
Under review as submission to TMLR

Policy optimization in reinforcement learning for column
generation

Anonymous authors
Paper under double-blind review

Abstract

Column generation (CG) is essential for addressing large-scale linear integer programming
problems in many industrial domains. While its importance is evident, the CG algorithms
face convergence issues, and several heuristic algorithms have been developed to address
these challenges. However, few machine learning and reinforcement learning methods are
available that enhance the existing CG algorithm. This paper introduces a new policy
optimization RL framework to improve the existing DQN-based CG framework, particularly
training time, called PPO-CG. When applied to the Cutting Stock Problems (CSP), our
approach requires merely 20% of the training time observed with the DQN-based method
and only 35% in Vehicle Routing Problems with Time Windows (VRPTW). In addition, our
approach suggests a novel method for solving the node selection problem in the framework
of reinforcement learning on graphs. Our code is available in this link 1

1 Introduction

Combinatorial optimization problems are widely applied in various industrial domains such as logistics,
telecommunications, and transportation. Solving large-scale optimization problems efficiently is crucial for
practical applications. In integer linear programming (ILP), the column generation (CG) technique is com-
monly used to solve large-scale integer programming problems.

The CG algorithms take advantage of the fact that the optimal solution only needs a part of the entire column.
Therefore, it would be inefficient to consider the entire matrix. To begin with, the CG algorithm selects a
subset of columns from the Master Problem (MP) and solves the relaxed linear programming problem for
the selected columns, called the Restricted Master Problem (RMP). Then, using the dual variable, the CG
algorithm solves the Pricing Problem (PP). The solutions of PP are new columns, which have the potential
to improve the objective function. The procedure continues until there are no more columns to add.

Despite its usefulness, it is well-known that CG algorithms have convergence issues. Several heuristic al-
gorithms have been developed to address these challenges. For a comprehensive overview, please refer to
(Lübbecke & Desrosiers, 2005; Vanderbeck, 2005) and the references within.

With the advancement of machine learning (ML) and reinforcement learning (RL), researchers are increas-
ingly interested in solving combinatorial optimization problems and enhancing existing heuristic algorithms.
For a review of this research domain, we direct readers to (Mazyavkina et al., 2021; Bengio et al., 2021;
Cappart et al., 2023). Moreocer, recent work by (Berto et al., 2023) presents a unified RL framework for
combinatorial optimization problems.

In line with these growing research interests, the application of ML or RL to improve existing heuristic
algorithms is gaining significant attention. In (Khalil et al., 2017), the authors leveraged supervised learning
to enhance the branch-and-bound heuristic. The research presented in (Tang et al., 2020) employed RL
to refine the cutting plane method, yielding performance surpassing that of human-engineered heuristic
algorithms. Meanwhile, (Wu et al., 2021) introduced a customized actor-critic approach to improve existing
large neighborhood search algorithms.

1https://anonymous.4open.science/r/PPO-CG/README.md

1

https://anonymous.4open.science/r/PPO-CG/README.md

Under review as submission to TMLR

Compared with other heuristic algorithms, very little literature exists on CG algorithms employing ML or
RL. To the best of our knowledge, (Morabit et al., 2021) is an early attempt to use ML to improve CG.
The authors generate multiple columns in each iteration and employ an "expert" system âĂŤrepresented
as a mixed integer linear programming (MILP)âĂŤ to supervise the neural network’s training on column
selection. Datasets are collected from the "expert" before this training process. The authors then encode
the RMP into bipartite graphs with column and constant nodes, as introduced in (Gasse et al., 2019). The
neural network is trained in a supervised manner to mimic the behavior of the "expert." A limitation of this
approach is that solving time-consuming MILP problems is essential in the data collection phase.

The RL approach to CG is first proposed in (Chi et al., 2022), called RLCG. In (Chi et al., 2022), the
authors follow the methodology from (Morabit et al., 2021), employing the DQN algorithm for node selection.
Additionally, they use a GNN as an approximator for the Q-function of the encoded RMP.

We are interested in improving the existing DQN-based approach using different RL algorithms, such as
policy-based algorithms. In this work, we provide an improved version of the RL framework for CG utilizing
Proximal Policy Optimization (PPO), called PPO-CG. In the process, we combine actor and critic networks
with GNN. The suggested method can have the potential to be utilized in other problems where the states
are represented as a graph, and an action is selecting nodes to include.

We conduct our experiments on two main tasks in the CG algorithms, namely, the Cutting Stock Problems
(CSP) and the Vehicle Routing Problems with Time Windows (VRPTW). Our approach, PPO-CG, requires
only 20% of the training time observed in RLCG for the CSP task and 35% for the VRPTW task. Moreover,
through the experiment, we find that RLCG is not robust and highly dependent on the hyperparameter
tuning.

In summary, this paper offers the following contributions:

• Introduces a novel RL framework for column generation that, compared to the DQN-based approach,
RLCG, achieves comparable performance and significantly reduces training time for both CSP and
VRPTW tasks.

• Proposes a new method to integrate GNN with the actor-critic network during CG iterations.

• Presents a potential approach to other RL tasks where states are represented as graphs, and actions
are characterized as node selection problems.

This paper is organized as follows. Section 2 discusses related works. Section 3 details the methodology,
including the architecture and algorithms. Section 4 presents the experimental setup, including dataset
selection and evaluation metrics. Section 5 reports and discusses the conclusions and the limitations.

2 Related Works

2.1 Basic Column Generation

Column generation techniques are widely used to solve large-scale problems. Although our problem focuses
on Integer Linear Programming, we shall provide a CG method for linear programming in this subsection.

Let us consider the following MP:
min

x
cT x

s.t. Ax ≤ b, x ≥ 0,
(MP)

where the matrix A ∈ Rn×m, vectors x, c ∈ Rm and b ∈ Rn. If the number of columns m is very large
compared to n, let us consider the following RMP

min
x′

(c′)T x

s.t. A′x′ ≤ b, x′ ≥ 0,
(RMP)

2

Under review as submission to TMLR

where A′ ∈ Rn×m′ , vectors x′, c′ ∈ Rm′ with 1 ≤ m′ ≤ m. Here, The columns of A′ are a subset of the
columns of A. Denoting a dual variable of equation RMP by λ ∈ Rn, we solve the following pricing problem
(PP):

δi = c′
i −

󰁛

j

Ajiλj . (PP)

If there exists i such that a reduced cost δi < 0, then we add i-th column of A to A′ and iterate this process
until no more column is selected (see Figure 1).

Figure 1: Oveall column generation process

The column generation process for ILP is very similar, with some modifications for each task. For details
about ILP formulation and CG formulation of CSP and VRPTW, we refer to Appendix 1 and Appendix 2.

2.2 Proximal Policy Optimization

The DQN algorithms introduced by (Mnih et al., 2015) have achieved remarkable success in various tasks, in-
cluding Atari games and robotic control. However, their robustness and scalability still require improvement.
Moreover, vanilla DQN tends to underperform in environments with continuous or high-dimensional action
spaces. See (Lillicrap et al., 2015) and the reference therein for details. Addressing such limitations, the
seminal work,(Schulman et al., 2017) introduces the Proximal Policy Optimization (PPO) methods, which
have shown promising results across diverse domains. In this work, we apply PPO to the CG iteration.
The main intuition is that the action in the CG is choosing the next column to add, which is very high
dimensional for the large ILP, and thus, PPO algorithms can work well in this type of problem.

Let us explain the PPO algorithm, and for a general overview of RL algorithms, we refer to (Achiam, 2018).
For an action a and a state s, we denote a parameterized policy by πθ = πθ(a|s). Let Qπθ be a on-policy
action-value function and V πθ be a on-policy value function which satisfies

V πθ (S) = Ea∼πθ
[Qπθ (s, a)].

We then define the advantage function by

Aπθ (s, a) := Qπθ (s, a) − V πθ (s). (1)

Let D = {τ} = {s0, a0, s1, · · · , sT } be a set of trajectories obtained from running policy πθold . For t ∈
{1, · · · , T}, we denote the ratio function by

rt(θ) := πθ(at|st)
πθold(at|st)

. (2)

The PPO algorithm is an on-policy updating a parametrized policy by maximizing

Lclip(θ) = Es,a∼πθold

󰀅
min(A1

t , A2
t)

󰀆
, (3)

where

A1
t = rt(θ)At and A2

t = clip(rt(θ), 1 − ε, 1 + ε)At.

Note that ε > 0 is a hyperparameter to be determined later in Section 4. The clip function is defined as

clip(t, tmin, tmax) := max(tmin, min(t, tmax)),

for t, tmin, tmax ∈ R. For the simplicity of the notation, we also denote At by the advantage function with
st, at.

3

Under review as submission to TMLR

3 Proposed Methods

In this section, we provide our proposed method, which is motivated by the methods provided in (Morabit
et al., 2021) and (Chi et al., 2022). The DQN-based approach in (Chi et al., 2022) is called RLCG, and our
method is named PPO-CG.

3.1 MDP formulation

To train a new RL framework, we represent the CG iteration process as the Markov decision process (MDP).
Let us denote S and A as a state and action space respectively. Then we denote T : S × S × A → R as a
transition map defined as T (s, s′, a) = P (s′|s, a). Also, we denote the reward by reward : S × A → R and a
discount factor by γ ∈ [0, 1].

State S

For each iteration of the CG, we represent the matrix in (RMP) as a bipartite graph composed of column
nodes X and constraint nodes B, as in (Gasse et al., 2019). There exists an edge connecting (x, b) ∈ X × B
if the column contributes to the constraint c (see Figure 2). For each node, we set the node features to be
specified in Section 4.

Figure 2: Each column is represented as the node in column nodes in X , and constraints are represented as
constraint node class B. If a column x1 contributes to the constraints b1, for instance, there exists an edge
between x1 and b1.

Action A and Transition T

By solving equation PP, we find candidate columns with negative reduced cost. The action is to choose
the next column or node to add to the current RMP or graph (see Figure 3). The maximum number of
candidates at each iteration is also a hyperparameter. Since the graph is used to represent equation RMP,
we will differentiate for the rest of this paper.

Reward

Our purpose in training the RL network is to get a higher objective function within fewer iterations. Thus,
we set the reward as

rewardt = α

󰀕
objt−1 − objt

obj0

󰀖
− p,

where α > 0 and p > 0 are hyperparameters. The parameter p > 0 is the iteration penalty, giving a negative
reward if the model can not finish iteration in fewer iterations.

3.2 Architecture of PPO-CG and overall framework

In this subsection, we introduce the architecture of PPO-CG and how it is used to improve the existing
CG algorithms.

4

Under review as submission to TMLR

Figure 3: In this example, after PP is solved, there exist three candidates (blue nodes), then choose one
node (green node).

Figure 4: actor and critic network with RMPt and RMPt + Ct.

Model architecture

We utilize both the actor network and the critic network, which share common layers. The GNN layers
introduced in (Morabit et al., 2021) are employed.

Let RMPt denote equation equation RMP or the corresponding graph. We use RMPt + Ct to represent
the graph of equation RMP with all candidate nodes. Moreover, the notation |Ct| implies the number of
candidate nodes, and |RMPt| denotes the number of column nodes of the current state graph.

5

Under review as submission to TMLR

At each iteration, t, solving equation PP gives |Ct| candidate nodes to choose from. Then, we take RMPt

and RMPt + Ct as inputs of PPO-CG. First, RMPt goes through a common layer and then the critic
network. Next, RMPt + Ct goes through the common layer and the actor network.

Both the actor and critic networks have the same structures. Both networks return |Ct|-dimension vectors.
We get the value function V (s) by taking an average of |Ct|-dimension vectors. We get a policy π(a|s) from
the output of the actor network. For an overview of the proposed architecture, see Figure 4.

Since RMPt and RMPt + Ct have almost the same structure except for some nodes, using a common layer
for the actor and critic network seemed natural.

Overall framework

Figure 5: PPO-CG framework.

From the model architecture depicted in Figure 4, we now provide an overall framework of PPO-CG,
summarized in Figure 5.

In the training procedure, for each action, the environment or ILP instance returns a reward. Then collect
the trajectory D = {τ} until the CG process is over. Then, update parameters θ that maximizing equation 3.
We refer to Algorithm 1 for details.

Algorithm 1 Triaining procedure
Initialize policy parameters θ, old policy parameters θold
for iteration = 1, 2, ... do

Initialize ILP problem and environment
for epoch = 1 to E do

Collect the trajectories D = {τi} by running πθold

Compute At for each trajectory D
Compute: rt(θ) and LCLIP (θ) .
Update policy by maximizing LCLIP(θ).
Update πθold ← πθ

end for
end for

Once training PPO-CG is done, then the model only uses the actor network to choose the next column in
the CG iteration in Figure 5.

3.3 Comparision with RLCG

Since our architecture is based on RLCG, it would be great to point out differences made on PPO-CG. In
RLCG, only the actor network is used. Also, it takes only RMPt +Ct as input only uses the actor network.
The output of the actor network is considered as an action-value function, Q(s, a). Whereas we take both
RMPt and RMPt + Ct, and the output of the actor is considered as the policy π(a|s) and the average of
the output of critic network is considered as the value function V (s).

6

Under review as submission to TMLR

4 Experiments

In this section, we outline the details of our experimental process. For specifics, such as the RLCG framework
hyperparameters, please refer to Appendix 3. To ensure a fair comparison, we adopted the experimental set-
tings from the official implementation of Chi et al. (2022)2. Furthermore, for practical reasons, we conducted
our experiments on different tasks using different machines. Details are provided in each subsection.

Moreover, we used Tensorflow 2.13 and the free version of Gurobipy 10.0.3.

4.1 CSP tasks

Machine specification

For this task, we use NVIDIA RTX A5000 24GB GPU with Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz.

Dataset

We train PPO-CG and RLCG using BPPLIB from (Delorme et al., 2018). In the training process, we use
ILP instances with roll length sizes of 50, 100, and 200. The total number of instances is 439. In the test
process, we use ILP instances with roll length sizes of 200 and 750 with 86 and 21 instances, respectively.
For details, we refer to Appendix 4.

Hyperparameters & node features

We set the learning rate for both the critic network and actor network to be 1e−4, the hidden dimension of
the GNN model is 32, step penalty of p = 10, epoch size E = 20, ε = 1e−2, action candidate size = |Ct| = 10.
We set objective hyperparameter α = 100 and reward decay exponent γ = 0.999.

The variable nodes that belong to X have 9 node features, and constraint nodes that belong to B have 2
node features. We refer details in Appendix 6.

Traing process

We train our model, PPO-CG, with 439 instances in 66.79 hours, whereas with the same instances, RLCG
takes 319.86 hours. For the comparison in training time for each instance, see Figure 6. We also provide
statistical information about the number of iterations in the training process. See Table 1.

Figure 6: Training time for each instance in CSP

Note that the number of average steps does not have a dramatic change. However, the time to train each
model has a dramatic difference since RLCG updates its model parameter every step after equation PP is
solved, whereas in PPO-CG, it updates the parameter after the instance is solved. Therefore PPO-CG
takes much less time for training.

2https://github.com/khalil-research/RLCG/

7

Under review as submission to TMLR

Table 1: Statisctic information about the number of steps in training CSP
Method Problem size µ σ

PPO-CG
50 37.54 8.25
100 68.14 14.01
200 131.06 35.7

RLCG
50 36.3 8.47
100 67.38 16.57
200 133.04 41.46

Test results

In this part, we provide a comparison between test results in our model PPO-CG, DQN-based model
RLCG, greedy method, and expert methods. We use three metrics to compare each method: objective
function, time to execute, and number of iterations.

First, we provide test results on roll length n = 200 and n = 750, respectively. Figure 7 and Figure 8 provide
comparison results between PPO-CG.

Figure 7: Test results on problem size 200 in CSP

In Figure 9, we provide a bar char for each method with a different size of n.

Based on Figures 7 and 8, there isn’t a significant difference in the objective function across various problem
sizes and methods. As depicted in Figure 9, the Greedy and Expert methods are more effective when
n = 200. However, for larger problems,n = 750, PPO-CG excels in execution time and iteration count.
We believe the superior performance of the Greedy algorithm for smaller problem sizes can be attributed
to its independence from the GPU. This independence eliminates data transitions between the CPU and
GPU, resulting in increased efficiency. Meanwhile, the Expert method performs well when n = 200, but as

8

Under review as submission to TMLR

Figure 8: Test results on problem size 750 in CSP

the problem size expands, its execution time grows, making it the slowest among the four methods. This
increase is primarily because the Expert method requires solving MILP. For smaller problems, the increment
in solving additional MILP aids in reducing execution time and iteration number. However, this benefit
diminishes for larger problems. Consequently, for these larger issues, the RL-guided method demonstrates
notable improvements with small variances, even with data transition costs between CPU and GPU.

4.2 VRPTW tasks

Machine specification

For this task, we have used NVIDIA GeForce RTX 4090 with AMD Ryzen 9 7950X3D 16-Core Processor.

Dataset

We train PPO-CG and RLCG using Solomon benchmark from (Solomon, 1987). In the training process,
we use ILP instances with different types of problems with various numbers of customers. The total number
of instances is 234, but 219 instances are used since the rest 15 instances take too long time to solve. In the
test process, we use ILP instances with 37 instances, respectively. For details, we refer to Appendix 4.

Hyperparameters & node features

Many of the hyperparameter settings are similar to CSP. We set the learning rate for both the critic network
and actor network to be 1e−4, the hidden dimension of the GNN model is 32, step penalty of p = 10, epoch
size E = 20, ε = 1e−2. Since the heuristic algorithm for solving equation PP in VRPTW does not create a
fixed number of columns, action candidate size |Ct| is not fixed. We set objective hyperparameter α = 0.5
as in the official implementation of RLCG and the reward decay exponent γ = 0.999. For hyperparameter
settings of RLCG, we refer to Appendix 3.

9

Under review as submission to TMLR

Figure 9: Bar chart for four methods for n = 200 and n = 750 in CSP

The variable nodes that belong to X have 8 node features and constraint nodes that belong to B have 2
node features. For details, we refer to Appendix 6.

Traing process

Our model, PPO-CG, trains 219 instances in 16.70 hours, whereas RLCG trains the same instance in
47.88 hours. For details, please refer to Figure 10. In Table 2, we also provide statistical information about
the number of steps taken in the training process.

Figure 10: Training time for each instance

We observe that PPO-CG has a lower number of average iteration steps.

Remark: additional detail In VRPTW, the heuristic algorithm for solving equation PP takes too much
time and does not generate a fixed number of candidate nodes. For these reasons, we use the argmax
argument to choose the next node as in RLCG, and instead of generating E trajectories, we only generate
one trajectory and update parameters E times. To our surprise, this method has shorter training time and

10

Under review as submission to TMLR

Table 2: Statistic information about the number of steps in training VRPTW
Method µ σ

PPO-CG 29.33 17.89
RLCG 49.49 28.82

shows almost similar performance results compared with creating E numbers of trajectories. For details, we
refer to Appendix 5.

Test results

In this part, we provide a comparison between test results in our model PPO-CG, DQN-based model
RLCG, and greedy method. As in the CSP task, we use three metrics to compare each method: objective
function, time to execute, and number of iterations. Figure 11 shows a comparison result for each method
with PPO-CG. In Figure 11, we excluded an outlier during plotting to show the overall depiction clearly.

Figure 11: Test results on VRPTW

Additionally, a bar chart is presented in Figure 12 to enhance the clarity of the results further.

For the extreme case is when PPO-CG takes 26200.88 seconds to solve with 217 iterations, RLCG takes
20138.50 seconds with 153 iterations, and the Greedy algorithm takes 19915.74 seconds with 153 iterations

Figure 12: Bar chart for three methods in VRPTW

11

Under review as submission to TMLR

We can observe that PPO-CG performs better than the other two models in terms of time and iteration
numbers as problems get more complicated. Also, our model shows a smaller Interquartile Range (IQR)
range compared to other models. However, in execution time, PPO-CG does not show a smaller IQR,
which can be a topic for future study, as well as analysis of the extreme results, as mentioned in the previous
paragraph.

4.3 Convergence Analysis

In Figure 13, we provide a convergence analysis of test results on CSP and VRPTW. The objective numbers
are scaled from 0 to 1, and we added ±1 standard deviation. As mentioned earlier, PPO-CG tends to
converge faster when the problem gets larger and more complicated.

Figure 13: convergence graph on relative objective function

4.4 Remark on the robustness of RLCG and PPO-CG

We want to point out that although the approach suggested in RLCG is very interesting, DQN might not
be an appropriate approach to improve the CG algorithms on a large scale. For a fair comparison, we do not
change many hyperparameters and settings of RLCG compared to the official implementation. Moreover,
due to very long training hours, hyperparameter-tuning is very challenging. However, we find that RLCG
tends to behave like a Greedy algorithm if hyperparameter-tuning is not properly done. Whereas our model
is very robust given that very little hyperparameter tuning is done, our model still outperforms the Greedy
algorithm in many metrics when the problems are complicated enough.

5 Conclusions and Limitations

5.1 Conclusion

In this work, we propose a novel RL framework for improving the CG algorithm. We show that our model
trains much faster and it is more robust than the existing DQN-based model developed in (Chi et al., 2022).

Also, we conduct experiments on two main tasks CSP and VRPTW. We find improvement in execution time
and iteration number given that the ILP problem is complicated enough.

Beyond the context of CG, the suggested method can have the potential to apply to other tasks such that
the state can be represented as a graph and the action behaves like node selection.

5.2 Limitation and future work

Our method still takes much time compared to the increase in performance. The main reason is that this
method highly depends on solving equation PP and if solving equation PP takes a long time, inevitably, the
training RL model takes a long time which needs further development.

Moreover, since this method is based on GNN, it still needs further improvement to be a more robust model.

12

Under review as submission to TMLR

Acknowledgements

We thank the anonymous reviewers for their attention and time spent reviewing this manuscript.

References
Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.

Federico Berto, Chuanbo Hua, Junyoung Park, Minsu Kim, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Joungho
Kim, and Jinkyoo Park. Rl4co: an extensive reinforcement learning for combinatorial optimization bench-
mark. arXiv preprint arXiv:2306.17100, 2023.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar Velickovic.
Combinatorial optimization and reasoning with graph neural networks. J. Mach. Learn. Res., 24:130–1,
2023.

Alain Chabrier. Vehicle routing problem with elementary shortest path based column generation. Computers
& Operations Research, 33(10):2972–2990, 2006.

Cheng Chi, Amine Aboussalah, Elias Khalil, Juyoung Wang, and Zoha Sherkat-Masoumi. A deep reinforce-
ment learning framework for column generation. Advances in Neural Information Processing Systems, 35:
9633–9644, 2022.

Maxence Delorme, Manuel Iori, and Silvano Martello. Bpplib: a library for bin packing and cutting stock
problems. Optimization Letters, 12:235–250, 2018.

Martin Desrochers, Jacques Desrosiers, and Marius Solomon. A new optimization algorithm for the vehicle
routing problem with time windows. Operations research, 40(2):342–354, 1992.

Nasser A El-Sherbeny. Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic
methods. Journal of King Saud University-Science, 22(3):123–131, 2010.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial
optimization with graph convolutional neural networks. Advances in neural information processing systems,
32, 2019.

George Ioannou, Manolis Kritikos, and G Prastacos. A greedy look-ahead heuristic for the vehicle routing
problem with time windows. Journal of the Operational Research Society, 52(5):523–537, 2001.

Brian Kallehauge, Jesper Larsen, Oli BG Madsen, and Marius M Solomon. Vehicle routing problem with
time windows. Springer, 2005.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Marco E Lübbecke and Jacques Desrosiers. Selected topics in column generation. Operations research, 53
(6):1007–1023, 2005.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for combi-
natorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

13

Under review as submission to TMLR

Mouad Morabit, Guy Desaulniers, and Andrea Lodi. Machine-learning–based column selection for column
generation. Transportation Science, 55(4):815–831, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Marius M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Oper. Res., 35:254–265, 1987. URL https://www.sintef.no/projectweb/top/vrptw/
solomon-benchmark/.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming: Learning
to cut. In International conference on machine learning, pp. 9367–9376. PMLR, 2020.

François Vanderbeck. Implementing mixed integer column generation. In Column generation, pp. 331–358.
Springer, 2005.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy for integer
programming. Advances in Neural Information Processing Systems, 34:30075–30087, 2021.

14

https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/

Under review as submission to TMLR

A Problem description and the ILP formulation of CPS and VRPTW

In this section, we shall provide details on the formulation of the CSP and VRPTW.

CSP

The purpose of the CSP is to cut as few stocks as possible but satisfy the given demand {dj}n
j=1 for each

item. Suppose that the given length of the stock is L, there are n types of items, and for each item, wj

length is required. The formulation of CSP follows from (Delorme et al., 2018). We denote u by the number
of all the cutting patterns of the stock. For each item j ∈ {1, · · · , n}, there are dj demands. Denoting aji

by the number of item j in the i-th pattern. Let xi denote the decision variables such that xi = 1 if i-th
pattern is chosen, 0 otherwise. Then, we need to minimize the following integer linear programming:

min
x

u󰁛

i=1
xi

satisfying the following constraints:

u󰁛

i=1
ajixi = dj ,

n󰁛

j=1
ajiwj ≤ L, xi ∈ {0, 1} and aji ≥ 0, integer.

VRPTW

This section summarizes the context presented in (Kallehauge et al., 2005). Let C be a set of customers
and G be a directed graph with a number of nodes equal to |C| + 2. We denote the set of vehicles by V.
Customers are represented by 1, 2, · · · , n, and each node in G is denoted by 0, 1, · · · , n + 1. The routing of
each vehicle starts at node 0 and ends at node n + 1. For simplicity, we use the notation N = 0, · · · , n + 1.
For every node i = 1, · · · , n, there is a corresponding customer i with a time window [ai, bi]. Vehicles must
arrive at node i within the time window [ai, bi]. Also, we assume that [a0, b0] = [an+1, bn+1]. The matrices
cij and tij indicate the cost and time, respectively, that a vehicle takes by moving from node i to node j.
The matrices cij and tijâĂŃ indicate the cost and time, respectively, taken by a vehicle to move from node i
to node j. It is assumed that cij and tij satisfy Let q denote the capacity of the vehicle, and each customer i
has a demand di. We want each customer to be served exactly once and satisfy one’s demand. To formulate
ILP, let us introduce two decision variables, xijk and sik. For each (i, j) ∈ N × N with i ∕= n + 1, j ∕= 0 and
i ∕= j, we define

xijk =
󰀫

1 if vehicle k move from vertex i to vertex j directly,
0 otherwise.

The other decision variable sik denotes the time vehicle k starts to serve customer i. In case i = 0, we
assume that sik = 0, since we assume that a0 = 0. If the vehicle k does not serve the customer i, it is an
irrelevant variable. The ILP formulation for the VRPTW follows:

min
󰁛

k∈V

󰁛

i∈N

󰁛

j∈N
cijxijk

15

Under review as submission to TMLR

such that
󰁛

k∈V

󰁛

j∈N
xijk = 1 ∀i ∈ C,

󰁛

i∈C
di

󰁛

j∈N
xijk ≤ q ∀k ∈ N ,

󰁛

j∈N
x0jk = 1 ∀k ∈ V,

󰁛

i∈N
xihk −

󰁛

j∈N
xhjk = 0 ∀h ∈ C, ∀k ∈ V,

󰁛

i∈N
xi,n+1,k = 1 ∀f ∈ V,

xijk(sik + tij − s + jk) ≤ 0 ∀i, j ∈ N , ∀k ∈ V,

ai ≤ sik ≤bi ∀i ∈ N , ∀k ∈ V,

xijk ∈{0, 1} ∀i, j ∈ N , ∀k ∈ V.

For some discussion regarding VRPTW, we refer to (Kallehauge et al., 2005).

B Remarks of CG iteration in CSP and VRPTW

CSP

The CG process of CSP is very similar, as given in Section 2.1, with minor modifications. We take b =
(d1, d2, · · · dn), and in solving (PP), add constraint,

󰁓n
j=1 wjAji ≤ L with the assumtion that Aji belogns

to non negative integer.

VRPTW

Due to its complexity, describing the CG procedure of VRPTW in detail is out of the scope of this paper.
However, we remark that we utilize an open source code 3 an experiment done in RLCG, which is motivated
by the methods provided in (Desrochers et al., 1992; Ioannou et al., 2001; Chabrier, 2006; El-Sherbeny, 2010).

C Hyperparameters in training RLCG

In this section, we provide hyperparameters in training RLCG. For the CSP task, we set the learning rate
to be 3e − 4, the hidden dimension of the GNN model is 32, step penalty of p = 10, epoch size E = 5,
α = 100, buffer size 2000 and γ = 0.999. For the VRPTW task, we set the learning rate to be 1e − 3, the
hidden dimension of the GNN model is 32, step penalty of p = 10, epoch size E = 5, buffer size 20000,
α = 0.5 and γ = 0.99.

D Details in the dataset in the training and testing process

We adopt the procedure outlined in (Chi et al., 2022). However, for the sake of completeness, we provide
the details. In the CSP task, we use 160 instances for the length of the roll 50, 160 instances for the length
of the roll 100, and 120 instances for the length of the roll 120. As suggested in (Chi et al., 2022), we train
both PPO-CG and RLCG from the easy problems (roll length = 50) to the hard problems (roll length
= 200).

For the VRPTW task, we use (Solomon, 1987) with six differnt types of problems, i.e., C1, C2, R1, R2,
RC1, RC2. For the training, C1, R1, and RC1 types are used with different sizes of customers from six to
eight. In total, there are 240 instances. Due to the time constraints, only 213 instances are used.

3https://github.com/SimoneRichetti/VRPTW-Column-Generation/

16

Under review as submission to TMLR

For more details on the instances, we refer to Appendix 8.

E Comparison between generating a single Trajectory and multiple trajectories in
VRPTW Task

Training each instance with only one trajectory takes 16.70 hours. On the other hand, generating a new
trajectory every time each trajectory ends, the training time extends to 47.22 hours. We refer to Figure 14
for performance comparison. There are, in total, 37 instances, and as in the comparison presented in Section
42, we exclude one instance with extreme results for clarity. The objective function is identical, and for the
execution time and CG iteration number, PPO-CG with multiple trajectories shows better results. This
is an expected result, given that training with multiple trajectories takes almost three times compared to
training with one trajectory. However, we believe that improvement in training with the new trajectory is
minimal compared to the training costs except for a few extreme cases.

Figure 14: Training time for each instance in CSP

F Node features on CSP and VRPTW tasks

We use node features to encode information about RMP to the graph. as in (Gasse et al., 2019; Chi et al.,
2022). In the CSP task, we set 9 node features for the column nodes and 2 node features for the constraint
nodes. For the column node features, we use

1. reduced cost for each node,

2. number of connected nodes,

3. solution value of RMP corresponding to each column,

4. remaining length of a roll for each pattern,

5. number of iterations that each column node stays in the basis,

6. number of iterations that each column stays out of the basis,

7. if the column left the basis on the last iteration or not,

8. if the column entered the basis on the last iteration or not,

9. action node or not.

For the constraint node features, we use

1. dual value or shadow price of (PP),

17

Under review as submission to TMLR

2. the number of connected nodes.

For the VRPTW task, node features are very similar. For the column node features, 4-th and 9-th node
features are removed, and routing cost is added. The constraint node features are the same as CSP.

G Remark on training and testing result per instances

Since it is too long to add tables for the training and test results for each instance, we added a supplementary
file in the output folder, which will also be updated on the GitHub repository.

18

