) proposes a decomposition of attention564

computation of shared prefixes and unique suffixes.565

(Lu et al., 2024) increases efficiency by sharing566

cache in the encoder-decoder model for decompos-567

able tasks.568

Compared with the above methods, our work569

introduces a novel inference technique that allows570

LLMs to handle multiple questions within a sin-571

gle prompt efficiently, leveraging GPU parallel ca-572

pacity to improve inference throughput and mem- 573

ory utilization without degrading reasoning perfor- 574

mance. 575

6 Conclusion 576

We introduce an efficient parallel prompting 577

method for decoding prompt queries in parallel. We 578

conduct experiments with multiple down stream 579

datasets, generate synthetic data, and show our 580

method achieves improvements in throughput and 581

computational resource management, offering a 582

robust solution for different tasks in LLMs. 583

Limitations 584

Our parallel generation method is not highly op- 585

timized for querying with extremely long shared 586

content prefixes. However, it can be improved with 587

other techniques like prefix cache. Our approach 588

requires a modified causal mask as one extra input 589

for the model, which may not be available or may 590

require additional steps to implement it. Due to 591

budget and hardware constraints, we could not ex- 592

periment with our approach on larger open-sourced 593

LLMs. 594
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A Example Appendix965

In this section we show the affect of number of966

unique prefixes content for different methods on the967

parallel generation. The performance of RelayAt-968

tention method has a huge decline, since it dose not969

support the hybrid batching in its current implemen-970

tation. Our methods performs well under a small971

number of quesitons be asked fore each shared972

content. As the number of questions becomes big-973

ger(over 100), the computation of attention will be974

slower since our packed sequence length is much975

longer than other methods, and the efficiency of the976

generation process will be affected.977
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#queries BatchSize Throughput1B(tokens/second) Throughput7B(tokens/second)

128
1 4283 1931
2 4625 1843
4 3654 1468
8 2850 1018

256
1 5911 2115
2 6384 2250
4 5748 2071
8 4959 1615

512
1 5419 1850
2 6845 2214
4 7725 2382
8 7181 2146

Table 3: Comparing the throughput using parallel Batching with different Batch sizes of parallel generation on 1B
and 7B Llama model when the doc_len = 512∥q_len = 12∥ans_len = 5.

doc_len Throughput(1B)(tokens/second) Throughput(7B)(tokens/second)

256 9512 2750
512 8199 2430
1024 6591 1924

Table 4: Comparing the throughput using parallel Batching with 7B and 1B Llama model with different lengths of
doc length when q_len = 12∥q_num = 128∥ans_len = 5 and the number of unique doc content equals 8. As the
content length increases, the degradation of throughput performance becomes severe.

Method model New Tokens Batch Size Parallel Size Latency(s) Peak Memory(MB)
Our llama-160m 10 1 128 10.1 23770
Our llama-160m 10 2 64 7.3 24066
Our llama-160m 10 4 32 2.4 24781
Our llama-160m 10 8 16 2.9 26258
Our llama-160m 10 16 8 3.9 29247
Our llama-160m 10 1 64 6.3 12331
Our llama-160m 10 2 32 3.4 12692
Our llama-160m 10 4 16 3.9 13428
Our llama-160m 10 8 8 4.8 14921
Our llama-160m 10 16 4 6.9 17917
Our llama-160m 10 1 32 5.1 6665
Our llama-160m 10 2 16 5.4 7034
Our llama-160m 10 4 8 6.4 7780
Our llama-160m 10 8 4 8.7 9276
Our llama-160m 10 16 2 13.0 12275

Table 5: Comparing the end-to-end NVIDIA-A100-SXM4-80GB inference latency of parallel generation with
baseline method. Numbers in parenthesis show the length of document, length of each question and number of all
questions for prompting each LLM.(lendoc = 512, lenq = 10, numq = 1024). Results averaged over 50 runs.
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Figure 5: Throughputs of different methods when the number of unique documents changes in the LLM
inference.CodeLlama-7b-Instruct attention inference Throughput w.r.t. number of unique documents (A100-
SXM4-80GB GPU). We set the length of content to 128, the number queries for each context sweeps over the list of
[2,4,8,16,32,64] , the length of each query to 12, the length of generated token to 5.
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Figure 6: Throughputs of different methods when the number of unique documents changes in the LLM
inference.CodeLlama-7b-Instruct attention inference Throughput w.r.t. number of unique documents (A100-
SXM4-80GB GPU). We set the length of content to 256, the number queries for each context sweeps over the list of
[2,4,8,16,32,64] , the length of each query to 12, the length of generated token to 5.
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Figure 7: Throughputs of different methods when the number of unique documents changes in the LLM
inference.CodeLlama-7b-Instruct attention inference Throughput w.r.t. number of unique documents (A100-
SXM4-80GB GPU). We set the length of content to 512, the number queries for each context sweeps over the list of
[2,4,8,16,32,64] , the length of each query to 12, the length of generated token to 5.
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Method model New Tokens Batch Size Parallel Size Latency(s) Peak Memory(MB)
Our llama-160m 10 1 128 38.9 3135
Our llama-160m 10 2 64 31.2 3434
Our llama-160m 10 4 32 4.7 4146
Our llama-160m 10 8 16 8.0 5623
Our llama-160m 10 16 8 9.9 8610
Our llama-160m 10 1 64 59.5 12363
Our llama-160m 10 2 32 11.8 12726
Our llama-160m 10 4 16 12.9 13464
Our llama-160m 10 8 8 13.9 14960
Our llama-160m 10 16 4 17.5 17951
Our llama-160m 10 1 32 21.9 6667
Our llama-160m 10 2 16 22.1 7036
Our llama-160m 10 4 8 27.8 7781
Our llama-160m 10 8 4 32.1 9278
Our llama-160m 10 16 2 37.7 12275

Table 6: Comparing the end-to-end NVIDIA-GeForce-RTX-3090 inference latency of parallel generation with
baseline method. Numbers in parenthesis show the length of document, length of each question and number of all
questions for prompting each LLM.(lendoc = 512, lenq = 10, numq = 1024). Results averaged over 50 runs.
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