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ABSTRACT

In this paper, we tackle the critical failure modes of Physics-Informed Neural
Networks (PINNs), such as spectral bias and ill-conditioning, which lead to poor
convergence on complex PDEs. We identify two key shortcomings in existing
curriculum learning methods for PINNs: unreliable knowledge transfer between
stages and a reliance on manual, ad-hoc curriculum design. To overcome these
limitations, we present Neural Operator-based Curriculum Learning (NOCL), a
unified framework that leverages Neural Tangent Kernel (NTK) theory to auto-
mate curriculum generation and employs neural operators to enable robust, dy-
namic knowledge transfer across curriculum stages. By dynamically training the
operator and filtering data for PINN initialization, our approach ensures scalable
and effective learning across progressively difficult tasks. Experiments verify that
our proposed NOCL achieves state-of-the-art performance, markedly improving
convergence and generalization over existing methods.

1 INTRODUCTION

The advent of neural networks has transformed scientific computing, introducing data-driven
methodologies for solving partial differential equations (PDEs). Whereas conventional techniques
such as the Finite Element Method (FEM) (Zienkiewicz et al.,[2013) and Finite Difference Method
(FDM) (LeVeque,|2007) are constrained by their dependence on spatial discretization, which is a ma-
jor limitation in high-dimensional settings, neural networks present a mesh-free and highly scalable
approach (Lagaris et al.,|1998; Han et al., 2018). A leading framework in this domain is Physics-
Informed Neural Networks (PINNs) (Raissi et al.L[2019; [Karniadakis et al.||2021)), which incorporate
physical constraints directly into the training loss. This allows PINNs to address both forward and
inverse problems even with sparse data, leading to widespread adoption in disciplines (Mao et al.,
2020; Cai et al., 2021} [Raissi et al., [2019).

However, training PINNs poses a particularly challenging optimization problem, often suffering
from convergence failures in certain parameter regimes (Yan & Hel 2024} Krishnapriyan et al.,
2021; Chen et al., [2024)). To address this, recent studies (Krishnapriyan et al., [2021} [Bekelel 2024)
have integrated curriculum learning strategies. These include defining a curriculum over the PDE’s
parameter space to progressively increase complexity, as well as employing causal learning, which
structures the problem into sequential temporal stages (Guo et al., 2025; Wang et al.,|2024)). While
these methods can improve convergence, they remain prone to failure or non-convergence in many
practical PDE fitting scenarios (Monaco & Apiletti, 2023)), highlighting the need for more robust
curriculum learning algorithms.

Two fundamental challenges must be overcome to address these limitations effectively (Monaco
& Apiletti, 2023). Automatically designing an optimal parameter-based curriculum for a given
PDE system is highly non-trivial. Second, PDE solutions are often highly sensitive to parameter
changes (Hanna et al., 2024). In Section [d.2] we empirically demonstrate that directly transferring
network parameters between different parametric instances results in significant error. This under-
scores the critical need for a reliable knowledge transfer mechanism across curriculum stages.

In this paper, we propose a novel Neural Operator-based Curriculum Learning framework (NOCL)
for training PINNs. Our approach leverages the complementary strengths of Neural Tangent Kernel
(NTK) theory for curriculum design and neural operators for robust knowledge transfer.
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Our framework is motivated by two key insights:

1. Neural Operators for Transfer: Neural operators learn mappings between function
spaces, exhibiting strong generalization across PDE instances (L1 et al.| [2020a}; |2023}; |Lu
et al.L|2021). This makes them ideal for transferring information between curriculum stages,
providing a continuous and informative prior. However, their standard supervised training
requires large, pre-computed datasets, which are often unavailable, leading to poorly gen-
eralized operators.

2. NTK for Curriculum Design: NTK analysis provides a principled way to characterize
training dynamics (Tan & Liul [2024; Jacot et al.| |2018). The eigenvalues of the NTK
matrix have been shown to correlate with the training difficulty of specific PDE parame-
ters (Wang et al.,|2022)), offering a foundation for systematic curriculum design. However,
the variability of NTK spectra across different PDE systems necessitates a universal metric
for quantifying prediction difficulty.

To overcome the data dependency of neural operators, we develop a strategy to dynamically train the
operator alongside the curriculum, augmented by a data filtering algorithm. For curriculum design,
we introduce a novel, universal metric based on NTK eigenvalue variance to consistently quantify
PDE difficulty. Our key contributions are summarized as follows:

1. Identification of Pathological Failure in PINN Curriculum Learning: We empirically
demonstrate that traditional curriculum learning, which retains model parameters across
stages, can be ineffective and even detrimental, leading to catastrophic training failure in
specific parameter regimes.

2. Robust Knowledge Transfer via Neural Operators: We introduce neural operators as a
tool for transferring knowledge between curriculum stages. Our method ensures scalability
through dynamic operator updates and a data filtering algorithm, effectively mitigating
parameter sensitivity issues. This approach is compatible with causal learning frameworks.

3. Principled Curriculum Design via NTK Analysis: We establish a principled curriculum
design methodology by computing the variance of NTK matrix eigenvalues across PDE
parameters. This metric reliably reflects training difficulty, enabling the automatic con-
struction of effective curricula, as validated by our experiments.

2 RELATED WORK

2.1 PHYSICS-INFORMED NEURAL NETWORKS

Consider a general PDE system defined on a domain © C R? with boundary 9

Llu(x)] = f(x), x€Q, and Bu(x)] = g(x), x € 99, (1)
where £ denotes the differential operator, B represents boundary operators, f and g are known
source terms, and v : R? — R is the unknown solution function.

PINNs employ a deep neural network @ (x; @) parameterized by © to approximate the true solution
u(x). The network architecture typically consists of multiple fully-connected layers with nonlinear
activation functions, enabling the model to capture complex solution patterns across the domain.

The training objective combines multiple physics-informed loss components to ensure the neural
network satisfies both the governing equations and boundary constraints:

Physics Loss: The physics loss enforces the PDE residual at interior points:
N,
1 . 2
LphysiCS(Q) = ﬁ Z ‘E[U(Xl, 6)] - f(xl)| 9 (2)
Pi=1

where {xi}ivzpl are collocation points sampled from 2, and N,, denotes the number of physics points.

Boundary Loss: The boundary loss ensures compliance with boundary conditions:

AL
Looundary () = 7= 3 |Bli(x;: ©)] = 9(x;) ", 3)
j=1
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where {x; }jV:”l are boundary points, and N, represents the number of boundary points.

The composite loss function combines these components with appropriate weighting:
£tolal(®) = )\rﬁphysics(g) + /\b[/boundary(@)7 (4)

where )\, and )\, are hyperparameters that balance the relative importance of physics and boundary
constraints. The optimization process minimizes Lo, (©) using gradient-based methods.

2.2 NEURAL OPERATORS

Neural operators represent a significant advance in deep learning, designed to learn mappings be-
tween function spaces rather than finite-dimensional vector spaces. Unlike traditional neural net-
works that operate on discrete data points, neural operators directly learn the underlying functional
relationships, enabling them to generalize to unseen input functions and make predictions at differ-
ent resolutions without retraining (L1 et al.| |2020b).

Given a function u(x) defined on domain V, the goal of a neural operator Gy (parameterized by 6)
is to approximate the physical operator G mapping u(x) to another function v(y) defined on domain

Gu) = Gy :urv. 5)

Currently, various neural operators have demonstrated significant potential in PDE prediction, such
as DeepONet (Lu et al.}2021)), Graph Neural Operator (GNO) (L1 et al.,|2020b), and Fourier Neural
Operator (FNO) (Li et al., [2020a). Our motivation for employing a neural operator is to learn the
mapping from the parameter space of PDE:s to their solution space, thereby enabling effective infor-
mation transfer across curriculum stages. In subsequent experiments, we select the most commonly
used FNO due to its efficiency and strong generalization capabilities.

3 METHODOLOGY

PINNs often encounter significant optimization difficulties when solving PDEs with large parame-
ter values, despite showing good performance on simpler problems with smaller parameters (Krish-
napriyan et al., [2021). To mitigate issues, curriculum learning has been introduced as a training
strategy that promotes gradual learning from easier to more difficult parameter settings (Krish-
napriyan et al., [2021). However, its application to PINNs remains challenging due to two major
limitations: first, curriculum learning may become ineffective or even detrimental for certain param-
eter configurations; second, designing consistent and effective curricula for multi-parameter PDE
systems, where parameters may interact or conflict in shaping solution difficulty, poses a substantial
methodological gap (Monaco & Apilettil 2023)). To address these problems, we introduce a neural
operator-based curriculum learning algorithm. This approach employs neural operators as a trans-
fer mechanism between successive curriculum stages and relies on the analysis of the NTK across
different PDE parameters to guide the design of the curriculum.

3.1 NEURAL OPERATOR-BASED CURRICULUM LEARNING (NOCL)

A standard practice in curriculum learning for PDEs is to initialize the model for a new curriculum
stage by directly inheriting the parameters from a model trained on a previous, easier stage. How-
ever, our experiments (Section [4.2)) reveal that this direct parameter inheritance is often unsuitable
for PINNs and can even lead to catastrophic convergence failures. The root cause is that PINNs
trained on different PDE parameters learn distinct, often incompatible, solution representations. Di-
rectly transferring these parameters results in a poor initialization, causing training instability and
suboptimal solutions. To overcome this fundamental limitation, we propose the Neural Operator-
based Curriculum Learning (NOCL) algorithm. Instead of transferring model parameters, NOCL
employs a neural operator as a robust information transfer tool between curriculum stages, enabling
effective knowledge propagation across varying PDE parameter configurations.

The overall procedure of NOCL is illustrated in Figure || and detailed in Algorithm |1} It consists
of two main phases: an initialization phase and a curriculum loop phase. The initialization phase
bootstraps the process by training PINNs directly on a set of initial PDE parameters, typically cho-
sen for their ease of training. After each PINN is trained to a low relative Lo error, we save its
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Figure 1: This figure illustrates the Neural Operator-based Curriculum Learning (NOCL). Orange
represents datasets, blue represents neural network models. The Initial Phase first trains PINNs on
initial PDE parameter subsets ¢ to generate a training dataset 7 for the neural operator G. The
Curriculum Loop executes per curriculum section: neural operator G learns parameter-to-solution
mapping via supervised training on 7; for PDE parameters ¢, in this Loop, predicted solutions from
G undergo mask algorithm filtering to select low-residual points as quality initialization for PINN
training; after physics-informed training, new solutions augment 7 to enhance the neural operator.
When processing the target parameter ¢;q,qet, the algorithm outputs the final trained PINN.

predictions on a predefined grid. Each saved data point forms a pair of PDE parameters and their
corresponding solution snapshot. This collection of pairs constitutes the initial training dataset for
the neural operator (typically an FNO), which is initialized in this phase.

In the curriculum loop phase, the target PDE
parameters are partitioned into a curricu-
lum of progressively more difficult stages. Require: Curriculum parameters {¢y}L,, mask
For each stage: First, the neural operator is ratio o

trained in a supervised manner on its cur- Ensure: Trained PINN for target PDE parameters
rent dataset to learn the mapping from PDE  1: Step 1: Initialization Phase

parameters to their solutions; Second, for  2: Initialize neural operator G (typically FNO)
each new PDE parameter in the current stage, Initialize training set 7 = ()

the trained neural operator predicts the cor- for each parameter ¢, in initialization subset do
responding solution function. The result- Train PINN on PDE with parameters ¢y

ing (x,u(x)) pairs are used to initialize the Generate predictions ug (x,t) on grid points
PINN; Third, the PINN continues its training Add (¢p, ug(z,t)) to T

using the standard physics-informed loss de- end for

fined in (4); Finally, after PINN training is ~ 9: Step 2: Curriculum Loop Phase

complete, its predictions are evaluated on the 10: for each curriculum section s do

Algorithm 1 Neural Operator-based CL

e A

grid. This new solution data is added to the 11:  Train neural operator G on training set 7

neural operator’s training set to enhance its 12:  for each parameter ¢ in section s do

generalization for subsequent stages. 13: Predict function using neural operator:
g = g(¢8)

Note that neural operator predictions can be . Compute PDE residual error: R(x) =
inaccurate due to limited training data and Ll (x)] — f()

resolution dependencies. To ensure only 5
high-quality data initializes the PINN, we '
propose a mask-based filtering algorithm.

Apply mask filtering: retain top « fraction
of points with smallest |R(x, t)]

. . . 16: Initialize PINN with filtered predictions
This aﬁgorhthm computes the PEE reg;(fifual 17: Train PINN using PDE loss equation 4]
at each collocation point using finite ditfer- g, Generate predictions on grid points:
ences. A mask then selects only the top—« ws (1)
s I

fraction of points with the smallest residuals

’ 1 : A Sy Ys I
filtering out regions where predictions devi- 23, end %gr(d) us(z,8)) o T
ate significantly from the physics. This step 21: end for

is critical for providing a physically consis- 5. Trained PINN f
tent starting point for PINN training.  return Trained PINN for durge:

Our algorithm offers several key advantages
over traditional curriculum learning. First, neural operators learn the underlying solution opera-
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tor, allowing them to make informed predictions for new parameters, even when the solution space
changes significantly. This makes robust knowledge transfer possible. Second, the residual-based
filtering prevents the propagation of unphysical errors, mitigating the overfitting and sensitivity is-
sues common in parameter-transfer methods. Third, once trained, the neural operator and its dataset
can be reused for new parameter configurations without restarting the entire curriculum, offering
a substantial computational advantage over traditional methods that must repeat the process from
scratch. As demonstrated in Section f] NOCL achieves robust performance even with suboptimal
curriculum designs, highlighting its practical effectiveness.

3.2 NTK-BASED CURRICULUM DESIGN

While NOCL demonstrates robust performance even with suboptimal curricula, a principled method
for designing curricula across PDE parameters is essential to prevent initialization failures. To this
end, we propose using Neural Tangent Kernel (NTK) eigenvalue analysis for systematic curriculum
design. The NTK matrix Ky for a neural network with parameters 6 is defined as:

KO(val) = <V9f(X; 6)’ VQf(X/; 0))? (6)

where f(x;0) is the neural network output and Vg f is the parameter gradient. Training difficulties
often arise from imbalanced NTK eigenvalues, as high-frequency solution components typically
correspond to larger eigenvalues in the NTK spectrum (Wang et al.| 2022). While this suggests
the NTK condition number could indicate training difficulty, we find it unsuitable for our purpose.
Specifically, the condition number is defined as:

)‘maX(Kt‘)((p))
)\min (Ke(d))) ’

where \;(Kg(¢))’s are the eigenvalues of the NTK matrix for PDE parameters ¢. Using the NTK
condition number for curriculum design is problematic: minimum eigenvalues often decay to zero
with increasing collocation points, rendering the condition number unstable, while relying solely on
maximum eigenvalues ignores the spectral imbalance that dictates training difficulty. To overcome
these issues, we propose the variance of the NTK eigenvalues as a robust curriculum metric:

D(¢) = Var(A\{*(Ke () + Var(A}*(Ke(¢))),

where A\'®* and A\ represent the eigenvalues of the NTK matrix corresponding to the residual and
boundary conditions, respectively. The rationale for this design is that the NTK spectrum is known
to decay rapidly (Wang et al.,|2022). In such a distribution, the maximum eigenvalue, acting as an
outlier due to its large magnitude, naturally contributes a dominant term to the variance calculation
because variance scales with the square of the distance from the mean. Furthermore, for a given
maximum eigenvalue, a faster decay rate, which indicates greater spectral imbalance, results in a
larger variance. Consequently, the sum of variances yields a robust measure of spectral imbalance
that remains stable even as minimal eigenvalues decay, effectively capturing the uneven distribution
that characterizes training difficulty.

r(Ko()) =

Our curriculum design procedure is as follows. We begin by constructing a candidate set of curricula
for the relevant PDE parameters (e.g., residual parameters and initial/boundary condition parame-
ters). This is typically done by sampling parameter values along a path from zero to the target value
@rarger- FOr €ach sampled parameter value ¢;, we compute the corresponding NTK eigenvalue vari-
ance D(¢;). We then filter this set, excluding any samples where the variance exceeds the target’s
variance, D(¢larget)~ This ensures the curriculum consists only of scenarios that are simpler than or
equally complex to the target. Subsequently, we analyze the variance trends across the filtered can-
didate parameters. The parameter exhibiting the largest incremental change in variance is selected
as the primary curriculum parameter. The curriculum for this parameter is then defined by the se-
quence of values where D(¢) < D(¢rarger), guaranteeing a progressive increase in difficulty. A key
advantage of this NTK-based analysis is its ability to design effective curricula even when training
difficulty does not increase monotonically with the parameter. In such cases of non-monotonic in-
crease, the initial stage of the curriculum is not blindly set to a value near zero. Instead, we select the
parameter region with the smallest variance, min D(¢), as the starting point, ensuring the learning
process begins with the genuinely easiest instance.
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NTK Eigenvalue Variance vs Alpha (0.2-3.0)
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(a) NTK eigenvalue variance analysis for the 3D
heat equation across different alpha values. The plot
shows how the variance of NTK eigenvalues changes
as the heat conduction parameter « varies from 0.2 to
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(b) Comparison of relative L2 errors for different
methods on the 3D heat equation across varying alpha
values. The plot compares three approaches: baseline
PINN (green), NO-based curriculum learning (red),

4.0. and NO-based without curriculum learning (blue).

Figure 2: Analysis results for the 3D heat equation: (a) NTK eigenvalue variance analysis across
different o values, and (b) method comparison of relative Ly errors across different « values.

4 EXPERIMENTS ON PDES

4.1 HEAT EQUATION

To demonstrate the effectiveness of our NOCL, we perform numerical experiments on the two-
dimensional heat equation, which is a fundamental model for thermal and general diffusion pro-
cesses. The governing PDE is:

ou Pu 0%u
- — —+ -5 ]=0 ,y €10,1], t € 10,0.1 7
subject to the initial condition u(z,y,0) = sin(rz)sin(ry) and Dirichlet boundary conditions

u(0,y,t) = u(l,y,t) = u(x,0,t) = u(x,1,t) = 0. The thermal diffusivity is denoted by a.
The analytical solution is u*(z,y,t) = sin(7z) sin(ry) exp(—2an>t).

We begin by substantiating the utility of the NTK eigenvalue variance (Section as a principled
indicator of training difficulty. Although the heat equation involves only a single thermal coefficient
a—so NTK eigenvalue variance—based parameter selection is not strictly required—we include this
analysis as a sanity check. By evaluating NTK variance over o € [0.2,4.0], we confirm that its
trend aligns closely with observed training error, thereby validating our proposed curriculum order-
ing. This experiment further shows that NOCL improves convergence even in this simple single-
parameter setting. For 20 uniformly spaced values, we compute the NTK eigenvalue variance using
the experimental setup described in Appendix[A.1]

As shown in Figure [2al the variance displays a variation pattern over « that is similar to that of the
final relative Lo error (green curve in Figure 2b). This strong correlation supports NTK variance
as an effective proxy for training difficulty. To rule out the confounding effect of uniform spectral
scaling, which can also inflate variance, we further compute the variance of the logarithm of the
eigenvalues, restricting to the top 75% to mitigate numerical instability from near-zero values. The
resulting log-variance (Figure ] Appendix[A.2)) aligns with both the standard variance and the error
trend in Figure 2b] indicating that NTK variance captures a meaningful notion of spectral imbalance
suitable for curriculum construction.

We then evaluate our NOCL over the same range of «, holding hyperparameters and training con-
figurations fixed (Appendix [A.T). As shown in Figure[2b] NOCL consistently attains lower relative
Ly error than the baseline for all « except « = 2. The improvements are modest for smaller v and
become increasingly pronounced as o grows, indicating that the proposed curriculum effectively
mitigates failure modes of the base model in more challenging PDE parameter regimes.
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Figure 3: Visualization results for convection equation with varying initial condition parameter «.
The first row shows results for o = 2, while the second row shows results for « = 3. Within each
row, from left to right: baseline PINN predictions, traditional curriculum learning PINN predictions,
NOCL PINN predictions, and NOCL without mask algorithm PINN predictions.

To validate the necessity of curricular training for the neural operator within the NOCL framework,
we conduct an ablation study in which the operator is trained solely on the dataset generated in the
initial stage (i.e., data corresponding to o < 1), without any further data expansion or neural oper-
ator updates during the subsequent curriculum stages. Experimental results show that performance
degrades severely on larger « values (blue curve in Figure 2b). This outcome indicates that training
the neural operator only on a limited parameter range leads to insufficient generalization capability
due to inadequate data coverage, thereby confirming the necessity of progressively expanding the
training set and continuously updating the neural operator throughout the curriculum stages.

4.2 CONVECTION EQUATION

To demonstrate the superiority of our NOCL compared to traditional CL, we conduct experiments on
the convection equation, which is fundamental for modeling transport phenomena. We employ the
convection equation system from the study by Krishnapriyan et al|(2021). The convection equation
is defined as:

ou ou
5 B, =0 welo2r, te(o] ®)

with initial condition u(z, 0) = sin(z) and periodic boundary conditions, where £ is the convection
coefficient.

We use a 4-layer MLP with 64 hidden units as our base model architecture. In NOCL, since the
convection equation system contains only a single parameter 3, we only need to perform the sec-
ond step of NTK analysis. Based on the NTK matrix generated from 64 data points, we observe
that the eigenvalue variance of the NTK matrix increases monotonically with 8. We design the
corresponding curriculum based on this result, with detailed curriculum specifications provided in

Appendix
For comparison, we implement traditional curriculum learning settings that are identical to NOCL,

except for the neural operator-related components. The baseline settings use the same physics train-
ing configuration as our approach.

The experimental results are presented in Table[I] In the curriculum learning experiments, NOCL
achieves the lowest relative Ly errors for /3 values of 40, 50, 60, and 70. Notably, at 3 = 40, our
method provides only modest improvements, suggesting that the problem difficulty at this parameter
value is within the capability of traditional approaches. However, for more challenging problems
with 8 values of 50, 60, and 70, our method demonstrates significant improvements, indicating
strong scalability of our approach on difficult curriculum stages.
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Table 1: Relative Lo errors for convection equation with Table 2: Relative Lo errors for convec-
varying  parameter. Methods: Baseline, curriculum tion equation with varying initial condi-
learning without neural operator (CL w/o NO), proposed tion parameter o. When « equals 3, the
NOCL algorithm, and its variant without data filtering results obtained without using the data

(w/o mask). filtering algorithm exhibit large errors.
Method =40 pB=50 (=60 pB=70 Method a=2 a=3
Baseline 1.52e-2  2.60e-2 2.9le-2 6.33e-1 Baseline 3.69e-1 1.29e+0
CLw/oNO 1.0le-2 1.32e-2 2.18¢-2 2.82¢e-2 CLw/oNO 1.24e+0 6.41e-1
NOCL 8.61e-3 5.98e¢-3 1.6le-2 1.24e-2 NOCL 4.14e-2 9.07e-2
w/o mask 9.71e-3  7.40e-3 1.22e-2 1.57e-2 w/o mask 3.70e-2 1.81e-1

Table 3: Relative Lo errors for reaction-diffusion equation with different curriculum parameters and
methods. “MLP” denotes using MLP as the base model, while “Causal” refers to using MLP with
causal training as the base model for curriculum learning. “Baseline” refers to the approach that
does not employ any curriculum learning methods.

Method | Baseline CL w/o NO NOCL

p v P v
MLP 4.78¢e-1 | 9.93e-2 7.92e-2 | 7.36e-2 8.10e-2
Causal 1.00e-1 1.16e-1 1.00e-1 | 7.86e-2 7.60e-2

To further validate the superiority of our NOCL algorithm and investigate the pathological issues
in traditional curriculum learning for PINNs, we design an additional experiment using the con-
vection system with 8 fixed at 30 and the initial condition modified to u(x,0) = sin(ax). In this
experiment, we construct a curriculum over the parameter «, with detailed specifications provided in
Appendix [B.T] while maintaining the same hyperparameters as in the /5 experiments. To ensure that
the observed performance improvement stems from addressing fundamental PINN training issues
rather than merely increased computational cost, we train a baseline model for 500,000 steps, which
is ten times longer than PINN training in NOCL.

The experimental results, presented in Figure [3|and Table[2] demonstrate that traditional curriculum
learning struggles with this parameter modification. Specifically, at o = 2, the neural network
produces significant errors in the upper-left region. We attribute this limitation to the analytical
solution’s heightened sensitivity to changes in «« compared to /3. Even with carefully designed small
curriculum intervals for «, the training at one stage adversely affects subsequent stages. As shown
in Figure5]in Appendix [B.2] the extended baseline training (500,000 steps) still fails to converge for
o = 2, 3, confirming that simply increasing computational budget cannot resolve these pathological
training issues. In contrast, NOCL, which utilizes neural operators as information transfer tools
combined with mask filtering, effectively prevents the propagation of harmful information, enabling
robust and stable curriculum learning across the parameter domain.

We also conduct an ablation study on the mask algorithm in this experiment. From Tables
and Figure [3] we observe that for relatively simple PDE systems, using a mask with a retention
ratio of 0.5 does not provide significant improvements and may even lead to increased relative L2
errors. However, from the visualization results without the mask algorithm at « = 3 in Figure
[3l we can observe that PINN produces severe errors in the upper-left region. When PDEs exhibit
high-frequency solutions that make it difficult for neural operators to predict relatively accurate
values, the mask algorithm can prevent low-quality data from contaminating PINN initialization.
Simultaneously, for PDEs with low-frequency solution coefficients, we can select larger retention
ratios in the mask algorithm to enhance the effectiveness of NOCL.

4.3 REACTION-DIFFUSION EQUATION EXPERIMENT

To further demonstrate the versatility and effectiveness of NOCL, we conduct experiments on the
reaction-diffusion equation. We employ the reaction-diffusion equation system from the study by
Krishnapriyan et al| (2021), which investigates possible failure modes in PINNs. The reaction-
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diffusion equation is defined as follows:

ou 0%u
il
ot Ox?
with initial condition u(z,0) = sin(wz), where v is the diffusion coefficient and p is the reaction
coefficient. This equation combines diffusion processes (controlled by v) with nonlinear reaction

terms (controlled by p), creating complex dynamics that are particularly challenging for neural net-
work approximation due to the interplay between these two competing mechanisms.

—pu(l—u)=0, =z€]l0,1], te]l0,1] )

For this problem, we test three approaches: baseline without curriculum learning, traditional cur-
riculum learning with direct parameter transfer, and NOCL. To evaluate the scalability of curriculum
learning, we implement these approaches on both standard MLP models and MLP models trained
using causal methods (Wang et al., 2024). The detailed hyperparameters used in our experiments
can be found in Appendix [C.2]|

We test Baseline, traditional curriculum learning and NOCL on a challenging PDE system with
parameters v = 4 and p = 5. Through analysis of NTK matrix eigenvalues variance, as shown in
Figure[6]in Appendix[C.I] we discover distinct curriculum stages in the v parameter, while no clear
curriculum characteristics exist in the p parameter. We select v as the curriculum parameter for our
primary experiments. To compare curriculum strategies designed on different parameters, we also
conduct curriculum learning experiments on the parameter p for both the traditional method and our
proposed NOCL.

The experimental results are presented in Table [3] We observe that regardless of whether MLP or
causal training is used as the base model, NOCL achieves the lowest relative L, errors on this prob-
lem. An unexpected result emerges: when using NOCL, the relative Lo errors for curricula designed
on p are not significantly lower than those for curricula on v. However, when using traditional cur-
riculum learning methods, curricula on v significantly outperform those on p.

To compare the differences between the two curriculum designs, we examine the relative Lo error of
the PINN trained during the initial stage for curricula structured on parameters v and p. We observe
that in the initial stage of the curriculum on p (with p = 1, v = 4), the relative Lo error reaches
1.84 x 107!, indicating that the PINN fails to provide high-quality training data for the neural
operator at initial stage. In contrast, for the curriculum on v at its initial stage (with v = 1, p = 5),
the relative Ly error is only 5.97 x 1072, This significant performance gap explains why traditional
curriculum learning achieves a lower final relative Lo error when the curriculum is designed on v,
thereby supporting the effectiveness of our proposed NTK eigenvalue variance metric. Regarding
the fact that NOCL achieves a similarly low error even when the curriculum is designed on p, we
hypothesize that this is due to the excellent generalization capability of the neural operator and the
use of mask algorithms to filter out harmful information.

Furthermore, NOCL demonstrates superior scalability compared to traditional curriculum learning.
When using causal learning, traditional curriculum learning algorithms exhibit increased relative Loy
errors, while NOCL continues to show decreased relative Lo errors. Therefore, we conclude that
NOCL combined with NTK analysis exhibits excellent scalability across multi-parameter PDEs and
various base models.

5 CONCLUSION

Curriculum learning has demonstrated potential in addressing PDE problems that are challenging
to train PINNs. However, existing curriculum learning approaches still face two significant unre-
solved issues: traditional methods based on direct parameter transfer may fail on certain curricula,
and designing curricula for multi-parameter PDEs requires prior knowledge to define an appropri-
ate progression. To tackle these problems, we propose a neural operator-based curriculum learning
framework. By dynamically training a neural operator as a transfer tool between curriculum stages
and incorporating a data filtering algorithm, our approach ensures effective knowledge propaga-
tion across successive stages. Meanwhile, the variance of the eigenvalues of the NTK matrix is
introduced to quantify the rationality of the curriculum design. Our results demonstrate that NOCL
substantially mitigates key failure modes of traditional curriculum learning across multiple PDE
systems, while also validating the effectiveness of NTK-based analysis in curriculum construction.
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A  HEAT EQUATION

A.1 HYPER-PARAMETER

For the heat equation, we use a 4-layer MLP with a width of 64 as the base model. We use the Adam
optimizer and train for 50,000 steps with an initial learning rate of 1 x 1073, applying an exponential
decay of 0.95 every 500 steps. Each batch samples 512 residual points and 250 initial/boundary
points. For curriculum learning, we divide the range 0.2 to 4.0 into 20 curriculum levels at intervals
of 0.2. The range 0.2 to 1.0 is used as the initial curriculum, and every five curriculum levels
thereafter form one section. The neural operator is an FNO with 8 layers and 16 modes. We use the
Adam optimizer with an initial learning rate of 1 x 1073, training 3,000 steps between sections and
applying an exponential decay of 0.95 every 30 steps. For FNO pretraining to initialize the MLP,
we also use Adam with an initial learning rate of 1 X 103, for a total of 10,000 steps, with an
exponential decay of 0.9 every 2,500 steps. We use 0.3 as the keep ratio for the masking algorithm.

A.2 LOG-EIGENVALUE CURVE

To show that the increased variance is not due to a uniform scaling of eigenvalues, we also computed
the variance of the eigenvalues in the log domain. Due to numerical precision and outliers, we
retained only the largest 75% of the eigenvalues.

NTK Eigenvalue Variance vs Alpha (0.2-4.0) - Mean of 5 Seeds
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Figure 4: NTK log-eigenvalue variance analysis for the 3D heat equation across different alpha

values. The plot shows how the variance of NTK log-eigenvalues changes as the heat conduction
parameter « varies from 0.2 to 4.0

B CONVECTION EQUATION

B.1 HYPER-PARAMETERS

In the curriculum design for the convection coefficient beta, the initial curriculum is set as
linspace(1,30,15), with four subsequent curriculum sections: (30,40], (40,50], (50,60], and
(60, 70]. Within each section, 5 PINNs are trained using beta values spanning the range (e.g., 32,
34, 36, 38, 40 for the 30-40 section). For the alpha curriculum design, the initial curriculum is set as
linspace(0.1,1,15), followed by two sections: (1, 2] and (2, 3], with 5 PINNs trained in each section
using corresponding alpha values. The selection of alpha and beta values remains independent of
whether the neural operator is employed.
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For each PINN training, we use 50,000 physics training steps with the Adam optimizer, initial
learning rate of 1 x 103, and exponential decay of 0.95 every 500 steps. The batch size consists
of 256 residual loss data points and 100 initial condition data points. For the neural operator, we
employ an 8-layer Fourier Neural Operator with 16 modes. The FNO training details are as follows:
we train the FNO for 3,000 epochs using the Adam optimizer with an initial learning rate of 1x 1073,
exponential decay of 0.95 every 100 steps. When using FNO predictions to train PINN networks,
the FNO predicts on a 128 x 128 grid, and we apply mask filtering with a ratio of 0.5. The PINN
initialization uses the Adam optimizer with an initial learning rate of 1 x 1073, 10,000 training
steps, and exponential decay of 0.9 every 2,500 steps. We use 0.5 as the keep ratio for the masking
algorithm.

B.2 VISUAL RESULTS FROM EXTENDED TRAINING

Baseline PINN prediction (alpha=2.00) Baseline PINN prediction (alpha=3.00)
RellL2 = 2.19e-01 RellL2 = 6.43e-01
10 7 1.00 1.0 1.00
0.8 0.8
0.50 0.50
0.6 025 0.6 0.25
- 0.00 - 0.00
0.4 0.4
-0.25 -0.25
-0.50 -0.50
0.2 0.2
0.0 / ~1.00 0.0 -1.00
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Figure 5: Prediction visualization using the baseline MLP after 500,000 training steps, with results
for o = 2 (left) and o = 3 (right).

C REACT-DIFFUSION EQUATION

C.1 NTK ANALYSIS COMPARISON

Eigenvalue variance in Nu curriculum (p=5.0) Eigenvalue variance in Rho curriculum (v=4.0)
1013 4

107 4 —e— Nu curriculum 8.5¢+14 7Y —=— Rho curriculum

3.5e+17
2.0e+16

1016 4
5.0e+15

1077 4 8.5e+1

6.5e+16

1015 4

2.6e+16

1.9e+16
fL.3e+16

1.4¢ 10%6 4

9.9e+13

Eigenvalue variance
=
o
S
Eigenvalue variance

1013 4
1015 4

1012 4
) les11 5.3e+11
e

1014 4

1011 4

00 05 10 15 20 25 30 35 40 0 1 2 3 a 5
Nu parameter (v) Rho parameter (p)
Figure 6: Eigenvalue variance of the NTK across parameter curricula. Left: varying v with p fixed
at 5.0. Right: varying p with v fixed at 4.0. Curves show the mean variance over 5 random seeds
(128 domain points, 32 initial-condition points); values are annotated at each marker, and the y-axis
uses a logarithmic scale.
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C.2 HYPER-PARAMETERS

Based on the variance trends observed in Figure [6] we designed the curriculum sections for the
parameter v. The initial section for v was set as linspace(0, 1.0, 10), followed by subsequent cur-
riculum sections covering the ranges (1, 2], (2, 3], and (3, 4]. Within each section, five distinct values
of v were selected for PINN training. Similarly, for the parameter p, the initial section was designed
over the range [0, 1] using linspace(0, 1.0, 10), with subsequent sections covering (1, 2], (2, 3], (3, 4],
and (4, 5]. In each of these sections, five values of p were used for PINN training.

For baseline MLP training, we use 50,000 physics training steps with the Adam optimizer, initial
learning rate of 1 x 1073, and exponential decay of 0.95 every 500 steps. The batch size consists
of 256 residual loss data points and 100 initial condition data points. For the neural operator, we
employ an 8-layer Fourier Neural Operator with 16 modes. The FNO training details are as follows:
we train the FNO for 3,000 epochs using the Adam optimizer with an initial learning rate of 1x 1073,
exponential decay of 0.95 every 100 steps. When using FNO predictions to train PINN networks,
the FNO predicts on a 128 x 128 grid, and we apply mask filtering with a ratio of 0.5. The PINN
initialization uses the Adam optimizer with an initial learning rate of 1 x 1072, 10,000 training
steps, and exponential decay of 0.9 every 2,500 steps. We use 0.5 as the keep ratio for the masking
algorithm.

When using causal learning as the base model, we divided the time domain [0, 1] into 5 time
windows. The total training steps were set to 50,000, with an additional time window added
every 10,000 steps. When the i-th time window was introduced, the learning rate was reset to
(le — 3) % 0.90—1),

D LLM USAGE

In the preparation of this manuscript, the authors employed Claude-4 and DeepSeek-V3.1 for lan-
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