
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POLYNOMIAL-TIME REASONING AT THE EDGE OF NP

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are fundamentally P-time machines, yet they show
a surprising ability to solve small instances of NP-hard problems. This capability,
however, collapses as complexity grows, posing a fundamental challenge: can a
P-time machine effectively engage with problems presumed to be outside of P?
Our approach confronts this challenge by reframing the LLM’s role. Instead of
a monolithic reasoner tasked with generating a complete solution in one go, we
leverage it as a P-time heuristic function. In this framework, inference is scaled by
increasing the number of search calls, with each call deploying the LLM as a P-time
machine to make a local, heuristic decision. We implement this paradigm using
scalable algorithms like Reflective Search and MCTS, which systematically explore
the solution space. Our evaluation on several NP tasks demonstrates that this LLM-
guided search approach maintains robust polynomial scalability, delivering strong
approximate solutions where a direct approach would fail. Further analysis reveals
key properties of this framework, such as its significant performance gains from
high-quality initial solutions, which underscores the synergy between heuristic
guidance and structured exploration. These findings establish that the viable path
for P-time computation to navigate intractable NP landscapes lies in the structured
integration of LLMs as heuristic guides within classical, scalable search algorithms.

1 INTRODUCTION

The relationship between P and NP is a central question in computer science. Large language models
(LLMs) provide a new empirical lens on this question. At their core, LLMs are P-time machines: they
are built from polynomial-time tensor operations and process polynomial-length contexts, consistent
with the circuit hypothesis (Elhage et al., 2021; Nanda et al., 2023; Shi et al., 2024) which views
a transformer as a polynomial circuit for a given task. Scaling LLM computation at test-time—by
generating longer reasoning chains or performing more inference steps—is analogous to expanding
this polynomial circuit (Li et al., 2024; Merrill & Sabharwal, 2025).

Despite their P-time nature, LLMs demonstrate a strong ability to solve small instances of NP
problems like SAT through simple prompting (Hazra et al., 2024). However, this direct solving
approach fails to scale (Fan et al., 2024a). As problem complexity increases, the performance
of LLMs collapses. This is expected: the fixed computational complexity of a single inference
is inherently insufficient for navigating an exponential search space. To effectively tackle these
problems, the computation must be scaled in a principled manner. We propose a structured search
paradigm as a principled way to achieve this scaling. Instead of treating the model as a monolithic
solver attempting to find a "needle in an exponential haystack in a single pass," we deploy the LLM
as a P-time heuristic component. Our framework achieves scaling not by increasing the complexity
within a single inference, but by increasing the number of search calls. Each call leverages the LLM
to make a local, heuristic decision.

To implement this paradigm, we first decompose the global optimization process into atomic subtasks
that an LLM can perform more reliably: (1) solution verification, which checks the validity of
a candidate solution and provides verbal feedback, and (2) constrained search, which proposes
improvements while respecting problem constraints. These atomic steps are then orchestrated by
high-level search frameworks that provide the overall structure: linear reflection loop (Shinn et al.,
2023a; Madaan et al., 2023) and Monte Carlo Tree Search (MCTS) (Coulom, 2006).

We evaluate this paradigm on a constructed benchmark of three representative NP prob-
lems—Hamiltonian Cycle, Bin Packing, and Traveling Salesperson Problem with Time Windows—a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

diverse task variety that ranges from connectivity to spatial and temporal reasoning, each with
controllable instance complexity. Our experiments demonstrate that LLM-guided search maintains
polynomial-time scalability and continues to deliver competitive approximate solutions as instance
size increases. These findings establish a viable path for leveraging P-time computation for intractable
problems. In this paper, our main focus is to explain and quantify how test-time scaling, achieved by
structuring and increasing the number of inference calls, can extend the range of NP instances that
P-time machines can effectively address.

In a nutshell, our major contributions are:

1. A new framing that positions LLMs as P-time heuristic components within a structured
search process, which achieves scalability by increasing the number of inference calls rather
than the complexity of a single one.

2. A decomposition of the overall optimization process into the core subtasks of verification
+ constrained search, enabling fine-grained analysis of how an LLM’s capabilities can be
effectively orchestrated.

3. Empirical evidence demonstrating that this approach achieves robust polynomial scalability,
delivering strong approximate solutions on complex instances where direct prompting fails.

2 RELATED WORK

Language models and NP-hard problems. Recent efforts to apply LLMs to NP problems can
be categorized into three main approaches. The first, direct solving, prompts models to produce a
full solution in one pass using techniques such as chain-of-thought or in-context learning. However,
studies such as CP-LLMs-ICL (Michailidis et al., 2024) suggest that direct solving is brittle and
does not scale with the complexity of the problem. The second approach treats LLMs as translators,
converting natural language problem descriptions into formal modeling (e.g., MiniZinc (Nethercote
et al., 2007), XCSP3 (Boussemart et al., 2016) and CPMpy (Guns, 2019)) for dedicated solvers.
While effective, this offloads the core reasoning to external tools, using LLMs only for parsing (Song
& Cohen, 2025). Similarly, code-generation pipelines, e.g, the one evaluated with the EHOP
dataset (Duchnowski et al., 2025), use LLMs to write solver code, again offloading the actual
optimization to code execution. However, as the size and complexity of the NP instance grow,
the downstream solver itself can require prohibitive runtimes even when the translation is correct
(which is not always guaranteed). The third category involves learning-based methods, where models
are fine-tuned on NP instances. However, evaluation results on benchmarks like NPHARDEVAL
(Fan et al., 2024a) and its multimodal extension NPHARDEVAL4V (Fan et al., 2024b), have shown
that these models often struggle with generalization to instances beyond their training distribution.
Balancing the generalization and NP solving capability involves a dilemma in training mixture.
Collectively, these works suggest that direct-solving and training-based approaches are not scalable
approach to solve NP problems. Our work heads a distinct path. Instead of relying on external solvers
or specialized training, we explore test-time scaling by using LLMs as atomic heuristic functions.
This aligns with recent agentic reasoning frameworks, e.g, reflection (Shinn et al., 2023a; Madaan
et al., 2023) and search dynamics bootstrapping (Lehnert et al., 2024), but focuses on the challenging
NP optimizations. By systematically scaling reasoning at test time, we show how to make a P-time
machine behave like a NP solver.

Test-time scaling. Scaling laws has become one of the most crucial properties of modern large
language models. Going beyond the standard model sizes, scaling the length of reasoning traces at
test time shows effectiveness in improving model performance (Li et al., 2024; Snell et al., 2024;
Muennighoff et al., 2025). Chain-of-thought prompting (Wei et al., 2022; Kojima et al., 2022)
provides a simple mechanism for eliciting stepwise reasoning, which helps LLMs break down
complex problems into intermediate steps, improving both accuracy and interpretability. More recent
approaches leverage self-reflection and iterative refinement, where models re-examine their own
outputs (Shinn et al., 2023b; Yao et al., 2023). Methods that integrate search with LLM reasoning
– such as Monte-Carlo Tree Search (MCTS) or A* guided by model heuristics – have been shown
to improve performance on combinatorial tasks by balancing exploration with model-generated
evaluation (Meng et al., 2024; Xie et al., 2024).

Determinism versus nondeterminism. Chain-of-thought prompting equips transformers with the
ability to perform longer serial computations (Li et al., 2024), but each response still follows a single

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

deterministic trajectory. Errors therefore accumulate across tokens, making long outputs increasingly
fragile. In contrast, when multiple reasoning paths are explored in parallel (Yao et al., 2023; Xie et al.,
2023; Zhuang et al., 2023), the process is closer to nondeterministic computation: only one correct
path needs to succeed. This distinction mirrors the gap between deterministic and nondeterministic
machines, and helps explain why single-pass reasoning struggles on harder NP problems, whereas
structured exploration greatly improves success rates.

3 POSITIONING P-TIME MACHINES ON NP SPECTRUM

Figure 1: Abstraction of our scaling method. In-
side of generalized search module, a single-step
search call is performed, e.g., one step of reflection
/ tree search.

NP problems inherently involve proposing a so-
lution, verifying it, and heuristically editing it
towards optimality. Each of these steps, depend-
ing on concrete tasks, has different runtime com-
plexity. We view LLMs as a P-time circuit to
approximate these underlying tasks, albeit they
can be NP ones, e.g., verifying a solution can be
easy (P-time) but proposing or even editing one
can be hard (NP). With a given solution (as in
Fig. 1), we prompt LLMs to check the validity
of the solution based on a set of task-specific
criteria. If deemed invalid, LLMs will generate a verbal feedback1. With the solution and its feedback,
LLMs perform one step of search. The goal of this search is to refine the input solution based on the
verbal feedback. Finally, the refined solution goes through verifier again to continue the loop.

The above test-time searching logic can be seen as an extension of the P-time circuit. This is because
both autoregressive decoding and the add-on searching steps remain polynomial. In practice, we
consider reflective search and more general MCTS step. The former adds a linear number of LLM
reasoning call. The latter at most performs one step of Monte Carlo tree expansion (constant time)
and one rollout action (linear time), thus does not break the P-time circuit of LLMs. Thus, the P-time
complexity of LLMs is maintained.

3.1 VERBAL REASONING BENCHMARK

To test our scaling framework, we construct 3 NP problem sets that are typical and reducible to a
broad spectrum of other NP problems. Problems are synthetically generated and solved by open-
sourced mixed integer programming (MIP) solvers. Optimal solutions are generally not unique, thus
those from the solvers are used as a reference to programmatically evaluate LLM generated ones.
Finally, to construct prompt data, we instantiate each instance by a hand-written template that takes
the synthetically generated problem parameters. Fig. 2 illustrates an example for each problem set.

Comparison to prior data. Comparing to NPHardEval (Fan et al., 2024a) and EHOP (Duchnowski
et al., 2025), our task choices introduces extended number of nodes and extra difficulties. Our
Hamiltonian cycle scales from 10-50 nodes. Bin packing in this work involves 2-D spatial reasoning
instead of 1-D volume. And finally, our TSP examples involve temporal reasoning, which is more
complex and realistic. Importantly, we prohibit code generation in the final answer to “enforce”
LLMs to reason in the verbal space. However, LLMs are free to use code as intermediate thoughts.

Task #node extra dim decomposed verbal-only

HAMLT. CYCLE 10-50 – ✓ ✓
BIN PACKING 3-20 2D spatial ✓ ✓
TSP W/ TIME 7-15 temporal ✓ ✓

Table 1: Comparison to NPHardEval benchmark Fan et al. (2024a), we curate a benchmark with higher
complexity, extra reasoning dimension, as well as decomposed subtasks (as in Fig. 1).

Below, we summarize the optimization objective for each task:

1Such as a box being placed multiple times in bin packing, or a flight is taken too early in TSP with Time.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Illustration examples of the three major tasks: left: Hamiltonian cycle; middle: TSP with time
windows; right: 2D bin packing with cost.

Hamiltonian cycle. With an undirected graph G “ pV,Eq, the goal is to determine a single cycle
that visits all vertices exactly once and returns to the starting vertex:

x‹ “ argmin
xPC

ÿ

ti,juPE

xij

where xij P t0, 1u denotes whether edge ti, ju is included in the cycle; and C denotes the feasible
space enforcing the following constraints: each vertex has exactly two incident selected edges; at
least two edges connect any proper subset of vertices to its complement (subtour elimination); and
only edges in E can be used, with all xij being binary.

2D Bin packing. The problems is to fit a set of variable shapes of 2D packages in a bin, each with
a value, 2D dimensions, and an option to rotate by 90 degrees. The goal is to maximize the total fit
value of packages:

x‹ “ argmax
xPC

ÿ

i,a,b

cia,bx
i
a,b (1)

where xi
a,b denotes whether the i-th object (with potential rotation) with bottom-left corner located

at position pa, bq when viewing the bin as a 2D quadrant and cia,b denotes the package value. The
restricted space C prohibits the overlapping and outbound placements of packages.

TSP with time. As a well-established and more difficult variant of TSP, TSP w/ time injects the
temporal cost to each travel edge and a minimum amount of time to spend at each location. The goal
is to minimize the total monetary travel cost while meeting the additional time requirement.

x‹ “ argmin
xPC

ÿ

i,jPL;k

ajijx
k
ij (2)

where L denotes the set of locations; xj
ij denotes 1{whether departing from location i to j at time k};

ckij denotes the cost; and C is the edge space that complies TSP connectivity and temporal constraints.
There are many ways to formulate the search space C. Irrespective of the concrete formulation,
they should cover 1) one-in-one-out for each location; 2) no disconnected sub-tours; and 3) the gap
between departure and arrival must accommodate a desired time window.

3.2 EVALUATION CRITERIA

The decomposed tasks in Sec. 3 offers a holistic view of LLMs as a P-time machine on NP problem
landscape. For solution verification, we use an oracle program to check each constraint in the
problem-specific constraint set C. If any is violated, the solution is invalid, and valid otherwise.
Similarly, for constrained search, given an invalid solution and a heuristically generated verbal
feedback, we check if the output solution becomes valid. Finally, for the optimization, we use the
optimal objective value as a reference to calculate a normalized optimization score. For evaluation
details, refer to Sec. 4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Task Metric Solver Help

VERIFICATION Validity ✗
CONSTRAINED SEARCH Validity ✗

OPTIMIZATION NOP ✓

Figure 3: Measurement of 3 tasks in Fig. 1.

Normalized optimality score (NOP). Judg-
ing whether LLM solutions are optimal yields
a sparse binary metric which does not tell how
close a LLM is to finding the best answer. To
have a smooth evaluation, we can view an op-
timization as x‹ “ argminxPC

ř

i aixi and a
continuous score can be derived:

NOP “
` a ¨ x1

a ¨ x‹

˘s
P r0, 1s (3)

where s “ ´1 for argmin optimizations and s “ 1 for argmax ones. Note that if a solution violates
any problem-specific constraints, we still zero out the NOP score. Without the loss of generality, we
use accuracy as 1px1 “ x‹q if the task does not involve an objective value (e.g., Hamiltonian cycle).

4 SCALING OF P-TIME LLMS ON NP PROBLEMS

For heuristic-based optimization, scaling is iterative reasoning, where LLMs samples an action, get
feedback, refine the action, and retry. This is essentially the decomposation in Fig. 1. The performance
of such scaling lies directly in the performance of solution verification task and constrained search
task which are one-step reasoning. Therefore, to have sense where current LLMs are in this scaling
landscape, we first evaluate these two individual tasks, then move on to iterative reasoning for the
optimization task.

Reflective search and MCTS as well-established scaling methods does not break the P-time circuits
of LLM. The former is a linear search strategy that generalizes chain-of-thought reasoning. The later
generalizes tree-of-thought reasoning, albeit non-deterministic polynomial when fully expanding the
tree, is polynomial w.r.t. the number of search calls since both roll-out and node expansion behavior
are of polynomial complexity.

Model and test choices. We aim to use fast LLMs and apply test-time scaling methods on top of
them. At the table, we focus on GPT-5-mini (OpenAI, 2025) and Gemini 2.5 Flash (Gemini, 2025).
We should note that each one-step reasoning module in this paper can potentially be replaced by more
advanced models and reasoning methods (e.g., with heavy thinking). We leave this direction to future
works. Furthermore, to have a clear view on the bottleneck of each decomposed tasks in Fig. 1, we
isolate the interaction of them and test them separately. Joint testing of a fully autonomous solving
agent is an important future work.

4.1 SOLUTION VERIFICATION

In practice, models are prone to make suboptimal or even invalid (i.e., constraint-violating) answers.
This often happens when treating LLMs as a black-box zero-shot actor. An autonomous solving
agent should know how to self-evaluate its prediction and generate feedback for further iteration. To
simulate such cases, we mix the ground truth solutions (from MIP solver) and heuristically perturbed
ones (with guaranteed constraint violation), giving us 50-50 mixture for the verification task. To see
whether verification accuracy degrades w.r.t. problem complexity, we plot LLMs’ performance on
the easy half and difficult half separately, judging by the number of nodes in the task search space2.

To avoid the optimal solutions from leaking into LLM inference, we do not use the optimal solution
in the solution verification task. Instead, an oracle program is used to check the validity of a candidate
and output verbal feedback.

Perturbation choices. We randomly sample t1, 3, 5u corrupt actions from add, replace, and remove
and apply them on a solver-generated optimal solution repeatedly to the point where some task-
specific constraints are violated. Since we mix these corrupted solutions with gold, we have a baseline
of 50% accuracy.

2We should note that the actual difficulty of an example varies a lot depending on the number of nodes, edges,
and the formed search landscape. Therefore #node is a sheer surrogate for complexity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Results. Even with one-step reasoning, LLMs are good at solving the verification task, as shown
in Fig. 4. This behavior meets the common expectation that some NP problems can be verified at
P-time. With more aggressive perturbation, LLMs generally have higher accuracy as solutions are
corrupted more heavily thus providing more classification signals. The overall degradation w.r.t. the
number of perturbations does not vary significantly. Given the fact that LLMs are fast evolving these
days, the gap can be closed by more aggressive reasoning method or further tuning.

Figure 4: Solution verification of 3 tasks. Upper row: easy half; lower row: difficult half.

4.2 CONSTRAINED SEARCH

Now, we test whether LLMs can respond to verbal feedbacks to correct invalid solutions. To simulate
this scenario, we use an oracle verifier, and at test-time, we allow multiple samples (k “ 4) to
be generated. If LLMs has saturated performance in solution verification, it would easily pick the
best-of-4. Thus, if any of the 4 samples is valid, the prediction is deemed accurate.

Our problems involve multiple hard constraints that interact with each other. Therefore, in constrained
search, only measuring if the violated constraints are corrected is not enough. Instead, we measure if
LLMs can make invalid predictions (with any violation) become valid ones (free of violation, but can
be suboptimal).

Similar to how we evaluate the verification task, we simulate this by perturb gold solutions for
t1, 3, 5u corrupt actions, obtain the verbal feedback, and measure if LLM can generate candidate
solutions that fix the identified constraint violations. In practice, proposing a solution has equivalent
complexity as fixing one. As in Fig. 5, with more corrupted solutions, constraints are generally more
challenging to fix, therefore the corrective rate degrades quickly.

Figure 5: Corrective rate of constrained search. Upper row: easy half; lower row: difficult half.

4.2.1 GLOBAL OPTIMIZATION

With the single-step tasks in Sec. 4.1&4.2, we move on to iterative optimization. Usually, the ground
truth solution is not unique. Therefore, the output should 1) satisfy all hard constraints of the given
problem; and 2) have equivalent objective as the reference solution.

To avoid error accumulation, we use the oracle solution verification instead of LLMs. This allows a
reliable verbal feedback during iterative search and avoids error accumulation especially considering
the headroom in Fig 4 and Fig. 5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2.2 REFLECTIVE SEARCH

Algorithm 1 Reflective Search

1: Input: Problem Description P
2: Initialize: Solution candidate x; Trajectory τ .
3: x Ð LLM.searchpPq Ź initial state
4: for i “ 1 to #trials do
5: # Reflection search call
6: r Ð LLM.verifypP, xq Ź review
7: x Ð LLM.searchpP, x, rq Ź refine
8: end for
9: return τ.best

The first scaling method is reflection
which is a linear MDP in Algo. 1. We
explore how the model iteratively im-
proves its answer via chained reflec-
tions. Feedbacks are directly from the
oracle solution verifier, and at each
search call, LLMs are asked to im-
prove the incoming solution by either
fixing violated constraints or improv-
ing objective. The final output is the
best solution the search loop ever en-
countered.

In practice, we let LLM.search to generate k “ 4 action candidates, and greedily sample the best
one as the output x. Furthermore, we only consider the reflection r in the immediate previous state to
have a manageable input length3

Results. In Fig. 6, we scale LLMs over 20 search steps. The result shows strong performance
improvement even for such a simple MDP. Across the 3 tasks and for both GPT=5-mini and Gemini2.5
Flash models, scaling consistently improve optimization by a large margin. Complexity indeed plays
a critical role in scaling as the easy half problems have substantially higher performance then the
difficult half. Scaling becomes ineffective when the probably most difficult TSP w/ time problems
reached 10-15 nodes.

4.2.3 MCTS

Comparing to reflective search, we allow the linear reasoning trajectory to grow horizontally depend-
ing on the exploration factors. MCTS generalized reflective search since each time MCTS decides to
expand on a node, we essentially perform a one step of reflective search. To balance exploration and
exploitation, we use the standard UCT score. Individual MCTS search block (mentioned in Fig. 1) is
in line 5-11.

Algorithm 2 Monte-Carlo Tree Search

1: Input: Problem Description P
2: Initialize: Solution candidates x; Trajectory τ .
3: τ .root Ð LLM.searchpPq Ź initial state
4: for i “ 1 to #trials do
5: # MC search call
6: leaf Ð greedy_samplepτq

7: if is_rolled_out(leaf) then
8: r Ð LLM.verifypP, xq Ź review
9: x Ð LLM.searchpP, x, rq Ź refine

10: leaf.expand(x)
11: end if
12: LLM.roll_out(leaf) Ź UCT propagation
13: end for
14: return τ.best

Reward scoring. To compute UCT
score, we need to first calculate the
reward of a state x. For Hamiltonian
cycle, we set reward to 100 if the so-
lution candidate is correct and 0 oth-
erwise. For bin packing, we set the re-
ward to the objective of the state since
this is an argmax optimization. For
TSP with time, since it is a argmin
problem, we use a constant budget
B for all examples and set reward to
B ´ opxq. We should note that the
choice of reward function directly im-
pacts the action distribution and thus
the tree search results. Our choices on
these hyper-parameters yield consis-
tent numbers in our preliminary study.

Answer filtering. We note that LLMs tend to generate a lot of invalid candidate solutions. Some-
times, this causes the tree to be saturated of invalid solutions at early stages of searching, and making
the search less efficient since the action distribution scores (UCT) are noninformative. In practice,
we found filtering out invalid candidates during the expansion operation consistently outperforms

3Prior works (Shinn et al., 2023a; Madaan et al., 2023) have shown that using reflection trajectory could
yield better results.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Test-time scaling of reflective search and MCTS. Upper row: easy half; lower row: difficult half.

retaining all candidates. Again, we use an oracle to do so. In a fully autonomous setting, LLMs can
play the same role.

Tree sizes. MCTS search configuration involves how many number of action candidates (the same
k as in Sec. 4.2.2) and the max depth d of the tree. Aggressive choices on these numbers lead to
marginal returns, quickly increasing latency, and context length explosion. From preliminary trials,
we found a good choice for trialsˆwidthˆdepth is 20 ˆ 4 ˆ 10. During the roll-out operation, the
maximum probed depth is the same as the maximum depth of the tree.

Results. With the above configurations, the test-time scaling of MCTS is reported side-by-side with
reflective search in Fig. 6. Despite of the general gap between Gemini 2.5 Flash and GPT 5 mini,
to our surprise, reflective search works effectively when the problems are on the easy half. MCTS
performs better on the difficult half. We hypothesize this is because when problems are easy, linear
MDP already provides good signal from previous state while MCTS does not always expand node at
every search call, thus falling behind. And when problems are difficult, the exploration behavior of
MCTS starts to outperform.

5 ANALYSIS

5.1 IMPACT OF INITIALIZATION

Figure 7: Impact of initialization on Gemini 2.5 Flash on the full dataset (both easy and difficult
halves). hot start means the search start from a perturbed optimal solution.

Solution initialization has been a critical technique in the domain of global optimization methods.
Our scaling methods is no exception to this. Here, we take Gemini 2.5 Flash and do an ablation
on the impact of initial solution by simulating a starting point which is corrupted from the optimal
solution given by the solver. Specifically, we use the corrupted solutions with #perturbation=1 in
Sec. 4.1 and refer to this test as hot start in Fig. 7. To our expectation, a solution close to the optimal
one helps by a large margin. The behavior of reflective search and MCTS also differs with hot start.
Reflection starts to suffer from limited exploration and MCTS constantly wins by a large margin. For
the HC optimization, MCTS even reaches „100% accuracy after 10 searches.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 SCALING W.R.T. COMPLEXITY

Fig. 8 shows the performance by bucketed problem complexity. At finer-grained look, e.g., on the
Hamiltonian cycle, it is not necessary that more complex instances receive worse performance. LLM
performances are relatively retained. This can be explained that the Hamiltonian cycle is the easiest of
the three problems and our scaling are still effective. For the bin packing and TSP w/ time tasks, there
is a clear degradation trend over complexity. However, the drop of performance is rather not flat. As
noted in Sec. 4, the number of node/edge is only a weak surrogate of complexity. The actual difficulty
of an example depends on the search landscape, explaining the bumpy performance decrease.

Figure 8: Performance/Complexity Analysis

6 CONCLUSIONS

The emergent ability of Large Language Models to tackle NP-hard problems is fundamentally
constrained by their P-time nature. In this paper, we confront this challenge by proposing a paradigm
shift: instead of deploying LLMs as monolithic solvers or simple translators, we frame them as
P-time heuristic components within scalable, classical search frameworks.

Our approach achieves scalability by increasing the number of heuristic search calls, rather than the
computational depth of a single inference. By decomposing the problem-solving process into core
subtasks of solution verification and constrained search, and orchestrating these with algorithms like
Reflective Search and MCTS, we demonstrated robust performance on a challenging benchmark of
NP problems. Our empirical results show that this LLM-guided search maintains polynomial-time
scalability, consistently delivering strong approximate solutions for instances where direct prompting
methods fail.

Furthermore, our analysis revealed the critical role of initialization, where high-quality starting
points significantly boost performance, underscoring the powerful synergy between LLM-driven
heuristic guidance and structured exploration. These findings establish a viable and principled path for
applying P-time computational models to intractable NP landscapes. Ultimately, this work suggests
that the most effective role for LLMs in complex reasoning is not as standalone super-reasoners, but
as powerful, callable heuristic guides integrated within the robust, scalable architectures of classical
search algorithms.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to facilitate reproducibility of our results. All problem definitions,
experimental settings, and evaluation metrics are described in Sections 3–5. We will release a
repository containing the complete source code, data preprocessing scripts, and instructions for
running all experiments. These resources enable independent researchers to reproduce the empirical
comparisons between different heuristic search paradigms and to verify the phenomena reported in
the paper.

ETHICS STATEMENT

Our study involves only synthetic problem instances; no human subjects, private data, or personally
identifiable information are used. All algorithms are evaluated in a research context and are not

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

deployed in safety-critical applications. We will release code and generated instances solely for
reproducible scientific research and under an open-source license that respects data privacy and legal
compliance. We are unaware of any foreseeable negative societal impacts beyond those generally
associated with advances in automated reasoning and large language models, and we have taken care
to document experimental settings and limitations to support responsible follow-up work.

REFERENCES

Frédéric Boussemart, Christophe Lecoutre, Gilles Audemard, and Cédric Piette. Xcsp3: an integrated
format for benchmarking combinatorial constrained problems. arXiv preprint arXiv:1611.03398,
2016.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Alex Duchnowski, Ellie Pavlick, and Alexander Koller. Ehop: A dataset of everyday np-hard
optimization problems. arXiv preprint arXiv:2502.13776, 2025.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1(1):12, 2021.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. NPHardEval: Dynamic
benchmark on reasoning ability of large language models via complexity classes. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 4092–4114, Bangkok,
Thailand, August 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.225. URL https://aclanthology.org/2024.acl-long.225/.

Lizhou Fan, Wenyue Hua, Xiang Li, Kaijie Zhu, Mingyu Jin, Lingyao Li, Haoyang Ling, Jinkui Chi,
Jindong Wang, Xin Ma, and Yongfeng Zhang. Nphardeval: A dynamic reasoning benchmark of
multimodal large language models. arXiv preprint arXiv:2403.01777, 2024b.

Gemini. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and
next generation agentic capabilities, 2025. URL https://arxiv.org/abs/2507.06261.

Tias Guns. Increasing modeling language convenience with a universal n-dimensional array, cppy as
python-embedded example. In Proceedings of the 18th workshop on Constraint Modelling and
Reformulation at CP (Modref 2019), volume 19, 2019.

Rishi Hazra, Gabriele Venturato, Pedro Zuidberg Dos Martires, and Luc De Raedt. Can large language
models reason? a characterization via 3-sat. arXiv preprint arXiv:2408.07215, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul Mcvay, Michael Rabbat, and
Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrapping,
2024. URL https://arxiv.org/abs/2402.14083.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 1, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.

Silin Meng, Yiwei Wang, Cheng-Fu Yang, Nanyun Peng, and Kai-Wei Chang. Llm-a*: Large
language model enhanced incremental heuristic search on path planning. arXiv preprint
arXiv:2407.02511, 2024.

10

https://aclanthology.org/2024.acl-long.225/
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2402.14083
https://arxiv.org/abs/2303.17651

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

William Merrill and Ashish Sabharwal. Exact expressive power of transformers with padding. arXiv
preprint arXiv:2505.18948, 2025.

Kostis Michailidis, Dimos Tsouros, and Tias Guns. Constraint Modelling with LLMs Using In-
Context Learning. In Paul Shaw (ed.), 30th International Conference on Principles and Practice
of Constraint Programming (CP 2024), volume 307 of Leibniz International Proceedings in
Informatics (LIPIcs), pp. 20:1–20:27, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. ISBN 978-3-95977-336-2. doi: 10.4230/LIPIcs.CP.2024.20. URL https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.20.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and Guido
Tack. Minizinc: Towards a standard cp modelling language. In International conference on
principles and practice of constraint programming, pp. 529–543. Springer, 2007.

OpenAI. Gpt-5 system card. 2025.

Claudia Shi, Nicolas Beltran-Velez, Achille Nazaret, Carolina Zheng, Adrià Garriga-Alonso, Andrew
Jesson, Maggie Makar, and David M. Blei. Hypothesis testing the circuit hypothesis in llms, 2024.
URL https://arxiv.org/abs/2410.13032.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023a. URL
https://arxiv.org/abs/2303.11366.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023b.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Yuliang Song and Eldan Cohen. Do LLMs understand constraint programming? zero-shot constraint
programming model generation using LLMs. In THE 19TH LEARNING AND INTELLIGENT
OPTIMIZATION CONFERENCE, 2025. URL https://openreview.net/forum?id=
6zlpzSKzqj.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information Processing
Systems, 36:41618–41650, 2023.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, Victor Bursztyn, Ryan A Rossi, Somdeb
Sarkhel, and Chao Zhang. Toolchain*: Efficient action space navigation in large language models
with a* search. arXiv preprint arXiv:2310.13227, 2023.

11

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.20
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.20
https://arxiv.org/abs/2410.13032
https://arxiv.org/abs/2303.11366
https://openreview.net/forum?id=6zlpzSKzqj
https://openreview.net/forum?id=6zlpzSKzqj

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A USAGE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this work, the authors utilized Large Language Models (LLMs) to support
several non-scientific aspects of the research and writing process. The specific applications are as
follows:

Code Generation: LLMs (e.g., OpenAI ChatGPT) were used to draft small helper scripts for data
visualization and figure rendering (e.g., plots shown in Fig. 2). All generated code was manually
reviewed, debugged, and integrated by the authors.

Writing Assistance: LLMs were occasionally consulted to propose alternative phrasings for abstracts,
section headings, and figure captions. These suggestions were treated as editorial input and were
carefully reviewed and revised by the authors before inclusion. No LLM was used to generate
research ideas, experimental results, proofs, or other scientific contributions. All conceptual advances,
dataset construction, algorithm design, and analysis were performed solely by the authors.

B PROMPT DESIGN AND IMPLEMENTATION DETAILS

This appendix details the prompt engineering, feedback generation, and LLM-based search algorithms
(MCTS and Reflection Search) used in our experiments on three NP-hard problems: Hamiltonian
Cycle (HC), Bin Packing (BP), and Traveling Salesman with Time (TSPT). All prompts were
automatically constructed from structured instance data and fed to the LLM without human post-
editing.

B.1 HAMILTONIAN CYCLE (HC)

Task. Given an undirected graph of logistics hubs, the goal is to design a route that starts at any
hub, visits every hub exactly once, and returns to the starting hub.

You are a helpful planning assistant to design a routing path that connects logistics hubs. The goal
is to have a route that starts at any given hub, visits each hub exactly once, and returns to the same
starting hub. Below is a hub connection graph ...

Base Prompt. The LLM outputs a JSON list of hub names matching the exact strings in the
problem.

Feedback. Candidate routes are evaluated by a deterministic checker that returns status codes such
as MISMATCH, DISCONNECTED, DUPLICATE, TOO_MANY, TOO_FEW, or OK. These codes are
verbalized into natural-language feedback, for example:

– Your route can not reach hub B since it is not directly connected to hub A.

Monte Carlo Tree Search (MCTS). Each MCTS node corresponds to a candidate cycle. At
expansion, the feedback-augmented prompt requests k improved solutions:

[["hub1", "hub2", ...], ...]

Candidates are re-evaluated and assigned a reward of 100 if valid (OK) or 0 otherwise. Typical
parameters: num_trials=20, max_width=4, max_depth=10.

Reflection Search. Instead of exploring a tree, Reflection Search performs single-path refinement:

Given the above feedback(s), suggest k different and improved solutions. Output each of your
solution as a separate list of hub names and put them in the following json format: [candidate
solution 1, candidate solution 2, ...]

The environment maintains only the current best route. At each step the LLM proposes k new
candidates, each is evaluated and the best is chosen greedily until the maximum number of trials is
reached.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.2 BIN PACKING (BP)

Task. Pack a set of rectangular packages into a fixed-size 2-D bin to maximize total value without
overlap. Each package may be rotated.

Arrange the following packages inside a rectangular bin of size [WIDTH]x[HEIGHT] to maximize
the total value. Each package may be rotated. Output your arrangement as a JSON object where
each key is a package ID and the value specifies the (x,y) position and whether the package is
rotated.

Base Prompt.

Feedback. The evaluator checks boundary (OOB_id), overlap (OVERLAP_id), existence
(NONEXISTING_id), and value optimality (TOO_FEW, TOO_MANY, SUBOPTIMAL, OK), and
produces natural-language feedback, e.g.,

– Package P3 overlaps with other packages.
– The arranged solution has too few packages. Try to fit more.

Monte Carlo Tree Search (MCTS). At each node the LLM is queried for k improved arrange-
ments:

Rewards are given by the total value if all constraints are satisfied. Typical parameters:
num_trials=20, max_width=4, max_depth=10.

Reflection Search. Reflection Search refines a single candidate arrangement:

Upon closer checking on the solution, you found some potential issues with it. Specifically,
<feedback>

Given the above feedback(s), suggest k different and improved solutions. Output each of your
solution as a separate element in a list and put them in the following json block: [candidate solution
1, candidate solution 2, ...] where each candidate is a solution in its own format.

At each iteration the best arrangement (highest value, valid constraints) is chosen and passed back for
further improvement.

B.3 TRAVELING SALESMAN WITH TIME (TSPT)

Task. Plan a minimum-cost round trip that starts and ends at the same city, visits each other city
exactly once, and satisfies minimum stay-time and budget constraints.

You are a helpful trip planning assistant to help a user plan a trip that minimizes the overall cost
subject to certain constraints. The user wants to take a tour of {LOCATIONS} from {START_DATE}
to {END_DATE} ({N} days). The trip starts and ends at {ROOT_CITY}. Flight options are given
as "DEPARTURE/ARRIVAL/DEPARTURE_TIME": "cost":..., "duration": HOUR:MINUTE .

Base Prompt.

Feedback. The evaluator checks TSP constraints (one-in/one-out, no subtours, no back–forth trip),
time constraints (minimum stay hours), and cost constraint. Violations are verbalized, e.g.,

– The planned solution does not meet the minimum stay time requirement for Philadelphia.
– The planned solution exceeds the budget of 5000.

Monte Carlo Tree Search (MCTS). At each node the LLM is prompted for k improved itineraries:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

[[flight1, flight2, ...], ...]

Rewards are defined as budget ´ cost if all constraints are satisfied, otherwise 0. Typical parameters:
num_trials=20, max_width=4, max_depth=10.

Reflection Search. Reflection Search sequentially refines a single candidate trip:

Upon closer checking on the solution, you found some potential issues with it. Specifically,
<feedback>

Given the above feedback(s), suggest k different and improved solutions. Output each of your
solution as a separate list of flight keys and put them in the following json format: [candidate
solution 1, candidate solution 2, ...]

At each step the LLM proposes k new itineraries, each is evaluated for cost and constraints, and the
best candidate is selected for the next round.

B.4 IMPLEMENTATION NOTES (ALL TASKS)

• Model: OpenAI gpt-5-mini, 128k context, reasoning mode set to minimal.
• Parsing: Candidate solutions are extracted from the final json block using a regex-based

parser with normalization (single quotes and boolean values converted to valid JSON).
• Logging: All prompts, LLM responses, evaluator feedback, and search trajectories are saved

for reproducibility.

14

	Introduction
	Related Work
	Positioning ¶-time machines on NP spectrum
	Verbal Reasoning Benchmark
	Evaluation Criteria

	Scaling of P-time LLMs on NP Problems
	Solution verification
	Constrained search
	Global optimization
	Reflective Search
	MCTS

	Analysis
	Impact of Initialization
	Scaling w.r.t. complexity

	Conclusions
	Usage of Large Language Models (LLMs)
	Prompt Design and Implementation Details
	Hamiltonian Cycle (HC)
	Bin Packing (BP)
	Traveling Salesman with Time (TSPT)
	Implementation Notes (All Tasks)

