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Abstract

Annotating medical images for segmentation tasks is a time-consuming process that requires

expert knowledge. Active learning can reduce this annotation cost and achieve optimal

model performance by selecting only the most informative samples for annotation. How-

ever, the e�ectiveness of active learning sample selection strategies depends on the model

architecture and training procedure used. The nnUNet has achieved impressive results in

various automated medical image segmentation tasks due to its self-con�guring pipeline

for automated model design and training. This raises the question of whether the nnUNet

is applicable in an active learning setting to avoid cumbersome manual con�guration of

the training process and improve accessibility for non-experts in deep learning-based seg-

mentation. This paper compares various sample selection strategies in an active learning

setting in which the self-con�guring nnUNet is used as the segmentation model. Addi-

tionally, we propose a new sample selection strategy for UNet-like architectures: USIM

- Uncertainty-Aware Submodular Mutual Information Measure. The method combines

uncertainty and submodular mutual information to select batches of uncertain, diverse,

and representative samples. We evaluate the performance gain and labeling costs on three

medical image segmentation tasks with di�erent segmentation challenges. Our �ndings

demonstrate that utilizing nnUNet as the segmentation model in an active learning set-

ting is feasible, and most sampling strategies outperform random sampling. Furthermore,

we demonstrate that our proposed method yields a signi�cant improvement compared to

existing baseline methods.

Keywords: Deep Learning, Active Learning, Medical Image Segmentation, nnUNet, Sub-

modular Subset Selection
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1. Introduction

Segmentation of tumors and surrounding anatomy is an important task in medical imaging
for cancer diagnosis using CT and MRI (Hesamian et al., 2019). However, training these
models requires a large number of voxel-wise labeled images. Annotating such datasets is
usually time-consuming and requires expert knowledge (Ren et al., 2022).
Active learning (AL) can address this issue by iteratively selecting only the most informative
samples (batches) from the unlabeled dataset for annotation and training, while still achiev-
ing near-optimal model performance. However, the performance of AL sampling strategies
depend heavily on the model architecture and training procedure used (Ji et al., 2023). To
analyze the gain of AL strategies, it is important to ensure robustness and reproducability
under di�erent experimental conditions (Munjal et al., 2022). The performance gain and
labeling cost reduction of AL strategies depend on the following factors. First, the train-
ing pipeline including data preprocessing (normalization, augmentation), model architecture
(patch size, number of layers), and training procedure (batch size, learning rate scheduling).
Second, the dataset characteristics such as dataset size, class imbalance, di�culty of the
learning task. Third, the labeling budget during each sampling round.
The nnUNet (Isensee et al., 2021) is a self-con�guring pipeline, which allows for the training
of 2D and 3D UNet-like models (Ronneberger et al., 2015) without the need for manual
adaptation of preprocessing, model architecture, or hyperparameters and has won many
segmentation competitions (Antonelli et al., 2022). The nnUNet identi�es robust design de-
cisions based on multiple tasks (Isensee et al., 2021), ensuring reproducibility and robustness
in evaluating AL strategies (Munjal et al., 2022; Burmeister et al., 2022) by automatically
con�guring preprocessing, model architecture, and hyperparameters. This paper investigate
whether the use of a self-con�guring training pipeline in an AL setting can reduce annotation
costs. This would also increase reproducibility and could facilitate the use of active learning
for medical image segmentation.
Most deep AL strategies that combine uncertainty, diversity and representativeness in their
sampling objective have been developed for classi�cation tasks, and less frequently for seg-
mentation tasks (Saidu and Csató, 2021). Novel AL strategies such as BADGE (Ash et al.,
2020) select samples based on diverse gradients where gradient length captures the uncer-
tainty. We explore the adaptation of gradient-based active learning methods to U-Net-like
architectures and segmentation tasks with high-dimensional annotations. To e�ciently com-
bine predictive uncertainty and gradient based sample representation, we propose USIM
- Uncertainty-aware Submodular mutual Information Measure. This approach combines
predictive uncertainty-based sampling with diversity and representative sampling in param-
eter space using submodular mutual information measures (Kothawade et al., 2021, 2022a).
The novelty of our approach lies in the selection of the query set based on class-weighted
predictive uncertainty using Monte Carlo Dropout and the estimation of representative gra-
dient embeddings based on the bottleneck layer (USIMC) as well as an automated gradient
embedding selection based on the Fisher information (USIMF).
Our contributions are twofold: First, we evaluate various active learning strategies using
the nnUNet pipeline as the segmentation model in an AL setting. Second, we propose and
evaluate USIM, an AL strategy that combines predictive uncertainty with diversity and
representativeness using a submodular mutual information measure.
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2. Related work

Two main principles for selecting batches of informative samples are uncertainty-based sam-
pling and representation-based sampling. Various uncertainty-base approaches exist (Prat-
apa et al., 2011; Li and Alstrøm, 2020), such as Monte Carlo dropout-based methods (Gal
and Uk, 2016; Kendall et al., 2017), Bayesian neural networks (Gal et al., 2017), or ensemble
methods (Chitta et al., 2018). However, methods that rely solely on uncertainty are not
suitable for large datasets with redundant information.
Representation-based sampling methods model the representativeness and diversity of sam-
ples within a batch. For example, the Core-set approach (Sener and Savarese, 2018) esti-
mates distances between samples modeled by the Euclidean distance between feature vectors.
Uncertainty and representation-based methods have been used for classi�cation and segmen-
tation tasks (Burmeister et al., 2022).
Hybrid methods aim to combine uncertainty and diversity in their sampling objectives to
select informative samples while avoiding redundancy (Yang et al., 2017; Nath et al., 2021).
These methods rely on compact image representation which are typically extracted from the
last layer of networks for classi�cation tasks such as BADGE (Ash et al., 2020). Sreenivasa-
iah et al. investigated adaptation of this method for segmentation tasks (Aklilu and Yeung,
2022). MEAL (Sreenivasaiah et al.) extracts embeddings based on Uniform Manifold Ap-
proximation to model representativeness of image patches for image segmentation.
In addition, semi-supervised approaches o�er additional solutions to reduce labeling costs
(Mittal et al., 2023; Gaillochet et al., 2022). Recent active learning strategies make use of
the Fisher information ratio, Hessian, or similarity matrices but were mainly developed for
class�cation task (Kirsch and Gal, 2022; Kothawade et al., 2021; Ash et al., 2020, 2021; Liu
et al., 2021) and seldom for segmentation tasks (Al, 2019; Yu et al., 2023).
We explicitly compare practical and user-friendly methods and exclude methods that re-
quire design of additional models to evaluate informativeness of unlabeled samples, such as
VAAL (Sinha et al., 2019) or adaptation of the loss function. We further exclude methods
that require additional sub-networks with trainable parameters that might in�uence the
automated architecture con�guration of the nnUNet due to memory restrictions (Yoo and
Kweon, 2019).

3. Method

3.1. Active learning and submodular subset selection

Active learning is the process where the learning algorithm attempts to maximize a model's
performance gain while annotating the fewest samples possible (Ren et al., 2022).

3.1.1. Active learning for medical image segmentation

To evaluate AL sampling strategies for medical image segmentation, the dataset is split
into training and test set. From the training data, we construct an unlabeled pool XU =
{x(j)}Uj=1 of patches x ∈ RC×H×W with patch width W , height H and number of channels

C. We randomly select and label a small initial labeled dataset XL = {(x(j),y(j))}Lj=1 with
segmentation masks y ∈ RK×H×W (K - number of classes) to train the segmentation model.
During multiple sampling rounds, we use one of the sampling strategies to select a batch
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XB ⊆ XU of B most informative samples, simulate annotation and add the annotated
samples to the labeled dataset. Since retraining from scratch is very time consuming, we
�ne-tune the model in each AL round and evaluate the model using the test set.

3.1.2. Submodular mutual information measure for subset selection

Submodular functions are a class of functions that can be used to model guided (uncertainty-
guided in our approach) data subset selection of representative subsets (Kothawade et al.,
2022a). The submodular mutual information (SMI) function is given by If (XB;XQ) =
f(XB)+f(XQ)−f(XB ∪XQ), where XQ is the query set (target set), XB is the selected
subset of patches from the unlabeled data set and f : 2X → R a submodular set function
de�ned as f(X) =

∑
xi∈Ωmaxxj∈X Sij . The term Sij measures the similarity between the

elements xi and xj . The instantiated submodular function If (XB;XQ) is used to select a
subset that maximizes the submodular functionXB ← argmaxXB⊆XU ,|XB |≤B If (XB;XQ).
Intuitively, SMI models the similarity between XQ and XB, and maximizing SMI will select
points similar to XQ while being diverse. We use the mutual information function variant
for the facility location (FL) function de�ned over XQ (FLQMI) shown in Equation 1.
The variant was successfully applied in Kothawade et al. (2022a) and is memory and time
e�cient. The parameter η balances query-relevance and diversity. Kothawade et al. (2022b)
and Beck et al. (2024) performed a qualitative an theoretical analysis with respect to query-
coverage, query-relevance and diversity, and showed that as soon as η is increased, the
summary produced by FLQMI becomes more query-relevant and less diverse.

If (XB;XQ) =
∑

xi∈XQ

max
xj∈XB

Sij + η
∑

xi∈XB

max
xj∈XQ

Sij (1)

We further investigate the robustness of our method in a redundancy scenario to con�rm
the superiority of the submodular information measure for subset selection compared to
sampling with a uniform distribution over the query set in Appendix E.

3.2. Active learning with the self-con�guring nnUNet pipeline

We �rst run the nnUnet preprocessing and planning function on the raw dataset to generate
a dataset �ngerprint and automatically con�gure model architecture and training procedure.
Based on the automatic con�gured parameters (patch size, resampling parameter, etc.) we
extract overlapping image patches to create the unlabeled pool of samples. We label a small
randomly selected subset and run the self-con�guring nnUNet pipeline again to re-con�gure
a subset of parameters for resampling, intensity normalization and train the initial model.
We used the trained model to select the most informative batch of samples using one of
the compared sample selection strategies. After annotation, we rerun the nnUNet pipeline
again to update the dataset �ngerprint and planing con�guration, and �netune the model.
Since the characteristics of the image data remain the same and only the annotations change,
most model con�gurations, such as model architecture and learning rate, remain unchanged.
The only changes that might occur are annotation resampling and intensity normalization.
Sampling, annotation and self-con�gured model �netuning is repeated in multiple AL round.
The proposed AL framework is shown in Figure 1.
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Figure 1: Active learning utilizing the self-con�guring nnUNet pipeline. The nnUNet-
pipeline automatically con�gures and trains the model in each active learning round. The
most informative samples are selected from the unlabeled dataset using one of the com-
pared sampling strategies including our proposed USIMC and USIMF methods. Images are
annotated by the radiologist (oracle) and added to the labeled dataset. The procedure is
repeated in multiple AL rounds to increase model performance while annotating the fewest
samples possible.

3.3. USIM - Uncertainty-aware submodular mutual information measure for

subset selection

We propose USIM, a sample selection strategy that combines predictive uncertainty and
submodular mutual information measure for subset selection with UNet-like architectures.

3.3.1. Predictive Uncertainty as a Measure of Informativeness

To measure the informativeness of a sample, predictive uncertainty using Monte Carlo
dropout is a powerful and simple method (Li and Alstrøm, 2020). In our work, the un-
certainty of the unlabeled samples is estimated using Monte Carlo dropout and the model
θk−1 trained in the previous round. A subset ofQ uncertain samplesXQ is sampled (with re-
placement) from the unlabeled dataset with sampling probability proportional to a weighted

uncertainty p(θk−1,x) =
∑

c wc·Uncert(θk−1,x,c)∑
x∈XU

∑
c wc·Uncert(θk−1,x,c)

. The uncertainty of a foreground class

c is weighted by wc which is the inverse of the number of annotated voxels of that class in the
training set. The uncertainty-based weighting ensures that the performance is less biased
towards classes where more data is presented. We analyze the in�uence of query set size
Q in Appendix D. In our experiments, Q is estimated using the elbow method (Thorndike,
1953) which plots the sample uncertainties in descending order and takes the elbow of the
curve as the number of uncertain samples in the data set.

3.3.2. Mutual information based submodular subset selection with

gradient embeddings

To create an informative batch of samples, it is important to consider not only uncertainty
but also diversity and representativeness. Since we select the query set XQ by sampling
from the unlabeled dataset with a probability distribution proportional to the class-weighted
uncertainty, the query set includes not only most uncertain but more diverse samples. To
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con�rm that the proposed sampling strategy of the query set is more e�cient than standard
active learning (query set is the unlabeled dataset) (Kothawade et al., 2021) or sampling the
most uncertain samples from the unlabeled dataset, we compare the performance gain for
the methods in Appendix D. In our approach, we use mutual information function variant
for the facility location (FL) function (FLQMI) show in Equation 1. The method requires
a similarity matrix Suq ∈ R|XU |×|XQ| between samples of the unlabeled dataset and the
query set and can be constructed in many ways, e.g. by computing the cosine distance
(Kothawade et al., 2022a), Euclidean distance (Neven and Goedemé, 2023) or Fisher infor-
mation kernel. We analyze two variants of similarity matrices using cosine similarity between
gradient embeddings of the bottleneck layer de�ned as USIMC and an approximation of
pairwise in�uence between samples using the Fisher kernel which is de�ned as USIMF.
Details about the construction of the similarity matrices can be found in Appendix A. After
construction of the similarity matrix, we instantiate the submodular function If (XB;XQ)
and use stochastic greedy method to select the batch XB for labeling. We use the stochastic
greedy optimizer from SUBMODLIB (Kaushal et al., 2022) because it has a provably linear
running time independent of the budget and is faster than the naive greedy approach. We
summarize the proposed USIM method in Algorithm 1.

Algorithm 1: USIM - Uncertainty-Aware Submodular Mutual Information Measure

1: Input: Initial labeled dataset: XL, unlabeled dataset: XU , initial self-con�gured
nnUNet model parameter: θ0, batch size: B, number of sampling rounds: K

2: for k = 1, 2, ...,K do

3: Estimate sample uncertainty Uncert(θk−1,x) ∈ R for all unlabeled samples x ∈XU

4: Sample a query subset XQ ⊆ XU with sample probability proportional to weighted
uncertainty

5: Compute similarity matrix Suq with Equation 2 for USIMC or 4 for USIMF
6: Instantiate the submodular function If (XB;XQ) based on Suq (Equation 1)
7: Use stochastic greedy method to select batch XB with

XB ← argmaxXB⊆XU ,|XB |≤B If (XB;XQ)
8: Query the oracle to obtain segmentation masks y(x),∀x ∈XB

9: XL ←XL ∪XB ; XU ←XU \XB

10: Train model on XL: θk = arg min
θ

EXL
[l(x,y;θ)]

11: end for

12: return Final model θK

4. Experiments and Results

4.1. Datasets

We evaluate the AL sampling methods on three medical image segmentation datasets from
the Medical Segmentation Decathlon (Antonelli et al., 2022) to ensure method evaluation
on di�erent target regions, modalities and challenging features. For our analysis, we choose
the labeled training set of 1) Spleen dataset, as a small dataset of 41 CT scans with a
large ranging foreground size, 2) Liver dataset, a large dataset of 131 CT scans with label
imbalance between large liver class and small tumor class and 3) Hippocampus dataset
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consisting of 260 MRI scans with the challenge to segment two adjacent small structures
with high precision

4.2. Active learning sampling strategies and implementation

Sampling Strategies: We compare the following sampling method in our analysis: (1)
Random Sampling, (2) Max Entropy (Shannon, 1948), (3) Mean STD (Kendall et al., 2017),
(4) BALD (Gal et al., 2017), (5) Core-Set (Sener and Savarese, 2018), (6) BADGE(LL) (Ash
et al., 2020; Aklilu and Yeung, 2022), (7) Stochastic Batches (Gaillochet et al., 2023) and
(8) USIMC (ours), (9) USIMF (ours).
Implementation: For our experiments, we used 2D nnUNet con�gurations because they
have a higher training speed and are less prone to over�tting. However, the proposed USIM
method can easily be extended to 3D models and will be studied in further research.
For all our experiments, we set η = 1.0 and analyzed the in�uence of the hyperparameter
in Appendix D. The used hardware con�gurations and self-con�gured hyperparameters can
be found in Table 1 in Appendix F. The code, for training and evaluation is available at
https://github.com/Berni1557/ALUNET.
Further details about sampling strategies and implementation can be found in Appendix C.

4.3. Results

The performance gain in terms of dice score with respect to the number of annotated sam-
ples for all competing strategies is shown in Figure 2.
Spleen: All sampling strategies except Core-Set outperformed random sampling. However,
the segmentation task is less challenging and the performance di�erences between the strate-
gies are therefore small. With less than 8% of annotated data, USIMF achieved a similar
dice score as trained with fully annotated dataset.
Liver: Uncertainty-based methods (BALD, Mean STD) performed better than random
sampling. USIMF and USIMC outperformed most methods and reach near optimal perfor-
mance with less than 5% of the data.
Hippocampus: USIMC and USIMF outperformed all other sampling strategies and reach
performance of the fully annotated dataset with roughly 30% of the annotated data. All
other strategies outperformed or performed similar to random sampling.
The pairwise penalty matrix (Ji et al., 2023) in Figure 2 (D) aggregates results over all con-
ducted experiments. The overall performance Φ is measured by the column-wise average,
where lower numbers indicate a higher-performing algorithm. The results show that USIMC
and USIMF have the lowest column sum, indicating that they outperform other strategies.
The Figures 10, 11, and 12 in Appendix G show examples of AL based segmentation results
for all three datasets. Figure 3 shows a t-SNE plot of the USIMF gradient embeddings on
the Liver dataset.
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Figure 2: Performance comparison of active learning strategies (Random sampling, Max-
imum Entropy, Mean Std, BALD, Core-Set, BADGE(LL), Stochastic Batches, USIMC
(ours), USIMF (ours) and fully labeled dataset for the Spleen (A), Liver (B) and Hippocam-
pus (C) dataset. A pairwise penalty matrix is shown in D. Element i j corresponds to the
number of times (expressed in percentage) algorithm i outperforms algorithm j. Column-wise
averages Φ are given where a lower number corresponds to a higher-performing algorithm.

5. Discussion and Conclusion

In this paper, we have investigated the utility of the nnUNet as a self-con�guring model in
an AL setting to reduce labeling costs. We additionally proposed USIM, an AL strategy
that combined predictive uncertainty and submodular mutual information measure to se-
lect informative, diverse, and representational batches with two similarity matrix variants
(USIMF and USIMC). The experiments con�rmed that using the self-con�guring nnUNet
pipeline in an active learning setting is an e�ective strategy for reducing labeling costs and
facilitating AL by avoiding the cumbersome con�guration of the training process. All meth-
ods performed equally or better than random sampling. We showed that methods based
on uncertainty (BALD, STD MEAN) outperformed those based on representation (Core-
Set). Our hybrid method outperformed the compared active learning methods, with USIMF
performing slightly better than USIMC. The proposed method was evaluated only on 2D
nnUNets, but it can be extended to 3D approaches. However, we refrained from conducting
the evaluation due to longer training times, leaving it for future research. Further research
is necessary to prove the e�ectiveness of active learning for medical image segmentation in
real scenarios, rather than relying solely on simulations.
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Appendix A. Similarity matrices for submodular mutual information

measure

We analyze two gradient based similarity matrices for the submodular mutual information
measure.
USIMC: In USIMC, we used the cosine similarity between gradient embeddings of bottle-
neck layer as similarity measure to construct a similarity matrix Suq. The matrix measures
similarity between the gradients of the unlabeled dataset gu and the query set gq.

Suq =
gu · gq
∥gu∥∥gq∥

(2)

USIMF: In USIMF, we use the approximated pairwise in�uence (Fisher kernel) as similarity
matrix. The Fisher kernel, has already been used in Liu et al. (2021) for in�uence selection-
based active learning or for deep active learning on biased datasets (Gudovskiy et al., 2020).
The similarity matrix Suq ∈ R|XU |×|XQ| is constructed between the unlabeled dataset XU

and the query data setXQ. To select only the gradients from important parameters, we use a
simple method that selects parameters based on the empirical Fisher information matrix (Tu
et al., 2016). The use of the Fisher matrix to identify model parameters that are important
for a learning task was proposed by Kirkpatrick et al. (2017) to avoid catastrophic forgetting.
We use Equation 3 to approximate the Fisher information matrix based on randomly sampled
subset of the query set XQ with pseudo labels ȳ and predicted class probability pθ(ȳ|x).

F(θ) = diag(
1

|XQ|
∑

x∈XQ

∇θ log pθ(ȳ|x)∇θ log pθ(ȳ|x)T ) (3)

The Fisher information matrix is used to select a small subset of important parameters θ̂ ⊆ θ
by sampling with probability distribution proportional to the Fisher information given by
p(θi) =

F(θi)
∥F(θ)∥ . We compute the gradient embeddings (Fisher score) of the unlabeled dataset

with gu = ∇θ̂ log pθ(ȳ|x),x ∈ XU and the query set with gq = ∇θ̂ log pθ(ȳ|x),x ∈ XQ.
The similarity matrix is than constructed using Equation 4.

Suq = gT
uF−1gq (4)
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Appendix B. USIMF-based gradient embedding visualization

Figure 3: Visualization (t-SNE) of gradient embeddings from USIMF. Black dots: labeled
dataset, grey dots: unlabeled dataset, blue dots: target dataset, red dots: selected batch
samples. The diameter of the dots visualizes the sample uncertainty.
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Appendix C. Sampling strategies and implementation details

Sampling strategiesWe compare the following sampling method in our analysis: (1) Ran-
dom Sampling, (2) Max Entropy (Shannon, 1948), (3) Mean STD (Kendall et al., 2017), (4)
BALD (Gal et al., 2017), (5) Core-Set (Sener and Savarese, 2018), (6) BADGE(LL) (Ash
et al., 2020; Aklilu and Yeung, 2022), (7) Stochastic Batches (Gaillochet et al., 2023) and
(8) USIMC (ours), (9) USIMF (ours).
For Core-Set, the activation map of the last convolutional layer of the encode was used as
feature vector to compute Euclidean distances between samples. BADGE(LL) is an adap-
tation of BADGE for segmentation tasks. The method uses the gradients from the last
convolutional layer of the decoder to extract gradient embeddings. The method is equiva-
lent to the ALGES-img method proposed in Aklilu and Yeung (2022). Stochastic Batches
is a method that combines uncertainty and representation by measuring uncertainty at the
level of batches instead of samples. The method depends on the number of batches Q that
are generated from the unlabeled dataset and we set Q = floor(|DU |/B) and used Entropy
as uncertainty measure in our experiments. For a fair comparison between USIMC and
USIMF, and to make the processing tractable, the gradient embeddings are truncated to a
length of 10k elements.
Implementation The methods were evaluated on the �rst two folds of the nnUNet-based
self-con�gured �ve-fold cross validation. The model was initialized with 100 randomly se-
lected samples (patches) and the labeled dataset was expanded with a budget of B = 100
samples in each sampling round. In our experiments, we selected an annotation budget of
100 slices, since it can be considered a realistic budget for practical active learning scenarios.
A larger budget may lead to less cost reduction, while a smaller budget may be impracti-
cal in realistic scenarios where radiologists must integrate the annotation process into their
daily clinical routine. However, we evaluated our proposed strategy for larger budgets by
increasing the budget to 900 and 2000 samples for the Hippocampus and Liver datasets,
respectively, in the last sampling rounds even it might not be reasonable for practical active
learning.
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Appendix D. Analysis of USIM based on query set selection strategy,

batch uncertainty, query set size and weighting parameter

To further analyze and validate the proposed USIM sampling strategy, we investigated
the query set selection strategy, batch uncertainty, in�uence of the query set size, and
weighting parameter η. We only conducted experiments for the USIMF method since it can
be considered the best performing method without loss of generalization.

Query set selection: We compared our proposed query set selection strategy based
on the probability distribution proportional to the weighted uncertainty, with uniform sam-
pling (similar to standard active learning in SIMILAR) (Kothawade et al., 2021) and max-
imum uncertainty-based sampling. We compared query set selection strategies for the �rst
two sampling rounds on the Hippocampus and Liver datasets, as shown in Figure 4. We
observed that our query set selection strategy (USIMF), outperformed uniform sampling
XQ ∼ Uniform(XU , Q) (USIMF uniform sampling) and sampling based on maximum
uncertainty XQ ← argmaxXQ⊆XU ,|XQ|=Q

∑
xi∈XQ

Uncert(xi) (USIMF max uncertainty
sampling). Similar observations were made in (Gaillochet et al., 2023), where uncertainty-
based sampling was performed on a stochastic batch level to overcome the shortcomings of
pure uncertainty-based methods in sampling redundant data.

Figure 4: Performance gain in terms of dice score for our query set selection strategy
(USIMF), query set selection using uniform sampling from the unlabeled dataset (USIMF
uniform sampling) and sampling based on maximum uncertainty (USIMF max uncertainty
sampling) on the Hippocampus and Liver dataset.

Uncertainty: We analyzed the amount of uncertainty of the selected batches to con�rm
that the chosen samples are indeed uncertain. We compared in Figure 5 the overall uncer-
tainty Uncert(XB) =

∑
x∈XB

∑
c ·Uncert(θk−1,x, c) of the selected batches estimated us-

ing Monte Carlo dropout with c being the foreground class and θk−1 the trained model from
the previous training round. The analysis was performed in the �rst �ve sampling rounds
of the Hippocampus dataset. We observed that the uncertainty of batches sampled with
USIMF and USIMC are lower than uncertainty based methods (Mean STD, ENTROPY,
BALD) but higher than representativity-based methods such as CORESET, hybrid variants
(BADGELL, STB) or Random sampling.
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Figure 5: Overall batch uncertainty of the AL methods in the �rst �ve sampling rounds on
the Hippocampus dataset.

To investigate the relationship between the segmentation error and the uncertainty mea-
sured by the gradient length and prediction uncertainty, we also performed a correlation
analysis during the �rst sampling round of the Hippocampus dataset. We analyzed the
segmentation error (total number of misclassi�ed pixels) and predictive uncertainty, as well
as the gradient length (L2 norms) of the bottleneck layer on a randomly selected subset of
the unlabeled dataset. The correlation coe�cients shows that for segmentation tasks with
the nnUNet, the predictive uncertainty estimated using the Monte Carlo dropout corre-
lates more strongly with the segmentation error (r = 0.84) than with the gradient length
(r = 0.68), indicating that predictive uncertainty is a better measure of uncertainty.

Figure 6: Correlation between the total number of misclassi�ed pixels and the predictive
uncertainty (left), and the correlation between the total number of misclassi�ed pixels and
the gradient length of the bottleneck layer (right)
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Query set size: To analyze the in�uence of the size of the query set Q, we compare
the performance gain with respect to Q in Figure 7 for USIMF. For the Hippocampus
dataset, we set Q ∈ {200, 400, 1600, U} with U being the size of the unlabeled dataset and
compare it with automated estimation of the query set size (USIMF). The query set size
for the USIMF method which was estimated with the elbow method (Thorndike, 1953) was
Q = 942 (942/7662) and Q = 1470 (1470/7562) for the �rst and second round, respectively.
For the Liver dataset, we set the query set size Q ∈ {200, 400, 800, 1600, 10000}. For the
USIMF method, the estimated query size was automatically set to Q = 6606 (6606/104133)
and Q = 6852 (6852/104033) for the �rst and second rounds, respectively. As the query set
is sampled with replacement, we assume that the overall uncertainty of the batch should
remain similar. It can be observed that the performance gain is not signi�cantly a�ected by
the size of the query set.

Figure 7: Performance gain with respect to the size of the query set Q in the �rst two
sampling round for the Hippocampus and Liver dataset.
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Weighting parameter η: We analyze the in�uence of weighting parameter η governing
trade-o� between query-relevance and diversity for USIMF. Kothawade et al. (2022b) have
shown in their experiments that larger weighting parameters η tend to increases query
relevance while decreasing query coverage and diversity. We anlyzed the performance gain
with respect to η ∈ {0.0, 1.0, 10.0, 100.0} in the �rst two sampling rounds and did not
encounter larger performance di�erences.

Figure 8: Performance gain with respect to the weighting parameter η.
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Appendix E. Redundancy scenario

To analyze our proposed method under a realistic redundancy scenario, we create a cus-
tom unlabeled Hippocampus dataset by dublicating all samples (patches) of one MRI scan
(hippocampus_172.nii.gz) 100Ö after the initial training round. After the dublication pro-
cess, the query set with a query size of Q = 1000 is sampled with probability distribution
proportional to uncertainty. After sampling process, the query set consists of 45% samples
from the same MRI scan. After submodular subset selection the selected batch XB includes
only 18%(18/100) samples from the dublicated scan compared to 45%(45/100) by uniform
sampling from the query set. It con�rms that the proposed strategy with mutual informa-
tion based submodular subset selection is robust with respect to redundancy. We compare
the performance gain in terms of dice score based on the redundant unlabeled dataset for
USIMF and uniform sampling from the query set in Figure 9.

Figure 9: Performance comparison of USIMF and uniform sampling from the query set in a
redundancy scenario.
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Appendix F. Con�gurations and self-con�gured hyperparameters by the

nnUNet pipeline

Table 1: Con�gurations and self-con�gured hyperparameters

Spleen dataset
Hardware 120GB RAM; NVIDIA A100-PCIE GPU, 40GB

nnUNet con�guration 2D
# downsampling stages 8
# model parameters 10.2M

Batch size 12
Patch size 512 x 512

Epochs per training round 300
Loss function Compound loss (dice and cross entropy loss)

Liver dataset
Hardware 120GB RAM; NVIDIA A100-PCIE GPU, 40GB

nnUNet con�guration 2D
# downsampling stages 8
# model parameters 46.3M

Batch size 12
Patch size 512 x 512

Epochs per training round 300
Loss function Compound loss (dice and cross entropy loss)

Hippocampus dataset
Hardware 120GB RAM; NVIDIA V100 GPU, 32GB

nnUNet con�guration 2D
# downsampling stages 4
# model parameters 1.9M

Batch size 366
Patch size 56 x 40

Epochs per training round 300
Loss function Compound loss (dice and cross entropy loss)
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Appendix G. Examples of active learning for medical image

segmentation

Figure 10: The top row, from left to right, shows a CT slice of the spleen, the ground
truth segmentation, and the segmentation result of the model train on the fully annotated
dataset. The second row shows the segmentation results after the �rst and �fth round of
random sampling. The third row shows the segmentation results after the �rst and �fth
round of the USIMF sampling method.
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Figure 11: The top row, from left to right, shows a CT slice of the liver, the ground truth
segmentation, and the segmentation result of the model train on the fully annotated dataset.
The second row shows the segmentation results after the �rst and �fth round of random
sampling. The third row shows the segmentation results after the �rst and �fth round of
the USIMF sampling method.
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Figure 12: The top row, from left to right, shows an MRI slice of the hippocampus, the
ground truth segmentation, and the segmentation result of the model train on the fully
annotated dataset. The second row shows the segmentation results after the �rst and �fth
round of random sampling. The third row shows the segmentation results after the �rst and
�fth round of the USIMF sampling method.
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