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ABSTRACT

Post-training fundamentally alters the behavior of large language models (LLMs),
yet its impact on the internal parameter space remains poorly understood. In
this work, we conduct a systematic singular value decomposition (SVD) analysis
of principal linear layers in pretrained LLMs, focusing on two widely adopted
post-training methods: instruction tuning and long-chain-of-thought (Long-CoT)
distillation. Our analysis reveals two consistent and unexpected structural changes:
(1) a near-uniform geometric scaling of singular values across layers, which
theoretically modulates attention scores; and (2) highly consistent orthogonal
transformations are applied to the left and right singular vectors of each
matrix. Disrupting this orthogonal consistency leads to catastrophic performance
degradation. Based on these findings, we propose a simple yet effective framework
that interprets post-training as a reparameterization of fixed subspaces in the pre-
trained parameter space. Further experiments reveal that singular value scaling
behaves as a secondary effect, analogous to a temperature adjustment, whereas the
core functional transformation lies in the coordinated rotation of singular vectors.
These results challenge the prevailing view of the parameter space in large models
as a black box, uncovering the first clear regularities in how parameters evolve
during training, and providing a new perspective for deeper investigation into
model parameter changes.

1 INTRODUCTION

The remarkable success of large language models (LLMs) has been substantially facilitated by
post-training techniques. With approaches such as instruction tuning (Ouyang et al., 2022; Zhang
et al., 2024b; Peng et al., 2023), alignment training (Schulman et al., 2017; Li et al., 2023b; Rafailov
et al., 2024; DeepSeek-AI et al., 2025) and knowledge distillation (Xu et al., 2024; Gu et al., 2024;
McDonald et al., 2024; Yang et al., 2024), LLMs have become increasingly usable and better
aligned with human intent (Guo et al., 2024; Cai et al., 2025; Feng et al., 2024). Recent research
on post-training has predominantly centered on algorithmic innovations such as Direct Preference
Optimization (DPO) (Rafailov et al., 2024), Group Relative Policy Optimization (GRPO) (DeepSeek-
AI et al., 2025), and Dynamic sAmpling Policy Optimization (DAPO) (Yu et al., 2025) to enhance the
reasoning capabilities of LLMs. Alternatively, long-chain-of-thought (Long-CoT) distillation offers a
more straightforward and practiced approach, enabling smaller models to acquire reasoning ability
by distilling long chains of thought from large RL-trained models (DeepSeek-AI et al., 2025).

However, despite the empirical success of post-training, its underlying impact on the internal structure
of model parameters remains insufficiently understood. Although recent studies have investigated
post-training mechanisms and uncovered some novel insights (Du et al., 2025; Marks & Tegmark,
2024; Jain et al., 2024; Lee et al., 2024; Panickssery et al., 2024; Stolfo et al., 2024; Katz & Belinkov,
2023; Yao et al., 2025), their studies remain indirect—relying primarily on hidden representations
or behavioral observations rather than exploring fundamental structural changes. Transformations
in parameter space, especially weight matrices, which we often treat as black boxes, have not
been systematically examined. The extent to which post-training reshapes the representational
capacity of the parameter space remains an unresolved problem.
In this work, we present a systematic study on how post-training affects the parameter space of LLMs.
Specifically, we focus on two token-level supervised post-training methods: instruction tuning and
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Figure 1: A simple but effective mathematical approximation to describe the effect of post-training
on the parameter space. Performing SVD on weight matrices in the BASE model, post-training is
equivalent to performing linear scaling on singular values and performing consistent orthogonal
transformations on left and right singular vectors.

Long-CoT distillation1. These methods underpin essential capabilities like instruction-following
and reasoning, forming the basis for more advanced alignment techniques. To examine the structural
impact of post-training, we analyze weight matrices using singular value decomposition (SVD).
SVD decomposes each matrix into orthogonal subspaces with distinct scaling factors, thereby
reducing complex weight structures into three mathematically interpretable components for
systematic analysis, making the underlying geometry of large model parameters more transpar-
ent and interpretable. We apply this framework to the weight matrices within the Self-Attention
modules and Feed-Forward Networks of publicly available models, and categorize models into three
types: BASE models (e.g., Qwen2.5-Math-1.5B (Qwen et al., 2025)), INSTRUCT models (obtained
through instruction tuning), and REASONING models (trained via long-CoT distillation, such as
DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-AI et al., 2025)). The latter two are collectively referred
to as POST models. This categorization enables systematic comparison of parameter space structural
changes induced by different post-training methods.

Our empirical results reveal two key effects of post-training on the model’s parameter space: (1)
Near-uniform geometric scaling of singular values: Post-training preserves the principal singular
value distribution of the BASE model while applying a consistent, layer-wise linear scaling factor. We
show this scaling equivalently regulates attention scores. Notably, we observe anomalous scaling in
the Attention module’s WO matrix, which strongly correlates with the REASONING model’s superior
long-chain reasoning over the INSTRUCT model; (2) Highly consistent orthogonal transformations:
The left and right singular vectors of each matrix undergo nearly identical orthogonal transformations
during post-training, exhibiting shared, coordinated rotations. This phenomenon occurs consistently
across all weight matrices, strongly suggesting that post-training preserves the subspace structure
established during pre-training.

These results indicate that post-training essentially induces highly regular structural perturbations
in the parameter space. Based on the two observed phenomena, we can use a simple yet effective
mathematical framework to directly approximate the impact of post-training on the parameter
space (Figure 1). We experimentally demonstrate that the singular value scaling phenomenon is a
temperature-controlled mechanism that does not alter the model’s behavior. The consistent orthogonal
transformations applied to the weight matrices are the core of post-training.

We summarize our contributions as follows:

• To the best of our knowledge, this is the first systematic study of structural changes in LLMs
before/after post-training across the entire parameter space. Unlike prior works focusing on
individual neuron activations or external behaviors, we comprehensively analyze the singular
value structure of principal linear layers, revealing consistent patterns of post-training effects in
the parameter space.

1For clarity and ease of reading, post-training hereafter refers to both instruction tuning and Long-CoT
distillation in the following sections unless otherwise specified.
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• We experimentally discover two structural phenomena that are stable across multiple model
families, parameter sizes, and training methods: First, the singular values exhibit near-uniform
geometric scaling; second, the left and right singular vectors of each matrix remain stable under
consistent orthogonal transformations.

• We establish a simple yet effective mathematical framework to describe the parameter
change mechanism. Our experiments have validated the importance of orthogonal transfor-
mations in post-training. This work provides new understanding of parameter evolution during
post-training and lays the foundation for developing a unified theory of LLM parameter transfor-
mations.

2 RELATED WORK

Interpretability of post-training. With the growing success of post-training, researchers have
increasingly sought to uncover its underlying mechanisms. Several studies have attempted to
investigate the impact of post-training on LLMs by constructing task-specific or instruction-formatted
datasets (Du et al., 2025; Marks & Tegmark, 2024; Jain et al., 2024; Lee et al., 2024; Panickssery
et al., 2024; He et al., 2024). However, since these studies treat the models more as black boxes, they
provide limited insights into the structural changes in model parameters induced by post-training.
Parallel lines of research have attempted to explain the behavior of large language models by analyzing
individual neurons or sparse activation patterns, uncovering phenomena such as entropy neurons
and task-specific circuits (Stolfo et al., 2024; Katz & Belinkov, 2023; Yao et al., 2025; Gurnee
et al., 2024; Tang et al., 2024; Chen et al., 2024; Yu & Ananiadou, 2024). While these studies offer
valuable insights, their scope is inherently limited, as they are often based on earlier models such as
GPT-2 (Brown et al., 2020), reducing their relevance to contemporary architectures. Our analysis is
data-agnostic, as we directly examine the full parameter space of the model rather than relying on
input–output behavior. This perspective extends beyond previous studies that focus on individual
neurons or isolated functional circuits, enabling a more global understanding of model structure.

Singular value decomposition in large language models. The optimal low-rank approximation
property of SVD (Eckart & Young, 1936) has inspired a surge of SVD-based techniques for LLMs.
Recent methods such as PiSSA (Meng et al., 2024), SVFT (Lingam et al., 2024) and RaSA (He
et al., 2025) leverage dominant singular components to improve fine-tuning efficiency, while others
employ SVD for quantization to reduce deployment costs (Li et al., 2024; Wang et al., 2024; Qinsi
et al.; Li et al., 2023a; Yuan et al., 2023). Beyond its practical utility, SVD provides a principled
framework for analyzing the structure of LLMs (Yang et al., 2023). For any weight matrix, reduced
SVD produces a decomposition into two orthogonal matrices and a diagonal matrix, each of which
carries a well-defined mathematical role: the orthogonal matrices span the input and output subspaces,
defining bases in which the transformation operates, while the diagonal matrix applies directional
scaling along these bases. In this view, the singular vectors determine how representations are
aligned and projected, and the singular values quantify the relative importance of each direction. This
decomposition reveals how LLMs transform information across layers, making SVD not only a tool
for compression or fine-tuning, but also a window into the geometry of their internal computation.
Our work leverages this perspective to investigate the structural organization of weights in LLMs.

3 PRELIMINARIES

This section reviews the training pipeline and architectural components of LLMs. Given a vocabulary
V , we define LLMs as M : T → P , where T denotes the set of input token sequences Ti =
[t1, t2, ..., tn]i ∈ T and P is the probability space over V . AfterM accepts sequences of input tokens
Ti, a probability distribution pM ∈ P is output to predict the probability of the next token.

Training stages of LLMs. LLMs are typically trained following a two-stage paradigm. The first
stage, known as pre-training, involves optimizing a BASE modelMbase to predict the next token
given previous context, based on a large-scale corpus drawn from a large-scale distribution of
natural language texts (Radford et al., 2018; Sun et al., 2021; Yuan et al., 2022). The second stage,
termed post-training, further fine-tunes the pretrained model to align its behavior with specific
objectives, such as following user instructions (Zhang et al., 2024b) or performing complex reasoning
(DeepSeek-AI et al., 2025). Depending on the post-training objective, the adapted model is referred
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to as an INSTRUCT model MInstruct or a REASONING model Mreasoning. The two models under
discussion are collectively referred to as POST modelsMpost. The architectures ofMbase andMpost
are identical — all weight matrices share the same dimensionality, while the sole distinction lies in
their respective parameterizations. In the main paper,Mbase refers to Qwen2.5-Math-1.5B,MInstruct
to its instruction-tuned variant Qwen2.5-Math-1.5B-Instruct, andMreasoning to the distilled reasoning
model DeepSeek-R1-Distill-Qwen-1.5B. MInstruct and Mreasoning can both be expressed as Mpost.
Results for other models across different families and parameter scales are provided in the Appendix.

Architectural components of LLMs. We focus on decoder-only Transformer-based models, which
constitute the foundation of state-of-the-art large language model systems (OpenAI et al., 2024;
DeepSeek-AI et al., 2024a; Team et al., 2025). The Transformer architecture consists of two core
components: the Self-Attention Module (SA) and the Feed-Forward Network (FFN) (Vaswani et al.,
2023). Given an input hidden vector hT ∈ Rdmodel , we consider the simplest form of attention
calculation for concise illustration. The output of the SA is:

SA(h) = softmax
(
hWQ · [Kcache;hWK ]T√

d

)
· [Vcache;hWV ]WO (1)

where WQ,WK ,WV ,WO ∈ Rdmodel×dmodel are learnable weight matrices,
√
d is the scaling factor in

the attention map, Kcache and Vcache are the key and value caches respectively, and [...; ...] denotes
concatenation. While modern architectures such as Qwen2.5 series adopt variants like GQA (Ainslie
et al., 2023) to optimize attention computation, the core projection matrices remain integral to the
design due to their role in defining the attention mechanism’s representational capacity. Given an
input vector zT ∈ Rdmodel , the output of the FFN, which employs the SwiGLU activation function
(Shazeer, 2020), is:

FFN(z) = (SwiGLU(z ·Wgate)⊙ (z ·Wup)) ·Wdown (2)

where WT
down,Wgate,Wup ∈ Rdmodel×dmlp are learnable weight matrices. Notably, GQA and

SwiGLU-based FFNs have become fundamental building blocks adopted across numerous com-
mercial open-source LLMs, including Qwen (Qwen et al., 2025), LLaMA (Grattafiori et al., 2024),
Mistral (Jiang et al., 2023a), Phi-4 (Abdin et al., 2024), gpt-oss (OpenAI et al., 2025), Gemma (Team
et al., 2025) and others (GLM et al., 2024; Yang et al., 2025; DeepSeek-AI et al., 2024b). Since our
work targets components common to mainstream architectures, their widespread adoption inherently
ensures the generalizability and representativeness of our research focus. We specifically focus on the
weight matrices in SAs and FFNs, which account for the majority of parameters in LLMs. Analyzing
these linear layers further enables us to characterize the structure of the model’s parameter space.

4 THE STRUCTURAL CHANGES OF SINGULAR SPACE AFTER POST-TRAINING

This section formally presents two regular structural changes that occur in the singular space of
LLMs after post-training. Assuming that m≤n, the reduced SVD of a matrix W ∈ Rm×n is
given by W = UΣV T , where U ∈ Rm×m and V T ∈ Rm×n are matrices with orthogonality
whose columns correspond to the left and right singular vectors respectively. The diagonal matrix
Σ = diag(σ1, σ2, . . . , σn) ∈ Rn×n contains the singular values arranged in descending order.

4.1 NEAR-UNIFORM GEOMETRIC SCALING OF SINGULAR VALUES

We observe that post-training does not alter the overall singular value distribution established during
pre-training in the BASE model, instead, It exhibits a near-uniform geometric scaling behavior,
characterized by approximately consistent scaling factors across main singular values.

For the i-th Transformer block ofMA andMB of the same architecture, we perform reduced SVD
on weight matrix:

W
(i)
A = U

(i)
A · diag(σ

(i)
A,1, σ

(i)
A,2, ..., σ

(i)
A,n) · V

(i)
A

T

W
(i)
B = U

(i)
B · diag(σ

(i)
B,1, σ

(i)
B,2, ..., σ

(i)
B,n) · V

(i)
B

T
(3)

where W
(i)
A ∈ MA and W

(i)
B ∈ MB represent weight matrices of the same type in the i-th

Transformer block (e.g. WQ) but belonging to different models. To quantify the effect of post-
training on the evolution of singular value distribution, we define the Singular Value Scaling Matrix
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Figure 2: The heatmaps of SVSMs comparing Mbase with M′
base, MInstruct and Mreasoning. (a)

indicates no regular pattern in the distribution of scaling factors betweenM′
base andMbase. In both

(b) and (c), the principal scaling exhibits a near-uniform distribution. While in (c), scaling factors of
WO are significantly higher than those of other matrix types.

(SVSM) as:

SV SM(
MB

MA
) = [Div(1), Div(2), ..., Div(k)], Div(i) = [

σ
(i)
B,1

σ
(i)
A,1

, ...,
σ
(i)
B,n

σ
(i)
A,n

]T (4)

where k corresponds to the depth of architectureMA orMB . α(i) = σ
(i)
B,j/σ

(i)
A,j , j = 1, 2, ..., n is

the scaling factor. SVSM actually describes the distribution of all scaling factors across layers. We
plot the heatmaps of SV SM(MInstruct

Mbase
) (Figure 2b) and SV SM(

Mreasoning

Mbase
) (Figure 2c) as examples. For

reference comparison, we also show heatmaps of SV SM(
M′

base
Mbase

) whereM′
base denotes Qwen2.5-1.5B,

which shares the same architecture but differs in pre-training data (Figure 2a).

ForMInstruct andMreasoning compared toMbase, scaling factors are remarkably stable across principal
singular values. The instability is confined to the tail, where the singular values have negligible
magnitude and contribute little to the overall transformation. This phenomenon can be approximately
modeled by Σpost ≈ αΣbase since the scaling factors of principal singular values are almost the same.
As a comparison, the cross-layer stability cannot be achieved betweenM′

base andMbase. We further
observe that scaling factors of WO in Mreasoning consistently exceed those of other matrix types,
which can be used to significantly distinguish non-reasoning models. This pattern holds uniformly
across all REASONING models in our study. Detailed quantitative data (Table 3) and visualizations of
other models across different families and parameter scales are in Appendix A.

4.2 CONSISTENT ORTHOGONAL TRANSFORMATIONS OF SINGULAR VECTORS

We investigate the similarity between the singular vectors of BASE models and POST models. It is
significant to find that the similarity matrices of both left and right singular vectors remain nearly
identical after post-training, suggesting that the input and output subspaces undergo consistent
orthogonal transformations during this process.

Combining Equation 3, the similarity matrices of W (i)
A and W

(i)
B are defined as:

sim
(i)
U (
MA

MB
) = U

(i)
A

T
· U (i)

B , sim
(i)
V (
MA

MB
) = V

(i)
A

T
· V (i)

B (5)

The widely observed phenomenon can be expressed as |sim(i)
U (Mbase

Mpost
)| ≈ |sim(i)

V (Mbase
Mpost

)| (①-③ in
Figure 3a), where | · | takes the absolute value of each matrix element to remove the possible
sign ambiguity of singular vectors, which implies that the input and output subspaces of LLMs
are undergoing highly symmetrical changes. Based on this inference, we can theoretically prove
that the similarity matrices of the left and right singular vectors can be directly used to describe
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Figure 3: An example showing the orthogonality of singular vector similarity to the transformation
performed. Only the first 25 dimensions are retained for clearer visualization. (a) shows the
singular vector behavior of WO in the first Transformer block. Difference matrix (③) represents∣∣sim(0)

U − sim
(0)
V

∣∣, which is almost a zero matrix. ④ is I(0)orth of W (0)
O . Most of its diagonal elements

are close to 1, and the rest are basically 0. (b) extensively verifies the approximate equality of Q(i)
1

and Q
(i)
2 comparingMbase toM′

base andMpost.

the transformation dynamics within the parameter space of LLMs, and only rotate the orthogonal
bases already formed during the pre-training of LLMs. For Mbase →Mpost, the change in left
and right singular vectors from W

(i)
base to W

(i)
post can be framed as applying coordinated orthogonal

transformations to them:

U
(i)
post = U

(i)
baseQ

(i)
1 , V

(i)
post = V

(i)
baseQ

(i)
2 , Q

(i)
1 ≈ Q

(i)
2 = sim

(i)
U/V (6)

where Q
(i)
1 and Q

(i)
2 are transformation matrices. The derivation of Equation 6 is given in Ap-

pendix G.2, which strongly reflects the collaborative and consistent variation of the input and output
subspaces. We validate this claim by leveraging the properties of orthogonal matrices:

if Q
(i)
1 = Q

(i)
2 , then Q

(i)
1

T
Q

(i)
2 = (U

(i)
base

T
U

(i)
post)

T · (V (i)
base

T
V

(i)
post) = I

(i)
orth = I (7)

where I ∈ Rn×n is the identity matrix. We quantify the orthogonality and the equality between
Q

(i)
1 and Q

(i)
2 by measuring the proximity of I

(i)
orth to I , employing the normalized Frobenius

norm NF (i) = F (i)(I
(i)
orth − I)/

√
n2 = F (i)(I

(i)
orth − I)/n as our metric. To eliminate the pos-

sibility of low NF (i) due to insufficient training, we also plot the mean and standard deviation
of NF (i)

sim = F (i)((sim
(i)
U − I)/n) as line plots (shaded regions denote standard deviation) for all

matrix types in each Transformer block.

④ in Figure 3a presents our visualization of I(0)orth for W (0)
O , and Figure 3b illustrates NF (i) and

NF (i)
sim in all the weight matrices of the layers. It can be observed that for Mpost, the values of

NF (i) are consistently and significantly lower than those ofM′
base across all layers while NF (i)

sim

sustains a persistently high magnitude, directly demonstrating that Q(i)
1 and Q

(i)
2 are approximately

equal orthogonal matrices throughout post-training. We can further conclude that the variation in
singular vectors on the left and right can be approximately characterized by consistent orthogonal
transformations with negligible deviation, a property absent in different pretrained models (see
Appendix B.2). More detailed test results are in Appendix B.

5 ANALYSIS OF POST-TRAINING

Based on the observation of the aforementioned phenomena, we propose a simplified mathematical
model of the weight changes fromMbase →Mpost, which prior work has struggled to describe for-
mally (Du et al., 2025; Marks & Tegmark, 2024; Jain et al., 2024; Lee et al., 2024). For Wbase ∈Mbase
and Wpost ∈Mpost, the changes imposed by post-training on the parameters can be approximated by
a linear factor α and an orthogonal matrix Q:

Wpost = UpostΣpostV
T

post ≈ (UbaseQ) · (αΣbase) · (VbaseQ)T (8)

The relation Σpost = αΣbase captures how post-training globally scales the singular values, whereas
Upost = UbaseQ and Vpost = VbaseQ indicate a consistent orthogonal transformation of the input and
output subspaces. From this perspective, post-training can be viewed as a reparameterization of the
pretrained subspaces. This section provides empirical validation that post-training a BASE model
fundamentally corresponds to learning structured orthogonal rotations, where singular value scaling
constitutes a secondary effect.
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5.1 SINGULAR VALUES SCALING IS JUST A TEMPERATURE-CONTROLLED MECHANISM

Equation 8 demonstrates that post-training does not alter the singular value distribution formed during
pre-training in BASE models, but merely scales it proportionally. We designed a controlled experiment
to verify the impact of post-training on the singular values of POST models.

Experiments. A direct corollary of Equation 8 is that the singular value distribution of POST models
can be approximated by combining the singular value distribution of BASE models with an appropriate
linear factor. Consequently, the models before and after singular value replacement should exhibit
nearly identical performance. ForMpost, we perform Construction 9 on each of their weight matrices
across all transformer blocks, which involves replacing the singular values ofMpost with those from
Mbase and a given linear factor α′:

W
(i)
post ← U

(i)
post · (α′Σ

(i)
base) · V

(i)
post

T
(9)

We denote the resulting model after substitution of singular values asMreplaced
post . The choice of α′ is

shown in Table 4. We then evaluate bothMpost andMreplaced
post on four standard benchmarks: GSM8K

(Cobbe et al., 2021), MATH-500 (Hendrycks et al., 2021b), MMLU (dev split) (Hendrycks et al.,
2021a), and GPQA (Rein et al., 2023). Performance is measured by pass@1 accuracy(%) with
a token limit of 1024. To ensure reliability, all evaluations are conducted with three independent
repetitions, and the average values are reported. The results are shown in Table 1.

Table 1: Performance comparison between original and replaced models across GSM8K, MATH-500,
MMLU, and GPQA with pass@1 accuracy (%).

BASE Models REPLACED Types GSM8K MATH-500 MMLU (dev) GPQA

Qwen2.5-
Math-1.5B

MInstruct 85.14±0.14 65.47±0.90 48.04±0.60 30.44±0.36

Mreplaced
Instruct 85.59±0.09 61.67±0.57 49.47±0.29 25.99±0.70

Mreasoning 62.88±0.59 32.73±1.64 25.02±0.59 7.02±0.44

Mreplaced
reasoning 69.45±0.43 41.46±0.53 35.52±0.81 9.45±1.59

It can be observed thatMreplaced
post maintains the performance of theMpost, which once again illus-

trates the importance of Equation 8 and verifies that post-training does not alter the singular value
distribution of the original model. Notably, we observe a significant performance gain inMreplaced

reasoning.
The underlying cause of this enhancement may lie in the reduction of the number of tokens output by
the models (as shown in Table 6), which ensures that the model-generated responses are not truncated
by the pre-specified token limit. The reduction in token count stems from the proposed approximate
replacement operation, which enforces uniform scaling across all singular values, thereby mitigating
potential noise during the training process. This in turn enablesMreplaced

reasoning to generate more concise
token sequences when addressing simple queries. Detailed experimental setups, the selection method
of α′, and results across different model scales and families are provided in Appendix C.1.

Scaling of singular values is just a temperature-controlled mechanism. To better visualize the
change mechanism of singular values, we directly employ Construction 14 (the equivalent expression
of Construction 9 when all α′ = 1) to constructMreplaced and analyze the attention score distributions
of the modified model (Figure 4a). The results show that the attention score distributions remain
largely consistent, exhibiting no significant shifts. Instead, the replacement appears to induce a
smoothing effect that resembles a temperature-controlled process (see Appendix G.1 for proof). The
measure of attention entropy H (Kumar & Sarawagi, 2019) in Figure 4b supports this potential
mechanism. The attention entropy H of Mreplaced closely matches that of the original MInstruct,
suggesting that the singular value replacement does not disrupt the structural integrity of LLMs or its
capacity to capture contextual dependencies. More detailed results are given in Appendix C.2.
Notably, the attention entropy before and after the replacement remains closely aligned, suggesting
that the entropy transformation induced by post-training primarily serves as a secondary temperature
control mechanism rather than substantially altering the model’s behavior. This further implies that
singular value scaling is a secondary effect accompanying the post-training process, not its primary
mechanism.

7
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Figure 4: Visualization of the average attention patterns before and after replacing the singular values.
① in (a) shows the original attention heads, while ② presents the averaged attention heads from the
modified model. ③ illustrates the differences between the original and modified attention patterns.
Panel (b) suggests that this behavior corresponds to a modulation of attention entropy.

5.2 CONSISTENT ORTHOGONAL TRANSFORMATIONS ARE THE CORE OF POST-TRAINING

While replacing the singular values only mildly alters the model’s behavior, disrupting the approximate
orthogonal consistency between the input and output subspaces leads to a clear mode collapse in
Mpost. To validate the functional importance of this coherence, we design a controlled experiment
with two comparative settings.

Experiments. In the first setting (ABLATION), we remove the orthogonal transformation applied to
the output subspaces of Wpost (Construction 10), while preserving the transformation on the input
subspaces. In the second setting (RESTORATION), we restore coherence by applying to the output
subspaces the same orthogonal transformation derived from the input subspaces (Construction 11).

W
(i)
post ← U

(i)
postΣpost · V (i)

base

T
(10)

W
(i)
post ← U

(i)
postΣpost · (V (i)

baseQ)T = U
(i)
postΣpost · (V (i)

base ·U
(i)
base

T
U

(i)
post)

T (11)

To assess the functional role of consistent orthogonal transformations, we feed the same input into
Mpost under three settings: the original model, the ABLATION model (Mablation

post ), and the RESTORA-
TION model (Mrestoration

post ). All weight matrices in SAs are modified according to Constructions
10 and 11. We employ the same experimental setup as in Table 1 to evaluate the performance of
restoration models across four datasets, with the results presented in Table 2:

Table 2: Performance comparison between original and RESTORATION models across GSM8K,
MATH-500, MMLU, and GPQA with pass@1 accuracy (%).

BASE Models RESTORATION Types GSM8K MATH-500 MMLU (dev) GPQA

Qwen2.5-
Math-1.5B

MInstruct 85.14±0.14 65.47±0.90 48.04±0.60 30.44±0.36

Mablation
Instruct 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Mrestoration
Instruct 84.53±0.25 66.20±0.16 41.28±0.44 27.69±0.29

Mreasoning 62.88±0.59 32.73±1.64 25.02±0.59 7.02±0.44

Mablation
reasoning 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Mrestoration
reasoning 61.54±1.19 30.93±0.57 29.00±0.44 6.75±0.27

The performance of ABLATION models produce nonsensical outputs across different tasks, as shown
in the case examples in Figure 5, leading to 0% accuracy across all evaluation metrics. In contrast,
RESTORATION models recover meaningful outputs, further supporting the hypothesis of consistent
orthogonal transformations in LLMs. The results across different model scales and families are
provided in the Appendix D.1.
Orthogonal Consistency and Model Integrity. To further investigate the role of consistent orthogo-
nal transformations in shaping the latent space across Transformer blocks, we evaluate the hidden
representations of the ABLATION and RESTORATION models using Centered Kernel Alignment (CKA)
(Kornblith et al., 2019), a standard metric for quantifying representational similarity across neural
network layers. We use 100 questions from the GSM8K dataset and compute the average hidden
representation at each layer across these inputs. CKA scores are then calculated between the original
model (①) and the ABLATION (②) and RESTORATION (③) models, as shown in Figure 6.
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Figure 5: An example of model responses under three different settings. The ABLATION model
outputs all garbled characters, while the RESTORATION model reconstructs the features of the original
model through the orthogonal matrix of the input subspaces.

Figure 6: Heatmaps of CKA under different settings. ② corresponds to the ablation in Construction 10,
which substantially disrupts the original model’s representational structure. ③ and ④, corresponding
to restorations via Constructions 11 and 12, effectively recover the original hidden representations.

The results reveal that the ablation (②) leads to an immediate and significant disruption of the model’s
representational structure starting from the very first layer. This indicates that the effect is not merely
a result of cumulative downstream errors, but rather a fundamental alteration of the model’s initial
architecture. The restoration process (③) effectively reinstates the original representational geometry,
underscoring the structural importance of the orthogonal transformations.

Additional experimental settings and results are provided in Appendix D.2. These findings suggest
that the consistent orthogonal transformations between the input and output subspaces represent
a central mechanism driving parameter reorganization during post-training adaptation, and offers
a novel perspective that prompts us to narrow down the research scope of the impact exerted by
post-training on the parameter space to the consistent rotation matrix Q.

The equivalence of different post-training methods. We theoretically prove that POST models
initialized from the same pretrained parameters but trained on different data distributions are mutually
transformable via a shared set of orthogonal transformations (see Appendix G.3 for proof). To test
this hypothesis, we construct a new RESTORATION model fromMInstruct following Construction 12,
and evaluate its similarity to the original model using a CKA heatmap (marked as ④ in Figure 6).

W
(i)
post ← U

(i)
postΣpost · (V (i)

InstructQ
′)T = U

(i)
postΣpost · (V (i)

Instruct ·U
(i)
Instruct

T
U

(i)
post)

T (12)

This effective restoration of the latent space confirms the correctness of the hypothesis. We believe
that this equivalence actually provides a parametric basis for certain universal phenomena. For
example, it allows us to expose a potential mechanism behind catastrophic forgetting: when shared
orthogonal transformations are disrupted and overwritten by new task-specific ones, the original
transformations are lost, leading to performance degradation on prior tasks. We believe this inference
can provide parameter-based support for understanding the forgetting mechanism of LLMs.

6 CONCLUSION

The paper establishes a unified and interpretable framework for understanding how post-training
reshapes the internal structure of large language models. Through a comprehensive SVD analysis of
linear layers, we identify two consistent transformations: a near-uniform geometric scaling of singular
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values and highly consistent orthogonal transformations of singular vectors, both pervasive across
model families and parameter scales. Our theoretical and empirical analyses indicate that while singu-
lar value scaling can be interpreted as a temperature-like adjustment, the essential functional change
lies in the structured rotations of singular vectors, whose disruption markedly degrades performance.
These findings not only provide a theoretical foundation for potential applications (see Appendix F
for a related discussion), but also offer the first systematic account of the reparameterization dynamics
governing large language models.

7 LIMITATION

While this paper identifies two structural changes in the parameter space of SAs and FFNs, our
analysis primarily focuses on weight matrices in models that undergo supervised post-training. This
restriction naturally raises several open questions: Do reinforcement learning–based post-training
methods exhibit the same structural phenomena? If the architecture or training paradigm of
large models changes substantially, will the observed regularities persist? Do other components
in LLMs with specific functions (such as normalization layers and output projection heads)
follow similar patterns? A detailed discussion in Appendix E further demonstrates the generality of
these two structural changes.

Moreover, our findings also point to a deeper theoretical challenge: what underlying mechanism
gives rise to such striking regularities in LLMs? We conjecture that a unified theoretical framework
must exist—one capable of explaining the emergence and stability of these structural properties
across different training paradigms. We view the pursuit of such a framework as a promising and
impactful direction for future research.
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A SINGULAR VALUE SCALING ACROSS MODELS OF DIFFERENT FAMILIES
AND SIZES

In the main paper, we introduce the SVSMs of Qwen2.5-Math-1.5B as the BASE model. This section
continues to present comparisons of models with different post-training methods based on BASE
models Qwen2.5-Math-7B, Llama-3.1-8B, and Qwen2.5-14B in DeepSeek-AI et al. (2025). The
different POST versions of these models are described in the Appendix H.2. We will also provide a
detailed analysis of the cross-layer stability of the near-uniform geometric scaling.

A.1 SVSMS

Figure 7: The heatmaps of SVSMs. The BASE models of (a), (b) and (c) are Qwen2.5-Math-
7B, Llama-3.1-8B and Qwen2.5-14B respectively. Unlike Qwen2.5-Math-7B which has different
pretrained versions like Qwen2.5-7B, only INSTRUCT version and REASONING version of the latter
two models are compared.

Figure 7 shows SVSMs of different BASE models. We empirically observe a consistent pattern of
singular value scaling across different post-training methods, where the principal singular values
exhibit identical scaling ratios across different layers. This phenomenon universally manifests in
all weight matrices. Notably, the WO matrices in all REASONING models demonstrate significantly
higher overall scaling ratios compared to other weight matrices.
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A.2 CROSS-LAYER STABILITY OF SINGULAR VALUE SCALING

Figure 8: The bandwidth plot shows the distribution ( mean± std ) of the scaling factors for the top
90% singular values in each layer. The blue line indicates comparison withM′

base, while the light
orange and brown curves correspond to comparisons withMinstruct andMreasoning respectively.
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Figure 8 shows the mean (dark line) and standard deviation (light band) of the scaling factors for
the top 90% principal singular values across all Transformer blocks. As can be seen from the figure,
both the INSTRUCT and REASONING models show stability in singular value scaling, which is both
per-layer (almost no broadband is visible in the INSTRUCT and REASONING models) and cross-layer
(the values in each layer are almost the same). Table 3 further reports the overall mean and standard
deviation of the scaling factors for the top 90% singular values across all layers. As shown, the
standard deviation across different BASE models is substantially larger than that between each BASE
model and its corresponding POST model (e.g., 37.39× std for in Qwen2.5-Math-1.5B betweenM′

base
andMInstruct), and the maximum variation ofMpost remains within 1%, demonstrating the stability
of the singular value scaling phenomenon and further reinforcing our claim.

Table 3: Global layer statistics of the scaling of the top 90% singular values ( mean±std ), measured
for different model families and parameter scales.

SV SM( ·
Mbase

) WQ WK WV WO

Qwen2.5-Math-1.5B
M′

base 0.6709± 0.1728 0.7017± 0.0903 0.6465± 0.0432 0.6293± 0.1272
MIntruct 0.9071± 0.0046 0.9084± 0.0053 0.9026± 0.0036 0.9041± 0.0036
Mreasoning 0.9710± 0.0131 0.9723± 0.0109 0.9513± 0.0103 1.3551± 0.0058

Qwen2.5-Math-7B
M′

base 0.6621± 0.0827 0.7033± 0.0688 0.6388± 0.0368 0.6257± 0.0317
MIntruct 0.9074± 0.0043 0.9103± 0.0111 0.9040± 0.0047 0.9056± 0.0027
Mreasoning 0.9837± 0.0036 0.9823± 0.0072 0.9737± 0.0072 1.3800± 0.0031

Llama-3.1-8B MIntruct 0.9960± 0.0017 0.9951± 0.0008 0.9957± 0.0009 0.9975± 0.0027
Mreasoning 1.0041± 0.0181 0.9898± 0.0058 0.9930± 0.0093 1.4112± 0.0187

Qwen2.5-14B MIntruct 0.9990± 0.0006 0.9989± 0.0003 0.9989± 0.0002 0.9989± 0.0002
Mreasoning 0.9937± 0.0142 0.9901± 0.0064 0.9861± 0.0031 1.3952± 0.0017

SV SM( ·
Mbase

) Wup Wgate Wdown

Qwen2.5-Math-1.5B
M′

base 0.7242± 0.0882 0.7282± 0.1179 0.6967± 0.0274
MIntruct 0.9016± 0.0010 0.9018± 0.0017 0.9019± 0.0010
Mreasoning 0.9720± 0.0023 0.9687± 0.0035 0.9714± 0.0026

Qwen2.5-Math-7B
M′

base 0.6693± 0.0454 0.6791± 0.0514 0.6495± 0.0140
MIntruct 0.9021± 0.0014 0.9025± 0.0013 0.9024± 0.0016
Mreasoning 0.9847± 0.0020 0.9839± 0.0019 0.9843± 0.0021

Llama-3.1-8B MIntruct 0.9961± 0.0003 0.9957± 0.0003 0.9961± 0.0003
Mreasoning 1.0036± 0.0041 0.9988± 0.0033 1.0035± 0.0044

Qwen2.5-14B MIntruct 0.9991± 0.0021 0.9991± 0.0015 0.9990± 0.0006
Mreasoning 0.9922± 0.0132 0.9924± 0.0119 0.9909± 0.0062

B CONSISTENT ORTHOGONAL TRANSFORMATIONS ACROSS MODELS OF
DIFFERENT FAMILIES AND SIZES

In this section, we compare NF (i) between the BASE and POST versions of Qwen2.5-Math-7B,
Llama-3.1-8B, and Qwen2.5-14B. We also visualize the similarity, difference, and orthogonality
matrices of the left and right singular vectors of WQ, WK , WV , and WO (using the first and last
Transformer blocks as examples), and discuss whether such orthogonal consistency is already present
in the pre-training stage.

B.1 VISUALIZING ORTHOGONAL CONSISTENCY ACROSS MODELS OF DIFFERENT FAMILIES
AND SIZES

As shown in Figure 9, the NF (i) values across different POST versions consistently remain low, in
contrast to the higher values observed among the pre-training variants (Figure 9a, Base vs Base). This
indicates that, despite variations in model scale and post-training methods, each matrix exhibits a
high degree of consistency in the orthogonal transformations (Q(i)

1 and Q
(i)
2 ) applied to its singular

vectors. This phenomenon is illustrated more clearly in Figure 10-13, where most orthogonality
matrices closely approximate the identity matrix.
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Figure 9: Extensively verifies the equality of Q(i)
1 and Q

(i)
2 comparingMbase toMpost by NF (i).

Figure 10: Visualizations of the similarity, difference and orthogonality matrices of the left and right
singular vectors of the first and last Transformer block’s WQ before and after post-training across
models of different scales.
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Figure 11: Visualizations of the similarity, difference and orthogonality matrices of the left and right
singular vectors of the first and last Transformer block’s WK before and after post-training across
models of different scales.
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Figure 12: Visualizations of the similarity, difference and orthogonality matrices of the left and right
singular vectors of the first and last Transformer block’s WV before and after post-training across
models of different scales.
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Figure 13: Visualizations of the similarity, difference and orthogonality matrices of the left and right
singular vectors of the first and last Transformer block’s WO before and after post-training across
models of different scales.
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We also observe that the similarity matrices of the left and right singular vectors are mostly con-
centrated along the diagonal. As shown in Appendix A, post-training does not alter the distribution
of singular values of the weight matrices. When taken together with our current observation, this
indirectly supports the view that post-training acts as a perturbation to the pretrained subspaces.

B.2 TRANSFORMATIONS OF SINGULAR VECTORS DURING PRE-TRAINING

The similarity matrices of the left and right singular vectors across different BASE models do not
exhibit strong diagonal dominance, suggesting substantial divergence in their pretrained subspaces
(Figure 14). Despite this divergence, we observe a subtle and consistent pattern in the orthogonal
transformations between the left and right singular vectors. This subtle consistency may stem from
an accumulation of alignment errors, implying that the orthogonal transformations are systematically
misaligned to some extent. We can calibrate Upost, Vpost in Equation 8:

Upost = Ubase(Q ·∆Q1)

Vpost = Vbase(Q ·∆Q2)
(13)

The matrices ∆Q1 and ∆Q2 represent small-angle components that capture fine-grained deviations
superimposed on the coordinated transformation of the left and right singular vectors during training.
These residual transformation correspond to the perturbation term Iorth in Equation 7. From this
perspective, the amount of data used in post-training is substantially smaller than in pre-training. As
a result, the accumulated perturbations introduced during post-training are also much smaller than
the large-scale transformations of the left and right singular vectors induced during pre-training. It is
reasonable to postulate that the accumulation of such errors precisely constitutes a significant factor
in reshaping the subspaces of BASE models. Given that the cumulative deviations introduced by ∆Q1

and ∆Q2 remain sufficiently small, the overall transformations of the singular space can be well-
approximated as coherent orthogonal rotations. This also supports the validity of the approximation
made in Equation 8.

Figure 14: Visualizations of the similarity, difference and orthogonality matrices of the left and right
singular vectors of the first and last Transformer block’s WO betweenMbase andM′

base.

C EXPERIMENTS ON DIFFERENT REPLACED MODELS

This section will conduct the same experiments as presented in the main paper on models of varying
scales and families, aiming to verify the universality and generalizability of the near-uniform geo-
metric scaling phenomenon of singular values. The evaluation will include tests on four standard
benchmark datasets, along with visualizations of attention entropy.

C.1 PERFORMANCE OF DIFFERENT REPLACED MODELS

The purpose of performing Construction 9 onMpost is to verify that the singular value distribution of
Mpost can be reconstructed through the linear factor α′ and the singular value distribution ofMbase,
thereby validating the rationality of Equation 8. This verification critically depends on the selection
of α′. Our choice of α′ is based on Table 3, as it reflects the overall distribution of singular value
scaling factors. We obtain the final α′ values for each type of weight matrix in the POST models by
rounding the mean of these scaling factors, as presented in Table 4.
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Table 4: α′ values (right) assigned based on mean singular value scaling factors (left) of weight
matrices per type (from Table 3).

POST Types WQ WK WV WO

Qwen2.5-Math-1.5B MIntruct 0.9071→ 0.9 0.9084→ 0.9 0.9026→ 0.9 0.9041→ 0.9
Mreasoning 0.9710→ 1.0 0.9723→ 1.0 0.9513→ 1.0 1.3551→ 1.4

Qwen2.5-Math-7B MIntruct 0.9074→ 0.9 0.9103→ 0.9 0.9040→ 0.9 0.9056→ 0.9
Mreasoning 0.9837→ 1.0 0.9823→ 1.0 0.9737→ 1.0 1.3800→ 1.4

Llama-3.1-8B MIntruct 0.9960→ 1.0 0.9951→ 1.0 0.9957→ 1.0 0.9975→ 1.0
Mreasoning 1.0041→ 1.0 0.9898→ 1.0 0.9930→ 1.0 1.4112→ 1.4

Qwen2.5-14B MIntruct 0.9990→ 1.0 0.9989→ 1.0 0.9989→ 1.0 0.9989→ 1.0
Mreasoning 0.9937→ 1.0 0.9901→ 1.0 0.9861→ 1.0 1.3952→ 1.4

POST Types Wup Wgate Wdown

Qwen2.5-Math-1.5B MIntruct 0.9016→ 0.9 0.9018→ 0.9 0.9019→ 0.9
Mreasoning 0.9720→ 1.0 0.9687→ 1.0 0.9714→ 1.0

Qwen2.5-Math-7B MIntruct 0.9021→ 0.9 0.9025→ 0.9 0.9024→ 0.9
Mreasoning 0.9847→ 1.0 0.9839→ 1.0 0.9843→ 1.0

Llama-3.1-8B MIntruct 0.9961→ 1.0 0.9957→ 1.0 0.9961→ 1.0
Mreasoning 1.0036→ 1.0 0.9988→ 1.0 1.0035→ 1.0

Qwen2.5-14B MIntruct 0.9991→ 1.0 0.9991→ 1.0 0.9990→ 1.0
Mreasoning 0.9922→ 1.0 0.9924→ 1.0 0.9909→ 1.0

In our experiments, the output parameters of the LLMs are configured with a temperature of 0.2, a
top p of 0.95, and a maximum output token limit of 1024. This setting ensures stable generation while
maintaining moderate diversity for subsequent statistical analysis. System prompts are provided in
Appendix H.1. Each model is executed three times on the test set, with the final performance reported
as the average score and variance. The results are presented in Table 5. The mean and variance of the
average length of output tokens across three test runs are also reported in Table 6.

Table 5: Performance comparison between original and replaced models across GSM8K, MATH-500,
MMLU, and GPQA with pass@1 accuracy (%).

BASE Models REPLACED Types GSM8K MATH-500 MMLU (dev) GPQA

Qwen2.5-
Math-7B

MInstruct 95.75±0.12 70.06±0.50 55.90±0.16 27.14±0.49

Mreplaced
Instruct 95.25±0.06 73.00±0.43 55.20±0.16 27.22±0.41

Mreasoning 62.70±1.05 47.60±0.33 58.71±0.91 14.73±0.97

Mreplaced
reasoning 72.28±0.42 53.66±0.81 60.69±1.03 18.01±0.87

Llama-3.1-8B

MInstruct 34.70±1.24 31.46±1.06 67.48±0.44 21.21±0.29

Mreplaced
Instruct 34.92±0.37 32.60±1.14 65.26±0.57 20.11±0.76

Mreasoning 60.17±0.07 32.73±0.41 52.51±1.47 11.40±0.17

Mreplaced
reasoning 68.72±0.43 29.73±0.90 52.16±1.29 9.17±0.51

Qwen2.5-14B

MInstruct 94.24±0.29 70.53±0.34 90.63±0.16 36.65±0.36

Mreplaced
Instruct 94.11±0.25 69.13±0.09 89.93±1.01 35.60±1.48

Mreasoning 70.61±0.46 53.13±0.25 77.89±0.76 19.48±0.55

Mreplaced
reasoning 79.49±0.42 52.33±0.25 75.79±1.03 19.02±0.32
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Table 6: Comparison of average length of output tokens between Original and Replaced Models
across GSM8K, MATH-500, MMLU, and GPQA.

BASE Models REPLACED Types GSM8K MATH-500 MMLU (dev) GPQA

Qwen2.5-
Math-1.5B

MInstruct 305.01±1.54 542.32±1.21 402.60±3.13 633.82±5.09

Mreplaced
Instruct 302.92±2.54 527.03±4.11 408.09±4.31 610.73±8.94

Mreasoning 539.82±6.86 911.55±5.55 619.34±13.82 952.00±18.83

Mreplaced
reasoning 427.41±5.33 864.71±8.03 590.98±15.42 939.18±9.91

Qwen2.5-
Math-7B

MInstruct 299.46±3.17 551.34±4.39 372.53±5.91 567.34±4.96

Mreplaced
Instruct 304.21±2.91 549.13±2.53 378.34±4.51 533.19±5.98

Mreasoning 729.16±7.64 795.40±9.01 514.15±6.91 933.15±9.97

Mreplaced
reasoning 451.27±9.28 726.08±6.14 488.30±15.17 891.63±6.07

Llama-3.1-8B

MInstruct 166.47±4.22 359.19±6.02 35.79±1.43 236.35±7.38

Mreplaced
Instruct 146.05±2.18 451.38±7.71 41.42±3.36 251.64±3.06

Mreasoning 627.14±8.71 931.14±14.80 721.64±11.13 989.41±7.43

Mreplaced
reasoning 651.23±11.34 970.02±15.14 751.02±8.29 994.00±4.31

Qwen2.5-14B

MInstruct 281.95±7.21 550.02±6.17 89.69±1.18 240.16±6.55

Mreplaced
Instruct 299.14±5.11 530.65±5.93 87.56±2.43 241.67±6.39

Mreasoning 583.01±4.57 897.61±8.81 487.54±7.68 924.63±7.90

Mreplaced
reasoning 410.97±7.81 847.14±2.06 514.09±6.90 933.15±5.10

Experimental results demonstrate that models exhibit nearly identical performance before and after
singular value replacement. This further validates that post-training does not alter the singular value
distribution of pre-trained models, thereby supporting our conclusion.

We also observe that the performance of some REASONING models improves after singular value
replacement. One possible explanation is that Construction 9 effectively eliminates noise arising
from precision limitations or heterogeneous data during singular value adjustment ofMbases’ weight
matrices in post-training phases. This reduction in noise consequently enables more efficient token
consumption for simpler tasks (e.g., the notable decrease in output token count forMreplaced

reasoning of
Qwen2.5-Math-7B on GSM8K). These observations suggest that post-training processes exert theo-
retically derivable influences on the singular values of weight matrices. We identify this phenomenon
as a crucial direction for future theoretical investigation.

C.2 ATTENTION ENTROPY OF DIFFERENT REPLACED MODELS

To demonstrate that singular value scaling is similar to a temperature-controlled mechanism, we
perform the following operation on all weight matrices Wpost of the POST models:

Wpost ← UpostΣbaseV
T

post (14)

Construction 14 replaces the singular values of POST models’ weight matrices with those from BASE
models. To evaluate the impact of this substitution, we monitor the attention entropyH. A substantial
change in entropy suggests a shift in the distribution of attention scores, indicating a structural change.
Otherwise, the effect may be interpreted as a soft temperature modulation.

We input example questions from different domains (Cobbe et al., 2021; Talmor et al., 2019;
Hendrycks et al., 2021a; Rein et al., 2023) into replaced modelsMreplaced and observe their attention
scores prior to generating the first token. Specifically, we track the average attention distribution from
each attention head in Transformer blocks 0, 3, 5, 8, 10, 13, 15, 18, 20, 23, and 25, and compute the
corresponding attention entropy.
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Figure 15: Attention entropy for differentMreplaced. The example input is from GSM8K.

Figure 16: Attention entropy for differentMreplaced. The example input is from MMLU (clinical
knowledge).
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Figure 17: Attention entropy for differentMreplaced. The example input is from CommonsenseQA.

Figure 18: Attention entropy for differentMreplaced. The example input is from GPQA (diamond).
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The replaced modelsMreplaced, spanning diverse architectures and parameter scales, consistently
preserve the attention entropy of their original counterparts across a range of examples . This
robustness persists even under higher scaling of the singular values in the WO of REASONING models.
In particular, Qwen-based models exhibit minimal sensitivity to such modifications, with attention
entropy remaining largely unchanged (Figures 15, 16, 17, 18). In contrast, LLaMA-based REASONING
models show an increase in attention entropy when the overall scale of WO singular values is reduced,
consistent with a more uniform distribution of attention scores. Importantly, these effects are largely
invariant to extreme amplification of singular values in the long tail of the spectrum, likely due
to their negligible magnitude and limited contribution to the model’s functional behavior. These
findings support the interpretation of global singular value scaling as a temperature-like mechanism
for modulating attention sharpness.

D EXPERIMENTS ON VERIFYING THE CONSISTENCY OF ORTHOGONAL
TRANSFORMATIONS

This section highlights the critical importance of orthogonal consistency. While the main paper only
demonstrates that disrupting orthogonal transformations in SA output subspaces can be compensated
by preserving orthogonality in input subspaces, we present here a more extensive set of experimental
results. We apply Construction 10 to matrices inMpost to obtainMablation

post , and use Construction 11
to deriveMrestoration

post . These operations model the destruction and subsequent restoration of the output
subspaces in the weight matrices. Similarly, we apply Constructions 15 and 16 to the input subspaces,
as a symmetric counterpart to Constructions 10 and 11:

W
(i)
post ← U

(i)
baseΣpost · V (i)

post
T

(15)

W
(i)
post ← (U

(i)
baseQ) · ΣpostV

(i)
post

T
= (U

(i)
base · V

(i)
base

T
V

(i)
post ) · ΣpostV

(i)
post

T
(16)

Constructions 10, 11, 15, and 16 provide an intuitive demonstration of the orthogonal consistency
between the left and right singular vectors of each weight matrix in the model. For eachMpost, we
apply the transformations from Constructions 10, 11, 15, and 16 to all SA or FFN modules. These
operations disrupt the orthogonal transformations of either the input or output subspaces, and attempt
to restore them using the corresponding orthogonal mappings. This yields eight model variants:
MSA,out

ablation , MSA,out
restoration, MSA,in

ablation, MSA,in
restoration, MFFN,out

ablation , MFFN,out
restoration , MFFN,in

ablation , and MFFN,in
restoration.

The superscript indicates whether the operation is applied to the input or output subspaces of all weight
matrices in SAs or FFNs, while the subscript denotes whether the operation is destructive or restorative.
We perform ablation and restoration operations on SAs and FFNs separately, to prevent model
collapse caused by excessive cumulative errors when restoring all weight matrices simultaneously.
Additionally, this approach enables independent validation of the co-rotation phenomenon between
the input-output subspaces of SAs and FFNs, avoiding excessive cumulative errors that could interfere
with experimental observations.

D.1 PERFORMANCE OF DIFFERENT RESTORATION MODELS

We report the performance of all RESTORATION models on GSM8K, MATH-500, MMLU (dev split),
and GPQA. All experimental configurations remain consistent with Appendix C.1, specifically with
the temperature set to 0.2, top p to 0.95, and a maximum output token length of 1024. The system
prompts are as detailed in Appendix H.1. For each of the four datasets, we measure the results three
times and report their pass@1 accuracy (%). All ABLATION models were unable to produce valid
outputs, inevitably yielding a pass@1 accuracy of 0% in every evaluation. As these uniformly null
results do not provide additional empirical insight, we refrain from reporting them in detail. The
complete results are shown in Table 7 and 8.

Most RESTORATION models successfully recover the original performance, validating the consistency
of co-rotational alignment between input and output subspaces and confirming Equation 8. We
further observe that orthogonal substitutions in the output subspaces are more stable than in the input
subspaces: M ,in

restoration often performs far worse thanM ,out
restoration, indicating directional rotational

error (Appendix B.2). Errors appear to accumulate along the input-to-output pathway, while reverse
elimination can cause collapse. This suggests an inherent asymmetry in co-rotation speed, with one
subspace consistently leading the other—an intriguing phenomenon warranting further study.
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Table 7: Performance comparison between original and RESTORATION models across GSM8K,
MATH-500, MMLU, and GPQA with pass@1 accuracy (%). The ”-” indicates model collapse.

BASE Models POST Types RESTORATION Types GSM8K MATH-500 MMLU (dev) GPQA

Qwen2.5-
Math-1.5B

MInstruct

Moriginal 85.14±0.14 65.47±0.90 48.04±0.60 30.44±0.36

MSA,in
restoration 84.53±0.25 66.20±0.16 41.28±0.44 27.69±0.29

MSA,out
restoration 84.03±0.29 66.47±1.79 38.25±2.30 29.34±2.65

MFFN,in
restoration 61.54±0.19 53.00±0.20 31.81±0.41 28.79±0.83

MFFN,out
restoration 84.51±0.18 66.07±0.31 41.17±0.88 22.97±1.10

MReasoning

Moriginal 62.88±0.59 32.73±1.64 25.02±0.59 7.02±0.44

MSA,in
restoration 61.54±1.19 30.93±0.57 29.00±0.44 6.75±0.27

MSA,out
restoration 61.96±1.71 32.06±0.25 28.30±1.77 3.45±1.23

MFFN,in
restoration 60.60±1.25 53.60±0.43 25.49±1.07 12.81±1.44

MFFN,out
restoration 76.05±0.71 56.46±0.34 32.51±3.03 16.71±1.81

Qwen2.5-
Math-7B

MInstruct

Moriginal 95.75±0.12 70.06±0.50 55.90±0.16 27.14±0.49

MSA,in
restoration 95.15±0.41 73.20±0.33 55.18±0.18 24.85±0.17

MSA,out
restoration 94.31±0.98 72.40±0.53 53.10±1.46 20.80±1.60

MFFN,in
restoration 86.10±0.53 68.60±1.40 54.04±0.61 25.07±0.98

MFFN,out
restoration 94.21±0.86 70.93±1.51 55.44±3.35 25.89±1.44

MReasoning

Moriginal 62.70±1.05 47.60±0.33 58.71±0.91 14.73±0.97

MSA,in
restoration 63.21±0.91 52.80±0.28 58.48±0.65 22.99±1.19

MSA,out
restoration 64.34±2.29 50.93±1.36 59.06±0.73 21.34±0.69

MFFN,in
restoration 82.46±0.90 65.60±2.91 48.42±0.70 22.71±1.13

MFFN,out
restoration 58.83±1.66 60.07±1.75 58.83±0.73 20.16±2.42

Llama-3.1-8B

MInstruct

Moriginal 34.70±1.24 31.46±1.06 67.48±0.44 21.21±0.29

MSA,in
restoration 30.15±0.82 30.40±0.75 65.49±0.43 22.32±0.09

MSA,out
restoration 31.18±1.17 33.13±1.70 63.74±2.66 25.07±2.16

MFFN,in
restoration 24.13±2.12 23.40±1.91 59.64±0.93 22.61±1.19

MFFN,out
restoration 43.97±2.06 23.26±1.28 63.62±2.92 21.98±1.29

MReasoning

Moriginal 60.17±0.07 32.73±0.41 52.51±1.47 11.40±0.17

MSA,in
restoration 60.30±1.54 29.60±0.49 42.22±0.59 8.77±0.60

MSA,out
restoration 61.25±0.78 34.87±1.17 47.13±2.28 6.81±1.63

MFFN,in
restoration 39.87±1.13 15.33±3.89 38.95±0.70 8.99±2.13

MFFN,out
restoration 38.76±1.09 25.00±2.31 47.83±1.93 7.53±1.50

Qwen2.5-14B

MInstruct

Moriginal 94.24±0.29 70.53±0.34 90.63±0.16 36.65±0.36

MSA,in
restoration 94.09±0.34 68.86±0.50 88.42±0.29 37.60±0.34

MSA,out
restoration 93.91±1.52 73.67±0.92 88.07±1.95 32.51±0.63

MFFN,in
restoration 93.63±0.38 71.33±0.83 82.57±3.58 28.89±1.66

MFFN,out
restoration 94.87±0.64 73.60±1.11 88.30±0.73 34.05±3.40

MReasoning

Moriginal 70.61±0.46 53.13±0.25 77.89±0.76 19.48±0.55

MSA,in
restoration 75.72±0.25 56.46±0.24 76.37±1.85 21.94±0.86

MSA,out
restoration 76.32±1.69 56.33±1.70 78.83±3.06 17.17±1.91

MFFN,in
restoration - - - -

MFFN,out
restoration 82.15±1.41 62.60±1.39 76.84±3.35 27.06±3.95
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Table 8: Comparison of average length of output tokens between original and RESTORATION Models
across GSM8K, MATH-500, MMLU, and GPQA. The ”-” indicates model collapse.

BASE Models POST Types RESTORATION Types GSM8K MATH-500 MMLU (dev) GPQA

Qwen2.5-
Math-1.5B

MInstruct

Moriginal 305.01±1.54 542.32±1.21 402.60±3.13 633.82±5.09

MSA,in
restoration 309.47±15.81 523.06±5.87 435.36±8.72 646.07±6.98

MSA,out
restoration 287.12±6.99 558.05±3.83 447.05±8.25 631.88±3.64

MFFN,in
restoration 422.87±25.85 587.42±7.66 532.19±4.54 792.16±7.86

MFFN,out
restoration 320.65±8.86 499.06±13.76 443.56±1.18 617.73±2.57

MReasoning

Moriginal 539.82±6.86 911.55±5.55 619.34±13.82 952.00±18.83

MSA,in
restoration 504.75±24.05 916.60±8.58 659.16±8.78 920.66±13.58

MSA,out
restoration 518.82±10.24 910.68±19.32 661.64±13.52 968.31±4.19

MFFN,in
restoration 356.13±11.35 692.21±6.48 466.14±10.31 872.22±16.03

MFFN,out
restoration 422.74±4.12 755.90±5.98 502.26±8.86 819.93±4.54

Qwen2.5-
Math-7B

MInstruct

Moriginal 299.46±3.17 551.34±4.39 372.53±5.91 567.34±4.96

MSA,in
restoration 320.01±9.72 561.23±4.63 411.70±3.47 665.44±10.30

MSA,out
restoration 307.38±7.85 565.77±15.30 420.34±9.38 672.78±7.23

MFFN,in
restoration 382.13±8.09 552.38±3.86 642.14±10.25 846.68±8.97

MFFN,out
restoration 286.25±22.59 510.28±11.25 345.16±8.75 535.02±5.42

MReasoning

Moriginal 729.16±7.64 795.40±9.01 514.15±6.91 933.15±9.97

MSA,in
restoration 791.97±21.19 617.83±4.76 457.57±2.16 863.81±2.92

MSA,out
restoration 796.48±5.62 778.33±5.57 451.87±7.65 877.55±17.99

MFFN,in
restoration 423.84±8.60 809.49±8.49 388.25±7.09 824.16±3.86

MFFN,out
restoration 442.44±14.48 691.19±7.95 444.99±12.73 823.32±13.92

Llama-3.1-8B

MInstruct

Moriginal 166.47±4.22 359.19±6.02 35.79±1.43 236.35±7.38

MSA,in
restoration 183.11±8.15 324.01±2.05 32.51±8.96 243.30±10.17

MSA,out
restoration 169.65±4.65 343.88±18.92 48.50±6.12 254.77±9.58

MFFN,in
restoration 150.22±3.90 278.5±11.29 5.33±1.24 6.01±1.42

MFFN,out
restoration 173.32±7.98 247.75±13.73 11.01±1.41 38.74±1.11

MReasoning

Moriginal 627.14±8.71 931.14±14.80 721.64±11.13 989.41±7.43

MSA,in
restoration 410.23±6.32 833.03±11.39 755.99±15.07 989.68±3.84

MSA,out
restoration 431.48±18.15 888.37±17.35 768.72±11.06 998.85±6.39

MFFN,in
restoration 309.76±24.51 953.37±14.71 684.11±19.56 975.54±17.14

MFFN,out
restoration 457.27±10.21 833.03±11.39 672.14±9.32 972.02±4.06

Qwen2.5-14B

MInstruct

Moriginal 281.95±7.21 550.02±6.17 89.69±1.18 240.16±6.55

MSA,in
restoration 279.14±7.21 444.63±13.24 101.63±8.73 283.74±9.02

MSA,out
restoration 182.34±4.57 850.45±11.08 99.50±5.92 275.19±6.80

MFFN,in
restoration 288.07±14.29 442.79±4.03 89.41±3.21 188.08±5.28

MFFN,out
restoration 282.67±6.75 431.10±6.25 120.54±11.45 217.08±4.71

MReasoning

Moriginal 583.01±4.57 897.61±8.81 487.54±7.68 924.63±7.90

MSA,in
restoration 538.26±6.08 844.46±8.89 442.49±12.38 920.88±4.77

MSA,out
restoration 518.71±11.25 852.79±9.55 438.20±4.33 912.47±5.40

MFFN,in
restoration - - - -

MFFN,out
restoration 504.96±8.01 863.77±3.59 450.66±10.42 875.01±11.63
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D.2 CKA ANALYSIS OF DIFFERENT RESTORATION MODELS

We then feed N input examples intoMpost,Mablation
post , andMrestoration

post , and compute the mean hidden

representations r(i)M for each layer by averaging their outputs (Equation 17):

r
(i)
M =

1

N

N∑
j=1

M(i)(Tj) (17)

where Tj is the j-th input question, andM(i)(·) denotes the hidden representation produced by the
i-th Transformer block in modelM. We use the first 100 examples from the GSM8K training set for
analysis (N = 100). We compute the CKA heatmap between the average hidden representations of
Mpost and each ABLATION/RESTORATION variant to assess the impact of orthogonal consistency on
internal representations. Figure 19 presents our experimental results.

Figure 19: CKA heatmaps generated usingMpost forMpost,Mablation, andMrestoration. The results
indicate thatMInstruct exhibits stronger orthogonal alignment between input and output subspaces
compared toMreasoning. Additionally, the restoration of orthogonal alignment after perturbation is
more robust in the output subspaces than in the input subspaces.

Disrupting either the SAs or FFNs compromises the orthogonal alignment between input and output
subspaces, impairing the internal structure ofMpost. Restoring this alignment leads to the reemer-
gence of structural symmetry in the CKA heatmaps, indicating a partial recovery of the model’s

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

hidden representations. The weight matrices ofMInstruct exhibit stronger orthogonal consistency
than those ofMreasoning. This is evidenced by the restoration variants ofMInstruct producing CKA
heatmaps that more closely resemble those of Mpost. The CKA heatmaps remain only partially
reducible, reflecting the fact that orthogonality is preserved only approximately. This observation is
further supported by the correction introduced in Equation 13. The restoration process effectively
reinstates the original representational geometry, highlighting the critical structural role of orthogonal
transformations.

E THE STRUCTURAL CHANGES IN A BROADER RANGE OF MODELS

In the main text, as well as in Appendix A, B, C and D, we present a systematic comparison of
structural changes in model weights before and after supervised post-training, with a particular focus
on the Qwen and LLaMA families. We also report detailed experimental results that confirm the
validity of Equation 8. These findings naturally motivate several follow-up questions:

1. How do reinforcement learning (RL)-based post-training methods influence model weights? From
the perspective of parameter space, in what ways do their effects differ from those of supervised
post-training, and what implications can be drawn?

2. Would modifications to the model architecture or the adoption of different training strategies
affect the generalizability of the observed structural changes?

3. Do other components in LLMs with specific functions (such as normalization layers and output
projection heads) follow similar patterns?

This section addresses these questions by extending our analysis to a broader set of models. The
subsequent case studies provide strong evidence that the validity of Equation 8 is preserved across
diverse settings—including supervised post-training, RL-based post-training, and variations in model
architecture or training methodology. The two structural changes identified in the main text thus
appear to generalize robustly across these scenarios. Furthermore, we observe that this phenomenon
persists throughout the entire post-training phase, indicating the continuity of these two structural
changes during post-training, as detailed in Appendix E.4.

E.1 STRUCTURAL CHANGES IN LLMS INDUCED BY RL-BASED POST-TRAINING

We investigate several state-of-the-art large language models trained with advanced reinforcement
learning algorithms, including AceMath-RL-Nemotron-7B (Liu et al., 2024), deepseek-math-7b-rl
(Shao et al., 2024), and Seed-X-PPO-7B (Cheng et al., 2025). These models respectively adopt
advanced reinforcement learning approaches such as GRPO (DeepSeek-AI et al., 2025) and PPO
(Schulman et al., 2017), originate from different research groups, and are built upon diverse training
corpora (see Table 10 for details). This diversity in both algorithmic choices and data sources
provides inherent support for the generalizability of our subsequent experimental results. We
compute the SVSMs between those models and their BASE versions, the NF (i), as well as the
orthogonality matrices of the singular vector (e.g., I(0)orth in the first Transformer block), and present
the corresponding visualizations in Figures 20, 21, and 22.

From the SVSM heatmaps and the lower values of NF (i), we observe that models subjected to
RL-based post-training exhibit even more consistent structural changes than those trained with
SFT-based post-training. This strongly suggests that SFT-based and RL-based post-training
methods possess a high degree of parameter equivalence, meaning that the effects they impose
on model parameters are essentially identical. Building upon this conclusion, one may infer that
RL-based post-training is effectively equivalent to supervised post-training, notwithstanding previous
studies (Chu et al., 2025) that have highlighted the ostensibly superior generalization capacity of
reinforcement learning algorithms. We further conjecture that this generalization advantage does
not arise from the intrinsic design of RL algorithms themselves, but rather from the diversity
of training data generated through reinforcement learning. For instance, GRPO encourages the
model to produce more diverse responses, which are then incorporated into the training process as
additional samples. This analysis further explains the effectiveness of Long-CoT distillation. Its
training procedure is equivalent to that of RL-based methods, ensuring comparable effects on model
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parameters, while its training data are more extensive and diverse than those of instruction tuning,
enabling smaller models to achieve reasoning capabilities similar to large-scale RL-based models.

Figure 20: Visualization of structural properties of AceMath-RL-Nemotron-7B after post-training.
(a) SVSMs reveal that the principal scaling exhibits a near-uniform distribution. (b) NF (i) provides
evidence for the consistent orthogonal transformations of the singular vectors. (c) Orthogonality
matrices I(0)orth, shown as an example.

Figure 21: Visualization of structural properties of deepseek-math-7b-rl after post-training. The same
set of analyses as in Figure 20 is presented, including SVSMs, NF (i), and orthogonality matrices
I
(0)
orth.

Figure 22: Visualization of structural properties of Seed-X-PPO-7B after post-training. The same set
of analyses as in Figure 20 is presented, including SVSMs, NF (i), and orthogonality matrices I(0)orth.
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E.2 GENERALITY OF STRUCTURAL CHANGES ACROSS TRAINING STRATEGIES AND
ARCHITECTURES

We find that regardless of architectural modifications or training strategies, LLMs consistently
exhibit these two structural changes in their parameters after post-training. To further examine
the universality of this phenomenon, we extend our analysis to Mistral-7B-Instruct-v0.1 (Albert
Q. Jiang et al., 2023), Gemma-2-2B-it (Gemma Team et al., 2024), and MediPhi-Instruct (Corbeil
et al., 2025), each of which incorporates distinct design improvements:

• For Mistral-7B-Instruct-v0.1, the model incorporates Sliding Window Attention (Beltagy et al.,
2020) and a Rolling Buffer Cache. These mechanisms allow each layer’s hidden states to
access past information within a window size W , which is recursively stacked across layers to
effectively expand the attention span. As a result, the model achieves a theoretical attention span
of approximately 131K tokens. In practice, these improvements substantially reduce memory
consumption and enhance computational efficiency without compromising model quality.

• For Gemma-2-2B-it, the model architecture integrates local sliding window attention (Beltagy
et al., 2020) and global attention (Luong et al., 2015). Local layers operate with a window size
of 4096 tokens, global layers extend to 8192 tokens. A logit soft-capping (Bello et al., 2017)
mechanism stabilizes training across attention layers and the final layer, with soft cap values set
to 50.0 and 30.0. In post-training, the BASE model firstly undergoes supervised fine-tuning on a
mixture of synthetic and human-generated English prompt–response pairs, and then proceeds to
Reinforcement learning with Human Feedback (RLHF) (Ouyang et al., 2022), guided by a reward
model trained on preference data to align behavior with human intent. The resulting models
from each stage are averaged, improving stability and overall performance, and producing an
instruction-tuned model optimized for both effectiveness and safety.

• For MediPhi-Instruct, the model still follows a decoder-only Transformer architecture, but the
computations of its SAs and FFNs differ from the previously mentioned models. In the case of
SAs, given the input h, the query (Q), key (K), and value (V ) are computed using a single weight
matrix WQKV :

Q,K, V = chunk(QKV ), QKV = hWQKV (18)
where chunk(·) splits QKV into Q,K, V along the last dimension. Similarly, for the FFNs,
MediPhi-Instruct also merges Wgate and Wup. As a result, there are only four types of matrices in
both the SAs and FFNs, namely WQKV , WO, Wgate up and Wdown. In addition to the architectural
modifications, MediPhi-Instruct also undergoes an SFT-based post-training stage that integrates
domain-specific medical knowledge. Similar to other medical instruction-tuned models such as
Aloe (Gururajan et al., 2024) and Med42 v2 (Christophe et al., 2024), this stage leverages medical
question-answering datasets and benchmark training sets such as PubMedQA (Jin et al., 2019),
thereby aligning the model more closely with medical reasoning and instruction-following tasks.

More detailed information regarding the aforementioned models will be presented in Table 10. We
compute the SVSMs between those models and their BASE versions, the NF (i), as well as the
orthogonality matrices of the singular vector (e.g., I(0)orth in the first Transformer block), and present
the corresponding visualizations in Figures 23, 24, and 25.

The flattened SVSM heatmaps and a relatively low value of NF (i) indicate that, regardless of
whether the modifications stem from changes in the model architecture or adjustments in the training
strategy, this structural property consistently persists in the linear layers of large models. In other
words, Equation 8 can be employed to characterize the parameter changes of large models
before and after post-training. This provides strong evidence for the universality of such structural
transformations and further substantiates the reliability of Equation 8.
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Figure 23: Visualization of structural properties of Mistral-7B-Instruct-v0.1 after post-training. (a)
SVSMs reveal that the principal scaling exhibits a near-uniform distribution. (b) NF (i) provides
evidence for the consistent orthogonal transformations of the singular vectors. (c) Orthogonality
matrices I(0)orth, shown as an example.

Figure 24: Visualization of structural properties of Gemma-2-2B-it after post-training. The same set
of analyses as in Figure 23 is presented, including SVSMs, NF (i), and orthogonality matrices I(0)orth.

Figure 25: Visualization of structural properties of MediPhi-Instruct after post-training. The same
set of analyses as in Figure 23 is presented, including SVSMs, NF (i), and orthogonality matrices
I
(0)
orth.
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E.3 STRUCTURAL CHANGES IN OTHER COMPONENTS OF LLMS

We investigate the structural changes of the main linear layers in LLMs in the main text. Although
these layers constitute nearly the entire parameter space, other components also play crucial roles.
This subsection therefore extends the exploration to the structural changes in the parameter space
of functionally important components such as normalization layers and output projection heads.
Specifically, we focus on the models listed in Table 9, where each transformer block employs two
RMSnorm layers (Jiang et al., 2023b) that serve as the pre-norms for the attention and FFN modules,
respectively, to enhance training stability, and an output projection head is added to the final block to
convert hidden vectors into a vocabulary distribution.

We visualize the features of normalization layers and output projection heads and unexpectedly find
that these components still roughly adhere to the parameter law described in Equation 8,yet
exhibit subtle differences.

For normalization layers, since the weight often exists as a one-dimensional vector w, we consider
performing reduced SVD on it:

w = a ∗ σ ∗ vT = 1 ∗ ||w|| ∗ w

||w||
(19)

For a vector w, its left singular vector reduces to ±1 (assumed to be 1), its right singular vector
becomes the normalized unit vector w

||w|| , and its singular value is ∥w∥. For the corresponding
normalized weight wpost of the POST model, if Equation 8 holds in Equation 20, it implies that the
rotation matrix Q of the right singular vector degenerates. In this one-dimensional case, Q becomes a
1× 1 matrix whose sole element is identical to the cosine similarity between w and wpost, which is
exactly 1. we can derive that:

vT vpost =
w

||w||
· (

wpost

||wpost||
)T = aTapost = 1 (20)

We have experimentally verified this point, as shown in Figure 26a. It can be observed that the
cosine similarity between the weights of the normalization layers in the POST models and the BASE
models remains consistently at 1. It mathematically proves that the normalization layer of each
Transformer block only shows uniform and globally consistent scaling during post-training,
rather than the channel-wise selective filtering we anticipated. However, there is some fluctuation
in the scaling of their singular values (norms), as shown in Figure 26b. We speculate that this may be
related to the unique function of normalization, which involves dynamically adjusting the expressive
capacity of the hidden vectors. When the subspace is fixed, this can only be achieved by globally
scaling the vector norms, making it difficult for the norms to maintain uniformly consistent scaling
across layers.

Figure 26: (a) The cosine similarity between the corresponding normalization layers of the BASE
models and POST models was calculated. The vast majority of values were equal to 1. (b) The magni-
tudes of the normalization layers are approximately uniformly scaled but exhibit some fluctuations.

Regarding the output projection heads, we plot the left and right similarity matrices against the overall
singular value scaling, as shown in Figure 27. We observe that certain subspaces within the input
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and output spaces of this component still do not exhibit strong co-rotation. We hypothesize that this
stems from the specific function of output projection heads: since they are responsible for mapping
hidden states directly to the vocabulary space, their parameters are updated directly under the
influence of external supervision signals. As a result, unlike other main linear layers that propagate
information through hidden representations, this component experiences greater perturbation of its
space during post-training. This makes some of its internal subspaces more susceptible to being
reshaped by external supervision, thereby partially hindering appropriate co-rotation. Nevertheless,
due to the limited scale of post-training, the structure of the majority of subspaces remains preserved,
allowing the output projection heads to largely maintain co-rotation across their subspaces.

Figure 27: Visualization of the evolution of output projection head properties across model scales.
We show the similarity/orthogonality of singular vectors and scaling of singular values before and
after post-training.
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E.4 STRUCTURAL CHANGES DURING POST-TRAINING

To determine whether this phenomenon arises during the post-training process or is specific to
the final convergence stage, we design a preliminary investigation. We fine-tune the Qwen2.5-
Math-1.5B model on the complex dataset s1K-1.1 (Muennighoff et al., 2025) for 5 epochs using
supervised learning. Checkpoints are saved after each training epoch. We subsequently compute the
NF (i) metric and the SVSMs between these intermediate checkpoints and the original pre-trained
Qwen2.5-Math-1.5B model. The training configuration is as follows: a maximum sequence length
(max length) of 1024, a batch size of 16, the AdamW optimizer (Loshchilov & Hutter, 2019),
a learning rate of 2 × 10−5, and no gradient accumulation. The evolution of NF (i) and SVSMs
throughout the post-training phase is depicted in Figure 28.

Figure 28: Observation of metrics during the post-training process. (a) presents the NF (i) for each
checkpoint relative to the BASE model, all of which remain at an extremely low level. We also display
the Iorth of Wo between the first Transformer block of the checkpoints corresponding to epoch 3
and the BASE model, indicating that consistent orthogonal transformations are highly established. (b)
shows SVSMs during post-training, and (c) depicts the loss curve, which gradually converges over
epochs.

It can be observed that during the training process, the parameter space of the model still closely
adheres to the principle of structural transformation mentioned in the main text. This indicates that
this phenomenon is an inherent characteristic of the changes in model parameters, rather than a
property that only emerges after model convergence.

F POTENTIAL APPLICATIONS OF OUR FINDINGS

While our primary focus is to characterize the structural transformations of LLMs induced by post-
training, our analysis also points to several promising avenues for application. This section outlines
a set of illustrative directions, intended not as definitive claims but as conceptual extensions of our
findings, with the goal of inspiring future research and advancing the understanding of parameter-level
transformations. An overview of these potential applications is provided in Figure 29.

Fine-grained initialization strategies. From a post-training perspective, the observed coordinated
rotation of singular vectors could inspire more fine-grained weight initialization strategies. A novel
approach, termed PiSSA (Meng et al., 2024), preserves key components of singular vectors and
singular values by initializing them as LoRA weights, while retaining and freezing the remaining
singular components. However, PiSSA primarily fine-tunes the principal components corresponding
to the top-k singular directions. Our analysis of simU and simV (Figures 10–13) reveals that the
singular vectors associated with the largest singular values (σmax) exhibit minimal rotation during
post-training. This observation implies that the dominant singular components are not the primary
targets of fine-tuning. Consequently, as shown in Figure 29a, directing fine-tuning toward the
middle-k components rather than the top-k may yield improved performance.
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Figure 29: Illustrative overview of potential applications suggested by our findings: (a) fine-grained
initialization strategies; (b) accelerated convergence in REASONING models; (c) model fingerprinting
based on the detection of Iorth.

Potentially accelerated convergence in REASONING models. We find that the singular value
dynamics of REASONING models exhibits unique scaling patterns, particularly in matrices such as
WO (as demonstrated in Figures 2 and 7). Motivated by this observation, one may hypothesize that
simple rescaling of pretrained singular values could accelerate convergence during reasoning-oriented
training. For instance, initializing WO as αWO with α = 1.4 provides a lightweight mechanism
to impose reasoning-like spectral properties in a single step, potentially reducing the number of
iterations required to reach stable performance. While speculative, this perspective highlights the
potential to exploit post-training geometry for more efficient model development.

Model fingerprints under fully parameterized testing. Appendix B.2 demonstrates that the weight
matrices of the same model architecture exhibit markedly different behaviors in Iorth after undergoing
distinct pre-training and post-training procedures. This observation provides a practical criterion
for distinguishing whether a large language model has been fully developed from scratch or merely
obtained through post-training on another model. As illustrated in Figure 29c, this distinction can be
achieved simply by measuring the deviation between Iorth and the identity matrix I . Importantly, since
disrupting the coordinated rotational structure directly leads to model collapse, potential plagiarists
cannot eliminate the discrepancy between their model and the original one by deliberately altering this
property. Consequently, Iorth serves as a robust and discriminative fingerprint for model identification.
Moreover, because this method relies solely on parameter-level analysis, it does not require the
design of evaluation datasets as in representation-based fingerprinting approaches such as REEF
(Zhang et al., 2024a). This line of investigation highlights a promising avenue for safeguarding the
intellectual property rights of LLM developers.

While the potential applications discussed above represent relatively straightforward extensions
of our observations, their concrete implementation and validation require more rigorous empirical
investigation. Nevertheless, we hope that these preliminary intuitions will serve to inspire future
research and provide readers with a deeper understanding of the broader implications of our findings
for model design, optimization, and interpretability.

G PROOF

This section mainly integrates all the mathematical proofs mentioned in the main paper.

G.1 SINGULAR VALUE SCALING MODULATES THE ATTENTION SCORE

Under near-uniform geometric scaling with singular values, Equation 8 can be restated as
Wpost ≈ α · UpostΣbaseV

T
post = α ·W ′

post, which means scaling the singular values has the same ef-
fect as scaling the entire weight matrix. We uniformly apply this linear scaling effect to all weight
matrices in SAs and FFNs, resulting in the following modified forms of Equations 1 and 2:

SA(h) ≈ softmax

(
α2 · hW ′

Q · [K ′
cache;hW

′
K ]T

√
d

)
· [V ′

cache;hW
′
V ] ·W ′

O ·ααO (21)
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FFN(z) ≈ (SwiGLU(z ·W ′
gate ·α)⊙ (z ·W ′

up)) ·W ′
down ·α2 (22)

The term α2 in Equation 21 corresponds to the inverse of the attention temperature (Vaswani et al.,
2023), which can be directly expressed by T = 1/α2. In SAs, all α except αO of REASONING
models are consistently below 1 after post-training (demonstrated in Table 3), which corresponds to a
higher attention temperature. This causes the softmax function to produce more uniformly distributed
attention scores, encouraging the model to attend more evenly across all tokens and thereby enhancing
its ability to capture global contextual information.

G.2 TRAINING IS TO PERFORM ORTHOGONAL TRANSFORMATION ON U AND V MATRICES

ConsideringMA →MB as the model training process, left singular vectors of WA ∈MA, WA ∈
Rm×n can be regarded as performing different transformations QU :

UB = UAQU (23)

We first prove that QU is an orthogonal matrix. For QU , we have:

UT
AUB = UT

AUA ·QU = I ·QU = QU (24)

QTQ = I is a necessary and sufficient condition for Q to be an orthogonal matrix. We calculate
QT

UQU then have:

QT
UQU = (UT

AUB)
T · (UT

AUB) = UT
B · (UAU

T
A ) · UB = I (25)

Therefore QU is an orthogonal matrix.

Through experiments, we observe that V T
A VB is nearly identical to QU = UT

AUB . Under the
condition that V T

A VB is an orthogonal matrix, we aim to prove that the column spaces of VA and
VB have the same subspace structure, i.e., col(VA) = col(VB), and that VB can be obtained from
VA through an orthogonal transformation. Specifically, we will prove that there exists an orthogonal
matrix QV such that VB = VAQV , where QV = V T

A VB .

Because VA and VB have orthonormal columns, V T
A VB is an m × m matrix. We are given that

QV = V T
A VB is orthogonal, hence

QT
V QV = I (26)

We define the orthogonal projector onto the column space of VA as PVA
= VAV

T
A . Decompose VB

into the sum of its projection onto col(VA) and the orthogonal remainder:

VB = PVA
VB + (I − PVA

)VB = VA(V
T
A VB) + (I − VAV

T
A )VB (27)

Using the definition QV = V T
A VB this becomes

VB = VAQV + (I − VAV
T
A )VB (28)

To show (I − VAV
T
A )VB = 0, consider its Frobenius norm:

∥(I − VAV
T
A )VB∥2F = tr

(
V T
B (I − VAV

T
A )VB

)
(29)

Expand the trace:

tr
(
V T
B (I − VAV

T
A )VB

)
= tr

(
V T
B VB

)
− tr

(
V T
B VAV

T
A VB

)
(30)

Since VB has orthonormal columns, V T
B VB = I , so the first term equals tr(I) = m. For the second

term use cyclicity of trace and the definition of QV :

tr
(
V T
B VAV

T
A VB

)
= tr

(
(V T

A VB)
T (V T

A VB)
)
= tr

(
QT

V QV

)
(31)

Because QV is orthogonal, QT
V QV = I , hence

tr
(
QT

V QV

)
= tr(I) = m (32)

Combining these equalities gives

∥(I − VAV
T
A )VB∥2F = m−m = 0 (33)
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Therefore
(I − VAV

T
A )VB = 0 (34)

and consequently
VB = VAQV (35)

From VB = VAQV and the fact that QV is invertible (orthogonal), the column spaces are identical:

col(VB) = col(VAQV ) = col(VA) (36)

This completes the proof. From this perspective, the orthogonal bases utilized during the post-training
are essentially the same as those formed in the BASE models. This fundamentally implies that post-
training does not disrupt the output subspaces constructed during pre-training, strongly suggesting
that it constitutes merely a reparameterization process of the BASE models.

G.3 PROOF OF DIFFERENTLY POST-TRAINED MODELS SHARING A SET OF CONSISTENT
ORTHOGONAL TRANSFORMATIONS

We theoretically prove that different POST models initialized from the same pretrained parameters and
post-trained on data from different distributions can be transformed into each other through a set of
shared orthogonal transformations. Assuming there are two POST modelsMpost,M′

post, combining
equations 6 and 8, we have:

Upost = UbaseQpost, Vpost = VbaseQpost (37)

U ′
post = UbaseQ

′
post, V ′

post = VbaseQ
′
post (38)

Substituting Equation 37 into 38, we have:

U ′
post = (UpostQ

T
post) ·Q′

post = Upost · (QT
postQ

′
post)

V ′
post = (VpostQ

T
post) ·Q′

post = Vpost · (QT
postQ

′
post)

(39)

Let Qcombined = QT
postQ

′
post, then we observe that:

QT
combinedQcombined = (QT

postQ
′
post)

T (QT
postQ

′
post) = I (40)

Qcombined is an orthogonal matrix. This directly shows that the conversion fromMpost →M′
post can

be transformed using an approximately consistent orthogonal matrix Qcombined.

This significant corollary reveal that both in-distribution fine-tuning (e.g., instruction tuning) and
out-of-distribution fine-tuning (e.g., Long-CoT distillation) induce equivalent transformations in
parameter space—specifically, different post-training methods can be mutually converted through
shared orthogonal transformations. This equivalence explains why LLMs can be fine-tuned on
arbitrary data distributions to improve task-specific performance: the model’s input and output
subspaces undergo orthogonal transformations optimized for the target task distribution.

We believe this insight offers significant promise for future research, particularly in developing
methods to mitigate forgetting while preserving adaptability.

H SETTINGS

This section will delve into more detailed experimental setups, including the different system prompts
used for various datasets and the precision of models.

H.1 SYSTEM PROMPTS

The datasets used in this study include GSM8K, MATH-500, MMLU, and GPQA. Due to time and
cost constraints, we limit the output tokens to 1024. If a simple system prompt is used directly,
models (particularly REASONING models) often require more tokens to generate correct answers
when handling challenging datasets like GPQA. This would result in truncated outputs due to the
token limit, preventing us from obtaining valid results for performance evaluation. Therefore, we
need to design distinct system prompts for different datasets to facilitate observation of the outcomes.
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Additionally, since some datasets provide descriptive ground-truth answers (e.g., GSM8K and MATH-
500) while others present multiple-choice questions (e.g., MMLU and GPQA), we must also process
the inputs differently across datasets to ensure accurate performance validation.

For the simple dataset (GSM8K) mentioned in this article, the unified system prompt we adopted is:

Please put your final answer within \boxed{}.

Additionally, all visualization results, including the tracking of attention entropy and the analysis of
CKA heatmaps, also adopt this simple system prompt. This is attributed to the fact that during visual
analysis of the model, comprehensive output results or testing performance metrics are not required
for evaluation purposes.

For hard datasets (MATH-500, MMLU and GPQA) mentioned in this article, the unified system
prompt we adopted is:

Please put your final answer within \boxed{} and keep your thought process as short as possible.

This system prompt will enable us to effectively measure the performance on hard datasets of models
within limited token computations.

For the multiple-choice question datasets (MMLU and GPQA) mentioned in this text, the template
we adopted for all input prompts is as follows:

{ORIGINAL QUESTION}
You have four options, and they are:
A.{CHOICE A}
B.{CHOICE B}
C.{CHOICE C}
D.{CHOICE D}
Please select the correct option and just give A, B, C or D. For example, if you think the
answer is A, just give \boxed{A} as the answer.

This template design enables us to use the same validation evaluator for both multiple-choice and
open-ended answer datasets, thereby reducing our engineering complexity.

H.2 INTRODUCTION TO THE MODELS AND MODEL PRECISION SETTINGS

The different POST versions corresponding to the different BASE models are shown in Table 9 and 10.
All experiments in this paper were conducted on two NVIDIA A100 GPUs with 40GB of memory
each.

Table 9: Different POST versions of different BASE models used in Appendix A, B, C and D.
BASE Models POST Types POST Models Developer

Qwen2.5-Math-1.5B MInstruct Qwen2.5-Math-1.5B-Instruct Qwen Team
Mreasoning DeepSeek-R1-Distill-Qwen-1.5B DeepSeek

Qwen2.5-Math-7B MInstruct Qwen2.5-Math-7B-Instruct Qwen Team
Mreasoning DeepSeek-R1-Distill-Qwen-7B DeepSeek

Llama-3.1-8B MInstruct Llama-3.1-8B-Instruct Meta
Mreasoning DeepSeek-R1-Distill-Llama-8B DeepSeek

Qwen2.5-14B MInstruct Qwen2.5-14B-Instruct Qwen Team
Mreasoning DeepSeek-R1-Distill-Qwen-14B DeepSeek

All Mbase and MInstruct use BF16 parameter storage, while Mreasoning employ FP32. To address
potential precision truncation, we consistently convert all parameters to FP32 before experimentation,
ensuring unified numerical precision throughout our evaluations.
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Table 10: Different POST versions of different BASE models used in Appendix E.
BASE Models POST Models post-training method Developer

DeepSeek-R1-Distill-Qwen-7B AceMath-RL-Nemotron-7B RL-based (GRPO) Nvidia

deepseek-math-7b-base deepseek-math-7b-rl RL-based (GRPO) Deepseek

Seed-X-Instruct-7B Seed-X-PPO-7B RL-based (PPO) ByteDance

Mistral-7B-v0.1 Mistral-7B-Instruct-v0.1 SFT-based Mistral AI

gemma-2-2b gemma-2-2b-it SFT-based Google

MediPhi MediPhi-Instruct SFT-based Microsoft

I USE OF LARGE LANGUAGE MODELS

We acknowledge the use of LLMs for minor editorial assistance. Specifically, LLMs were only
employed to polish the language and correct grammatical errors in the manuscript. No LLMs
were involved in generating the research ideas, designing experiments, conducting analyses, or
drawing conclusions.
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