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ABSTRACT

Graph Neural Networks (GNNs) have emerged as a powerful representation learn-
ing framework for graph-structured data. A key limitation of conventional GNNs
is their representation of each node with a singular feature vector, potentially over-
looking intricate details about individual node features. Here, we propose an
Attention-based Message-Passing layer for GNNs (AMPNet) that encodes indi-
vidual features per node and models feature-level interactions through cross-node
attention during message-passing steps. We demonstrate the abilities of AMPNet
through extensive benchmarking on real-world biological systems such as fMRI
brain activity recordings and spatial genomic data, improving over existing base-
lines by 20% on fMRI signal reconstruction, and further improving another 8%
with positional embedding added. Finally, we validate the ability of AMPNet to
uncover meaningful feature-level interactions through case studies on biological
systems. We anticipate that our architecture will be highly applicable to graph-
structured data where node entities encompass rich feature-level information.

1 INTRODUCTION

Recent advancements in Deep Learning (DL) have fueled an explosion of successful applications
on a broad range of tasks where data is represented in Euclidean spaces. GNNs (Gori et al., 2005;
Scarselli et al., 2008) have extended this success to non-Euclidean, graph-structured data, with ap-
plications in domains such as social networks (Cho et al., 2011), molecular graphs (You et al., 2018),
biological networks (Zitnik et al., 2018), and traffic forecasting (Bai et al., 2021). GNNs operate on
a message passing principle, allowing for nodes to pass information to neighboring nodes which can
then be used to update hidden states attributed to either nodes or edges. This allows GNNs to be
applied to multiple tasks, including node classification, edge prediction, and graph classification.

Many data domains exist where node entities exhibit rich or high-dimensional representations that
can be broken down (e.g. genes inside of cells, words inside of documents, patches inside of an
image), and interactions between node features play a nontrivial role in graph learning tasks . Many
GNNs are unable to capture interactions between individual features across different nodes, which
may limit their expressiveness in tasks where feature interactions play an important role between
different node entities. Other works have explored either individual feature importance or node-
level interactions in various ways: GNNExplainer (Ying et al., 2019) proposed to find subgraph
explanations of input graphs by framing explanation as a mutual information maximization prob-
lem. Graph Attention Networks (GATs) (Veličković et al., 2017) introduced interpretability directly
into the model through self-attention (Bahdanau et al., 2014; Luong et al., 2015), computing edge-
level attention coefficients between nodes during message-passing. These methods, however, fall
short of modeling inter-feature interactions across different nodes. Furthermore, in scenarios where
additional information is available for individual node features (i.e. positional encoding or word
embeddings), options for encoding the additional information often rely on concatenation and ad-
ditional encoding modules, which adds complexity to the architecture and still bottlenecks feature
representation into a single embedding vector per node.

To address this, we propose an interpretable message-passing framework that can uncover feature-
level interactions across neighboring nodes. Instead of computing attention between node embed-
dings, we embed individual features for each node and compute attention between feature embed-
dings for adjacent nodes, visualized in Figure 1. To compute inter-feature attention, a multi-head
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attention mechanism (Vaswani et al., 2017) is applied on each edge during message passing using
the source node feature vector set as the context sequence and the destination node feature set as
the target sequence, yielding interpretable attention coefficients between features of adjacent nodes.
We call this approach attention as message-passing, and our proposed architecture which employs it
AMPNet. We formulate AMPNet as a flexible GNN layer, able to integrate with other GNN layers
and objectives while providing meaningful feature-level attention. Our approach is inherently in-
terpretable, and allows for additional positional or learned feature embeddings to be embedded per
individual node feature without bottlenecking node representation to a single vector.

We evaluate AMPNet against strong baseline models on several public benchmark and real-world
datasets, including fMRI brain activity recordings, spatial transcriptomics, citation networks, and
a newly constructed image network. AMPNet provides inter-feature attention for each edge of an
input graph, which we inspect after training in interpretability case studies (Section 5). We show
that in fMRI recordings, the obtained attention highlights differences in functional region attention
between patients of varying age and health condition, and in mouse hippocampal tissue the attention
highlights gene interactions between cells, suggesting potential biological interactions based on the
identity of the neighboring cells.

2 RELATED WORKS

Previous approaches for introducing interpretability in GNNs can be divided into two main cate-
gories: (i) explainability methods which aim to explain the predictions of a GNN through post-hoc
analysis, and (ii) interpretable models which yield explanations that are human-interpretable.

2.1 POST-HOC EXPLAINABILITY METHODS

Initial attempts to obtain post-hoc explanations for GNNs (Pope et al., 2019) adapted prominent ex-
plainability techniques from Convolutional Neural Networks (CNNs) to graphs, including gradient-
based saliency maps (Simonyan et al., 2013), class activation maps (Zhang et al., 2018) among oth-
ers (Zhang et al., 2018; Sundararajan et al., 2017; Selvaraju et al., 2017). These methods analyzed
gradients or activation values in feature maps to determine the importance of model inputs.

Perturbation-based methods examine changes in model predictions under various input perturba-
tions to measure feature importance (Luo et al., 2020; Yuan et al., 2021). Closest to our work is
GNNExplainer (Ying et al., 2019), which learns a subgraph by maximizing mutual information to
the original graph and provides a node feature importance mask. Other works adopt a generative
approach for creating explanations, using deep neural networks (Luo et al., 2020) or generative flow
networks (Li et al., 2023) to parameterize the generation process.

Surrogate methods aim to approximate the outputs of a complex black-box model with a less com-
plex, interpretable model which could then be analyzed (Huang et al., 2022; Vu & Thai, 2020).
Applying surrogate models to graph data is challenging due to the discrete nature of node features
and topological information contained in the graph structure.

2.2 INTERPRETABLE MODELING

Interpretable modeling aims to design models that directly give explanations of their predictions,
such as decision trees and attention-based models (Bahdanau et al., 2014; Gehring et al., 2016).
Recent works caution against calling attention weights a completely faithful interpretation of token
importance (Jain & Wallace, 2019; Wiegreffe & Pinter, 2019). While attention weights do not
provide completely faithful interpretations, we do expect well-trained attention weights to uncover
meaningful relationships among tokens (Wiegreffe & Pinter, 2019).

GATs (Veličković et al., 2017) introduced attention to GNNs by computing a self-attention among
the neighborhood of a given node, yielding edge-level attention scores which then are used dur-
ing message passing. We note that this attention computation operates on node feature vectors
rather than among individual features, thus falling short of inferring feature-level relationships across
nodes. Other works built on this by adapting GATs to heterogeneous graphs (Wang et al., 2019),
sparsifying the graph attention mechanism (Zheng et al., 2020), and using spiking neural networks
to provide another method for inexpensive graph attention computation (Wang & Jiang, 2022).
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Figure 1: Framework overview. (A) Examples of data domains where nodes encode rich information
about different entities, with additional information to encode per features. (B) Overview of pro-
posed attention as message passing framework. AMPNet computes attention between feature sets
of adjacent nodes, providing interpretable coefficients for feature-level interactions between nodes.

3 PROPOSED METHOD: ATTENTION AS MESSAGE PASSING

We begin by introducing our notation scheme for message-passing GNNs. Let G = (V, E) denote a
graph with node features xv 2 RF for each node v 2 V , where F is the number of features per node.
GNNs iteratively pass messages between neighboring nodes connected by the set of edges E , and
in the process use both node features and graph structure to learn node representations hv 2 RD,
where D is the hidden dimension of node embeddings. After k message-passing iterations, node
representation hv will contain information from its k-hop neighborhood within the graph. The
general update rule for the k-th layer of a GNN can be represented as follows:
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where N (v) denotes the neighborhood of node v and h
(k)
v is the representation of node v in layer

k. The choice of AGGREGATE and COMBINE vary among different GNN architectures, with the
constraint that AGGREGATE should be a permutation-invariant aggregator. A readout function is
used to map learned node representations into predictions for feature, node, or graph-level tasks.

3.1 FEATURE EMBEDDING

Given input node features xv 2 RF , we define a mapping ⌧ : RF ! RF⇥D to transform node fea-
ture values into a set of feature vectors ⌧(xv) = Hv 2 RF⇥D which will represent the node during
the attention message passing step. Note that the embedding process may be task-dependent; for ex-
ample, time-varying node features may have positional embedding added as part of the embedding
process, or language data might have word vectors initialize the feature embedding.

In practice, we utilize positional encoding for timeseries and image datasets, and use a learned
embedding table for feature representation in experiments on spatial genomics datasets and citation
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Figure 2: Visualization of graph creation process. (A) For fMRI recordings, the brain is parcellated
into 424 regions, which are connected using a K-nearest neighbors graph according to the 3D co-
ordinates of the centroid of each brain region. (B) For spatial genomics data, cells are connected
to their nearest neighbors according to 2D coordinates from the original tissue capture. (C) For
images, a network is created by probabilistically creating edges between images, with same-class
images more likely to be connected.

networks. We concatenate the feature information encoding (i.e. positional embedding or learned
embedding vector) with a projection of the feature value to obtain the final embedding representing
that feature. For the case of positional embedding, this can be represented as:

Hv = ⌧(xv) = CONCATENATE[PE, xvWp], (3)

where PE 2 RF⇥D represents the positional embedding for the sequence of features for node v,
xv 2 RF⇥1 is the input node features, and Wp 2 R1⇥D represents the projection matrix for feature
values. We use sum concatenation to combine feature information and value projection.

3.2 ATTENTION-BASED MESSAGE CREATION

At a given message passing iteration k, we employ multi-head attention (Vaswani et al., 2017) as
the message function between source node u and destination node v. We give source node u’s
feature vectors Hu as the context sequence, and destination node v’s feature vectors Hv as the target
sequence. We can formulate the cross-node attention and update step as:
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v Wq;K = H
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u Wv (4)
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where Wq,Wk,Wv are weight matrices for query, key, and value vectors, H(k)
N (v) represents the set of

feature vectors obtained from aggregating node v’s local neighborhood, and Wc and bc represent the
weights and biases for the update function. We note that a deeper multi-layer transformer decoder
may be used rather than a simple multi-head attention layer to increase expressivity in the message-
passing step. Additionally, in practice we compute cross-attention on edges in the graph in batch-
wise fashion rather than all at once during the message-passing step to control the computational
footprint of message passing. The full AMPNet algorithm is summarized in Algorithm 1.
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Algorithm 1 AMPNet message-passing algorithm
Require: Graph G = (V, E), input features h0

v 2 RF , feature embedding table WE

1: H
0
v  CONCATENATE[WE k hv]

2: for node v 2 N do
3: for node u 2 N (v) do
4: Q = H

(k�1)
v Wq

5: K = H
(k�1)
u Wk

6: V = H
(k�1)
u Wv

7: end for
8: H
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9: H
(k)
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v , H
(k)
N (v)]Wc + bc

10: end for

4 EXPERIMENTS

We evaluate AMPNet in self-supervised reconstruction settings on three real-world biological
datasets, as well as on a newly constructed image network dataset. We also evaluate AMPNet in
a link prediction task on a standard citation network dataset. More details about datasets and hyper-
parameters used are available in Appendix A.1 and A.5.

4.1 DATASETS

We first evaluate the performance of AMPNet in self-supervised reconstruction of fMRI recordings
from the publicly-available UK Biobank (UKB) (Miller et al., 2016) dataset. The UKB provides
task-based and resting-state functional magnetic resonance imaging (fMRI) recordings from subjects
aged 40-69 years old. After standard preprocessing, we take brain activity recordings and divide
them into 424 brain regions using the AAL-424 atlas (Nemati et al., 2020).

Next, we benchmark AMPNet on a masked gene expression prediction task on two spatial transcrip-
tomics datasets. The Slideseq-V2 spatial transcriptomics dataset (Stickels et al., 2021) is a mouse
hippocampal dataset consisting of 41, 786 cells and 4, 000 genes, with each cell being categorized
into one of 14 different cell types. We also benchmark on a 10X Genomics spatial transcriptomics
dataset consisting of 4247 cells from human heart tissue expressed in 36601 genes. For both datasets,
we follow conventional preprocessing and normalization procedures for spatial genomics data.

To evaluate AMPNet on edge-level prediction, we use the OGBN-arXiv citation network dataset
(Wang et al., 2020), which comprises of 169, 343 nodes representing computer science papers in
the Microsoft Academic Graph (Wang et al., 2020) and 116, 6243 edges. We reprocess the OGBN
dataset in order to obtain word feature identities for attention analysis in A.4.

Finally, we evaluate AMPNet’s ability to do masked image reconstruction on a new image network
dataset, which we construct from the Cifar-100 image dataset (Krizhevsky et al., 2009). In the image
network, each node represents an entire original image in the dataset, connected probabilistically to
other images of the same or different class. This is a particularly challenging graph learning problem
given the high-dimensional features of an image in pixel space as well as the semantic information
present in images which are relevant for image-based tasks. AMPNet is well-suited for this task
given its ability to encode multiple image patches tokens per node along with 2D positional encoding
per patch token. More details about image network creation can be found in Appendix A.1.

4.2 BASELINE METHODS

We compare AMPNet against a set of popular message-passing architectures (GCN (Kipf & Welling,
2016), GraphSAGE (Hamilton et al., 2017), GAT(Veličković et al., 2017)) on self-supervised recon-
struction tasks. We additionally compare against GraphMAE (Hou et al., 2022), a recent graph
autoencoder technique which uses masked learning objectives, as well as GPS Graph Transformer,
a SOTA graph transformer (Rampášek et al., 2022).
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Table 1: Benchmark on UK Biobank fMRI recording reconstruction. Performance is reported across
5 runs in terms of Mean Squared Error (MSE) and R

2. AMPNet improves upon baselines by 20%
with no positional encoding, and by 28% with positional encoding added.

Method Masking Strategy MSE (#) R
2 (")

GCN
Replace noise 0.789 ± 0.00016 0.190 ± 0.00017
Fill in mean 0.748 ± 0.00026 0.232 ± 0.00026
Linear interpolation 0.779 ± 0.00047 0.200 ± 0.00049

GraphSAGE
Replace noise 0.754 ± 0.00160 0.226 ± 0.00164
Fill in mean 0.686 ± 0.00108 0.296 ± 0.00111
Linear interpolation 0.736 ± 0.00161 0.244 ± 0.00166

GAT
Replace noise 0.781 ± 0.00035 0.198 ± 0.00036
Fill in mean 0.741 ± 0.00020 0.239 ± 0.00020
Linear interpolation 0.771 ± 0.00016 0.208 ± 0.00016

GraphMAE
Replace noise 0.813 ± 0.00053 0.165 ± 0.00054
Fill in mean 0.782 ± 0.00028 0.197 ± 0.00029
Linear interpolation 0.809 ± 0.00036 0.170 ± 0.00037

GPS Graph
Transformer

Replace noise 0.801 ± 0.00276 0.178 ± 0.00283
Fill in mean 0.767 ± 0.00276 0.212 ± 0.00284
Linear interpolation 0.810 ± 0.00725 0.170 ± 0.00743

AMPNet Tokenization 0.485 ± 0.00026 0.501 ± 0.00027
Tokenization + PE 0.410 ± 0.00106 0.578 ± 0.00109

4.3 EXPERIMENTAL SETUP

We formulate our self-supervised reconstruction tasks to provide a fair comparison of AMPNet
against baseline methods to verify the advantages of AMPNet’s feature embedding procedure. For
fMRI recording reconstruction, we construct a KNN graph using the 3D coordinates of each brain
region. We tokenize the recording into patches of 20 timepoints and train AMPNet to reconstruct
50% of the tokens per voxel. For baseline architectures, we provide the 400 timepoint series as an
input vector with masked patches filled in by (i) replacing with random noise, (ii) replacing with the
mean value, and (iii) interpolating between adjacent unmasked points.

For masked gene expression tasks, we learn an embedding table with a unique vector for each gene in
the dataset. We sample a fixed number of nonzero genes per cell with replacement, and embed genes
using its corresponding learned embedding along with its expression value projection. In practice,
we sample 50 and 30 nonzero genes with replacement for the mouse hippocampus (Stickels et al.,
2021) and human heart datasets respectively, and use a masking ratio of 20 percent for both datasets.

On the masked image reconstruction task, we follow the same masking procedure and positional
encoding scheme as the Masked Autoencoder (He et al., 2022). We use a 2-layer AMPNet encoder
and an additional AMPNet layer as the decoder for the framework, and follow the convention of
applying the encoder to only unmasked patches. For each image we use a patch size of 4x4 pixels
with a masking rate of 20% on each image.

4.4 RESULTS

The results of our benchmarking experiments on fMRI recording reconstruction are summarized in
Table 1. AMPNet improves over all baselines in reconstructing fMRI signals, including the recent
GraphMAE (Hou et al., 2022) masked graph autoencoder approach and a strong graph transformer
baseline (Rampášek et al., 2022). We note that with the addition of positional encoding, AMPNet
outperforms the closest baseline method by 28% in terms of R2. When we remove the positional
encoding, performance gains decrease but are still ahead of baselines by 20%. This is strong evi-
dence that feature embedding gives AMPNet strong reconstruction ability and that performance is
further enhanced by augmenting timepoint patches with relative positional embedding.
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Table 2: Experimental results on masked gene expression prediction on the human heart and mouse
hippocampus spatial genomics datasets. Performance is reported across 5 runs in terms of MSE and
R

2. AMPNet outperforms baseline methods on predicting masked gene expression values on both
datasets.

Method Mouse Hippocampus Human Heart
MSE (#) R

2(") MSE (#) R
2(")

GCN 0.0178 ± 0.00056 0.264 ± 0.00930 0.0015 ± 0.00005 0.776 ± 0.01481
GraphSAGE 0.0144 ± 0.00038 0.387 ± 0.02043 0.0016 ± 0.00012 0.778 ± 0.01537
GAT 0.0185 ± 0.00120 0.237 ± 0.02509 0.0015 ± 0.00006 0.770 ± 0.01759
GraphMAE 0.0178 ± 0.00044 0.271 ± 0.02661 0.0015 ± 0.00014 0.762 ± 0.00568
AMPNet 0.0096 ± 0.00077 0.562 ± 0.03197 0.0011 ± 0.00005 0.832 ± 0.01032

Table 3: Experimental results for link prediction on OGBN-arXiv and masked image reconstruc-
tion on Cifar-100. Performance is measured in terms of Area Under ROC curve (AUROC) for
link prediction, and in terms of MSE and R2 for masked image reconstruction. GraphMAE is not
benchmarked on link prediction since it is designed for node and graph-level classification.

Method OGBN-arXiv Cifar-100
AUROC (") MSE (#) R

2(")
GCN 85.6 ± 0.04 0.673 ± 0.003 0.333 ± 0.006
GraphSAGE 86.1 ± 0.07 0.473 ± 0.003 0.526 ± 0.008
GAT 85.4 ± 0.10 0.668 ± 0.016 0.331 ± 0.018
GraphMAE - 0.753 ± 0.010 0.247 ± 0.002
AMPNet 89.5 ± 0.13 0.306 ± 0.010 0.696 ± 0.008

On experiments on spatial transcriptomics datasets, AMPNet again outperformed baseline meth-
ods at reconstructing gene expression values on both datasets (Table 2). We hypothesize that the
learned gene embedding involved in the feature embedding procedure for AMPNet allows it to learn
a representation space for different genes which encodes them more efficiently and gives AMPNet
the potential to learn interactions between genes. We note that by sampling nonzero genes, AMP-
Net avoids modeling zero-expressed genes which are not present in cells, and has the potential to
represent nodes with a variable number of genes.

We evaluate AMPNet’s performance on a self-supervised link prediction in Table 3. On the edge-
level task, AMPNet effectively learns representations which allow it to improve on other baseline
methods by 3.4% in terms of AUROC. Note that we do not evaluate GraphMAE’s performance on
link prediction since it was originally designed and benchmarks for node and graph-level classifica-
tion tasks (Hou et al., 2022).

For masked image reconstruction, we evaluate AMPNet’s ability to effectively tokenize entire im-
ages per node and perform reconstruction of masked patches in Table 3. AMPNet performs 17%
better than the closest baseline method in terms of R

2 at reconstructing masked pixel values in
Cifar-100 images. We hypothesize that the tokenization approach, which closely follows standard
tokenization procedures in Computer Vision, allows AMPNet to encode images more effectively in
patches. Additionally, 2D positional embedding gives AMPNet more information about the relative
position of different image patches compared to conventional GNN approaches. We believe that this
is a promising approach for learning on larger-resolution image networks which may exist in social
media networks or other domains.

5 INTERPRETABILITY

We analyze the inter-feature attention obtained from AMPNet during message passing by design-
ing case studies which aim to answer the following question: does feature-level attention uncover
meaningful node feature interactions across different datasets and tasks?
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Figure 3: Visualizations of AMPNet feature-level attention between different functional groups in
the brain. (A) Averaged attention heatmaps between functional regions of the brain for different age
populations, with the difference in attention by age group visualized on the right subplot. (B) Similar
heatmaps visualized for post-traumatic stress disorder (PTSD) scores, highlighting differences in
attention in patients with low vs high PTSD score.

5.1 CASE 1: FUNCTIONAL REGION ATTENTION IN FMRI RECORDINGS

During message passing on the fMRI recording-constructed graph, AMPNet generates cross-
attention matrices between brain voxels and their 5 closest neighbors in the K-neighbor graph.
We group the 424 brain voxels into 7 functional regions, namely the visual, sensorimotor, ven-
tral salience, dorsal salience, central executive, default mode, and subcortical regions of the brain.
Taking 100 unseen test set recordings, we extract attention matrices between all connected nodes,
average the attention matrices across timepoints per node, and split patient recordings according to
conditions such as Age and post-traumatic stress disorder (PTSD) score. We then average atten-
tion values across patient recordings with the same condition, and aggregate the node attention into
the 7 functional regions, allowing us to examine differences in functional region attention between
patients with different conditions.

In Figure 3A, the attention between functional regions is shown between patients below 65 years
of age (left) and those above 65 (middle). The difference in attention between the two groups, as
visualized on the rightmost plot, indicates that older patients tend to have higher attention between
the dorsal salience regions and visual cortex regions. This follows previous literature that shows
changes in dorsal pathways as people age (Yan et al., 2023). Furthermore, Figure 3B shows similar
visualizations for patients with high and low PTSD scores, revealing higher attention between sen-
sorimotor areas and central executive, and subcortical areas. This also follows previous literature on
the somatosensory basis of PTSD, where arousal and higher-order capacities get affected (Kearney
& Lanius, 2022). These patterns in attention reveal potential differences in functional region atten-
tion picked up by AMPNet among patients of varying conditions during unsupervised training on
fMRI recordings.

5.2 CASE 2: GENE INTERACTIONS IN SPATIAL TRANSCRIPTOMICS

In spatial genomics datasets, each node corresponds to a cell which is represented by a set of ex-
pressed genes. During message-passing AMPNet provides attention matrices representing interac-
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Figure 4: (A) Averaged attention between 15 genes across edges connecting neighboring astrocyte
cells in the mouse hippocampus dataset. (B) UMAP of learned gene embeddings from AMPNet,
colored by average expression value of each gene across astrocyte cells.

tions between genes of different cells. Gene interactions receiving higher attention between nodes
can highlight possible biological connections which can be avenues of potential further exploration
in the data. For example, Figure 4A shows an averaged attention heatmap across all self-edges
connecting astrocyte cells in a subgraph sampled from the mouse hippocampus dataset (Stickels
et al., 2021). This astrocyte-astrocyte feature-level attention matrix identifies a key interaction be-
tween CD63, a member of the tetraspanin family of cell surface proteins, and CKAP2L, a mitotic
spindle protein controlling cellular division. Previous work has identified that CD63 may be either
pro- or anti-tumorigenic, depending on tissue context (Dey et al., 2023). CD63 expression is also
highly enriched in glioblastoma, a highly lethal malignancy of the astrocytes, and may play a role
in progression of these cancers (Aaberg-Jessen et al., 2018). Our data hint that CD63 may play an
important role in controlling cellular division through astrocyte-astrocyte cellular communication,
which may represent an exciting new target for antitumoral agents.

Figure 4B shows a UMAP embedding of the gene embeddings learned by AMPNet in an unsuper-
vised manner during training. Each vector in the embedding table represents one gene in AMPNet’s
vocabulary of known genes, and genes with similar function or importance are expected to be closer
together in the learned embedding space. Each gene in Figure 4B is colored by its average expres-
sion value across all astrocyte cells in the mouse hippocampus dataset. We see that the learned
embeddings form distinct structures during training, and that highly-expressed genes for astrocytes
are clustered together. We hypothesize that this ability to learn gene vectors in embedding space
and contextualize them for different cell types allows AMPNet to outperform other methods in gene
expression prediction tasks.

6 CONCLUSION

In this work, we propose AMPNet, a novel message passing framework for GNNs that is able to un-
cover meaningful feature-level interactions between neighboring nodes. We demonstrate the utility
of AMPNet’s feature embedding approach for encoding rich information about node features across
different data domains. In benchmarking experiments, we show that AMPNet outperforms all other
methods in self-supervised tasks, and that the performance gains are more significant when posi-
tional encoding or other embeddings is added. We analyze the feature-level interactions uncovered
by our model on real-world biological datasets in two case studies.

There are several avenues for improvement upon the AMPNet operator, which can be addressed in
future work. A more efficient selection strategy for node features in sparse datasets such as those
seen in spatial genomics might yield better node representations during training compared to simple
nonzero feature sampling. Additionally, sparse or linear attention mechanisms can be implemented
to improve the efficiency and overhead of the architecture. Finally, incorporating edge features,
or possibly features assigned to the relationship between specific node features, may also be an
interesting direction for further contextualizing feature-level interactions in graph-structured data.
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