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ABSTRACT

Post-training fundamentally alters the behavior of large language models (LLMs),
yet its impact on the internal parameter space remains poorly understood. In
this work, we conduct a systematic singular value decomposition (SVD) analysis
of principal linear layers in pretrained LLMs, focusing on two widely adopted
post-training methods: instruction tuning and long-chain-of-thought (Long-CoT)
distillation. Our analysis reveals two consistent and unexpected structural changes:
(1) a near-uniform geometric scaling of singular values across layers, which
theoretically modulates attention scores; and (2) highly consistent orthogonal
transformations are applied to the left and right singular vectors of each
matrix. Disrupting this orthogonal consistency leads to catastrophic performance
degradation. Based on these findings, we propose a simple yet effective framework
that interprets post-training as a reparameterization of fixed subspaces in the pre-
trained parameter space. Further experiments reveal that singular value scaling
behaves as a secondary effect, analogous to a temperature adjustment, whereas the
core functional transformation lies in the coordinated rotation of singular vectors.
These results challenge the prevailing view of the parameter space in large models
as a black box, uncovering the first clear regularities in how parameters evolve
during training, and providing a new perspective for deeper investigation into
model parameter changes.

1 INTRODUCTION

The remarkable success of large language models (LLMs) has been substantially facilitated by
post-training techniques. With approaches such as instruction tuning (Ouyang et al.| 2022; Zhang
et al., [2024b; Peng et al.,[2023)), alignment training (Schulman et al.,[2017} |Li et al.} 2023b} [Rafailov
et al.,|2024; DeepSeek-Al et al., [2025) and knowledge distillation (Xu et al., 2024; |Gu et al., [2024;
McDonald et al., 2024; Yang et al., 2024), LLMs have become increasingly usable and better
aligned with human intent (Guo et al., [2024; |Cai et al., [2025} |[Feng et al.| 2024). Recent research
on post-training has predominantly centered on algorithmic innovations such as Direct Preference
Optimization (DPO) (Rafailov et al., [2024), Group Relative Policy Optimization (GRPO) (DeepSeek
Al et al., 2025)), and Dynamic sAmpling Policy Optimization (DAPO) (Yu et al.,|2025)) to enhance the
reasoning capabilities of LLMs. Alternatively, long-chain-of-thought (Long-CoT) distillation offers a
more straightforward and practiced approach, enabling smaller models to acquire reasoning ability
by distilling long chains of thought from large RL-trained models (DeepSeek-Al et al., 2025)).

However, despite the empirical success of post-training, its underlying impact on the internal structure
of model parameters remains insufficiently understood. Although recent studies have investigated
post-training mechanisms and uncovered some novel insights (Du et al., [2025; Marks & Tegmark]
2024; |Jain et al., 2024; |[Lee et al., 2024} Panickssery et al., 2024} Stolfo et al., 2024} Katz & Belinkov,
2023;|Yao et al.|[2025)), their studies remain indirect—relying primarily on hidden representations
or behavioral observations rather than exploring fundamental structural changes. Transformations
in parameter space, especially weight matrices, which we often treat as black boxes, have not
been systematically examined. The extent to which post-training reshapes the representational
capacity of the parameter space remains an unresolved problem.

In this work, we present a systematic study on how post-training affects the parameter space of LLMs.
Specifically, we focus on two token-level supervised post-training methods: instruction tuning and
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Figure 1: A simple but effective mathematical approximation to describe the effect of post-training
on the parameter space. Performing SVD on weight matrices in the BASE model, post-training is
equivalent to performing linear scaling on singular values and performing consistent orthogonal
transformations on left and right singular vectors.

Long-CoT distillatio These methods underpin essential capabilities like instruction-following
and reasoning, forming the basis for more advanced alignment techniques. To examine the structural
impact of post-training, we analyze weight matrices using singular value decomposition (SVD).
SVD decomposes each matrix into orthogonal subspaces with distinct scaling factors, thereby
reducing complex weight structures into three mathematically interpretable components for
systematic analysis, making the underlying geometry of large model parameters more transpar-
ent and interpretable. We apply this framework to the weight matrices within the Self-Attention
modules and Feed-Forward Networks of publicly available models, and categorize models into three
types: BASE models (e.g., Qwen2.5-Math-1.5B (Qwen et al.,|2025))), INSTRUCT models (obtained
through instruction tuning), and REASONING models (trained via long-CoT distillation, such as
DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-Al et al.,2025)). The latter two are collectively referred
to as POST models. This categorization enables systematic comparison of parameter space structural
changes induced by different post-training methods.

Our empirical results reveal two key effects of post-training on the model’s parameter space: (1)
Near-uniform geometric scaling of singular values: Post-training preserves the principal singular
value distribution of the BASE model while applying a consistent, layer-wise linear scaling factor. We
show this scaling equivalently regulates attention scores. Notably, we observe anomalous scaling in
the Attention module’s Wy matrix, which strongly correlates with the REASONING model’s superior
long-chain reasoning over the INSTRUCT model; (2) Highly consistent orthogonal transformations:
The left and right singular vectors of each matrix undergo nearly identical orthogonal transformations
during post-training, exhibiting shared, coordinated rotations. This phenomenon occurs consistently
across all weight matrices, strongly suggesting that post-training preserves the subspace structure
established during pre-training.

These results indicate that post-training essentially induces highly regular structural perturbations
in the parameter space. Based on the two observed phenomena, we can use a simple yet effective
mathematical framework to directly approximate the impact of post-training on the parameter
space (Figure[I)). We experimentally demonstrate that the singular value scaling phenomenon is a
temperature-controlled mechanism that does not alter the model’s behavior. The consistent orthogonal
transformations applied to the weight matrices are the core of post-training.

‘We summarize our contributions as follows:

* To the best of our knowledge, this is the first systematic study of structural changes in LLMs
before/after post-training across the entire parameter space. Unlike prior works focusing on
individual neuron activations or external behaviors, we comprehensively analyze the singular
value structure of principal linear layers, revealing consistent patterns of post-training effects in
the parameter space.

"For clarity and ease of reading, post-training hereafter refers to both instruction tuning and Long-CoT
distillation in the following sections unless otherwise specified.
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* We experimentally discover two structural phenomena that are stable across multiple model
families, parameter sizes, and training methods: First, the singular values exhibit near-uniform
geometric scaling; second, the left and right singular vectors of each matrix remain stable under
consistent orthogonal transformations.

* We establish a simple yet effective mathematical framework to describe the parameter
change mechanism. Our experiments have validated the importance of orthogonal transfor-
mations in post-training. This work provides new understanding of parameter evolution during
post-training and lays the foundation for developing a unified theory of LLM parameter transfor-
mations.

2 RELATED WORK

Interpretability of post-training. With the growing success of post-training, researchers have
increasingly sought to uncover its underlying mechanisms. Several studies have attempted to
investigate the impact of post-training on LLMs by constructing task-specific or instruction-formatted
datasets (Du et al.| [2025; Marks & Tegmark| 2024} Jain et al., | 2024; Lee et al., [2024; [Panickssery
et al., 2024;|He et al., |2024)). However, since these studies treat the models more as black boxes, they
provide limited insights into the structural changes in model parameters induced by post-training.
Parallel lines of research have attempted to explain the behavior of large language models by analyzing
individual neurons or sparse activation patterns, uncovering phenomena such as entropy neurons
and task-specific circuits (Stolfo et al. 2024; [Katz & Belinkov, 2023} [Yao et al., 2025 (Gurnee
et al.,[2024; |Tang et al., 2024} |Chen et al., 2024; Yu & Ananiadou, [2024). While these studies offer
valuable insights, their scope is inherently limited, as they are often based on earlier models such as
GPT-2 (Brown et al.,|2020), reducing their relevance to contemporary architectures. Our analysis is
data-agnostic, as we directly examine the full parameter space of the model rather than relying on
input—output behavior. This perspective extends beyond previous studies that focus on individual
neurons or isolated functional circuits, enabling a more global understanding of model structure.

Singular value decomposition in large language models. The optimal low-rank approximation
property of SVD (Eckart & Young|,|1936)) has inspired a surge of SVD-based techniques for LLM:s.
Recent methods such as PiSSA (Meng et al., [2024), SVFT (Lingam et al.| 2024) and RaSA (He
et al.| 2025)) leverage dominant singular components to improve fine-tuning efficiency, while others
employ SVD for quantization to reduce deployment costs (Li et al.,2024;|Wang et al., [2024; |Qinsi
et al.; L1 et al., 2023a); [Yuan et al.| [2023). Beyond its practical utility, SVD provides a principled
framework for analyzing the structure of LLMs (Yang et al.,|2023)). For any weight matrix, reduced
SVD produces a decomposition into two orthogonal matrices and a diagonal matrix, each of which
carries a well-defined mathematical role: the orthogonal matrices span the input and output subspaces,
defining bases in which the transformation operates, while the diagonal matrix applies directional
scaling along these bases. In this view, the singular vectors determine how representations are
aligned and projected, and the singular values quantify the relative importance of each direction. This
decomposition reveals how LLMs transform information across layers, making SVD not only a tool
for compression or fine-tuning, but also a window into the geometry of their internal computation.
Our work leverages this perspective to investigate the structural organization of weights in LLMs.

3 PRELIMINARIES

This section reviews the training pipeline and architectural components of LLMs. Given a vocabulary
V, we define LLMs as M : T — P, where 7 denotes the set of input token sequences T; =
[t1,t2,...,tn]; € T and P is the probability space over V. After M accepts sequences of input tokens
T}, a probability distribution pp4 € P is output to predict the probability of the next token.

Training stages of LLMs. LLM:s are typically trained following a two-stage paradigm. The first
stage, known as pre-training, involves optimizing a BASE model My, to predict the next token
given previous context, based on a large-scale corpus drawn from a large-scale distribution of
natural language texts (Radford et al.| 2018;|Sun et al., [2021; |Yuan et al., [ 2022)). The second stage,
termed post-training, further fine-tunes the pretrained model to align its behavior with specific
objectives, such as following user instructions (Zhang et al.,|2024b)) or performing complex reasoning
(DeepSeek-Al et al., [2025). Depending on the post-training objective, the adapted model is referred
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to as an INSTRUCT model Mpgiruec OF @ REASONING model Mcasoning. The two models under
discussion are collectively referred to as POST models M ,o5;. The architectures of Mpase and Mo
are identical — all weight matrices share the same dimensionality, while the sole distinction lies in
their respective parameterizations. In the main paper, My, refers to Qwen2.5-Math-1.5B, M syt
to its instruction-tuned variant Qwen2.5-Math-1.5B-Instruct, and M easoning to the distilled reasoning
model DeepSeek-R1-Distill-Qwen-1.5B. Miggruct and Mieasoning can both be expressed as M po;.
Results for other models across different families and parameter scales are provided in the Appendix.

Architectural components of LLMs. We focus on decoder-only Transformer-based models, which
constitute the foundation of state-of-the-art large language model systems (OpenAl et al.| 2024
DeepSeek-Al et al|,[2024a; Team et al.,[2025)). The Transformer architecture consists of two core
components: the Self-Attention Module (SA) and the Feed-Forward Network (FFN) (Vaswani et al.|
2023). Given an input hidden vector h” € Rmedcl we consider the simplest form of attention
calculation for concise illustration. The output of the SA is:

Vg - [Keache; MW"
SA(h) = softmax ( Q- [Keuche; 1 W] )  Veaehes RV Wor (1)
Vd
where Wo, Wg, Wy, Wo € R%moset X dmosel gre Jearnable weight matrices,/d is the scaling factor in
the attention map, Kcycne and Veuene are the key and value caches respectively, and |...; ...] denotes

concatenation. While modern architectures such as Qwen2.5 series adopt variants like GQA (Ainslie
et al., |2023) to optimize attention computation, the core projection matrices remain integral to the
design due to their role in defining the attention mechanism’s representational capacity. Given an
input vector 27" € Rmodet | the output of the FFN, which employs the SwiGLU activation function
(Shazeer, 2020), is:

FFN(Z) = (SU}ZGLU(Z : ante) © (Z : Wup)) . Wdown (2)

where W Wyate, Wyp € Rmedeidmiv gre learnable weight matrices. Notably, GQA and
SwiGLU-based FFNs have become fundamental building blocks adopted across numerous com-
mercial open-source LLMs, including Qwen (Qwen et al., |2025), LLaMA (Grattafiori et al.| 2024,
Mistral (Jiang et al[2023a), Phi-4 (Abdin et al.| 2024), gpt-oss (OpenAl et al.| [2025)), Gemma (Team
et al., [2025) and others (GLM et al., [2024; |Yang et al.| 2025 |DeepSeek-Al et al., 2024b)). Since our
work targets components common to mainstream architectures, their widespread adoption inherently
ensures the generalizability and representativeness of our research focus. We specifically focus on the
weight matrices in SAs and FFNs, which account for the majority of parameters in LLMs. Analyzing
these linear layers further enables us to characterize the structure of the model’s parameter space.

4 THE STRUCTURAL CHANGES OF SINGULAR SPACE AFTER POST-TRAINING

This section formally presents two regular structural changes that occur in the singular space of
LLMs after post-training. Assuming that m<n, the reduced SVD of a matrix W &€ R™*" is
given by W = UXVT, where U € R™*™ and VT € R™*" are matrices with orthogonality
whose columns correspond to the left and right singular vectors respectively. The diagonal matrix
Y = diag(o1,02,...,0,) € R™™"™ contains the singular values arranged in descending order.

4.1 NEAR-UNIFORM GEOMETRIC SCALING OF SINGULAR VALUES

We observe that post-training does not alter the overall singular value distribution established during
pre-training in the BASE model, instead, It exhibits a near-uniform geometric scaling behavior,
characterized by approximately consistent scaling factors across main singular values.

For the i-th Transformer block of M 4 and M g of the same architecture, we perform reduced SVD
on weight matrix:

i i . i i i )T
W,E\) = Uﬁl) -dzag(ag?l, 01(47)2, ey 0-1(4,)n) . V/(x)
(i) (i) () () (i) Ok ©)
Wy’ =Up’ - diag(oByl,UBg, ...,UB’n) -V

where Wg’) € My and W](; ) e M B represent weight matrices of the same type in the i-th
Transformer block (e.g. W() but belonging to different models. To quantify the effect of post-
training on the evolution of singular value distribution, we define the Singular Value Scaling Matrix



Under review as a conference paper at ICLR 2026

layers.q_proj layers.k_proj layers.v_proj layers.o_proj layers.down_proj layers.gate_proj layers.up_proj

layers.q_proj layers.k_proj layers.v_proj layers.o_proj layers.down_proj layers.gate_proj layers.up_proj

layers.q_proj layers.k_proj layers.v_proj layers.o_proj layers.down_proj layers.gate_proj layers.up_proj

o ;

Figure 2: The heatmaps of SVSMs comparing Myase With M{ ., Mingruee and Mieasoning. (2)
indicates no regular pattern in the distribution of scaling factors between M; ., and Mp,s. In both
(b) and (c), the principal scaling exhibits a near-uniform distribution. While in (c), scaling factors of
W are significantly higher than those of other matrix types.

(SVSM) as:
M OO
SVSM(=L) = [Div™, Div®, ..., Div®], Dip® = 2L BT ()
Ma o 7 (D)
Al An

where k corresponds to the depth of architecture M 4 or Mpg. ol¥) = 0’ / o A jd =12 nis
the scaling factor. SVSM actually describes the distribution of all scahng factors across layers We
plot the heatmaps of SV/.S M (= M‘“‘"““ ) (Figure l) and SV SM (=== M’“““‘“g ) (Figure i) as examples. For

reference comparison, we also show heatmaps of SV.SM ( M:’"‘“ ) where M|, denotes Qwen2.5-1.5B,
which shares the same architecture but differs in pre-training data (Figure Zh).

For Minstruct and M easoning compared to My, scaling factors are remarkably stable across principal
singular values. The instability is confined to the tail, where the singular values have negligible
magnitude and contribute little to the overall transformation. This phenomenon can be approximately
modeled by o5 = Xpase since the scaling factors of principal singular values are almost the same.
As a comparison, the cross-layer stability cannot be achieved between M{me and My,s.. We further
observe that scaling factors of Wo in M easoning consistently exceed those of other matrix types,
which can be used to significantly distinguish non-reasoning models. This pattern holds uniformly
across all REASONING models in our study. Detailed quantitative data (Table[3)) and visualizations of
other models across different families and parameter scales are in Appendix%

4.2 CONSISTENT ORTHOGONAL TRANSFORMATIONS OF SINGULAR VECTORS

We investigate the similarity between the singular vectors of BASE models and POST models. It is
significant to find that the similarity matrices of both left and right singular vectors remain nearly
identical after post-training, suggesting that the input and output subspaces undergo consistent
orthogonal transformations during this process.

Combining Equation [3| the similarity matrices of W;(x and Wg ) are defined as:

)y, Ma )y, Ma

Mp Mp
U (2] = [simy) (2] (@-@ in
Figure ), where | - | takes the absolute value of each matrix element to remove the possible
sign ambiguity of singular vectors, which implies that the input and output subspaces of LLMs
are undergoing highly symmetrical changes. Based on this inference, we can theoretically prove
that the similarity matrices of the left and right singular vectors can be directly used to describe

simD (224 gOT g gim® (DA 0T ) (5)

The widely observed phenomenon can be expressed as |sim
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Figure 3: An example showmg the orthogonality of singular vector similarity to the transformation
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the transformation dynamics within the parameter space of LLMs, and only rotate the orthogonal
bases already formed during the pre-training of LLMs. For Mpae — Mo, the change in left

and right singular vectors from VVb(‘,ls)e to W(Os)t can be framed as applying coordinated orthogonal
transformations to them:

UP(OSl baste ) ‘/;1(031 VI)(as)e g)7 Q ~ Q2Z) - s“nU)/V (6)
where Qgi) and Q(Q) are transformation matrices. The derivation of Equation [6]is given in Ap-
pendix [G.2] which strongly reflects the collaborative and consistent variation of the input and output
subspaces. We validate this claim by leveraging the properties of orthogonal matrices:

i i HT i
if Q=Y. then QY = WL, UE)T ML V) =10, =1 @)

base base orth

where I € R™*" is the identity matrix. We quantify the orthogonality and the equality between

Q(i) and Q(i) by measuring the proximity of Iér)th to I, employing the normalized Frobenius
norm N F® = ]-'(’)g O —1)/Vn?=FOI, —I)/n as our metric. To eliminate the pos-
sibility of low N Fl due to insufficient training, we also plot the mean and standard deviation
of NF 512]“ F )((srrn( R )/n) as line plots (shaded regions denote standard deviation) for all

matrix types in each Transformer block.

@ in Flgure ‘ presents our visualization of I (0) ,, for W(()O), and Figure [3b illustrates N F** @) and
N f o in all the weight matrices of the layers It can be observed that for M, the values of

NF ® are consistently and significantly lower than those of M;, . across all layers while N FL)

sim
sustains a persistently high magnitude, directly demonstrating that Qg " and Q2 are approximately
equal orthogonal matrices throughout post-training. We can further conclude that the variation in
singular vectors on the left and right can be approximately characterized by consistent orthogonal
transformations with negligible deviation, a property absent in different pretrained models (see
Appendix [B.2)). More detailed test results are in Appendix

5 ANALYSIS OF POST-TRAINING

Based on the observation of the aforementioned phenomena, we propose a simplified mathematical
model of the weight changes from Mpase — Mpos, Which prior work has struggled to describe for-
mally (Du et al.||2025; | Marks & Tegmark,[2024; Jain et al., 2024} |Lee et al.,2024). For Wyase € Mpase
and Wos € Mo, the changes imposed by post-training on the parameters can be approximated by
a linear factor o and an orthogonal matrix Q:

Wpost = Uposlzpostvposl (UbaseQ) : (azbase) ° (VbaseQ)T (8)

The relation Yo = Xpase captures how post-training globally scales the singular values, whereas
Upost = Ubase@ and Vit = Viase @ indicate a consistent orthogonal transformation of the input and
output subspaces. From this perspective, post-training can be viewed as a reparameterization of the
pretrained subspaces. This section provides empirical validation that post-training a BASE model
fundamentally corresponds to learning structured orthogonal rotations, where singular value scaling
constitutes a secondary effect.



Under review as a conference paper at ICLR 2026

5.1 SINGULAR VALUES SCALING IS JUST A TEMPERATURE-CONTROLLED MECHANISM

Equation [§]demonstrates that post-training does not alter the singular value distribution formed during
pre-training in BASE models, but merely scales it proportionally. We designed a controlled experiment
to verify the impact of post-training on the singular values of POST models.

Experiments. A direct corollary of Equation|[8]is that the singular value distribution of POST models
can be approximated by combining the singular value distribution of BASE models with an appropriate
linear factor. Consequently, the models before and after singular value replacement should exhibit
nearly identical performance. For M., we perform Construction[?] on each of their weight matrices
across all transformer blocks, which involves replacing the singular values of M., with those from
Mpase and a given linear factor o'

i i i )T
Wp(ozt «— Up(ozt : (alzl:()age) ’ V;)(ozt )

We denote the resulting model after substitution of singular values as ./\/l;eoiltaced. The choice of o is

shown in Table|Zl We then evaluate both M, and M;eoiltaced on four standard benchmarks: GSM8K
(Cobbe et al., [2021)), MATH-500 (Hendrycks et al.,[2021b), MMLU (dev split) (Hendrycks et al.|
2021a), and GPQA (Rein et al.| 2023). Performance is measured by pass@1 accuracy(%) with
a token limit of 1024. To ensure reliability, all evaluations are conducted with three independent
repetitions, and the average values are reported. The results are shown in Table[T]

Table 1: Performance comparison between original and replaced models across GSMSK, MATH-500,
MMLU, and GPQA with pass@1 accuracy (%).

BASE Models REPLACED Types GSMS8K MATH-500 MMLU (dev) GPQA

Mingiruet 85.1440.14 65474090 48.04+£0.60  30.44+0.36
Qwen2.5-  MPaced 85.59:£0.09 61.67£0.57 49.47+0.29  25.9940.70
Math-1.58 A4 coning 62.88:£0.59 32.73+1.64 25.02+0.59  7.02:£0.44
Micplaced 69.45:043 41.46+0.53 35524081  9.45+1.59

reasoning

It can be observed that M;f,psllaced maintains the performance of the M, Which once again illus-

trates the importance of Equation 8 and verifies that post-training does not alter the singular value

distribution of the original model. Notably, we observe a significant performance gain in M:ﬁgiifflgg
The underlying cause of this enhancement may lie in the reduction of the number of tokens output by
the models (as shown in Table[6]), which ensures that the model-generated responses are not truncated
by the pre-specified token limit. The reduction in token count stems from the proposed approximate

replacement operation, which enforces uniform scaling across all singular values, thereby mitigating

potential noise during the training process. This in turn enables M:ﬁg;i;ﬁﬂg to generate more concise
token sequences when addressing simple queries. Detailed experimental setups, the selection method

of o/, and results across different model scales and families are provided in Appendix

Scaling of singular values is just a temperature-controlled mechanism. To better visualize the
change mechanism of singular values, we directly employ Construction [14{(the equivalent expression
of Construction@]when all o’ = 1) to construct Meplaced and analyze the attention score distributions
of the modified model (Figure @). The results show that the attention score distributions remain
largely consistent, exhibiting no significant shifts. Instead, the replacement appears to induce a
smoothing effect that resembles a temperature-controlled process (see Appendix [G.I|for proof). The
measure of attention entropy H (Kumar & Sarawagil 2019) in Figure @b supports this potential
mechanism. The attention entropy H of M cplaced closely matches that of the original Mingruct,
suggesting that the singular value replacement does not disrupt the structural integrity of LLMs or its
capacity to capture contextual dependencies. More detailed results are given in Appendix [C.2]

Notably, the attention entropy before and after the replacement remains closely aligned, suggesting
that the entropy transformation induced by post-training primarily serves as a secondary temperature
control mechanism rather than substantially altering the model’s behavior. This further implies that
singular value scaling is a secondary effect accompanying the post-training process, not its primary
mechanism.
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Figure 4: Visualization of the average attention patterns before and after replacing the singular values.
@ in (a) shows the original attention heads, while @ presents the averaged attention heads from the
modified model. @ illustrates the differences between the original and modified attention patterns.
Panel (b) suggests that this behavior corresponds to a modulation of attention entropy.

5.2 CONSISTENT ORTHOGONAL TRANSFORMATIONS ARE THE CORE OF POST-TRAINING

While replacing the singular values only mildly alters the model’s behavior, disrupting the approximate
orthogonal consistency between the input and output subspaces leads to a clear mode collapse in
Mosi- To validate the functional importance of this coherence, we design a controlled experiment
with two comparative settings.

Experiments. In the first setting (ABLATION), we remove the orthogonal transformation applied to
the output subspaces of W, (Construction @), while preserving the transformation on the input
subspaces. In the second setting (RESTORATION), we restore coherence by applying to the output
subspaces the same orthogonal transformation derived from the input subspaces (Construction |1 1}).

i T
Wp(ozt — U}Eogl post * W)Ssg (10)
WD, e U S - (VD Q)T = U S - (Vi - U U™ (11)

To assess the functional role of consistent orthogonal transformations, we feed the same input into

Mo« under three settings: the original model, the ABLATION model (M2Plation) "a1q the RESTORA-
p g g post

TION model (Mres“’ra""“) All weight matrices in SAs are modified according to Constructions
[T0]and [TT} We employ the same experimental setup as in Table [] to evaluate the performance of
restoration models across four datasets, with the results presented in Table [2}

Table 2: Performance comparison between original and RESTORATION models across GSMS8K,
MATH-500, MMLU, and GPQA with pass@1 accuracy (%).

BASE Models RESTORATION Types GSMSK MATH-500 MMLU (dev) GPQA
Mingtruct 85.1440.14  65.47+0.90 48.04+0.60  30.44+0.36
M@blation 0.00+0.00  0.00+0.00  0.00-0.00 0.00+0.00

QOwen2.5- Mgeration 84.53+0.25 66.204+0.16 41.284-0.44  27.694-0.29

Math-1.5B Afeoning 62.88+£0.59 32.73+1.64 25024059  7.0240.44
Mapation 0.0040.00  0.00+0.00  0.00+0.00 0.0040.00
Misstoration 61.54+1.19 30.934+0.57 29.0040.44  6.7540.27

reasoning

The performance of ABLATION models produce nonsensical outputs across different tasks, as shown
in the case examples in Figure[5] leading to 0% accuracy across all evaluation metrics. In contrast,
RESTORATION models recover meaningful outputs, further supporting the hypothesis of consistent
orthogonal transformations in LLMs. The results across different model scales and families are
provided in the Appendix [D.1}

Orthogonal Consistency and Model Integrity. To further investigate the role of consistent orthogo-
nal transformations in shaping the latent space across Transformer blocks, we evaluate the hidden
representations of the ABLATION and RESTORATION models using Centered Kernel Alignment (CKA)
(Kornblith et al., [2019), a standard metric for quantifying representational similarity across neural
network layers. We use 100 questions from the GSMS8K dataset and compute the average hidden
representation at each layer across these inputs. CKA scores are then calculated between the original
model (®) and the ABLATION (@) and RESTORATION (®) models, as shown in Figure@
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QUESTION:

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She
sells the remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
market?

4 ] ™
Okay, so Janet has ducks that lay putsHost former . organizers, y Okay, let me try to figure out how
eggs, and she uses some for her t d}{, J[ t; modeled,, .. Story .iFf# much Janet makes every day at the
own stuff. | need to ... units PD Nap t€ through ther’;f d farmers' market. So, first ...

fact through ~ '. .Thing says® put
e [, through ./*..,  explicit noth... every day at the farmers' market.
. J
Original response Ablation response @ Restoration response

Figure 5: An example of model responses under three different settings. The ABLATION model
outputs all garbled characters, while the RESTORATION model reconstructs the features of the original
model through the orthogonal matrix of the input subspaces.
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Figure 6: Heatmaps of CKA under different settings. @ corresponds to the ablation in Construction[T0}
which substantially disrupts the original model’s representational structure. ® and @, corresponding
to restorations via Constructions[TT]and [I2] effectively recover the original hidden representations.

The results reveal that the ablation (®) leads to an immediate and significant disruption of the model’s
representational structure starting from the very first layer. This indicates that the effect is not merely
a result of cumulative downstream errors, but rather a fundamental alteration of the model’s initial
architecture. The restoration process (@) effectively reinstates the original representational geometry,
underscoring the structural importance of the orthogonal transformations.

Additional experimental settings and results are provided in Appendix[D-2] These findings suggest
that the consistent orthogonal transformations between the input and output subspaces represent
a central mechanism driving parameter reorganization during post-training adaptation, and offers
a novel perspective that prompts us to narrow down the research scope of the impact exerted by
post-training on the parameter space to the consistent rotation matrix Q.

The equivalence of different post-training methods. We theoretically prove that POST models
initialized from the same pretrained parameters but trained on different data distributions are mutually
transformable via a shared set of orthogonal transformations (see Appendix [G.3|for proof). To test
this hypothesis, we construct a new RESTORATION model from Mipguee following Construction [T2}
and evaluate its similarity to the original model using a CKA heatmap (marked as @ in Figure |§|)
Wp(;s)t A Uéégtzpost . (‘/Ir(lzz‘ucth)T = U}Egztzpost ' (VI(l) . @ U})((;Ls)t)T (12)

nstruct Instruct

This effective restoration of the latent space confirms the correctness of the hypothesis. We believe
that this equivalence actually provides a parametric basis for certain universal phenomena. For
example, it allows us to expose a potential mechanism behind catastrophic forgetting: when shared
orthogonal transformations are disrupted and overwritten by new task-specific ones, the original
transformations are lost, leading to performance degradation on prior tasks. We believe this inference
can provide parameter-based support for understanding the forgetting mechanism of LLMs.

6 CONCLUSION

The paper establishes a unified and interpretable framework for understanding how post-training
reshapes the internal structure of large language models. Through a comprehensive SVD analysis of
linear layers, we identify two consistent transformations: a near-uniform geometric scaling of singular
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values and highly consistent orthogonal transformations of singular vectors, both pervasive across
model families and parameter scales. Our theoretical and empirical analyses indicate that while singu-
lar value scaling can be interpreted as a temperature-like adjustment, the essential functional change
lies in the structured rotations of singular vectors, whose disruption markedly degrades performance.
These findings not only provide a theoretical foundation for potential applications (see Appendix
for a related discussion), but also offer the first systematic account of the reparameterization dynamics
governing large language models.

7 LIMITATION

While this paper identifies two structural changes in the parameter space of SAs and FFNs, our
analysis primarily focuses on weight matrices in models that undergo supervised post-training. This
restriction naturally raises several open questions: Do reinforcement learning—based post-training
methods exhibit the same structural phenomena? If the architecture or training paradigm of
large models changes substantially, will the observed regularities persist? Do other components
in LLMs with specific functions (such as normalization layers and output projection heads)
follow similar patterns? A detailed discussion in Appendix [E] further demonstrates the generality of
these two structural changes.

Moreover, our findings also point to a deeper theoretical challenge: what underlying mechanism
gives rise to such striking regularities in LLMs? We conjecture that a unified theoretical framework
must exist—one capable of explaining the emergence and stability of these structural properties
across different training paradigms. We view the pursuit of such a framework as a promising and
impactful direction for future research.
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A SINGULAR VALUE SCALING ACROSS MODELS OF DIFFERENT FAMILIES
AND SIZES

In the main paper, we introduce the SVSMs of Qwen2.5-Math-1.5B as the BASE model. This section
continues to present comparisons of models with different post-training methods based on BASE
models Qwen2.5-Math-7B, Llama-3.1-8B, and Qwen2.5-14B in [DeepSeek-Al et al| (2025). The
different POST versions of these models are described in the Appendix We will also provide a
detailed analysis of the cross-layer stability of the near-uniform geometric scaling.

layers.q_proj layers.k_proj layers.v_proj layers.o_proj layers.down_proj layers.gate_proj layers.up_proj
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(b) Mpase denotes Llama-3.1-8B
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(c) Mpase denotes Qwen2.5-14B

Figure 7: The heatmaps of SVSMs. The BASE models of (a), (b) and (c) are Qwen2.5-Math-
7B, Llama-3.1-8B and Qwen2.5-14B respectively. Unlike Qwen2.5-Math-7B which has different
pretrained versions like Qwen2.5-7B, only INSTRUCT version and REASONING version of the latter
two models are compared.

Figure [7]shows SVSMs of different BASE models. We empirically observe a consistent pattern of
singular value scaling across different post-training methods, where the principal singular values
exhibit identical scaling ratios across different layers. This phenomenon universally manifests in
all weight matrices. Notably, the W matrices in all REASONING models demonstrate significantly
higher overall scaling ratios compared to other weight matrices.
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A.2 CROSS-LAYER STABILITY OF SINGULAR VALUE SCALING
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Figure 8: The bandwidth plot shows the distribution ( mean =+ std ) of the scaling factors for the top
90% singular values in each layer. The blue line indicates comparison with My ., while the light
orange and brown curves correspond to comparisons with Miggiruct ahd M easoning TESpectively.
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Figure [§] shows the mean (dark line) and standard deviation (light band) of the scaling factors for
the top 90% principal singular values across all Transformer blocks. As can be seen from the figure,
both the INSTRUCT and REASONING models show stability in singular value scaling, which is both
per-layer (almost no broadband is visible in the INSTRUCT and REASONING models) and cross-layer
(the values in each layer are almost the same). Table [3| further reports the overall mean and standard
deviation of the scaling factors for the top 90% singular values across all layers. As shown, the
standard deviation across different BASE models is substantially larger than that between each BASE
model and its corresponding POST model (e.g., 37.39x std for in Qwen2.5-Math-1.5B between M;
and M), and the maximum variation of Mo remains within 1%, demonstrating the stability
of the singular value scaling phenomenon and further reinforcing our claim.

Table 3: Global layer statistics of the scaling of the top 90% singular values ( mean =+ std ), measured
for different model families and parameter scales.

SVSM(xi— )

Wa

Wk

Wy

Wo

M., 0.6709 £ 0.1728  0.7017 £ 0.0903  0.6465 £ 0.0432  0.6293 £ 0.1272

Owen2.5-Math-1.5B  Mipuer 0.9071 +0.0046  0.9084 4 0.0053  0.9026 + 0.0036  0.9041 = 0.0036
reasoning 0.9710 +£0.0131  0.9723 +0.0109  0.9513 £ 0.0103  1.3551 = 0.0058

e 0.6621 & 0.0827  0.7033 + 0.0688  0.6388 = 0.0368  0.6257 = 0.0317

Owen2.5-Math-7B Mingua 0.9074 +0.0043  0.9103 +0.0111  0.9040 % 0.0047  0.9056 + 0.0027
Micasoning 0.9837 +0.0036  0.9823 +0.0072  0.9737 £0.0072  1.3800 = 0.0031

Lloma-3.1-8B Minsuer 0.9960 +0.0017  0.9951 % 0.0008  0.9957 & 0.0009  0.9975 + 0.0027
: reasoning 1.0041 £ 0.0181  0.9898 +0.0058  0.9930 +0.0093  1.4112 4 0.0187
Minsuer 0.9990 £ 0.0006  0.9989 £ 0.0003  0.9989 = 0.0002  0.9989 = 0.0002

QOwen2.5-14B

reasoning

0.9937 £ 0.0142

0.9901 + 0.0064

0.9861 + 0.0031

1.3952 £ 0.0017

SVSM(5i—) Wup Wyate Woown
M 0.7242 +0.0882 0.7282+0.1179  0.6967 =+ 0.0274
Owen2.5-Math-1.5B Mt 0.9016 4+ 0.0010  0.9018 £ 0.0017  0.9019 + 0.0010
Micasoning 0.9720 +0.0023  0.9687 £ 0.0035  0.9714 + 0.0026
M. 0.6693 +0.0454  0.6791 £ 0.0514  0.6495 + 0.0140
Qwen2.5-Math-7B Mipguer 0.9021 4+ 0.0014  0.9025 = 0.0013  0.9024 + 0.0016
roasoning 0.9847 +0.0020  0.9839 + 0.0019  0.9843 + 0.0021
Liamae3.1-88 Mintruee 0.9961 +0.0003  0.9957 + 0.0003  0.9961 + 0.0003
: 1.0036 £ 0.0041  0.9988 £ 0.0033  1.0035 & 0.0044

=4

Owen2.5-14B Mipiruer 0.9991 +0.0021  0.9991 = 0.0015  0.9990 + 0.0006

0.9922 £ 0.0132

0.9924 £ 0.0119

0.9909 £ 0.0062

reasoning

B CONSISTENT ORTHOGONAL TRANSFORMATIONS ACROSS MODELS OF
DIFFERENT FAMILIES AND SIZES

In this section, we compare N F () between the BASE and POST versions of Qwen2.5-Math-7B,
Llama-3.1-8B, and Qwen2.5-14B. We also visualize the similarity, difference, and orthogonality
matrices of the left and right singular vectors of Wq, Wk, Wy, and Wo (using the first and last
Transformer blocks as examples), and discuss whether such orthogonal consistency is already present
in the pre-training stage.

B.1 VISUALIZING ORTHOGONAL CONSISTENCY ACROSS MODELS OF DIFFERENT FAMILIES
AND SIZES

As shown in Figure[9] the N'F () values across different POST versions consistently remain low, in

contrast to the higher values observed among the pre-training variants (Figure[Qp, Base vs Base). This

indicates that, despite variations in model scale and post-training methods, each matrix exhibits a
. . . . 7 (’L) . . .

high degree of consistency in the orthogonal transformations ((); ’ and ()5 ”) applied to its singular

vectors. This phenomenon is illustrated more clearly in Figure [I0{13] where most orthogonality

matrices closely approximate the identity matrix.
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Base vs Base Base vs Instruct Base vs Reasoning Base vs Instruct Base vs Reasoning Base vs Instruct Base vs Reasoning
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Figure 9: Extensively verifies the equality of Qgi) and Qgi) comparing Mpge t0 Mpos by N'F ©
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Figure 10: Visualizations of the similarity, difference and orthogonality matrices of the left and right
singular vectors of the first and last Transformer block’s W, before and after post-training across
models of different scales.
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Figure 11: Visualizations of the similarity, difference and orthogonality matrices of the left and right
singular vectors of the first and last Transformer block’s W before and after post-training across
models of different scales.
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Figure 12: Visualizations of the similarity, difference and orthogonality matrices of the left and right
singular vectors of the first and last Transformer block’s Wy, before and after post-training across
models of different scales.
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Figure 13: Visualizations of the similarity, difference and orthogonality matrices of the left and right
singular vectors of the first and last Transformer block’s W before and after post-training across

models of different scales.
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We also observe that the similarity matrices of the left and right singular vectors are mostly con-
centrated along the diagonal. As shown in Appendix [A] post-training does not alter the distribution
of singular values of the weight matrices. When taken together with our current observation, this
indirectly supports the view that post-training acts as a perturbation to the pretrained subspaces.

B.2 TRANSFORMATIONS OF SINGULAR VECTORS DURING PRE-TRAINING

The similarity matrices of the left and right singular vectors across different BASE models do not
exhibit strong diagonal dominance, suggesting substantial divergence in their pretrained subspaces
(Figure[T4). Despite this divergence, we observe a subtle and consistent pattern in the orthogonal
transformations between the left and right singular vectors. This subtle consistency may stem from
an accumulation of alignment errors, implying that the orthogonal transformations are systematically
misaligned to some extent. We can calibrate Upog, Vpost in Equation |§|:

Uposl = Ubase(Q . AQI)
‘/posl = %ase(Q . AQQ)

The matrices AQ; and AQs represent small-angle components that capture fine-grained deviations
superimposed on the coordinated transformation of the left and right singular vectors during training.
These residual transformation correspond to the perturbation term I, in Equation (7| From this
perspective, the amount of data used in post-training is substantially smaller than in pre-training. As
a result, the accumulated perturbations introduced during post-training are also much smaller than
the large-scale transformations of the left and right singular vectors induced during pre-training. It is
reasonable to postulate that the accumulation of such errors precisely constitutes a significant factor
in reshaping the subspaces of BASE models. Given that the cumulative deviations introduced by AQ
and AQ- remain sufficiently small, the overall transformations of the singular space can be well-
approximated as coherent orthogonal rotations. This also supports the validity of the approximation
made in Equation [§]

(13)
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Figure 14: Visualizations of the similarity, difference and orthogonality matrices of the left and right
singular vectors of the first and last Transformer block’s Wo between Mpase and My ..

C EXPERIMENTS ON DIFFERENT REPLACED MODELS

This section will conduct the same experiments as presented in the main paper on models of varying
scales and families, aiming to verify the universality and generalizability of the near-uniform geo-
metric scaling phenomenon of singular values. The evaluation will include tests on four standard
benchmark datasets, along with visualizations of attention entropy.

C.1 PERFORMANCE OF DIFFERENT REPLACED MODELS

The purpose of performing Construction|9|on M. is to verify that the singular value distribution of
Mot can be reconstructed through the linear factor o’ and the singular value distribution of Mg,
thereby validating the rationality of Equation|[8] This verification critically depends on the selection
of o’. Our choice of ' is based on Table as it reflects the overall distribution of singular value
scaling factors. We obtain the final o/ values for each type of weight matrix in the POST models by
rounding the mean of these scaling factors, as presented in Table ]
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Table 4: o values (right) assigned based on mean singular value scaling factors (left) of weight
matrices per type (from Table[3).

POST Types Wy Wk Wy Wo
Quen25-Mathe1.58 3 (T 58 10 0083 10 13981 14
Quen2s-Marh78 e O 00808 S 10 00737 10 13%0 14
Llama-3.1-SB Mt 0.9960 — 1.0 0.9951 — 1.0 0.9957 — 1.0 0.9975 — 1.0

reasoning 1.0041 - 1.0 0.9898 — 1.0 09930 - 1.0 1.4112 —14
Quen23-148 gm0 00001 S 10 00801 10 13082 & 14
POST Types Wi, Waate Waown
Quen2.s-Marh-L.5B g (0T M0 00 10 00nd o 1
Quen2s-Marh78 e (O T 080 10 0.0813 ) 10
Lama-3. -85 g T 0 000 S 10 10038 10
Quen2.5-14B e O e 0005 10 09900 10

reasoning

In our experiments, the output parameters of the LLMs are configured with a temperature of 0.2, a
top_p of 0.95, and a maximum output token limit of 1024. This setting ensures stable generation while
maintaining moderate diversity for subsequent statistical analysis. System prompts are provided in
Appendix[H.I] Each model is executed three times on the test set, with the final performance reported
as the average score and variance. The results are presented in Table[5] The mean and variance of the
average length of output tokens across three test runs are also reported in Table [f]

Table 5: Performance comparison between original and replaced models across GSM8K, MATH-500,
MMLU, and GPQA with pass@1 accuracy (%).

BASE Models REPLACED Types GSMS8K MATH-500 MMLU (dev) GPQA
Minstruct 95.75+0.12  70.0640.50 55.90+0.16  27.14+0.49
Qwen2.5- Miepjaced 95.25+0.06 73.004+0.43 55.20+0.16  27.224-0.41
Math-7B Mieasoning 62.70£1.05 47.604033 58.714£091 14734097
M 72.2840.42 53.66+0.81 60.69+1.03  18.01+0.87
Minsiruet 34.70+1.24 31.46+1.06 67.48+0.44  21.21+0.29
Llama-3.1-SB Mepaced 34924037 32.60+1.14 65.26+0.57  20.11+0.76
ama-J.1-
Mieasoning 60.17+0.07 32734041 52.51+1.47  11.40+0.17
Mﬁﬁﬁlﬂ;ﬁﬂg 68.724+0.43  29.73+0.90 52.16+1.29  9.17+0.51
Mingtruct 94.24+0.29  70.53+0.34 90.63+0.16  36.65+0.36
Owen2.5.148 Mepiced 94.11+0.25  69.13+0.09 89.93+1.01  35.60+1.48
wens.o-
Mieasoning 70.61+0.46  53.1340.25 77.89+0.76  19.48+0.55
MPlaced 79.494+0.42 5233+0.25 75.79+1.03  19.0240.32

reasoning
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Table 6: Comparison of average length of output tokens between Original and Replaced Models
across GSM8K, MATH-500, MMLU, and GPQA.

BASE Models REPLACED Types GSMS8SK MATH-500 MMLU (dev) GPQA
Mistruer 305.014£1.54 542324121 402.6043.13  633.82+5.09
Qwen2.5- Myepaced 302.9242.54  527.034+4.11  408.09+4.31  610.7318.94
Math-1.5B  Af, . coning 530.8246.86  911.55+5.55  619.34:+13.82  952.00+18.83
replaced
M oming 427414533 864.7148.03  590.98+15.42 939.184+9.91
Mingtruct 299.4643.17  551.34+439 372534591  567.34+4.96
Qwen2.5- Miehiaced 304214291 549.1342.53  378.34+4.51  533.1945.98
Math-7B Mieasoning 729.1647.64  795.40+9.01  514.1546.91  933.15+9.97
M 451.2749.28  726.0816.14  488.30+15.17 891.6316.07
Mingtruct 166.47+4.22  359.1946.02  35.79+143  236.35+7.38
Llama-3.1-8B Mepiaced 146.054+2.18  451.384+7.71 41424336  251.64+3.06
Measoning 627.1448.71  931.14+14.80 721.64+11.13  989.41+7.43
M 651.23+11.34  970.02415.14 751.024£8.29  994.00+4.31
Minstruct 281.95+7.21  550.0246.17  89.69+1.18  240.16+6.55
Owen2.5-14B Mepiaced 299.1445.11  530.6545.93  87.561+2.43  241.6746.39
M teasoning 583.0144.57  897.6148.81  487.544+7.68  924.63+7.90
MIelaced 410.97+7.81  847.1442.06  514.09+£6.90  933.1545.10

reasoning

Experimental results demonstrate that models exhibit nearly identical performance before and after
singular value replacement. This further validates that post-training does not alter the singular value
distribution of pre-trained models, thereby supporting our conclusion.

We also observe that the performance of some REASONING models improves after singular value
replacement. One possible explanation is that Construction [J] effectively eliminates noise arising
from precision limitations or heterogeneous data during singular value adjustment of Mp,ses” Weight
matrices in post-training phases. This reduction in noise consequently enables more efficient token

consumption for simpler tasks (e.g., the notable decrease in output token count for Mﬁ:g;?ﬁﬂg f
QOwen2.5-Math-7B on GSM8K). These observations suggest that post-training processes exert theo-
retically derivable influences on the singular values of weight matrices. We identify this phenomenon

as a crucial direction for future theoretical investigation.

C.2 ATTENTION ENTROPY OF DIFFERENT REPLACED MODELS

To demonstrate that singular value scaling is similar to a temperature-controlled mechanism, we
perform the following operation on all weight matrices W5 of the POST models:

T
Wpost — Upostzbasev

post

(14)

Construction|14|replaces the singular values of POST models’ weight matrices with those from BASE
models. To evaluate the impact of this substitution, we monitor the attention entropy 7. A substantial
change in entropy suggests a shift in the distribution of attention scores, indicating a structural change.
Otherwise, the effect may be interpreted as a soft temperature modulation.

We input example questions from different domains (Cobbe et al., |2021; [Talmor et al.l [2019;
Hendrycks et al.}[2021a; [Rein et al.,[2023) into replaced models M cpiacea and observe their attention
scores prior to generating the first token. Specifically, we track the average attention distribution from
each attention head in Transformer blocks 0, 3, 5, 8, 10, 13, 15, 18, 20, 23, and 25, and compute the
corresponding attention entropy.
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1351 QUESTION 1 (FROM GSMSK) :
1352 Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she earn?
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Figure 15: Attention entropy for different M cpjacea. The example input is from GSM8K.
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The replaced models M epiaced, Spanning diverse architectures and parameter scales, consistently
preserve the attention entropy of their original counterparts across a range of examples . This
robustness persists even under higher scaling of the singular values in the Wy of REASONING models.
In particular, Qwen-based models exhibit minimal sensitivity to such modifications, with attention
entropy remaining largely unchanged (Figures|[I5][T6] [I7] [I8). In contrast, LLaMA-based REASONING
models show an increase in attention entropy when the overall scale of 1/ singular values is reduced,
consistent with a more uniform distribution of attention scores. Importantly, these effects are largely
invariant to extreme amplification of singular values in the long tail of the spectrum, likely due
to their negligible magnitude and limited contribution to the model’s functional behavior. These
findings support the interpretation of global singular value scaling as a temperature-like mechanism
for modulating attention sharpness.

D EXPERIMENTS ON VERIFYING THE CONSISTENCY OF ORTHOGONAL
TRANSFORMATIONS

This section highlights the critical importance of orthogonal consistency. While the main paper only
demonstrates that disrupting orthogonal transformations in SA output subspaces can be compensated
by preserving orthogonality in input subspaces, we present here a more extensive set of experimental
results. We apply'Construction to matrices in Mo to obtain Mgg';:"o", and use Construction
to derive M50 These operations model the destruction and subsequent restoration of the output
subspaces in the weight matrices. Similarly, we apply Constructions[I5]and [I6]to the input subspaces,
as a symmetric counterpart to Constructions [I0]and [T T}
. . T
Wit Ut Zpos - Voo (15)

base

. . T . T . T
Wios  (Usne@) - ooVt = (Ui - Vil Vi) - SpouVa (16)
Constructions[I0} [T] [I3] and [16] provide an intuitive demonstration of the orthogonal consistency
between the left and right singular vectors of each weight matrix in the model. For each M, we
apply the transformations from Constructions and[I6]to all SA or FFN modules. These
operations disrupt the orthogonal transformations of either the input or output subspaces, and attempt
to restore them using the corresponding orthogonal mappings. This yields eight model variants:

SA,out SA,out SAin SAin FFN,out FFN,out FFN,in FFN,in
Mablalion ’ Mre§tora}ion’ Mablation’ Mrestoratiqn’ Mablali_on ’ Mr_estoration ’ Mablation ’ and Mreslorz_ition'
The superscript indicates whether the operation is applied to the input or output subspaces of all weight

matrices in SAs or FFNs, while the subscript denotes whether the operation is destructive or restorative.
We perform ablation and restoration operations on SAs and FFNs separately, to prevent model
collapse caused by excessive cumulative errors when restoring all weight matrices simultaneously.
Additionally, this approach enables independent validation of the co-rotation phenomenon between
the input-output subspaces of SAs and FFNs, avoiding excessive cumulative errors that could interfere
with experimental observations.

D.1 PERFORMANCE OF DIFFERENT RESTORATION MODELS

We report the performance of all RESTORATION models on GSM8SK, MATH-500, MMLU (dev split),
and GPQA. All experimental configurations remain consistent with Appendix [C.1] specifically with
the temperature set to 0.2, top_p to 0.95, and a maximum output token length of 1024. The system
prompts are as detailed in Appendix For each of the four datasets, we measure the results three
times and report their pass@1 accuracy (%). All ABLATION models were unable to produce valid
outputs, inevitably yielding a pass@1 accuracy of 0% in every evaluation. As these uniformly null
results do not provide additional empirical insight, we refrain from reporting them in detail. The
complete results are shown in Table[7]and 8]

Most RESTORATION models successfully recover the original performance, validating the consistency
of co-rotational alignment between input and output subspaces and confirming Equation [8} We

further observe that orthogonal substitutions in the output subspaces are more stable than in the input
subspaces: M;;Z,raﬁon often performs far worse than M;é;’f;faﬁon, indicating directional rotational
error (Appendix [B.2). Errors appear to accumulate along the input-to-output pathway, while reverse
elimination can cause collapse. This suggests an inherent asymmetry in co-rotation speed, with one

subspace consistently leading the other—an intriguing phenomenon warranting further study.
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Table 7: Performance comparison between original and RESTORATION models across GSMS8K,
MATH-500, MMLU, and GPQA with pass@1 accuracy (%). The ”-” indicates model collapse.

BASE Models  POST Types RESTORATION Types GSMS8K MATH-500 MMLU (dev) GPQA

M riginal 85.144+0.14  65.47+0.90 48.04+0.60  30.44+0.36

Midm 84534025 6620+0.16 41284044  27.69+0.29

Mingiruct Mot 84.03+£0.29 66474179 38254230  29.34+2.65

MEENin 61.54+0.19  53.00£0.20 31.81+0.41  28.7940.83

Qwen2.5- MEFNout 84.5140.18  66.0740.31 41.1740.88  22.97+1.10
Math-1.5B

M riginal 62.88+0.59 32.73+1.64 25024059  7.02+0.44

M 61.54+1.19  30.93+0.57 29.00+0.44  6.7540.27

Meeasoning ~ MA0ut 61.96+1.71 32.064025 28.30+1.77  3.45+1.23

MEENin 60.60+£1.25 53.60+0.43 2549+1.07  12.81+1.44

MEFNout 76.05£0.71 56.46+£034 32.51+£3.03  16.71+1.81

Moriginal 95.7540.12  70.06+0.50 55.90+0.16  27.14+0.49

M 95.15+0.41 73204033 55.1840.18  24.85+0.17

Mingiruet MEdout 94314098 72.4040.53 53.1041.46  20.80+1.60

MEENin 86.10+0.53 68.60+1.40 54.04+0.61  25.07+0.98

Qwen2.5- MEENout 94.21+0.86 70.93+1.51 55.44+335  25.89+1.44
Math-7B

Maigina 62.70£1.05 47.6040.33 58.714091  14.73+0.97

M 63214091 52.80+0.28 5848+0.65  22.99+1.19

Meeasoning ~ ME2u 64.34+229  50.93+1.36 59.06+0.73  21.34+0.69

MEENin 82.46+0.90 65.60+2.91 48424070  22.71+1.13

MEFNout 58.83+£1.66 60.07+1.75 58.83+0.73  20.16+2.42

Moriginal 34704124 31.46+1.06 67.48+4044  21.2140.29

ME 30.15+0.82  30.40+0.75 65494043  22.3240.09

Minsiruct MEAout 31.18+1.17 33.13+1.70 63744266  25.07+2.16

MEEDn 24.1342.12 23404191 59.6440.93  22.61+1.19

Llama-3.1-8B MEENout 43.9742.06 23.26+1.28 63.6242.92  21.98+1.29

Maiginai 60.1740.07 32734041 52514147  11.40+0.17

MEdm 6030+1.54 29.60+0.49 42224059  8.77+0.60

Mgeasoning ~ MEA0ul 61.25+0.78 34.87+1.17 47.134228  6.81+1.63

MEEN 39.87+1.13  15.3343.89 38.954+0.70  8.99+2.13

MEENout 38.76+1.09 25004231 47.83+1.93  7.53+1.50

Moriginal 94244029 70.53+0.34 90.63+0.16  36.65+0.36

M 94.0940.34 68.86+0.50 88.4240.29  37.60+0.34

Mingiruct MAout 93.91+1.52 73.67+0.92 88.07+195  32.51+0.63

MEENn 93.63+0.38 71.33+0.83 82.574+3.58  28.89+1.66

Owen?.5.148 MEEMout 94.87+0.64 73.60+1.11 88.30+0.73  34.05+3.40

Moriginal 70.6140.46  53.134025 77.8940.76  19.48+0.55

MEdm 75724025 56464024 76.37+1.85  21.94+0.86

Mgeasoning M0 7632+1.69 56.33+1.70 78.83+£3.06  17.17+1.91

MEFNout 82.15+1.41 62.60+1.39 76.844+3.35  27.06+3.95

restoration
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Table 8: Comparison of average length of output tokens between original and RESTORATION Models
across GSM8K, MATH-500, MMLU, and GPQA. The -” indicates model collapse.

BASE Models  POST Types RESTORATION Types GSMS8K MATH-500 MMLU (dev) GPQA
Moriginal 305.0141.54 542324121  402.60+3.13  633.82+5.09
M 309.47+15.81 523.06+5.87 435364872  646.07+6.98
Mungruet MEdout 287.1246.99  558.05+3.83  447.054825  631.88+3.64
MEFNin 422.87425.85 587.4247.66  532.19+4.54  792.16+7.86
Qwen2.5- MEFN-out 320.65+8.86  499.06:£13.76 443.56+1.18  617.7342.57
Math-1.5B
Mariginal 539.8246.86  911.55+5.55  619.34+13.82 952.00+18.83
M 504.75424.05 916.60+8.58  659.16+8.78  920.66+13.58
Mgeasoning M out 518.82410.24 910.68+19.32  661.64+13.52 968.31+4.19
MERNin 356.13+11.35 692.2146.48  466.14+10.31 872.224+16.03
MEFN-out 422744412 755904598 502264886  819.93+4.54
Moriginal 299.46+3.17  551.34+439 372534591  567.34+4.96
MEdn 320.0149.72  561.23+4.63 411704347  665.44+10.30
Mingruet MEdout 307.3847.85  565.77+15.30 420.34+9.38  672.78+7.23
MEENn 382.1348.09  552.38+3.86  642.14+10.25 846.68+8.97
Qwen2.5- MEEN-out 286.25422.59 510.28+11.25 345164875  535.02+5.42
Math-7B
Moriginal 729.16+£7.64  7954049.01  514.154691  933.1549.97
M 791.97421.19  617.83+4.76  457.574+2.16  863.81+2.92
Meeasoning — Miout 796.48+5.62  778.33+5.57  451.87+£7.65  877.55+17.99
restoration
MEENn 423.84+8.60  809.49+8.49  388.25+7.09  824.16+3.86
MEENout 4424441448  691.19+7.95  444.99+12.73 823.32+13.92
Moiginal 166.47+4.22  359.1946.02  3579+1.43  236.35+7.38
g
M 183.1148.15  324.0142.05 32.514896  243.30+10.17
Minstruct MEdout 169.65+4.65  343.88+18.92 48.5046.12  254.77+9.58
MEEN 150.22+3.90  278.5+£11.29  5.33+1.24 6.01+1.42
MEEN.out 173.3247.98 2477541373 11.01+1.41  38.74%1.11
Llama-3.1-8B *
Moiginal 627.1448.71  931.14+14.80 721.64+11.13 989.41+7.43
gl
M 410234632 833.03+11.39  755.99+15.07 989.68+3.84
Meeasoning ~ MED-eut 431.48+18.15 888.37+17.35 768.72+11.06 998.8546.39
MEENn 309.76+24.51 9533741471 684.11419.56 975.54+17.14
MEEN.out 4572741021  833.03+11.39  672.14+9.32  972.024+4.06
Moriginal 281.9547.21  550.0246.17  89.69+1.18  240.16+6.55
MEdim 279.14+7.21  444.63+1324 101.63+8.73  283.7449.02
Mingiruet MEdout 182344457  850.45+11.08 99.5045.92  275.19+6.80
MEENin 288.07+£14.29 442.79+4.03  89.414+3.21  188.08£5.28
FFN,ou
Owen2.5-148 MEFN-out 282.6746.75 431104625  120.54+11.45 217.08+4.71
Moriginal 583.01+4.57 897.6148.81  487.54+7.68  924.63+7.90
MEdim 538.26+6.08  844.46+8.89  442.49+12.38 920.88+4.77
Meeasoning ~ MEDeut 5187141125 852.79+9.55 438204433  912.47+5.40
FFN,in
Mresloralion - - - -
MEFN-out 504.96+8.01  863.77£3.59  450.66+10.42 875.01+11.63

restoration
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D.2 CKA ANALYSIS OF DIFFERENT RESTORATION MODELS

We then feed N input examples into Mpoq, Mo ™", and Mo, and compute the mean hidden

representations 7"5\2 for each layer by averaging their outputs (Equation :
1N
=5 > M) a7)
j=1

where Tj is the j-th input question, and M@ (.) denotes the hidden representation produced by the
i-th Transformer block in model M. We use the first 100 examples from the GSM8K training set for
analysis (N = 100). We compute the CKA heatmap between the average hidden representations of
Mos and each ABLATION/RESTORATION variant to assess the impact of orthogonal consistency on
internal representations. Figure [[9]presents our experimental results.
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Figure 19: CKA heatmaps generated using M o5 for Mpost, Mablation» a1d M esioration- The results
indicate that M ngree €xhibits stronger orthogonal alignment between input and output subspaces
compared to M casoning. Additionally, the restoration of orthogonal alignment after perturbation is
more robust in the output subspaces than in the input subspaces.

Disrupting either the SAs or FFNs compromises the orthogonal alignment between input and output
subspaces, impairing the internal structure of M. Restoring this alignment leads to the reemer-
gence of structural symmetry in the CKA heatmaps, indicating a partial recovery of the model’s
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hidden representations. The weight matrices of Mg €xhibit stronger orthogonal consistency
than those of M casoning. This is evidenced by the restoration variants of Mipge producing CKA
heatmaps that more closely resemble those of M. The CKA heatmaps remain only partially
reducible, reflecting the fact that orthogonality is preserved only approximately. This observation is
further supported by the correction introduced in Equation The restoration process effectively
reinstates the original representational geometry, highlighting the critical structural role of orthogonal
transformations.

E THE STRUCTURAL CHANGES IN A BROADER RANGE OF MODELS

In the main text, as well as in Appendix and [D] we present a systematic comparison of
structural changes in model weights before and after supervised post-training, with a particular focus
on the Qwen and LLaMA families. We also report detailed experimental results that confirm the
validity of Equation [8] These findings naturally motivate several follow-up questions:

1. How do reinforcement learning (RL)-based post-training methods influence model weights? From
the perspective of parameter space, in what ways do their effects differ from those of supervised
post-training, and what implications can be drawn?

2. Would modifications to the model architecture or the adoption of different training strategies
affect the generalizability of the observed structural changes?

3. Do other components in LLMs with specific functions (such as normalization layers and output
projection heads) follow similar patterns?

This section addresses these questions by extending our analysis to a broader set of models. The
subsequent case studies provide strong evidence that the validity of Equation [§]is preserved across
diverse settings—including supervised post-training, RL-based post-training, and variations in model
architecture or training methodology. The two structural changes identified in the main text thus
appear to generalize robustly across these scenarios. Furthermore, we observe that this phenomenon
persists throughout the entire post-training phase, indicating the continuity of these two structural
changes during post-training, as detailed in Appendix [E.4]

E.1 STRUCTURAL CHANGES IN LLMS INDUCED BY RL-BASED POST-TRAINING

We investigate several state-of-the-art large language models trained with advanced reinforcement
learning algorithms, including AceMath-RL-Nemotron-7B (Liu et al.l[2024), deepseek-math-7b-rl
(Shao et al., 2024), and Seed-X-PPO-7B (Cheng et al., [2025). These models respectively adopt
advanced reinforcement learning approaches such as GRPO (DeepSeek-Al et al., [2025)) and PPO
(Schulman et al.|[2017), originate from different research groups, and are built upon diverse training
corpora (see Table for details). This diversity in both algorithmic choices and data sources
provides inherent support for the generalizability of our subsequent experimental results. We
compute the SVSMs between those models and their BASE versions, the N'F (i), as well as the

orthogonality matrices of the singular vector (e.g., ] (()22 in the first Transformer block), and present

the corresponding visualizations in Figures and

From the SVSM heatmaps and the lower values of N'F (i), we observe that models subjected to
RL-based post-training exhibit even more consistent structural changes than those trained with
SFT-based post-training. This strongly suggests that SFT-based and RL-based post-training
methods possess a high degree of parameter equivalence, meaning that the effects they impose
on model parameters are essentially identical. Building upon this conclusion, one may infer that
RL-based post-training is effectively equivalent to supervised post-training, notwithstanding previous
studies (Chu et al., [2025)) that have highlighted the ostensibly superior generalization capacity of
reinforcement learning algorithms. We further conjecture that this generalization advantage does
not arise from the intrinsic design of RL algorithms themselves, but rather from the diversity
of training data generated through reinforcement learning. For instance, GRPO encourages the
model to produce more diverse responses, which are then incorporated into the training process as
additional samples. This analysis further explains the effectiveness of Long-CoT distillation. Its
training procedure is equivalent to that of RL-based methods, ensuring comparable effects on model
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parameters, while its training data are more extensive and diverse than those of instruction tuning,
enabling smaller models to achieve reasoning capabilities similar to large-scale RL-based models.
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E.2 GENERALITY OF STRUCTURAL CHANGES ACROSS TRAINING STRATEGIES AND
ARCHITECTURES

We find that regardless of architectural modifications or training strategies, LL.Ms consistently
exhibit these two structural changes in their parameters after post-training. To further examine
the universality of this phenomenon, we extend our analysis to Mistral-7B-Instruct-v0.1 (Albert;
Q. Jiang et al.| 2023), Gemma-2-2B-it (Gemma Team et al.,2024)), and MediPhi-Instruct (Corbeil
et al.| 2025)), each of which incorporates distinct design improvements:

* For Mistral-7B-Instruct-v0.1, the model incorporates Sliding Window Attention (Beltagy et al.,
2020) and a Rolling Buffer Cache. These mechanisms allow each layer’s hidden states to
access past information within a window size W, which is recursively stacked across layers to
effectively expand the attention span. As a result, the model achieves a theoretical attention span
of approximately 131K tokens. In practice, these improvements substantially reduce memory
consumption and enhance computational efficiency without compromising model quality.

* For Gemma-2-2B-it, the model architecture integrates local sliding window attention (Beltagy
et al., 2020) and global attention (Luong et al.,|2015). Local layers operate with a window size
of 4096 tokens, global layers extend to 8192 tokens. A logit soft-capping (Bello et al., [2017)
mechanism stabilizes training across attention layers and the final layer, with soft_cap values set
to 50.0 and 30.0. In post-training, the BASE model firstly undergoes supervised fine-tuning on a
mixture of synthetic and human-generated English prompt-response pairs, and then proceeds to
Reinforcement learning with Human Feedback (RLHF) (Ouyang et al.,[2022), guided by a reward
model trained on preference data to align behavior with human intent. The resulting models
from each stage are averaged, improving stability and overall performance, and producing an
instruction-tuned model optimized for both effectiveness and safety.

For MediPhi-Instruct, the model still follows a decoder-only Transformer architecture, but the
computations of its SAs and FFNs differ from the previously mentioned models. In the case of
SAs, given the input b, the query (Q), key (K), and value (V') are computed using a single weight
matrix Worv:

Q, K,V = chunk(QKV), QKV =hWgkv (18)

where chunk(-) splits QKV into @, K,V along the last dimension. Similarly, for the FFNs,
MediPhi-Instruct also merges Wy and Wy,. As a result, there are only four types of matrices in
both the SAs and FFNs, namely Wo kv, Wo, Waate up and Wown. In addition to the architectural
modifications, MediPhi-Instruct also undergoes an SFT-based post-training stage that integrates
domain-specific medical knowledge. Similar to other medical instruction-tuned models such as
Aloe (Gururajan et al.,|2024) and Med42 v2 (Christophe et al.,[2024)), this stage leverages medical
question-answering datasets and benchmark training sets such as PubMedQA (Jin et al.,|2019),
thereby aligning the model more closely with medical reasoning and instruction-following tasks.

More detailed information regarding the aforementioned models will be presented in Table[T0} We
compute the SVSMs between those models and their BASE versions, the N'F (’), as well as the

orthogonality matrices of the singular vector (e.g., [ (521 5, in the first Transformer block), and present
the corresponding visualizations in Figures 23] [24] and [23]

The flattened SVSM heatmaps and a relatively low value of N'F @) indicate that, regardless of
whether the modifications stem from changes in the model architecture or adjustments in the training
strategy, this structural property consistently persists in the linear layers of large models. In other
words, Equation [§| can be employed to characterize the parameter changes of large models
before and after post-training. This provides strong evidence for the universality of such structural
transformations and further substantiates the reliability of Equation 8]
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E.3 STRUCTURAL CHANGES IN OTHER COMPONENTS OF LLMS

We investigate the structural changes of the main linear layers in LLMs in the main text. Although
these layers constitute nearly the entire parameter space, other components also play crucial roles.
This subsection therefore extends the exploration to the structural changes in the parameter space
of functionally important components such as normalization layers and output projection heads.
Specifically, we focus on the models listed in Table[] where each transformer block employs two
RMSnorm layers (Jiang et al.,|[2023b)) that serve as the pre-norms for the attention and FFN modules,
respectively, to enhance training stability, and an output projection head is added to the final block to
convert hidden vectors into a vocabulary distribution.

We visualize the features of normalization layers and output projection heads and unexpectedly find
that these components still roughly adhere to the parameter law described in Equation 8] yet
exhibit subtle differences.

For normalization layers, since the weight often exists as a one-dimensional vector w, we consider
performing reduced SVD on it:
w:a*a*szl*HwH*& (19)
[|wl]

For a vector w, its left singular vector reduces to 1 (assumed to be 1), its right singular vector
becomes the normalized unit vector . and its singular value is |lw]||. For the corresponding
normalized weight wpo of the POST model, if Equation @holds in Equation [215], it implies that the
rotation matrix () of the right singular vector degenerates. In this one-dimensional case, () becomes a
1 x 1 matrix whose sole element is identical to the cosine similarity between w and wpog, Which is
exactly 1. we can derive that:

vTvpost = L ' M)T = aTapost =1 (20)

[l Hwpos|

We have experimentally verified this point, as shown in Figure [26h. It can be observed that the
cosine similarity between the weights of the normalization layers in the POST models and the BASE
models remains consistently at 1. It mathematically proves that the normalization layer of each
Transformer block only shows uniform and globally consistent scaling during post-training,
rather than the channel-wise selective filtering we anticipated. However, there is some fluctuation
in the scaling of their singular values (norms), as shown in Figure[26p. We speculate that this may be
related to the unique function of normalization, which involves dynamically adjusting the expressive
capacity of the hidden vectors. When the subspace is fixed, this can only be achieved by globally
scaling the vector norms, making it difficult for the norms to maintain uniformly consistent scaling
across layers.
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Figure 26: (a) The cosine similarity between the corresponding normalization layers of the BASE
models and POST models was calculated. The vast majority of values were equal to 1. (b) The magni-
tudes of the normalization layers are approximately uniformly scaled but exhibit some fluctuations.

Regarding the output projection heads, we plot the left and right similarity matrices against the overall
singular value scaling, as shown in Figure We observe that certain subspaces within the input
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and output spaces of this component still do not exhibit strong co-rotation. We hypothesize that this
stems from the specific function of output projection heads: since they are responsible for mapping
hidden states directly to the vocabulary space, their parameters are updated directly under the
influence of external supervision signals. As a result, unlike other main linear layers that propagate
information through hidden representations, this component experiences greater perturbation of its
space during post-training. This makes some of its internal subspaces more susceptible to being
reshaped by external supervision, thereby partially hindering appropriate co-rotation. Nevertheless,
due to the limited scale of post-training, the structure of the majority of subspaces remains preserved,
allowing the output projection heads to largely maintain co-rotation across their subspaces.
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Figure 27: Visualization of the evolution of output projection head properties across model scales.
We show the similarity/orthogonality of singular vectors and scaling of singular values before and
after post-training.
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E.4 STRUCTURAL CHANGES DURING POST-TRAINING

To determine whether this phenomenon arises during the post-training process or is specific to
the final convergence stage, we design a preliminary investigation. We fine-tune the Qwen2.5-
Math-1.5B model on the complex dataset s/K-1./ (Muennighoff et al.l [2025) for 5 epochs using
supervised learning. Checkpoints are saved after each training epoch. We subsequently compute the
N FD metric and the SVSMs between these intermediate checkpoints and the original pre-trained
Owen2.5-Math-1.5B model. The training configuration is as follows: a maximum sequence length
(max_length) of 1024, a batch size of 16, the AdamW optimizer (Loshchilov & Hutter, [2019)),
a learning rate of 2 x 10~°, and no gradient accumulation. The evolution of N'F\*) and SVSMs
throughout the post-training phase is depicted in Figure
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Figure 28: Observation of metrics during the post-training process. (a) presents the N'.F @) for each
checkpoint relative to the BASE model, all of which remain at an extremely low level. We also display
the I, of W, between the first Transformer block of the checkpoints corresponding to epoch 3
and the BASE model, indicating that consistent orthogonal transformations are highly established. (b)
shows SVSMs during post-training, and (c) depicts the loss curve, which gradually converges over
epochs.

It can be observed that during the training process, the parameter space of the model still closely
adheres to the principle of structural transformation mentioned in the main text. This indicates that
this phenomenon is an inherent characteristic of the changes in model parameters, rather than a
property that only emerges after model convergence.

F POTENTIAL APPLICATIONS OF OUR FINDINGS

While our primary focus is to characterize the structural transformations of LLMs induced by post-
training, our analysis also points to several promising avenues for application. This section outlines
a set of illustrative directions, intended not as definitive claims but as conceptual extensions of our
findings, with the goal of inspiring future research and advancing the understanding of parameter-level
transformations. An overview of these potential applications is provided in Figure 29]

Fine-grained initialization strategies. From a post-training perspective, the observed coordinated
rotation of singular vectors could inspire more fine-grained weight initialization strategies. A novel
approach, termed PiSSA (Meng et al. 2024), preserves key components of singular vectors and
singular values by initializing them as LoRA weights, while retaining and freezing the remaining
singular components. However, PiSSA primarily fine-tunes the principal components corresponding
to the top-k singular directions. Our analysis of simy and simy (Figures [10H13)) reveals that the
singular vectors associated with the largest singular values (oy,.x) exhibit minimal rotation during
post-training. This observation implies that the dominant singular components are not the primary
targets of fine-tuning. Consequently, as shown in Figure 29, directing fine-tuning toward the
middle-k components rather than the top-£ may yield improved performance.
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Figure 29: Illustrative overview of potential applications suggested by our findings: (a) fine-grained
initialization strategies; (b) accelerated convergence in REASONING models; (c) model fingerprinting
based on the detection of I,,j,.

Potentially accelerated convergence in REASONING models. We find that the singular value
dynamics of REASONING models exhibits unique scaling patterns, particularly in matrices such as
Wo (as demonstrated in Figures [2]and [7). Motivated by this observation, one may hypothesize that
simple rescaling of pretrained singular values could accelerate convergence during reasoning-oriented
training. For instance, initializing Wo as aWo with a@ = 1.4 provides a lightweight mechanism
to impose reasoning-like spectral properties in a single step, potentially reducing the number of
iterations required to reach stable performance. While speculative, this perspective highlights the
potential to exploit post-training geometry for more efficient model development.

Model fingerprints under fully parameterized testing. Appendix [B.2]demonstrates that the weight
matrices of the same model architecture exhibit markedly different behaviors in Iy, after undergoing
distinct pre-training and post-training procedures. This observation provides a practical criterion
for distinguishing whether a large language model has been fully developed from scratch or merely
obtained through post-training on another model. As illustrated in Figure 29, this distinction can be
achieved simply by measuring the deviation between I, and the identity matrix I. Importantly, since
disrupting the coordinated rotational structure directly leads to model collapse, potential plagiarists
cannot eliminate the discrepancy between their model and the original one by deliberately altering this
property. Consequently, Io, serves as a robust and discriminative fingerprint for model identification.
Moreover, because this method relies solely on parameter-level analysis, it does not require the
design of evaluation datasets as in representation-based fingerprinting approaches such as REEF
(Zhang et al.| 2024a)). This line of investigation highlights a promising avenue for safeguarding the
intellectual property rights of LLM developers.

While the potential applications discussed above represent relatively straightforward extensions
of our observations, their concrete implementation and validation require more rigorous empirical
investigation. Nevertheless, we hope that these preliminary intuitions will serve to inspire future
research and provide readers with a deeper understanding of the broader implications of our findings
for model design, optimization, and interpretability.

G PROOF

This section mainly integrates all the mathematical proofs mentioned in the main paper.

G.1 SINGULAR VALUE SCALING MODULATES THE ATTENTION SCORE

Under near-uniform geometric scaling with singular values, Equation [§] can be restated as
Whoost = o - Uposthasefost =~ Wéost, which means scaling the singular values has the same ef-
fect as scaling the entire weight matrix. We uniformly apply this linear scaling effect to all weight
matrices in SAs and FFNs, resulting in the following modified forms of Equations [T]and [2}

cache’

Vd

2 Wl - Kl es AW T
SA(h) ~ softmax o el i

[Vesehes VY- W5 - a0 (21)
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FFN(2) ~ (SwiGLU (2 - Wy, - 0) © (z- W,,)) - Whpun - @2 (22)

gate

The term o2 in Equation 21| corresponds to the inverse of the attention temperature (Vaswani et al}
, which can be directly expressed by T = 1/a?. In SAs, all a except ap of REASONING
models are consistently below 1 after post-training (demonstrated in Table [3), which corresponds to a
higher attention temperature. This causes the softmax function to produce more uniformly distributed
attention scores, encouraging the model to attend more evenly across all tokens and thereby enhancing
its ability to capture global contextual information.

G.2 TRAINING IS TO PERFORM ORTHOGONAL TRANSFORMATION ON U AND V MATRICES

Considering M 4 — M g as the model training process, left singular vectors of W4 € M4, W4 €
R™*™ can be regarded as performing different transformations Qy :

Up =UaQu (23)
We first prove that Q) is an orthogonal matrix. For 7, we have:
UiUp =UjUa-Qu=1-Qu =Qu (24)

QT Q = I is a necessary and sufficient condition for @) to be an orthogonal matrix. We calculate
QL Qu then have:

Q(Qu = (UiUg)" - (UUp) = Uf - (UaUZ) - Up = 1 (25)
Therefore QQy is an orthogonal matrix.

Through experiments, we observe that V'V is nearly identical to Q = U{Up. Under the
condition that V{ Vj is an orthogonal matrix, we aim to prove that the column spaces of V4 and
V5 have the same subspace structure, i.e., col(V4) = col(Vg), and that Vg can be obtained from
V4 through an orthogonal transformation. Specifically, we will prove that there exists an orthogonal
matrix Qv such that Vg = V4Qy, where Qv = VI Vp.

Because V4 and Vg have orthonormal columns, V}VB is an m X m matrix. We are given that
Qv = V{ Vg is orthogonal, hence
QVQv =1 (26)

We define the orthogonal projector onto the column space of V4 as Py, = V4V Z. Decompose Vg
into the sum of its projection onto col(V4) and the orthogonal remainder:

Vg =Py, Vg + (I — Py, )V = Va(ViVp) + (I — VaVi)Vp (27)
Using the definition Qy = V7 Vj this becomes
Ve =VaQv + (I = VaVi)Vi (28)
To show (I — V4V I)Vi = 0, consider its Frobenius norm:
I(Z = VaVi)VllE = tr (V5 (I = VaVi)Vi) (29)
Expand the trace:
tr (Vi (I —VaVi)Ve) = tr (VEVE) —tr (VAVAVA V) (30)

Since V has orthonormal columns, VBT Vi = 1, so the first term equals tr(I) = m. For the second
term use cyclicity of trace and the definition of Qv :

tr (VB VaVi V) = tr (Vi VE) (Vi Vi) = tr (QLQv) 31)
Because Qv is orthogonal, Q;QV = I, hence
tr (QLQv) =tr(l) =m (32)

Combining these equalities gives

(I =VaVEVE|%2=m—-—m=0 (33)
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Therefore
(I =VaVIVe =0 (34)

and consequently
VB =VaQv (35)
From Vp = V4Qy and the fact that )y is invertible (orthogonal), the column spaces are identical:
col(Vp) = col(V4Qv) = col(Va) (36)

This completes the proof. From this perspective, the orthogonal bases utilized during the post-training
are essentially the same as those formed in the BASE models. This fundamentally implies that post-
training does not disrupt the output subspaces constructed during pre-training, strongly suggesting
that it constitutes merely a reparameterization process of the BASE models.

G.3 PROOF OF DIFFERENTLY POST-TRAINED MODELS SHARING A SET OF CONSISTENT
ORTHOGONAL TRANSFORMATIONS

We theoretically prove that different POST models initialized from the same pretrained parameters and
post-trained on data from different distributions can be transformed into each other through a set of

shared orthogonal transformations. Assuming there are two POST models M s, Mo, combining
equations [6]and [8] we have:
Upost = Ubaserost7 ‘/post = ‘/baserosl (37
U[;ost = UbaseQ;ostv V;)/ost = WD&SEQ;OM (33)
Substituting Equation [37)into [38] we have:
l T / T /
post = (UPOStonst) ' onst - []POSt : ( postonst) (39)

/ T / T /
post — (VPOStonst) ’ onst — Vpost (onstonst)

Let Qcombined = Qost@post» then we observe that:

Qg;)mbinedQcombined = ( gZ)lel/)ost)T( g:)lell)ost) =1 (40)

/!

Qcombined 18 an orthogonal matrix. This directly shows that the conversion from Mg — Mo

be transformed using an approximately consistent orthogonal matrix Qcombined-

. can

This significant corollary reveal that both in-distribution fine-tuning (e.g., instruction tuning) and
out-of-distribution fine-tuning (e.g., Long-CoT distillation) induce equivalent transformations in
parameter space—specifically, different post-training methods can be mutually converted through
shared orthogonal transformations. This equivalence explains why LLMs can be fine-tuned on
arbitrary data distributions to improve task-specific performance: the model’s input and output
subspaces undergo orthogonal transformations optimized for the target task distribution.

We believe this insight offers significant promise for future research, particularly in developing
methods to mitigate forgetting while preserving adaptability.

H SETTINGS

This section will delve into more detailed experimental setups, including the different system prompts
used for various datasets and the precision of models.

H.1 SYSTEM PROMPTS

The datasets used in this study include GSM8K, MATH-500, MMLU, and GPQA. Due to time and
cost constraints, we limit the output tokens to 1024. If a simple system prompt is used directly,
models (particularly REASONING models) often require more tokens to generate correct answers
when handling challenging datasets like GPQA. This would result in truncated outputs due to the
token limit, preventing us from obtaining valid results for performance evaluation. Therefore, we
need to design distinct system prompts for different datasets to facilitate observation of the outcomes.
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Additionally, since some datasets provide descriptive ground-truth answers (e.g., GSM8K and MATH-
500) while others present multiple-choice questions (e.g., MMLU and GPQA), we must also process
the inputs differently across datasets to ensure accurate performance validation.

For the simple dataset (GSM8K) mentioned in this article, the unified system prompt we adopted is:

Please put your final answer within \boxed{}. ‘

Additionally, all visualization results, including the tracking of attention entropy and the analysis of
CKA heatmaps, also adopt this simple system prompt. This is attributed to the fact that during visual
analysis of the model, comprehensive output results or testing performance metrics are not required
for evaluation purposes.

For hard datasets (MATH-500, MMLU and GPQA) mentioned in this article, the unified system
prompt we adopted is:

Please put your final answer within \boxed{} and keep your thought process as short as possible.

This system prompt will enable us to effectively measure the performance on hard datasets of models
within limited token computations.

For the multiple-choice question datasets (MMLU and GPQA) mentioned in this text, the template
we adopted for all input prompts is as follows:

{ORIGINAL QUESTION}

You have four options, and they are:

A.{CHOICE A}

B.{CHOICE B}

C.{CHOICE C}

D.{CHOICE D}

Please select the correct option and just give A, B, C or D. For example, if you think the
answer is A, just give \boxed{A} as the answer.

This template design enables us to use the same validation evaluator for both multiple-choice and
open-ended answer datasets, thereby reducing our engineering complexity.

H.2 INTRODUCTION TO THE MODELS AND MODEL PRECISION SETTINGS
The different POST versions corresponding to the different BASE models are shown in Table [0 and [I0}

All experiments in this paper were conducted on two NVIDIA A100 GPUs with 40GB of memory
each.

Table 9: Different POST versions of different BASE models used in Appendix and D]

BASE Models POST Types POST Models Developer
Minstruet QOwen2.5-Math-1.5B-Instruct Qwen Team
Qwen2.5-Math-1.5B M ieasoning DeepSeek-R1-Distill-Qwen-1.5B  DeepSeck
Minstruct QOwen2.5-Math-7B-Instruct Owen Team
Qwen2.5-Math-7B reasoning DeepSeek-R1-Distill-Qwen-7B DeepSeek
Minstruct Llama-3.1-8B-Instruct Meta
Llama-3.1-88 M ieasoning DeepSeek-RI1-Distill-Llama-8B ~ DeepSeck
Owen2.5-14B Minstruct Qwen2.5-14B-Instruct Owen Team

M ieasoning DeepSeek-RI1-Distill-Qwen-14B  DeepSeek

All Myyee and Miggruee use BF16 parameter storage, while M casoning €mploy FP32. To address
potential precision truncation, we consistently convert all parameters to FP32 before experimentation,
ensuring unified numerical precision throughout our evaluations.
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Table 10: Different POST versions of different BASE models used in Appendix [E]

BASE Models POST Models post-training method Developer
DeepSeek-R1-Distill-Qwen-7B  AceMath-RL-Nemotron-7B  RL-based (GRPO) Nvidia
deepseek-math-7b-base deepseek-math-7b-rl RL-based (GRPO) Deepseek
Seed-X-Instruct-7B Seed-X-PPO-7B RL-based (PPO) ByteDance
Mistral-7B-v0.1 Mistral-7B-Instruct-v0.1 SFT-based Mistral Al
gemma-2-2b gemma-2-2b-it SFT-based Google
MediPhi MediPhi-Instruct SFT-based Microsoft

I USE OF LARGE LANGUAGE MODELS

We acknowledge the use of LLMs for minor editorial assistance. Specifically, LLMs were only
employed to polish the language and correct grammatical errors in the manuscript. No LLMs
were involved in generating the research ideas, designing experiments, conducting analyses, or
drawing conclusions.
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