
Few-shot Knowledge Graph Relational Reasoning via Subgraph
Adaptation

Anonymous ACL submission

Abstract

Few-shot Knowledge Graph (KG) Relational001
Reasoning aims to predict unseen triplets002
(i.e., query triplets) for rare relations in KGs,003
given only several triplets of these relations004
as references (i.e., support triplets). This005
task has gained significant traction due to006
the widespread use of knowledge graphs in007
various natural language processing applica-008
tions. Previous approaches have utilized meta-009
training methods and manually constructed010
meta-relation sets to tackle this task. Recent011
efforts have focused on edge-mask-based meth-012
ods, which exploit the structure of the contextu-013
alized graphs of target triplets (i.e., a subgraph014
containing relevant triplets in the KG. However,015
existing edge-mask-based methods have limita-016
tions in extracting insufficient information from017
KG and are highly influenced by spurious infor-018
mation in KG. To overcome these challenges,019
we propose SAFER (Subgraph Adaptation for020
FEw-shot Relational Reasoning), a novel ap-021
proach that effectively adapts the information022
in contextualized graphs to various subgraphs023
generated from support and query triplets to024
perform the prediction. Specifically, SAFER025
enables the extraction of more comprehensive026
information from support triplets while min-027
imizing the impact of spurious information028
when predicting query triplets. Experimental029
results on three prevalent datasets demonstrate030
the superiority of our framework SAFER.031

1 Introduction032

Knowledge Graphs (KGs) consist of many triplets,033

i.e., (head, relation, tail), which repre-034

sent specific relationships between real-world en-035

tities (Wang et al., 2017; Ji et al., 2022). These036

triplets form directed graphs that store knowl-037

edge information and can be applied to various038

knowledge-based tasks (Liang et al., 2022) such039

as question answering (Huang et al., 2019; Sax-040

ena et al., 2020), information extraction (Hoffmann041
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Figure 1: We provide an instance for the two limitations
of edge-mask-based methods. In this example, there are
two support triplets (music, created_by, musican)
and (news article, created_by, reporter). When
extracting support information by finding the common
subgraph, the extraction of edges with similar mean-
ings but in different graphs will fail, and some spurious
information will be extracted, which cannot correctly
represent the logical pattern of the relation created_by.

et al., 2011; Daiber et al., 2013), program analy- 042

sis (Liang et al., 2023), and language model en- 043

hancement (Zhang et al., 2020b; Yasunaga et al., 044

2021; Xie et al., 2022). However, KGs generally 045

cannot encompass all the necessary knowledge 046

triplets required by downstream tasks, as most KGs 047

are severely incomplete (Xiong et al., 2018). There- 048

fore, it becomes crucial to complete KGs by infer- 049

ring potential missing relations between entities. In 050

particular, existing works for KG completion (Bor- 051

des et al., 2013; Zhu et al., 2021; Zhang et al., 052

2022) often assume the availability of sufficient 053

instances (i.e., triplets) for each relation to be pre- 054

dicted. However, in real-world scenarios, it is com- 055

mon to encounter few-shot relations, where only 056

limited instances of triplets with these relations, 057

called support triplets, are available. KGs are con- 058

stantly being updated, for example, by including 059
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knowledge from social networks. This often results060

in new relations with a relatively scarce number of061

discovered triplets, as the labeling process can be062

laborious. These new relations are generally known063

as few-shot relations. Consequently, predicting new064

relations with only limited triplets becomes a sig-065

nificant task (Ma and Wang, 2023). Therefore, it is066

crucial to perform the Few-shot KG Relational Rea-067

soning (Few-shot KGR) task (Xiong et al., 2018),068

which aims to predict the existence of (unseen)069

query triplets of a relation, given a background KG070

and a set of a limited number of support triplets of071

the relation as the support set.072

Currently, there exist two types of approaches073

for solving the Few-shot KGR task. The first074

type is meta-learning-based methods (Chen et al.,075

2019; Zhang et al., 2020a; Sun et al., 2022), which076

utilize the meta-learning framework (Finn et al.,077

2017) to transfer useful knowledge to new KGR078

tasks (Hospedales et al., 2021) with a limited num-079

ber of support triplets, to tackle the issue of data080

scarcity in the target few-shot tasks. Nevertheless,081

the distribution of the manually selected target re-082

lations plays an important role in these methods,083

which will result in suboptimal performance if the084

meta-training sets are not well-designed. To ad-085

dress this limitation, more recent studies have ex-086

plored edge-mask-based approaches (Huang et al.,087

2022; Meng et al., 2023), providing an alternative088

solution to Few-shot KGR tasks. Edge-mask-based089

methods analyze each support (or query) triplet by090

first retrieving its contextualized graph, i.e., the sub-091

graph that consists of the head and tail entities of a092

triplet, and the most relevant entities and relations093

of the triplet. The subgraph is referred to as the094

support (or query) graph. Then they extract com-095

mon subgraphs across support graphs in the form096

of masks that identify edges with shared meanings097

for predictions on query triplets.098

Despite the effectiveness of these works, we099

argue that there are still two major limitations100

of edge-mask-based methods. (1) Existing edge-101

mask-based approaches assume that the largest102

common subgraph(masks) shared across all sup-103

port graphs is sufficient to represent the unseen104

target relation. However, this assumption is diffi-105

cult to satisfy in certain cases, e.g., when dealing106

with triplets that involve different but similar re-107

lations across other support graphs. As shown in108

Figure 1, on the support graphs of the target rela-109

tion created_by, the relations produced_by and110

published_in preserve similar meanings. How-111

ever, the strategy of learning edge masks fails to 112

harness the valuable insights from these different 113

yet similar relations, resulting in the insufficient ex- 114

traction of information from created_by. (2) The 115

extracted common subgraph(masks) often contains 116

unrelated spurious information that can negatively 117

impact prediction performance. For example, dur- 118

ing the extraction process in Figure 1 regarding 119

the target relation created_by, the support graphs 120

may include spurious relations like related_job, 121

as it can be unhelpful or even misleading when 122

predicting query triplets of relation created_by. 123

To overcome the aforementioned challenges, we 124

propose SAFER (Subgraph Adaptation for FEw- 125

shot Relational Reasoning), a novel subgraph- 126

based approach that effectively utilizes useful infor- 127

mation from support graphs while excluding spuri- 128

ous information. In SAFER, we first generate the 129

contextualized graphs of support and query triplets 130

with edge weights representing the importance of 131

each relation for performing relational reasoning. 132

Subsequently, we perform Subgraph Adaptation 133

comprising two crucial modules: Support Adapta- 134

tion and Query Adaptation, which aim to extract 135

valuable information from support graphs and ex- 136

clude spurious information, respectively. In our 137

Support Adaptation module, we incorporate infor- 138

mation from each support graph into others to en- 139

able the adaptation to support graphs with different 140

structures to extract and utilize useful information, 141

e.g., similar relations. In our Query Adaptation 142

module, we adapt the support information to the 143

structure of the query graph so that spurious infor- 144

mation among support graphs can be filtered out 145

in a query-adaptive manner. As a result, we can 146

effectively alleviate the adverse impact of spurious 147

information. In summary, our contributions in this 148

paper are as follows: 149

1. We scrutinize the challenges of few-shot knowl- 150

edge graph relational reasoning (Few-shot KGR) 151

from the perspective of extracting informative 152

common subgraphs. We also discuss the neces- 153

sity of tackling the challenges. 154

2. We develop a novel Few-shot KGR framework 155

consisting of Subgraph Generation and Sub- 156

graph Adaptation. Subgraph Adaptation in- 157

cludes (1) a Support Adaptation (SA) mod- 158

ule that enables more comprehensive extraction 159

of information from the support graphs; (2) a 160

Query Adaptation (QA) module that allows for 161

excluding the influence of spurious information 162
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in the extracted information.163

3. We conduct experiments on three prevalent real-164

world KG datasets of different scales. The165

results further demonstrate the superiority of166

SAFER over other state-of-the-art approaches.167

2 Related Work168

2.1 Meta-learning-based Few-shot KGR169

Meta-learning (Finn et al., 2017; Hospedales et al.,170

2021) is an effective learning paradigm that trans-171

fers generalizable knowledge learned from training172

tasks to new test tasks. Meta-learning necessitates a173

meta-training set that comprises multiple Few-shot174

KGR tasks for training purposes and then gener-175

alizes learned knowledge to tasks in the meta-test176

set. For example, GMatching (Xiong et al., 2018)177

and FSRL (Zhang et al., 2020a), acquire a uni-178

versal metric to match query triplets with support179

triplets (Wang et al., 2021b). The performance180

of meta-learning is significantly influenced by the181

quality of the manually created meta-training set.182

Moreover, the meta-training set is sampled from183

the same distribution as the meta-test set, which is184

impractical in practice (Huang et al., 2022). To185

overcome these problems, some alternative studies186

based on subgraph structures are proposed to tackle187

the Few-shot KGR task.188

2.2 Edge-mask-based Few-shot KGR189

Edge-mask-based methods, such as CSR (Huang190

et al., 2022) and SARF (Meng et al., 2023), con-191

sider the few-shot relational reasoning task as an192

inductive reasoning problem (Spelda, 2020; Teru193

et al., 2020), which relies on the relevant rela-194

tions(i.e., edges) of the triplet (Galárraga et al.,195

2013; Lin et al., 2018; Qu et al., 2021) in KG to196

perform the prediction. These methods employ an197

encoder-decoder model to encode the shared sub-198

graphs of support samples(masks), i.e., common199

subgraphs in KG that connect the two entities of200

the triplets, into an embedding representing the201

target relation. The decoder uses the embedding202

to reconstruct the edge masks in a query graph203

showing the shared edges. These approaches take204

advantage of the edge structure to perform reason-205

ing. However, these methods have the limitation206

that the largest common subgraph among support207

graphs may lose some of the relation’s logical pat-208

terns, and the spurious information extracted will209

detrimentally affect the prediction. In this paper,210

our approach uses a novel adaptation process to ad-211

dress the shortcomings of incomplete utilization of 212

structure information in edge-mask-based methods. 213

3 Problem Formulation 214

We study the problem of Few-shot Knowl- 215

edge Graph Relational Reasoning, i.e., Few-shot 216

KGR (Xiong et al., 2018; Chen et al., 2019). We 217

first denote the background KG as G = (E ,R, T ), 218

where E and R are sets of entities and relations. 219

T = {(h, r, t)|h, t ∈ E , r ∈ R} represents the 220

facts as triplets, each of which contains a head en- 221

tity, a tail entity, and a relation. For a new target 222

relation r′ /∈ R, we are given a support set Sr′ with 223

K triplets {(hi, r′, ti)}Ki=1 of r′, where hi, ti ∈ E . 224

The number of triplets in the support set K is rel- 225

atively small (K ≤ 5). With Sr′ as the reference, 226

we aim to predict tail entities, given a head entity 227

hq, i.e., (hq, r′, ?). There are usually multiple can- 228

didates of the tail entity that need to be scored and 229

ranked. Then the candidate with the highest score 230

is considered as the prediction result. So we will 231

consider the query triplet (hq, r′, c) (c is a candi- 232

date) as a full triplet to score. 233

4 Methodology 234

In this section, we introduce details of our proposed 235

framework SAFER. As illustrated in Figure 2, for 236

each support (or query) triplet, we first extract a 237

support (or query) graph from the background KG 238

and assign weights for each edge on the graph. 239

Then we conduct Subgraph Adaptation on the gen- 240

erated support and query graphs and finally achieve 241

the prediction score for a query triplet. 242

4.1 Retrieving Contextualized Graphs 243

To obtain structural information for the unseen tar- 244

get relation, we utilize the contextualized graphs of 245

support and query triplets, i.e., support graphs and 246

query graphs. Contextualized graphs are generated 247

based on the enclosing subgraph strategy proposed 248

by (Zhang and Chen, 2018; Teru et al., 2020). We 249

introduce how to construct contextualized graphs 250

in Appendix A.1. 251

4.2 Edge Weight Assignment 252

After acquiring the contextualized graph, we pro- 253

pose to assign weights to all edges on the contex- 254

tualized graphs based on their importance to the 255

target relation. We assign the weight we for each 256

edge e by incorporating information from all sup- 257

port graphs to determine the importance, such that 258
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Figure 2: The framework of SAFER, which shows the scoring pipeline for a query tail candidate c of target
relation r′. We represent the same relations in colors, while the gray relations are all different. We first extract the
contextualized graph of each support and query triplet and assign weights to all edges using an aggregation process
Pw (the width of edges represents weights). Then we apply another aggregation process Pa and two adaptation
operations to perform support information extraction and query candidate scoring.

we can effectively leverage the information within259

all relations.260

Specifically, we leverage the PathCon (Wang261

et al., 2021a) model to extract structural informa-262

tion and calculate the edge weights, as it can mea-263

sure graph isomorphism. While edge-mask-based264

methods apply the model repeatedly between any265

two graphs to get the masks, we only apply it to get266

an overall embedding gall of all support graphs.267

We define an aggregation process Pw with L268

iterations as follows:269

biv =
1

1 + |{e|e ∈ N(v)}|
∑

e∈N(v)

bie, (1)270

271
riv = biv∥1(v = h)∥1(v = t), (2)272

273
bi+1
e = f(riu∥riv∥bie), u, v ∈ N(e), (3)274

where bie (or biv) is the learned edge (or node) em-275

bedding in iteration i. N(v) is the set of all neigh-276

boring edges of v. f is a neural network (NN) con-277

sisting of both non-linear and linear layers. ∥ de-278

notes the concatenation of two vectors (or scalars).279

In particular, Eq. (1) aggregates the embeddings of280

neighboring edges of each node. Then Eq. (2) adds281

the label of head and tail so that the information of282

a node’s relative position to head and tail can be283

considered. Eq. (3) updates all edge embeddings284

based on the current embedding of the edge and its285

two end nodes.286

In the first step, we initilize b0e with the pretrained287

relation embedding ve of the relation on edge e. We288

define the embedding of G as follows:289

g(G) = MaxPool(bLv )∥bLh∥bLt , (4)290

where MaxPool(bLv ) is the max-pooling of all node291

embeddings in G.292

In the second step, similarly, we apply Pw again 293

to acquire the weights of edges in both the support 294

graphs and the query graphs. Additionally, we use 295

the average of the embeddings of all support graphs 296

gall from the first step as an input to incorporate the 297

overall information in the support set and initialize 298

b0e as ve∥gall. Here gall is defined as follows: 299

gall =
1

K

∑
k

g(Gk
s). (5) 300

Here Gk
s is the k-th support graph. We use another 301

f in this step. Then we perform Pw on the target 302

graph G. Finally, we calculate the weight we of 303

edge e: 304

we =
1

1 + exp(−Linear(bLe ))
, (6) 305

where Linear(·) is a linear layer, and we will serve 306

as the edge weight of e in the subsequential adapta- 307

tion modules. 308

Note that weight assignment does not rely on 309

specific loss functions or ground-truth definitions 310

for edge weights. Instead, it is trained in an end-to- 311

end manner along with other modules in the subse- 312

quent sections. All edges in the support graphs can 313

contribute to the subsequential adaptation modules 314

based on the weight. 315

4.3 Subgraph Adaptation 316

In this subsection, we introduce the process of our 317

Subgraph Adaptation module, including Support 318

Adaptation (SA) and Query Adaptation (QA). 319

After obtaining the edge-weighted support 320

graphs and query graphs, we achieve embeddings 321

that contain the information from different sub- 322

graphs by aggregations. While performing the ag- 323

gregations, we further adapt graph information to 324
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all support and query graphs to perform SA and QA.325

We first define an L-iteration aggregation process326

Pa, which is utilized in both SA and QA:327

aiv(k) =
1

1 +
∑

e∈N(v)we(k)

∑
e∈N(v)

bie(k)·we(k),

(7)328329

biv(k) =

 TSA({aiv(m)}Km=1), if SA,

TQA(a
i
v(k), {bit(m)}Km=1;λ), if QA,

(8)330331

riv(k) = biv(k)∥1(v = h)∥1(v = t), (9)332
333

bi+1
e (k) = f(riu(k)∥riv(k)∥bie(k)), u, v ∈ N(e),

(10)334

where k indicates that a term is calculated on the335

k-th support graph, and it can be replaced by q336

to represent the value on a query graph in Query337

Adaptation (e.g., aiv(q) and biv(q)). N(v) is the set338

of all neighboring edges of node v. we is the weight339

of edge e. aiv is the aggregation output of node v at340

iteration i. Here Eq. (7) aggregates the embeddings341

of all neighboring edges of each node based on342

edge weights. biv (or bie) is the learned node (or343

edge) embedding in iteration i. The adaptation344

steps are TSA(·) (for SA) and TQA(·) (for QA),345

and the details will be introduced in the following346

subsections. f is a neural network (NN) consisting347

of non-linear and linear layers acting in both SA348

and QA. λ is a hyperparameter used in QA to be349

introduced. Note that we initialize b0e(k) with the350

pretrained embedding of the relation on edge e to351

incorporate more information.352

4.3.1 Support Adaptation.353

To extract valuable information from all support354

graphs and reduce the omissions of information,355

we propose the Support Adaptation (SA) strategy356

that enables the incorporation of information from357

all support graphs when learning the embedding358

for each support graph. During aggregation on359

each graph, we average the learned embeddings360

of the tail entities in all support graphs after each361

iteration to absorb beneficial information from all362

other support graphs. In particular, we choose to363

average the embeddings of tail entities (instead of364

other entities), because the tail entity preserves the365

most crucial information for the prediction of the366

target relation. The averaged embedding will be367

used to update embeddings of all edges connected368

to tail entities in all support graphs. This strategy369

ensures the transfer of relational information from370

one support graph to various others, thereby en- 371

abling adaptation to structures of different support 372

graphs during subsequent aggregation steps. In this 373

way, all edges in the support graph can contribute 374

to SA based on their weights. 375

In SA, we apply Pa to all K support graphs for 376

L iterations. TSA(·) is defined as 377

TSA({aiv(m)}Km=1) =
1
K

∑K
m=1 a

i
t(m), if v = t,

aiv(k), otherwise.

(11) 378

Via Eq. (11), we manage to incorporate informa- 379

tion from other support graphs when performing 380

aggregation on each support graph. Generally, if 381

the information from a specific relation in a sup- 382

port graph can be easily propagated on another sup- 383

port graph with a different relation, we can infer 384

that these two relations maintain similar meanings. 385

Therefore, our SA strategy allows for extracting rel- 386

evant relations (e.g., different yet similar relations) 387

among support graphs. 388

4.3.2 Query Adaptation. 389

Query Adaptation (QA) is the subsequent module 390

that can exclude the influence of spurious informa- 391

tion extracted by the SA module. Generally, we 392

predict the score of a query triplet by comparing 393

the similarity between information learned from 394

the query graph and the support graphs. To deal 395

with the presence of spurious information across 396

query and support graphs, our QA module adapts 397

the tail node embeddings in support graphs to the 398

structure of the query graph. In this manner, the 399

support information unhelpful for query scoring 400

will be filtered out, due to different structures be- 401

tween support graphs and query graphs. Then we 402

calculate the score of a query triplet by comparing 403

the filtered support embedding with the embedding 404

of the query graph. 405

To perform QA, we apply the aggregation pro- 406

cess Pa to the query graph of the query triplet can- 407

didate. TQA(·) is defined as follows: 408

TQA(a
i
v(q), {bit(m)}Km=1;λ) = (1− λ) · ait(q) + λ

K

∑K
m=1 b

i
t(m), if v = t,

aiv(q), otherwise.
(12) 409

Here λ ≥ 0 is a hyperparameter of QA, which 410

shows the ratio of incorporation of extracted sup- 411

port information and the information from the 412
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query graph. In this manner, we perform aggre-413

gation for support information on the query graph.414

As a result, our QA module can exclude the in-415

fluence of spurious information in support graphs,416

thus achieving more precise prediction results.417

To perform prediction for a query triplet, we418

compare two embeddings, Es and Eq, which in-419

volve (filtered) support information and query in-420

formation, respectively. Specifically, we define421

Es = TQA(a
L
t (q), {bLt (m)}Km=1;λ) (13)422

as the result of the filtered support information423

with λ > 0 obtained from Eq. (12). For Eq, we424

perform Pa with λ = 0 to ensure that there is no425

incorporation of support information. We define426

Eq as follows:427

Eq = TQA(a
L
t (q), {bLt (m)}Km=1; 0). (14)428

As the calculation of Eq does not involve infor-429

mation from support graphs, Eq only contains the430

query information. Additionally, we concatenate431

the average of pretrained embeddings of all support432

and query tail entities to Es and Eq, respectively,433

so that the pretrained entity embedding can also434

contribute to the scoring. In particular, we use the435

cosine similarity between Es and Eq to measure436

the score of a query candidate, denoted as437

s(tq) = cos(Es∥
1

K

K∑
k=1

vts,k , Eq∥vtq), (15)438

where s(tq) is the score for tq, i.e., the tail entity439

of the query triplet. ts,k is the tail entity of the k-th440

support triplet. We use vts,k (or vtq ) to denote the441

pretrained node embedding of ts,k (or tq). Note that442

both Es and Eq are solely acquired via aggregation443

on the query graph. This ensures exclusion of spu-444

rious information in support graphs, thus achieving445

more precise scoring results.446

4.4 Training Objective447

To train the overall SAFER framework, we lever-448

age contrastive learning with positive samples (i.e.,449

same relation in support and query triplets) and450

negative samples (i.e., different relations in support451

and query triplets). Specifically, we use the Margin452

Ranking Loss:453

L = max(sneg − spos + γ, 0), (16)454

where spos and sneg are scores of the positive sam-455

ple and the negative sample, respectively. γ ∈ R456

is a hyperparameter utilized to control the margin457

that separates positive and negative samples.458

5 Experiments 459

In this section, we elaborate on the experiments for 460

evaluating our proposed framework. 461

5.1 Experimental Settings 462

5.1.1 Datasets. 463

We evaluate our framework and other baselines 464

on three real-world Few-shot KGR datasets, gen- 465

erated based on NELL (Mitchell et al., 2018), 466

FB15K-237 (Toutanova et al., 2015), and Concept- 467

Net (Speer et al., 2017), respectively. The NELL 468

dataset is a subset of NELL-One (Chen et al., 2019) 469

by selecting the relations that have between 50 and 470

500 triples as few-shot tasks. For FB15K-237 and 471

ConceptNet, we select the fewest 30 and 2 appear- 472

ing relations as test few-shot tasks, respectively, 473

following (Lv et al., 2019) and (Chen et al., 2019). 474

Table 1 lists the statistics of all three datasets. 475

5.1.2 Evaluation Metrics. 476

We perform the evaluation for our framework and 477

all baselines via calculating the scores for query 478

candidates of each test instance using the stan- 479

dard ranking metrics. In particular, we utilize 480

the Mean Reciprocal Ranking (MRR) and Hits@h. 481

The MRR measures the average reciprocal rank of 482

the correct candidate in the ranking of all candi- 483

dates, where a higher value indicates better perfor- 484

mance. We also compute the Hits@h value, which 485

measures the percentage of the correct candidates 486

ranked within the top h = {1, 5, 10} positions. In 487

evaluation, each correct candidate in the test set is 488

paired with 50 other candidate negative triplets. 489

5.1.3 Baselines. 490

We compare our framework with existing Few- 491

shot KGR methods, including MetaR (Chen 492

et al., 2019), FSRL (Zhang et al., 2020a), CSR- 493

OPT (Huang et al., 2022), CSR-GNN (Huang 494

et al., 2022), SARF+Learn (Meng et al., 2023), 495

and SARF+Summat (Meng et al., 2023). For meta- 496

learning-based methods, the training is achieved by 497

randomly sampling tasks from the KG rather than 498

the meta-training split that is originally provided, to 499

avoid the influence of manually constructed meta- 500

training sets. 501

5.2 Performance Comparison 502

The detailed settings of our experiments are in 503

Appendix A.2. We evaluate SAFER along with 504

other methods on the three datasets. For base- 505

line performance, we use the experimental results 506
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Table 1: Statistics of three Few-shot KGR datasets.

Dataset # Entities # Relations # Edges # Tasks

NELL 68,544 291 181,109 11

FB15K-237 14,543 200 268,039 30

ConceptNet 790,703 14 2,541,996 2

Table 2: Performance comparison of different KG
datasets. The best and second-best results are shown in
bold and underlined, respectively.

Dataset Method MRR Hits@1 Hits@5 Hits@10

NELL

MetaR 0.471 0.322 0.647 0.763

FSRL 0.490 0.327 0.695 0.853

CSR-OPT 0.463 0.321 0.629 0.760

CSR-GNN 0.577 0.442 0.746 0.858

SARF+Learn 0.627 0.493 0.798 0.877

SARF+Summat 0.626 0.493 0.797 0.875

SAFER (ours) 0.674 0.560 0.812 0.887

FB15K-237

MetaR 0.805 0.740 0.881 0.937
FSRL 0.684 0.573 0.817 0.912

CSR-OPT 0.619 0.512 0.747 0.824

CSR-GNN 0.781 0.718 0.851 0.907

SARF+Learn 0.779 0.718 0.846 0.905

SARF+Summat 0.753 0.688 0.814 0.884

SAFER (ours) 0.793 0.728 0.860 0.914

ConceptNet

MetaR 0.318 0.226 0.390 0.496

FSRL 0.577 0.469 0.695 0.753

CSR-OPT 0.559 0.450 0.692 0.736

CSR-GNN 0.606 0.496 0.735 0.777
SARF+Learn 0.613 0.511 0.731 0.771

SARF+Summat 0.624 0.527 0.729 0.768

SAFER (ours) 0.638 0.564 0.721 0.743

from (Huang et al., 2022) and (Meng et al., 2023).507

Table 2 shows that our method outperforms base-508

lines in most cases. In NELL and ConceptNet, the509

improvement of SAFER on the testing MRR is510

7.67% and 2.24%. The improvement of Hit@1 is511

13.59% and 7.02%. On FB15K-237, our method is512

the second best, while being very close to MetaR.513

The reason is that FB15K-237 contains a large num-514

ber of relations with contextualized graphs contain-515

ing only one triplet, and thus the methods based on516

subgraphs’ structure are limited in performance.517

Compared to baselines, SAFER shows more sig-518

nificant advantages in MRR and Hits@1. This is519

because, for the query candidates with high scores,520

the information provided by the support and query521

graphs will be similar. Thus, the spurious infor-522

mation in support graphs will more seriously im-523

pact the scoring. Nevertheless, our process avoids524

spurious information in support graphs, which con-525

tributes more to the detailed comparison between526

high-score samples. Thus, SAFER achieves a more527
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Figure 3: The performance of our proposed method
SAFER with different λ.
Table 3: Ablation study on three datasets. The best
results are shown in bold.

Dataset Method MRR Hits@1 Hits@5 Hits@10

NELL

SAFER 0.674 0.560 0.812 0.887
SAFER\W 0.546 0.428 0.683 0.752

SAFER\S 0.575 0.434 0.753 0.832

SAFER\Q 0.533 0.422 0.659 0.715

FB15K-237

SAFER 0.793 0.728 0.860 0.914
SAFER\W 0.761 0.689 0.840 0.901

SAFER\S 0.761 0.688 0.841 0.901

SAFER\Q 0.778 0.713 0.846 0.905

ConceptNet

SAFER 0.638 0.564 0.721 0.743
SAFER\W 0.474 0.331 0.632 0.729

SAFER\S 0.510 0.399 0.629 0.728

SAFER\Q 0.533 0.404 0.710 0.742

precise scoring result. 528

5.3 Hyperparameter Study 529

The value of λ balances the removal of spurious 530

information and the prevention of over-filtering in 531

QA. To study the impact of λ, we conduct exper- 532

iments with different values of λ, ranging from 533

0.001 to 1. The experimental results are presented 534

in Figure 3. In general, these results indicate that 535

different datasets have different optimal values of 536

λ. For both MRR and Hits@1, the optimal λ is 537

0.1 for NELL and 0.5 for FB15K-237 and Concept- 538

Net. When λ = 1, the scoring process is actually a 539

direct comparison between the outputs bLt of sup- 540

port graphs and the query graph in Pa without any 541

adaptation. In this case, the results are much worse 542

than the optimal results, which demonstrates the 543

strength of our QA module. For the NELL dataset, 544

the optimal value of λ is much smaller because the 545

candidates in NELL have more complex subgraphs 546

and thus require a more precise comparison of the 547

detailed local features. 548

5.4 Ablation Study 549

In this subsection, we conduct an ablation study to 550

evaluate the contributions of the three modules in 551

SAFER: Weight Assignment, Support Adaptation, 552

and Query Adaptation. In particular, we remove 553
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Figure 4: An instance on dataset ConceptNet using the
edge-mask-based method CSR and our method SAFER.
The figure shows part of support and query graphs and
the scores of the 3-top candidates of the two methods.
The shown edges prove the limitation of the extraction
of common subgraphs in edge-mask-based methods.

one module in SAFER each time and report the per-554

formance of the revised model on all three datasets.555

For SAFER\W, we directly set the weight we = 1556

for all edges to remove the Weight Assignment557

module. For SAFER\S, we remove the SA mod-558

ule by removing the averaging in each iteration of559

Pa and only using the average of its final outputs560

as the support embedding. For SAFER\Q, we set561

λ = 1 to change the scoring into a direct compari-562

son between the outputs bLt of support graphs and563

the query graph in Pa without QA.564

The results of the ablation study, presented in565

Table 3, validate the effectiveness of all modules in566

SAFER. Removing the Weight Assignment mod-567

ule significantly decreases the MRR metric. This568

demonstrates the importance of the weights in the569

data preparation. Furthermore, removing the SA570

module leads to a decrease in all evaluation metrics.571

This is because, at each iteration of the Pa, the ag-572

gregations of embeddings from other graphs can573

emphasize relevant relations in the support graphs.574

Without this module, the adaptation process be-575

comes a simple average of the final outputs of Pa576

of all support graphs, resulting in a loss of empha-577

sis on critical information. Furthermore, the results578

highlight the importance of the QA module, partic-579

ularly in terms of MRR and Hit@1 that reflect the580

similarity between high-score candidates and sup-581

port samples. By filtering the support information,582

QA ensures that only relevant, and useful informa-583

tion from the support graph is retained. This pre-584

vents the inclusion of spurious information within585

the predefined limits (e.g. common subgraph), thus586

ultimately contributing to improved performance.587

5.5 Case Study588

In this section, we study the case that, in exist-589

ing edge-mask-based methods, the extracted masks590

(common subgraph) could not correctly represent 591

the target relation all the time. We use a real ex- 592

ample in the ConceptNet test set to demonstrate 593

the limitations of extracting common subgraphs to 594

represent the logical pattern of the target relation. 595

We consider the 2-shot relational reasoning 596

task with two support triplets (art, created_by, 597

artist) and (babies, created_by, humans), 598

along with a query triplet (article, created_by, 599

writer). Here we use an example with both two 600

cases of extracted spurious relations and unex- 601

tracted relevant relations in the edge-mask-based 602

methods to showcase the two limitations of edge- 603

mask-based methods, as shown in Figure 4. In 604

the observed support graphs, we can identify two 605

edges of relations at_location and related_to 606

as similar but unshared information, and edges of 607

relation action as spurious information. 608

Regarding the prediction results, our approach 609

SAFER ranks the true answer of the correct tail 610

entity writer as first of all candidates, whereas 611

the CSR model ranks it as third of all candidates. 612

In the scoring result of CSR, incorrect candidates 613

guideline and autism both receive higher scores 614

than writer. This study shows that our SAFER 615

can actually solve the two limitations of existing 616

edge-mask-based methods in information extrac- 617

tion and processing. 618

6 Conclusion 619

In this paper, we introduce SAFER, a novel ap- 620

proach designed to address the challenges in Few- 621

shot Knowledge Graph Relational Reasoning (Few- 622

shot KGR). SAFER overcomes the limitations of 623

existing methods by extracting useful information 624

while excluding spurious information. We first 625

generate edge-weighted subgraphs of triplets to 626

retrieve useful information from the knowledge 627

graph. With the generated subgraphs, we perform 628

Support Adaptation, which enables the incorpora- 629

tion of useful information that is difficult to extract 630

(e.g., different yet similar relations). Subsequently, 631

our Query Adaptation module filters out spurious 632

information that is easily extracted (e.g., unhelp- 633

ful relations that are shared across support graphs). 634

Experimental evaluations on three datasets demon- 635

strate the superiority of SAFER over other state-of- 636

the-art baselines under different evaluation metrics. 637

In summary, our work provides valuable insights 638

into the potential of subgraph adaptation to improve 639

performance on Few-shot KGR tasks. 640
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A Appendix775

A.1 Retrieving Contextualized Graphs.776

In this section, we introduce how we retrieve con-777

textualized graphs from a triplet.778

Contextualized graphs are generated based779

on the enclosing subgraph strategy proposed780

by (Zhang and Chen, 2018; Teru et al., 2020).781

Specifically, for a given triplet (h, r, t), we first782

sample the nodes within n-hop undirected neigh-783

bors of both the head entity h and the tail entity784

t from the background KG. To include sufficient785

nodes for logic extraction, we also perform random786

sampling from all neighbors of h and t. The result-787

ing contextualized graph is induced by all selected788

nodes and their connections. It should be noted789

that the specific value of n is determined based790

on the density of the KG. In particular, these con-791

textualized graphs can capture the local structure792

and relevant entities surrounding the support and793

query triplets, thus allowing us to extract valuable794

information for the relational reasoning task.795

A.2 Experimental Settings796

In this section, we delve into a more comprehensive797

exposition of our experimental setups, including798

detailed parameter settings, as applied to the three799

distinct real Knowledge Graph (KG) datasets.800

In our experiments, we have employed 3-shot801

relational reasoning tasks across all three datasets.802

For the NELL dataset, we set n = 2 hops, whereas,803

for both the FB15K-237 and ConceptNet datasets,804

we use n = 1 hop when generating the contextual-805

ized graphs of their respective triplets.806

Regarding the neural network f , we have in-807

corporated three distinct neural networks for the808

first and second steps of weight assignment and the809

adaptation module. The overall iteration of all mod-810

ules is set to four, and the hidden dimension of all811

embeddings (excluding the initialization) has been812

standardized to 128. For the standard model, we813

choose the hyperparameter λ in Query Adaptation814

as λ = 0.1 for NELL and λ = 0.5 for FB15K-815

237 and ConceptNet. All methods have utilized816

100-dimensional relation and entity embeddings.817

For pretrained embeddings, we have employed818

TransE (Bordes et al., 2013) for the NELL and819

FB15K-237 datasets, while ComplEx (Trouillon820

et al., 2016) has been utilized for ConceptNet. In821

the context of the NELL dataset, the TransE em-822

beddings have been integrated by concatenating823

vhead − vtail to Es and Eq within the Query Adap-824

tation phase. Here, vhead and vtail signify the pre- 825

trained embeddings of the head and tail entities, 826

and an optional neural network (NN(vhead−vtail)) 827

can also be added. For the FB15K-237 dataset, a 828

BatchNorm Layer has been introduced within the 829

Linear layer in Eq. (6). 830

Regarding optimization, we have employed 831

AdamW (Loshchilov and Hutter, 2019) with the 832

learning rate 10−5, utilizing a linear schedule with 833

2,000 warm-up steps and a total of 20,000 steps. 834

To ensure robustness and reliability, each re- 835

ported experimental result is derived from the aver- 836

age value obtained through conducting three inde- 837

pendent experiments. 838

A.3 Experimental Details 839

We conduct all our SAFER training and testing 840

procedures using NVIDIA RTX A6000 GPUs with 841

a memory capacity of 48GB. Each training and 842

testing instance was executed on a single GPU, and 843

conducted using Python 3.10.10. We implement 844

our framework with PyTorch. 845

A.4 Limitations 846

In this section, we introduce the limitations of our 847

work in detail. Our SAFER model incorporates 848

the Query Adaptation (QA) module to mitigate the 849

inclusion of spurious information derived from the 850

Support Adaptation (SA) module. For tail candi- 851

dates with notably high scores, indicating substan- 852

tial similarity between query and support graphs, 853

the presence of extracted spurious information can 854

severely impact the scoring process. In this way, 855

the model tends to compare the most important and 856

detailed information between support and query. 857

Consequently, this has resulted in a remarkable en- 858

hancement in Mean Reciprocal Rank (MRR) and 859

Hits@1 metrics. 860

However, this adaptation process inadvertently 861

can still lead to the omission of certain global in- 862

formation from the support graph. This is a conse- 863

quence of transferring all support information for 864

processing onto the query graph. Consequently, the 865

improvements of SAFER in Hits@5 and Hits@10 866

metrics are not as pronounced as those observed in 867

MRR and Hits@1. 868

At present, we have yet to devise a solution to 869

effectively integrate global information into predic- 870

tions. Balancing the incorporation of detailed and 871

global information concurrently presents a chal- 872

lenge that necessitates further investigation and 873

future research endeavors. 874
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