Tendiffpure: Tensorizing Diffusion Models for Purification

Derun Zhou “'? Mingyuan Bai“' Qibin Zhao !

Abstract

Diffusion models are effective purification meth-
ods to purify the noised or adversarially perturbed
examples before feeding them into classifiers.
One major limitation of existing diffusion mod-
els for purification is low efficiency. Current so-
lutions are knowledge distillation which in fact
jeopardizes the generation quality, i.e., the purifi-
cation performance, because of the small num-
ber of generation steps. We propose Tendiffpure
as a compressed diffusion model for purification
via tensorization. Unlike knowledge distillation
methods, we keep the number of generation steps
unchanged and directly compress u-nets, the back-
bones of diffusion models, using tensor-train de-
composition, which reduces the number of pa-
rameters and captures more spatial information in
multi-dimensional data such as images. The space
complexity is reduced from O(N?) to O(NR?)
with R < 4. Experimental results show that Ten-
diffpure can generate high quality purified results
more efficiently and outperform the baseline pu-
rification methods on CIFAR-10, FashionMNIST
and MNIST datasets for two noises and one ad-
versarial attack.

1. Introduction

Diffusion models are ubiquitous generative models in the
recent three years in text, image and video generation. They
appeal to both academics and practitioners due to their mode
coverage, stationary training objective, easy scalability and
sample quality (Ho et al., 2020; Song et al., 2021; Dhariwal
& Nichol, 2021; Vahdat et al., 2021; Ho & Salimans, 2021).
Diffusion models also demonstrate strong capabilities as
purification methods.
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Purification employs generative models to purify images
perturbed by noises or adversarial attacks for data prepro-
cessing, followed by classification without retraining the
classifier (Shi et al., 2021; Yoon et al., 2021). As afore-
mentioned, the powerful generative capability of diffusion
models makes them prevalent methods in purification with
state-of-the-art results (Nie et al., 2022), compared with past
methods relying on generative adversarial networks (GAN)
(Samangouei et al., 2018), autoregressive generative mod-
els (Song et al., 2018) and energy-based models (EBMs)
(Du & Mordatch, 2019; Grathwohl et al., 2020; Hill et al.,
2021). However, diffusion models as purification methods
suffer from the slow sampling speed which is caused by
the iterative generation process. Also, the images naturally
possess the multi-dimensional spatial structures which can
be easily neglected by the convolution kernels of u-nets
(Ronneberger et al., 2015) which are the common back-
bones of diffusion models. Furthermore, nearly all u-nets in
pretrained diffusion models are of the same large number
of parameters with the space complexity O(N?), except a
small number of them, such as u-nets in denoising diffusion
implicit models (DDIMs) (Song et al., 2021). This large
number of parameters in u-nets prevents diffusion models
from achieving efficient generation and purification.

To the best of our knowledge, there is no existing work ad-
dressing the efficiency of purification using diffusion mod-
els. Nevertheless, with the purpose of obtaining efficient
and high-quality generation results of diffusion models, the
majority of existing solutions fall in knowledge distillation
(Meng et al., 2023; Song et al., 2023). In these methods,
the goal is to reduce the number of iterative steps to ac-
celerate the generation process, where the student models
are also diffusion models. In practice, limited steps in the
student models can hardly achieve the same performance
as the teacher models (Song et al., 2023). Furthermore,
they did not consider the number of parameters and the
multi-dimensional structural information in images. Hence
the qualitative performance of compressed models can be
reduced significantly.

Given the aforementioned problems in the scalability of
diffusion models for purification, we propose the tensor
denoising diffusion purifier (Tendiffpure) to compress dif-
fusion models and generate higher-quality purified images.
Specificially, we tensorize the convolution kernels in u-nets
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using tensor-train (TT) decomposition (Oseledets, 2011),
enhancing the purification quality and reducing the space
complexity from O(N?) to O(N R?) where TT rank R < 4,
especially for noisy or perturbed images (Li et al., 2019),
which distinguishes Tendiffpure from knowledge distillation
methods for diffusion models. We conduct 3 experiments
on CIFAR-10, FashionMNIST and MNIST datasets, re-
spectively on 2 noises and 1 adversarial attack: Gaussian
noises, salt and pepper noises and AutoAttack (Croce &
Hein, 2020).

2. Background
2.1. Diffusion Models

Benefiting from high sample quality, great sample diversity
and large mode coverage, diffusion models become appeal-
ing tools for purification, for example, DiffPure (Nie et al.,
2022) where the perturbed data x, € R? x, ~ ¢(x) by
noises and even adversarial attacks can be purified by diffu-
sion models. The purified image should be as close to the
clean data x € R?% x ~ p(x) as possible. A typical diffu-
sion model consists of two procedures: the forward process
and the reverse process. The forward process progressively
injects Gaussian noises to the data where the perturbed data
X, 1s diffused towards a noise distribution. For a discrete
diffusion model, its forward process is formulated as

Q(Xt\xt—l) = N(Xt; V1— Bixi—1, 5t1),

T (D
q(x1:7[%0) = HQ(Xt|Xt71)
t=1
where t = 1,--- , T is the step to add the small amount of

Gaussian noises and xg = X,. The step size is controlled
by the fixed variance schedule {3, € (0,1)}]_,, where
x¢ = /1= Bixt—1 + V/Bi€r, €0 ~ N(0,I). Usually the
reparameterization trick is applied to sample x; at any arbi-
trary time point ¢t where cy = 1 — 3, @y = Hle «;. Hence
Xy = /X + /1 — 1€, € ~ N(0,1). At the final step
T where T is large enough, x7 follows a standard Gaussian
distribution, i.e., x7 ~ N(0,I). For the reverse process,
the Gaussian noises are gradually removed from x7 and
hence the denoised or purified image %o € R¢ is produced
at the end of the reverse process, where Xo ~ p(x). Ideally,
the distribution of the denoised images {%X;}7_, is the same
as in the forward process {x; }7_;. po(X¢_1|X¢) as a model
is used to approximate ¢(x;_1|x¢), in order to avoid to use
the entire dataset. In specific,

po(xi—1]xs) = N (x¢—1; po(x¢, 1), B (x4, 1))

T ©)
po(xo0:1) = p(xT) Hpe (x¢—1[x¢).
t=1
Instead of predicting gt (x;,t) which is a linear combina-
tion of €g(x¢, t) and x;, practically it is common to predict

the noise component as part of 9 (x¢,t) using the noise pre-
dictor u-net €9(x¢, t) (Ho et al., 2020). The covariance pre-
dictor ¥y (x,t) can be learnable parameters for enhanced
model quality (Nichol & Dhariwal, 2021).

2.2. Tensor Decomposition

Tensor decomposition and tensor networks are prevalent
workhorses for multi-dimensional data analysis to capture
their spatial structural information, reduce the number of
model parameters and avoid the curse of dimensionality
issue, including images (Luo et al., 2022). Here we refer
a multi-dimensional array as a tensor where the number
of “aspects” of a tensor is its order and the aspects are the
modes. For example, a 1024 x 768 x 3 image is a 3rd-order
tensor with the sizes of mode-1, mode-2 and mode-3 are
1024, 768 and 3. The key of tensor decomposition and ten-
sor networks is to dissect a tensor into the product or the sum
of products of vectors such as CANDECOMP/PARAFAC
(CP) decomposition (Carroll & Chang, 1970), or the prod-
uct of matrices and tensors such as Tucker decomposition
(Hitchcock, 1927; Tucker, 1966), and small-sized tensors
such as tensor-train (TT) decomposition (Oseledets, 2011),
tensor ring decomposition (Zhao et al., 2016) and tensor
networks, for example, multi-scale entanglement renormal-
ization ansatz (MERA) (Giovannetti et al., 2008). Among
them, TT decomposition demonstrates its prevalence in a
number of deep learning models for model compression,
because of its low space complexity and capabilities of im-
proving the performance of deep learning models (Su et al.,
2020). In specific, TT decomposition considers a Dth-order
tensor Y € R ¥ *Ip ag the product of D 3rd-order ten-
sors Xy € RFa-1xlaxRa g — 1 ... D with R, largely
smaller than I;: Y = Xy x4 -+ x3 Xp. Here Xy x5 X1
is the contraction of mode-3 of X; and mode-1 of X4, 1.
More details of TT decomposition and tensor decomposi-
tion/network methods are released in Appendices A and B.

3. Tensorizing Diffusion Models for
Purification

As aforementioned, we aim to compress the diffusion mod-
els from the perspective of reducing the parameter size, in
order to at least attain the similar performance of the uncom-
pressed diffusion model on image denoising and purification
tasks, i.e., using generative models to remove perturbations
in images including adversarial attacks. Therefore, we pro-
pose Tendiffpure which is a convolutional tensor-train de-
noising diffusion model.

In each step of a generic diffusion model as in Equations (1)
and (2), the key backbone is the u-net ey (x¢, t) in the reverse
process. Hence it provides the potential to compress the
diffusion models by reducing the number of parameters of
the u-net. Note that the u-net at each step of the reverse
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process share the same parameters. For the u-net € (x¢, t),
we compress it as

€9(x¢,t) = ConvITUNet (x4, ). 3)

For ConvITUNet(x¢,t), each convolution kernel is pa-
rameterized using TT decomposition. In existing diffusion
models, u-nets often employ 2D convolution kernels, where
each convolutional kernel is W; € ROixCixKixDi ywhere
O, is the number of output channels, C; is the number of
input channels, K; is the first kernel size and D; the second
kernel size. In Tendiffpure, we decompose these 4th-order
tensors into the following tensor-trains.

Wi:ul X:l))ug Xil))u?, x§u4 (4)

where U, € RlXOiXRlvi, U, € RR1=’7XC’7XR2'i, Us €
RE2:xKixRsi and Uy € RFs.ixDix1  This parameteri-
zation follows the standard TT decomposition in Section 2.2
where Ry ; = R4; = 1. Hence the space complexity re-
duces from O(N?) to O(N R?) where N is for the number
of channels O; or C;, and R is the rank of tensor-train cores.

Practically, %y ; can equal the number of input channels.
Hence we have parameterization of u-nets as

Wi:ul X%ug X:l;)u;g 5)

where U; € RO*CixEyui Y, e RE1LixKixRa2i gpd
Uz € RF2ixDix1 - We allow for a more generic pa-
rameterization where the convolution kernels are decom-
posed into two core tensors, i.e., W; = U; ><}1 U, with
ul c Rle,,xC,,xK,,ley,; and u2 c RRl,ixDixl. Note
that for all three decomposition schemes, the convolution
kernels W, are squeezed to remove the modes with the size
1 for programming. At the end, each convolution operation
in the convolutional TT u-nets is defined as

h1 = ReLU(W1 * Xt), hz = ReLU(WZ * hi—l)- (6)

Building on these convolutional TT u-nets as backbones,
the proposed Tendiffpure is in substance a convolutional
tensor-train denoising diffusion model. We follow the gen-
eral architecture of the denoising diffusion probabilistic
model (DDPM) to remove the perturbations, including the
adversarial attacks. Instead of completing the whole for-
ward process, we only add Gaussian noises until the step ¢*
where ¢t* < T, inspired by Nie et al. (2022). Hence we can
control the amount of Gaussian noises added to ensure that
the perturbations can be properly removed and the seman-
tic information is not destroyed in the denoised or purified
images. In our case, we use the search methods to find the
optimal ¢*.

4. Experiments

With the purpose of investigating the numerical performance
of the proposed Tendiffpure, we design three experiments on

three different perturbations: Gaussian noises, salt and pep-
per noises (S&P noises) and one adversarial attack: AutoAt-
tack on CIFAR-10, FashionMNIST and MNIST datasets,
respectively. The Gaussian noise level, i.e., standard devia-
tion, is 51, whereas the proportion of S&P noises added in
images is 15%. In terms of the adversarial attack, AutoAt-
tack ¢, threat models are commonly used (Croce & Hein,
2020) and here we use its STANDARD version. In prac-
tice, the STANDARD version AutoAttacks actually makes
stronger attacks (Nie et al., 2022). For AutoAttack, we eval-
uate Tendiffpure against the ¢ threat model with e = 0.5.
The evaluation metric is robust accuracy which measures
the performance of models on the adversarial examples or
perturbed examples. We compare our proposed Tendiff-
pure with two other discrete diffusion models: DiffPure
(Nie et al., 2022) and denoising diffusion implicit models
(DDIM) (Song et al., 2021) which are the core of nearly all
the existing diffusion models. Note that we attempted two
settings of the steps in DDIM as ¢* and 7" and we present the
higher accuracy. We also incorporate the classifier-free guid-
ance into all diffusion models and use pretrained ResNet56
classifier to evaluate if the purified images are clean enough
to be classified in their belonging class. We also aim to
scrutinize how ranks of tensor-train cores, i.e., [24;’s affect
the performance.

Table 1 indicates that for the CIFAR-10 dataset, the pro-
posed Tendiffpure outperforms the baseline diffusion mod-
els on both kinds of noises and AutoAttack. It also demon-
strates that the tensor-train parameterization in Tendiffpure
successfully captures the multi-dimensional spatial struc-
tural information in images and enhances the performance of
diffusion models in denoising and purification tasks, along
with the reduction of the number of parameters. We can
draw the same conclusions on the results on FashionMNIST
dataset. However, for the results on the MNIST dataset,
DDPM produces the purified images with the highest qual-
ities in terms of the classification accuracy and Tendift-
pure has ranks second with relatively the same robust accu-
racy. The possible reason is that tensor decomposition meth-
ods prefer spatially complicated data, whereas the MNIST
dataset contains only handwritten digits with simple spatial
information compared with FashionMNIST and CIFAR-10
datasets.

5. Conclusions

In order to enhance the efficacy of diffusion models in pu-
rification, we propose Tendiffpure as a diffusion model with
convolutional tensor-train u-net backbones. Compared with
existing methods, Tendiffpure possesses largely reduce the
space complexity and is able to analyze spatially more com-
plicate information in multi-dimensional data such as im-
ages. Our experimental results on CIFAR-10, FashionM-
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Model Robust Accuracy

Gaussian noise | Salt and pepper noise | AutoAttack
DiffPure 93.46% 92.87% 91.31%
DDIM 54.49% 38.09% 44.73%
TendiffDenoiser (Ours)
Rank (3, 3, 3) 51.10% 49.51% 45.90%
Rank (4, 4, 4) 67.58% 64.65% 58.11%
Rank (4, 3, 4) 61.43% 65.43% 58.59%
Rank (4, 4) 93.75% 94.73% 92.29%
Rank (3, 3) 91.41% 91.99% 91.31%
Rank (3, 4) 94.73% 95.70% 91.41%
Rank (2, 3) 91.50% 91.41% 89.94%
Rank (2) 92.68% 91.41% 90.53%

Table 1. CIFAR10: Classifier: ResNet56

Model . . Robust Accuracy .

Gaussian noise | Salt and pepper noise | AutoAttack
DiffPure 92.72% 92.38% 91.02%
DDIM 48.14% 66.60% 69.14%
TendiffDenoiser (Ours)
Rank (3, 3, 3) 41.41% 37.70% 55.62%
Rank (4, 4, 4) 66.80% 60.45% 74.32%
Rank (3, 4, 3) 79.20% 72.51% 83.64%
Rank (4, 4) 92.92% 92.04% 90.09%
Rank (4, 3) 92.82% 91.60% 91.60%
Rank (3, 3) 93.65% 94.92% 92.68%
Rank (3) 93.51% 93.12% 92.53%
Rank (2) 93.31% 93.41% 91.80%

Table 2. FashionMNIST: Classifier: LeNet

Model ' . Robust Accuracy .

Gaussian noise | Salt and pepper noise | AutoAttack
DiffPure 98.93% 98.34% 99.46%
DDIM 62.60% 22.51% 83.64%
TendiffDenoiser (Ours)
Rank(3, 3, 3) 68.46% 63.62% 91.75%
Rank (4, 4, 4) 74.95% 71.34% 92.33%
Rank (3, 4, 3) 79.44% 79.39% 94.58%
Rank (4, 4) 91.89% 90.72% 97.61%
Rank (3, 3) 95.12% 94.14% 97.41%
Rank (4, 3) 99.02% 98.63% 99.41%
Rank (2, 3) 98.68% 98.29% 99.12%
Rank (2) 98.34% 97.66% 99.07%

Table 3. MNIST: Classifier: LeNet

NIST and MNIST for Gaussian and S&P noises and AutoAt- ~ Acknowledgements
tack show that Tendiffpure outperform the existing diffusion
models for purification. In the future work, we aim to theo-
retically study the effect of tensor decomposition methods
on diffusion models on purification.
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A. Formulation of Tensor-Train Decomposition

As aforementioned in Section 2.2, for a Dth-order tensor, Y € R71%*Ip it can be dissected as the product of D 3rd-order
tensors with smaller sizes. In specific, one example is that a 3rd-order tensor Y € R’1*/2XIz can be decomposed as the
product of X; € RFtoxlixFi 0, ¢ RFE1xI2xE2 and X, € RF2*13%X1s which are often referred to as tensor-train-cores
(TT-cores), under TT decomposition paradigm:

Y= 21 <L XLy @)

where Ry = Rz = 1. Here X;_; x3 X, means contraction which is a product between tensors X4 € RFa-2xla-1xRa—s
and Xy € RFa-1xTaxRa with mode-3 of X4_; contracting mode-1 of X,4. Hence the result has the size Rq_5 x I;_1 X
Id X Rd.

B. Space Complexity of Tensor Decomposition and Tensor Networks

Tensor decomposition and tensor network are common methods for parameterization in model compression. Here we
compare the space complexity of major tensor decomposition and tensor network methods in the following table, where R is
for the tensor core rank. For the original tensor, we consider it in the full or raw tensor format and let it be with the size 1°
where [ is for the modes and D is for the number of modes, i.e., order.

CP decomposition O(DIR)

Tucker decomposition O(

Tensor-train decomposition || O(DIR?)
O(

Hierarchical Tucker




