
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERALIZATION AND OPTIMIZATION OF SGD WITH
LOOKAHEAD

Anonymous authors
Paper under double-blind review

ABSTRACT

The Lookahead optimizer (Zhang et al., 2019) enhances deep learning models by
employing a dual-weight update mechanism, which has been shown to improve
the performance of underlying optimizers such as SGD. However, most theoret-
ical studies focus on its convergence on training data, leaving its generalization
capabilities less understood. Existing generalization analyses are often limited by
restrictive assumptions, such as requiring the loss function to be globally Lipschitz
continuous, and their bounds do not fully capture the relationship between opti-
mization and generalization. In this paper, we address these issues by conducting
a rigorous stability and generalization analysis of the Lookahead optimizer with
minibatch SGD. We leverage on-average model stability to derive generalization
bounds for both convex and strongly convex problems without the restrictive Lips-
chitzness assumption. Our analysis demonstrates a linear speedup with respect to
the batch size in the convex setting.

1 INTRODUCTION

Stochastic optimization has become the method of choice to train modern machine learning models
due to its efficiency and scalability (Kingma & Ba, 2014). A simple stochastic optimization method is
the minibatch stochastic gradient descent (minibatch SGD) (Cotter et al., 2011b; Dekel et al., 2012; Li
et al., 2014; Shamir & Srebro, 2014), where a minibatch of training examples are randomly sampled
to build gradient estimates with a reduced variance. Due to its simplicity, computational efficiency
and strong generalization in practice (Zhou et al., 2020; Bottou et al., 2018), minibatch SGD remains
one of the most preferable algorithms. Another representative stochastic optimization method is
Adam (Kingma & Ba, 2014), which augments SGD with coordinate-wise adaptive learning rates and
momentum, often accelerating convergence and improving robustness to ill-conditioning.

To further enhance generalization performance, the Lookahead optimizer (Zhang et al., 2019) was
introduced as an orthogonal method. It introduces a two-timescale updating framework of two
parameters: the fast weights v and the slow weights w. In the inner loop, starting from the slow
weights w, the fast weights are updated by applying a standard optimizer A for k times and output vk;
for the outer loop, the slow weights are updated towards the fast weights by w+ = αvk + (1− α)w,
where α ∈ (0, 1] is an interpolation parameter. This mechanism dampens oscillations, reduces
sensitivity to learning-rate schedules and synchronization periods, and improves robustness across
tasks with negligible overhead, often matching or improving the accuracy of the underlying base
optimizer (Zhang et al., 2019).

The empirical efficiency of the Lookahead optimizer motivates a lot of theoretical studies to under-
stand its behavior. However, most of existing studies focus on their convergence to minimize the
training errors (Yang et al., 2024; Chen et al., 2022b; Zhang et al., 2019). As a comparison, there are
far less studies on how the training behavior generalizes to testing examples, which is a concept of
central interest in machine learning. To our best knowledge, the only work on the generalization anal-
ysis is Zhou et al. (2021), which conducted a stability analysis to argue that the Lookahead optimizer
can generalize better than SGD and Adam. While these results provide a sound foundation on the use
of the Lookahead mechanism, there are still some issues to be addressed. For example, their analysis
hinges on the Lipschitzness condition on the loss, which is often restrictive in high-dimensional
problems where gradients can be unbounded and the loss landscapes are non-Lipschitz globally.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Furthermore, their stability bounds are not optimistic and cannot fully capture the connection between
generalization and optimization.

This paper aims to address the above issues by improving the existing stability and generalization
analysis of the Lookahead optimizer. Our main contributions can be summarized as follows.

1. We leverage the on-average model stability to analyze the generalization behavior of the
Lookahead methods for both convex and strongly convex problems. Our analysis removes
the restrictive Lipschitzness assumptions of the loss functions, which can imply effective
generalization bounds in the case with unbounded gradients. Furthermore, our analysis
clearly shows how the interpolation parameter α strengthens the stability, which shows a
clear benefit of the Lookahead mechanism.

2. Our stability bounds are optimistic, meaning that they depend on the empirical risk of the
iterates produced by the algorithm. As the optimizer minimizes the empirical risk during the
optimization process, our bounds become progressively tighter, offering a more refined and
practical characterization of stability compared to existing bounds that rely on worst-case
global constants.

3. By carefully combining our stability bounds with the convergence rates, we establish optimal
excess risk rates for SGD with Lookahead. We show that it achieves a rate of O(1/n) for
convex problems and a rate of O(1/(nµ)) for µ-strongly convex problems, where n is the
sample size. Furthermore, our analysis shows a linear speedup with respect to the batch size
b, meaning that the number of required iterations is decreased by a factor of b to achieve the
optimal excess risk bounds.

The paper is organized as follows. We review the related work in Section 2 and introduce the problem
formulation in Section 3. We present our main theoretical results in Section 5. The detailed proofs
are provided in Appendix A. We conclude the paper in Section 6.

2 RELATED WORK

Stability and Generalization Analysis A central challenge in machine learning is ensuring that mod-
els generalize well from finite training data to unseen examples. Algorithmic stability is an effective
concept to study the generalization gap of learning algorithms, which can incorporate the special
property of learning algorithms to derive algorithm-dependent generalization bounds (Bousquet &
Elisseeff, 2002). A most widely used stability measure is the uniform stability, which is frequently
used to analyze the generalization of regularization methods (Bousquet & Elisseeff, 2002) and stochas-
tic optimization methods (Hardt et al., 2016). This stability concept was relaxed to on-average stability
and on-average model stability to derive data-dependent generalization bounds (Shalev-Shwartz
et al., 2010; Kuzborskij & Lampert, 2018; Lei & Ying, 2020; Schliserman & Koren, 2022). Recently,
algorithm stability has found very successful applications in understanding the generalization be-
havior of complex models and training paradigms, including zeroth-order SGD (Nikolakakis et al.,
2022; Chen et al., 2023), differential privacy (Bassily et al., 2019; 2020), asynchronous SGD (Deng
et al., 2025) and neural network training (Richards & Kuzborskij, 2021; Wang et al., 2025a; Taheri &
Thrampoulidis, 2024; Deora et al., 2024).

Lookahead Optimizer The Lookahead optimizer (Zhang et al., 2019) represents a significant
advancement in optimization techniques for deep learning by employing a dual-weight update mech-
anism that separates “fast weights” (updated via a base optimizer) and “slow weights” (updated
through exponential moving averaging). It reduces sensitivity to hyperparameters such as learning
rates and synchronization periods, making it particularly robust in complex training scenarios where
conventional optimizers struggle with oscillation or divergence (Nag, 2020; Zuo et al., 2024). Looka-
head is widely adopted and extended across diverse domains including online learning (Chen et al.,
2022a), aircraft maintenance scheduling (Deng & Santos, 2022), reinforcement learning (Merlis,
2024; Winnicki et al., 2025; Zhang et al., 2025), precision path tracking (Wang et al., 2025b), and
healthcare prediction (Chen et al., 2022c; Adeshina & Adedigba, 2022). Various algorithmic exten-
sions for Lookahead have also been introduced, including Multilayer Lookahead (Pushkin & Barba,
2021), Sharpness-Aware Lookahead (SALA) (Tan et al., 2024), Multi-step Lookahead Bayesian
Optimization (Byun et al., 2022), and Lookaround Optimizer (Zhang et al., 2023).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 NOTATIONS AND PRELIMINARIES

Let D be a probability measure defined on a sample space Z = X × Y , where X is an input space
and Y is an output space. Let S = {z1, z2, . . . , zn} be a sample drawn independently and identically
(i.i.d.) from D, based on which we aim to learn a model h : X 7→ R for prediction. We assume
the model is characterized by a parameter w ∈ W ⊆ Rd, where W is a parameter space. The
performance of a model w on a single data point z is measured by a non-negative loss function
f(w; z), from which we can define empirical risks FS(w) and population risks F (w) to measure the
behavior of w on training and testing datasets, respectively

FS(w) :=
1

n

n∑
i=1

f(w; zi) and F (w) := Ez∼D[f(w; z)],

where Ez[·] means the expectation w.r.t. z.

We often apply a randomized optimizer A to approximately minimize FS to train a model. We use
A(S) to denote the model produced by applying A to S, and are interested in its relative performance
w.r.t. the best model w∗ = argminw∈W F (w), which is quantified by the excess risk defined by
E[F (A(S)) − F (w∗)]. A powerful method to study the excess risk is to decompose it into two
components (Bousquet & Bottou, 2008):

E[F (A(S))− F (w∗)] = E[F (A(S))− FS(A(S))]︸ ︷︷ ︸
Generalization Error

+E[FS(A(S))− FS(w
∗)]︸ ︷︷ ︸

Optimization Error

, (3.1)

where the expectation is taken over the randomness of the training set S and any randomness within
the algorithm itself. Here we use the identity E[FS(w

∗)] = F (w∗). We refer to E[F (A(S)) −
FS(A(S))] as the generalization gap, which shows the cost we suffer when we generalize the behavior
from training to testing. A small generalization gap indicates that the model does not overfit the
training data and its performance is likely to be representative of its true performance. We refer to
E[FS(A(S))− FS(w

∗)] as the optimization error, which measures the gap between the estimated
model and the true optimal model on empirical risk.

We introduce the following necessary definitions for our analysis. Let ∥ · ∥2 denote the Euclidean
norm.

Definition 1. Let g : W 7→ R, G,L > 0 and µ ≥ 0. We denote the gradient of g by ∇g.

1. A function g(w) is µ-strongly convex for some µ > 0 if it satisfies:

g(w1) ≥ g(w2) + ⟨∇g(w2),w1 −w2⟩+
µ

2
∥w1 −w2∥22, ∀w1,w2 ∈ W.

A function g(w) is convex if it is µ-strongly convex with µ = 0.

2. A function g(w) is G-Lipschitz continuous if the function value is bounded in its change:

|g(w1)− g(w2)| ≤ G∥w1 −w2∥2, ∀w1,w2 ∈ W.

3. A differentiable function g(w) is L-smooth if its gradient is Lipschitz continuous with the
constant L:

∥∇g(w1)−∇g(w2)∥2 ≤ L∥w1 −w2∥2, ∀w1,w2 ∈ W.

4 ALGORITHMIC STABILITY

To control the generalization gap, we analyze the stability of our learning algorithm. We say an
algorithm is on-average stable if its output model does not change significantly when a single data
point in the training set is modified. Let A be a learning algorithm that takes a dataset S and outputs a
model A(S). We denote S ∼ S′ if S and S′ differ by at most one data point. Specifically, we let S(i)

be a dataset identical to S except that the i-th data zi is replaced with a new point z′i, drawn from the
same distribution D. That is, S(i) = {z1, . . . , zi−1, z

′
i, zi+1, . . . , zn}.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 2 (Uniform Stability). An algorithm A has uniform stability ϵ if
sup
z∈Z

sup
S∼S′

E [|f(A(S); z)− f(A(S′); z)|] ≤ ϵ.

Definition 3 (On-Average Model Stability (Lei & Ying, 2020)). We say a randomized optimizer A is
ℓ1 on-average model ϵ-stable if

ES,S′,A

[1
n

n∑
i=1

∥A(S)−A(S(i))∥2
]
≤ ϵ.

We say A is ℓ2 on-average model ϵ-stable if

ES,S′,A

[1
n

n∑
i=1

∥A(S)−A(S(i))∥22
]
≤ ϵ2.

The following lemma provides a connection between the generalization gap and on-average model
stability.
Lemma 1 ((Lei & Ying, 2020)). Let S, S′ and S(i) be constructed as in Definition 2, and let γ > 0.

(a) Suppose for any z, the function w 7→ f(w; z) is convex. If A is ℓ1 on-average model ϵ-stable
and supz ∥∇f(A(S); z)∥2 ≤ G for any S, then |ES,A[FS(A(S))− F (A(S))]| ≤ Gϵ.

(b) Suppose for any z, the function w 7→ f(w; z) is nonnegative and L-smooth. If A is ℓ2
on-average model ϵ-stable, then the following inequality holds

ES,A[F (A(S))−FS(A(S))] ≤ L

γ
ES,A[FS(A(S))]+

L+ γ

2n

n∑
i=1

ES,S′,A[∥A(S(i))−A(S)∥22].

4.1 LOOKAHEAD OPTIMIZER

The Lookahead optimizer (Zhang et al., 2019), detailed in Algorithm 1, employs a two-loop structure:
an inner loop to update fast weights, and an outer loop to update slow weights. In the inner loop, a
standard optimizer A (e.g. SGD or Adam) starts from the previous slow weight model wt−1 and
updates fast weights vk,t with appropriate inner step sizes ητ,t for k iterations. In the t-th iteration of
the outer loop, the fast weight model vk,t is then used to update the slow weight model via a linear
interpolation

wt = (1− α)wt−1 + αvk,t (4.1)
where α ∈ (0, 1) is the outer step size.

Algorithm 1 Lookahead Optimizer
1: Inputs: Data set S , initial model w0, base optimizer A, fast-weight step number k and learning

rates {{ητ,t}k−1
τ=0}Tt=1, slow-weight step number T and learning rate α ∈ (0, 1).

2: for t = 1, 2, . . . , T do
3: v0,t = wt−1

4: for τ = 1, 2, . . . , k do
5: vτ,t = A(vτ−1,t, ητ−1,t,S)
6: end for
7: wt = (1− α)wt−1 + αvk,t

8: end for
9: Outputs: Slow model wT

We use minibatch SGD as the standard optimizer A, which is widely used in deep learning. The inner
loop is then reformulated as in Algorithm 2. At the τ ’th iteration, SGD collects a minibatch Bτ,t by
randomly drawing |Bτ,t| data points from S independently, where | · | denotes the cardinality. Then it
updates {vτ,t}kτ=1 by

vτ,t = vτ−1,t −
ητ−1,t

|Bτ,t|
∑

z∈Bτ,t

∇f(vτ−1,t; z),

where ητ,t is a positive step size.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2 Stochastic Gradient Descent (SGD)

1: Inputs: Data set S, learning rates {ητ,t}k−1
τ=0, initial model v0,t,

2: for τ = 1, 2, . . . , k do
3: vτ,t = vτ−1,t − ητ−1,t

|Bτ,t|
∑

z∈Bτ,t
∇f(vτ−1,t; z)

4: end for
5: Outputs: Fast model vk,t

5 GENERALIZATION ANALYSIS OF LOOKAHEAD ALGORITHM

In this section, we discuss the stability performance of Lookahead on convex and strongly convex
problems. While previous work has shown that Lookahead achieves lower excess risk error compared
to its vanilla inner optimizer when choosing A as SGD (Zhou et al., 2021), existing analysis of its
generalization and optimization error suffer from two key limitations. First, they hinge on a restrictive
Lipschitzness condition on the loss function. Second, they cannot imply optimistic rates to show the
benefit of low-noise condition to get fast rates. In the following sections, we will analyze the stability
bound of Lookahead via the ℓ2 on-average model stability. This approach notably allows us to derive
generalization bounds for Lookahead without requiring the Lipschitzness condition (Lei et al., 2025).
Furthermore, by carefully selecting the algorithm’s hyperparameters, we establish optimal excess risk
bounds.

5.1 CONVEX CASE

We first investigate stability bounds of Lookahead under convex condition, where Eq. (5.1) considers
the ℓ1 on-average stability and Eq. (5.2) considers the ℓ2 on-average stability. The proof will be given
in Appendix A.1.

Theorem 2 (Stability Bound of Lookahead: Convex Case). Suppose the map w 7→ f(w; z) is convex,
nonnegative and L-smooth for all z ∈ Z . Let {vτ,t} and {wt} , {v(i)

τ,t} and {w(i)
t } be produced

based on S and S(i) respectively with ητ,t ≤ 1
L . We have

1

n

n∑
i=1

E
[
∥wt+1 −w

(i)
t+1∥2

]
≤ α

t+1∑
h=1

k−1∑
j=1

2ηj,h
√

2LE [FS (vj,h)]

n
(5.1)

and

1

n

n∑
i=1

E
[
∥wt+1 −w

(i)
t+1∥22

]
≤

(
16α2L

nb
+

16α2L(t+ 1)k

n2

) t+1∑
h=1

k−1∑
j=1

η2j,hE [FS (vj,h)] . (5.2)

Remark 1 (Comparison with existing stability bounds for Lookahead). For L-smooth, G-Lipschitz
and convex problems, a similar ℓ1-stability bound was derived in (Zhou et al., 2021) as shown below

1

n

n∑
i=1

E
[
∥wt+1 −w

(i)
t+1∥2

]
≤ 2αηGkT

n
.

This bound grows linearly with kT , is independent of the mini-batch size b, and involves the global
Lipschitz constant G. Our analysis removes the global G-Lipschitz requirement and thus avoids the G
factor. A notable feature of our bound is its dependence on the empirical risk, E[FS(vj,h)], rather than
the global Lipschitz constant G in (Zhou et al., 2021). Since the objective of the inner-loop optimizer
is precisely to minimize FS , we expect this term to decrease as training progresses. Consequently,
our stability bounds become progressively tighter throughout the optimization process (Kuzborskij
& Lampert, 2018; Lei & Ying, 2020). Furthermore, the bound in Eq. (5.2) provides clear intuition
about the role of Lookahead’s hyperparameters:

• Batch Size (b): The term 1/nb shows that increasing the minibatch size improves stability.
As a comparison, the stability analysis in (Zhou et al., 2021) does not show the effect of the
batch size since their stability bound is independent of b.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Inner Loop Iteration Number (k): The bound increases with k, suggesting that running the
inner loop for too many steps can degrade stability, likely due to the fast weights overfitting
to the training set S.

• Outer Loop Step Size (α): Stability is proportional to α. A smaller α dampens the influence
of the potentially unstable fast weights, leading to a more stable trajectory for the slow
weights. This shows a clear advantage of the Lookahead mechanism in improving the
stability and generalization.

We get the generalization bound via plugging the stability bounds in Theorem 2 into Lemma 1.
Together with the optimization bound in Lemma 9, we have the following excess risk bound. The
proof is given in Appendix A.2. We denote A ≲ B if there exists a universal constant C > 0 such
that A ≤ CB. We denote A ≳ B if there exists a universal constant C such that A ≥ CB. We
denote A ≍ B if A ≲ B and A ≳ B.
Theorem 3 (Excess Risk Bound of Lookahead: Convex Case). Let the assumptions of Theorem 2
hold and R = Tk. Then for v̄R = 1

Tk

∑T
t=1

∑k−1
τ=0 vτ,t and γ > 0, we have

E [F (vR)]− F (w∗) ≲
LηF (w∗)

b
+

1

αηR
+

F (w∗) + Lη/b+ 1/(αηR)

γ

+ L(L+ γ)α2η2
(

1

nb
+

R

n2

)(
RF (w∗) +

RLη

b
+

1

αη

)
. (5.3)

Since there are terms directly proportional to F (w∗), the excess risk bound will be tighter when the
optimal risk F (w∗) is small, which is common in many machine learning problems where a model
can fit the data well. Excess risk bounds with this feature are called optimistic bounds (Srebro et al.,
2010). The terms involving F (w∗) are directly related to gradient noise, as the variance of stochastic
gradients can often be bounded by the function’s value at the optimum.
Remark 2 (Comparison with Minibatch SGD). The excess risk bound for Lookahead in Theorem
3 shares a fundamental structure with the bound for Minibatch SGD as in (Lei et al., 2025). Both
are optimistic bounds that explicitly depend on the optimal risk. This similarity is expected, as both
analyses aim to control generalization gap by plugging stability bounds into Lemma 3.1, then adding
optimization error terms. Although the structure is similar, the specific coefficients and dependencies
on parameters such as α and the structure of the variance term differ due to the unique dynamics of
the Lookahead optimizer compared to standard SGD.

We now develop an explicit excess risk bound for Lookahead by choosing step sizes and number of
iterations. The proof is given in Appendix A.2.
Corollary 4. Let the assumptions of Theorem 3 hold.

1. If F (w∗) ≥ 1/n, we can take η = b√
nF (w∗)

, R ≍ n
b , γ =

√
nF (w∗) ≥ 1, and

b ≤
√
nF (w∗)/(2L) to derive E[F (v̄R)]− F (w∗) ≲ LF (w∗)1/2√

n
+ L2

n .

2. If F (w∗) < 1/n, we can take η = 1
2L , R ≍ n, and γ = 1 to derive E[F (v̄R)]− F (w∗) ≲

L
n + F (w∗).

Remark 3. Corollary 4 distinguishes between two key regimes based on the magnitude of the optimal
risk F (w∗) relative to the sample size n.

1. F (w∗) ≥ 1/n: Our analysis shows that the algorithm achieves an excess risk bound of
O(1√

n
). Crucially, the number of required iterations R is on the order of n/b, demonstrating

a linear speedup (Cotter et al., 2011a). This means that by increasing the minibatch size b,
one can use a proportionally larger learning rate η and achieve the same error bound with
fewer iterations. This acceleration is a direct benefit of variance reduction from larger batch
sizes.

2. F (w∗) < 1/n: Now the required number of iterations R scales with n, irrespective of the
batch size b. In this case, the linear speedup vanishes. The optimal learning rate becomes

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

constant, and increasing the batch size does not reduce the number of iterations needed to
reach the desired error threshold. This suggests a small stochastic gradient noise, which
means variance is no longer the main limitation of the learning process.

Remark 4 (Comparison with Existing Excess Risk Bounds with Lookahead). The work (Zhou
et al., 2021) gave the following excess risk bound for Lookahead under convexity and G-Lipschitz
continuity assumption

E[F (v̄R)]− F (w∗) ≤ 1

2αηkT
E[∥w0 −w∗∥2] + ηG2

2
+

αηG2kT

n
.

By setting η ≍ 1/
√
n and choosing αTk ≍ n, all three terms can be made to be of the order

O(1/
√
n). This leads to an optimized excess risk bound of order G2/

√
n, which is standard for

stochastic convex optimization under a Lipschitz assumption. However, it is not adaptive and can
be suboptimal in many practical scenarios. In the case of F (w∗) ≥ 1/n, our bound is of order
L
√

F (w∗)√
n

. As the optimal risk F (w∗) decreases, our bound becomes tighter. For problems where

L
√
F (w∗) ≪ G2, our bound is substantially sharper than the generic O(G2/

√
n) rate. In the case

of F (w∗) < 1/n, our analysis reveals a much faster convergence rate of ≲ L
n . This is a linear

convergence rate with respect to the sample size n. Achieving an O(1/n) rate is a major acceleration
compared to the standard O(1/

√
n) rate. It shows that Lookahead can effectively leverage low-

noise conditions to converge significantly faster, a behavior that the existing bound fails to capture.
Furthermore, our analysis shows a linear speedup on the batch size, while the discussions in (Zhou
et al., 2021) do not show the benefit of considering minibatch in both generalization and optimization.

5.2 STRONGLY CONVEX CASE

We now consider strongly convex problems. The following theorem provides stability bounds for
Lookahead. The proof is given in Appendix A.3.
Theorem 5 (Stability Bound of Lookahead: Strongly Convex Case). Suppose the map w 7→ f(w; z)

is µ-strongly convex, nonnegative and L-smooth for all z ∈ Z . Let {vτ,t} and {wt} , {v(i)
τ,t} and

{w(i)
t } be produced based on S and S(i) respectively with 2 ln 2

kµ ≤ ητ,t ≤ 1
L . We have

1

n

n∑
i=1

E
[
∥wt+1 −w

(i)
t+1∥2

]
≤ 2α

√
2L

n

t+1∑
t′=1

(1− α

2
)t+1−t′

k−1∑
j=0

ηj,t′
√
E [FS (vj,t′)]

k−1∏
j′=j+1

(
1− µηj′,t′

2

)
(5.4)

and

1

n

n∑
i=1

E
[
∥wt+1 −w

(i)
t+1∥22

]
≤

t+1∑
t′=1

k−1∑
j=0

(16α2η2j,t′

nb
+

32 (t+ 1)α2ηj,t′

n2µ

)
E [FS (vj,t′)]

k−1∏
j′=j+1

(
1− µηj′,t′

2

)2

.

(5.5)

Eq. (5.4) provides an ℓ1-on-average stability bound. A key feature of this bound is its dependence
on the empirical risk,

√
E[FS(vj,t′)]. This indicates that the stability of the Lookahead algorithm

improves as it finds iterates with smaller empirical risks. Eq. (5.5) provides an ℓ2-on-average stability

bound. This bound explicitly shows the benefit of minibatching. The term 16α2ηj,t′

nb demonstrates that
increasing the batch size b directly improves the stability bound by reducing the variance introduced
by the stochastic gradients. This is a crucial property for large-scale learning, confirming that larger
batches contribute to a more stable training process for the Lookahead algorithm.
Theorem 6 (Excess Risk Bound of Lookahead: Strongly Convex Case). Let assumptions in Theorem
5 hold and let η = bµ

2L2(b+1) , k = 2L
αµ and T ≍ log(µn), we have

E[F (wT)]− F (w∗) ≲
1

nµ
+
(1

nL
+ 1

)
E[FS(wS)] +

(1

n2
+

L

n

)
E[∥w0 −wS∥2]. (5.6)

Remark 5 (Comparison with Existing Excess Risk Bound with Lookahead). Compared with the
existing Lookahead bound in the work (Zhou et al., 2021), which yields a sum of terms of order

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

O(1/(λ2((t + 1)k)2α)) + O(G/(nλ)) and therefore requires tk to scale polynomially with n to
reach the O(1/n) regime, our Theorem 6 delivers a fast-rate excess risk of order 1/(nµ) with
only T ≍ log(µn) iterations. Moreover, our bound is adaptive: it tightens with the data through
(1/(nL) + 1)E[FS(wS)] and through (1/n2 +L/n)E[∥w0 −wS∥2], becoming much smaller under
interpolation, which is not captured by the existing result. Finally, the stepsize η scales with the
minibatch b, implying linear speedup in b, while prior analyses do not show such minibatch gains.

6 CONCLUSION

In this work, we investigate the stability and generalization properties of the Lookahead optimizer, a
widely used algorithm for large-scale machine learning problems. While many discussions focus on
its optimization benefits, we provide a rigorous analysis from the perspective of statistical learning
theory. We develop on-average stability bounds for both convex and strongly convex problems, and
we show how stability can be improved by small training errors, leading to optimistic bounds that
depend on the empirical risk rather than a restrictive, global Lipschitz constant.

Our stability analysis implies optimal excess population risk bounds for both settings. Specifically,
we demonstrate that Lookahead achieves the standard O(1/

√
n) rate for convex problems and the

optimal O(1/(nµ)) rate for strongly convex problems. A key finding is the adaptivity of Lookahead
in the convex case, which achieves its rate without prior knowledge of the optimal risk F (w∗), a
practical advantage over standard Minibatch SGD.

There are several limitations to our current work which open avenues for future research. A primary
limitation is that our analysis is confined to convex and strongly convex loss functions. Given the
prevalence of non-convex optimization in modern deep learning, extending our stability analysis to
the non-convex setting is a crucial next step. Furthermore, while we establish the optimal statistical
rate for the strongly convex case, our analysis does not demonstrate a linear speedup with respect to
the batch size, a property observed in Minibatch SGD. Investigating whether different hyperparameter
schedules could unlock such a speedup for Lookahead would be of significant interest. We plan to
address these limitations in our future research.

REFERENCES

Steve A Adeshina and Adeyinka P Adedigba. Bag of tricks for improving deep learning performance on
multimodal image classification. Bioengineering, 9:312, 2022.

Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private stochastic convex optimiza-
tion with optimal rates. Advances in neural information processing systems, 32, 2019.

Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic gradient descent on
nonsmooth convex losses. Advances in Neural Information Processing Systems, 33:4381–4391, 2020.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. SIAM
review, 60(2):223–311, 2018.

Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In Advances in Neural Information
Processing Systems, pp. 161–168, 2008.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine learning research, 2
(Mar):499–526, 2002.

Ha-Eun Byun, Boeun Kim, and Jay H Lee. Multi-step lookahead bayesian optimization with active learning
using reinforcement learning and its application to data-driven batch-to-batch optimization. Computers &
Chemical Engineering, 167:107987, 2022.

Cong Chen, Huili Zhang, and Yinfeng Xu. Online machine minimization with lookahead. Journal of combinato-
rial optimization, 43:1149–1172, 2022a.

Cong Chen, Huili Zhang, and Yinfeng Xu. Online machine minimization with lookahead. Journal of Combina-
torial Optimization, 43(5):1149–1172, 2022b.

Hailong Chen, Mei Du, Yingyu Zhang, and Chang Yang. Research on disease prediction method based on
r-lookahead-lstm. Computational Intelligence and Neuroscience, 2022:8431912, 2022c.

Jun Chen, Hong Chen, Bin Gu, and Hao Deng. Fine-grained theoretical analysis of federated zeroth-order
optimization. Advances in Neural Information Processing Systems, 36:54496–54508, 2023.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via accelerated
gradient methods. In Advances in Neural Information Processing Systems, volume 24, 2011a.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via accelerated
gradient methods. Advances in neural information processing systems, 24, 2011b.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction using
mini-batches. The Journal of Machine Learning Research, 13:165–202, 2012.

Qichen Deng and Bruno F. Santos. Lookahead approximate dynamic programming for stochastic aircraft
maintenance check scheduling optimization. European Journal of Operational Research, 299:814–833, 2022.

Xiaoge Deng, Li Shen, Shengwei Li, Tao Sun, Dongsheng Li, and Dacheng Tao. Towards understanding the
generalizability of delayed stochastic gradient descent. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2025.

Puneesh Deora, Rouzbeh Ghaderi, Hossein Taheri, and Christos Thrampoulidis. On the optimization and
generalization of multi-head attention. Transactions on Machine Learning Research, 2024.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In International Conference on Machine Learning, pp. 1225–1234, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In International
Conference on Machine Learning, pp. 2820–2829, 2018.

Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic gradient
descent. In International Conference on Machine Learning, pp. 5809–5819, 2020.

Yunwen Lei, Tao Sun, and Mingrui Liu. Minibatch and local SGD: Algorithmic stability and linear speedup in
generalization. Applied and Computational Harmonic Analysis, pp. 101795, 2025.

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch training for stochastic
optimization. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 661–670, 2014.

Nadav Merlis. Reinforcement learning with lookahead information. Advances in Neural Information Processing
Systems, 37:64523–64581, 2024.

Sayan Nag. Lookahead optimizer improves the performance of convolutional autoencoders for reconstruction of
natural images. arXiv preprint arXiv:2012.05694, 2020.

Konstantinos Nikolakakis, Farzin Haddadpour, Dionysis Kalogerias, and Amin Karbasi. Black-box generaliza-
tion: Stability of zeroth-order learning. Advances in Neural Information Processing Systems, 35:31525–31541,
2022.

Denys Pushkin and Luis Barba. Multilayer lookahead: a nested version of lookahead. arXiv preprint
arXiv:2110.14254, 2021.

Dominic Richards and Ilja Kuzborskij. Stability & generalisation of gradient descent for shallow neural networks
without the neural tangent kernel. Advances in neural information processing systems, 34:8609–8621, 2021.

Matan Schliserman and Tomer Koren. Stability vs implicit bias of gradient methods on separable data and
beyond. In Conference on Learning Theory, pp. 3380–3394, 2022.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability and uniform
convergence. Journal of Machine Learning Research, 11(Oct):2635–2670, 2010.

Ohad Shamir and Nathan Srebro. Distributed stochastic optimization and learning. In 2014 52nd Annual Allerton
Conference on Communication, Control, and Computing (Allerton), pp. 850–857, 2014.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast rates. In Advances in
Neural Information Processing Systems, pp. 2199–2207, 2010.

Hossein Taheri and Christos Thrampoulidis. Generalization and stability of interpolating neural networks with
minimal width. Journal of Machine Learning Research, 25(156):1–41, 2024.

Chengli Tan, Jiangshe Zhang, Junmin Liu, and Yihong Gong. Sharpness-aware lookahead for accelerating
convergence and improving generalization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Puyu Wang, Yunwen Lei, Di Wang, Yiming Ying, and Ding-Xuan Zhou. Generalization guarantees of gradient
descent for shallow neural networks. Neural Computation, 37(2):344–402, 2025a.

Xu Wang, Bo Zhang, Xintong Du, Huailin Chen, Tianwen Zhu, and Chundu Wu. Self-adjusting look-ahead
distance of precision path tracking for high-clearance sprayers in field navigation. Agronomy, 15:1433, 2025b.

Anna Winnicki, Joseph Lubars, Michael Livesay, and R Srikant. The role of lookahead and approximate policy
evaluation in reinforcement learning with linear value function approximation. Operations Research, 73:
139–156, 2025.

Blake Woodworth, Kumar Kshitij Patel, and Nathan Srebro. Minibatch vs local sgd for heterogeneous distributed
learning. arXiv preprint arXiv:2006.04735, 2020.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Shangda Yang, Vitaly Zankin, Maximilian Balandat, Stefan Scherer, Kevin Carlberg, Neil Walton, and Kody JH
Law. Accelerating look-ahead in bayesian optimization: Multilevel monte carlo is all you need. arXiv preprint
arXiv:2402.02111, 2024.

Jiangtao Zhang, Shunyu Liu, Jie Song, Tongtian Zhu, Zhengqi Xu, and Mingli Song. Lookaround optimizer: k
steps around, 1 step average. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps forward, 1 step
back. In Advances in Neural Information Processing Systems, volume 32, 2019.

Yunfeng Zhang, Shukai Li, Yin Yuan, and Lixing Yang. Multi-step look ahead deep reinforcement learning
approach for automatic train regulation of urban rail transit lines with energy-saving. Engineering Applications
of Artificial Intelligence, 145:110181, 2025.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and E Weinan. Towards theoretically under-
standing why sgd generalizes better than adam in deep learning. Advances in Neural Information Processing
Systems, 2020, 2020.

Pan Zhou, Hanshu Yan, Xiaotong Yuan, Jiashi Feng, and Shuicheng Yan. Towards understanding why lookahead
generalizes better than sgd and beyond. In Advances in Neural Information Processing Systems, volume 34,
pp. 27290–27304, 2021.

Xuan Zuo, Hui-Yan Li, Shan Gao, Pu Zhang, and Wan-Ru Du. Nala: a nesterov accelerated look-ahead optimizer
for deep learning. PeerJ Computer Science, 10:e2167, 2024.

A PROOF OF RESULTS IN SECTION 5

A.1 PROOF OF THEOREM 2

Our proof of Theorem 2 relies on the following two lemmas. Lemma 7 shows the self-bounding property for
nonnegative and smooth functions, meaning that the norm of gradients can be bounded by function values.
Lemma 8 establishes the co-coercivity of smooth and convex functions, as well as the non-expansiveness of the
gradient operator w 7→ w − η∇f(w; z).

Lemma 7 (Self-Bounding Property (Srebro et al., 2010)). Assume for all z, the function w 7→ f(w; z) is
nonnegative and L-smooth. Then

∥∇f (w; z) ∥22 ≤ 2Lf (w; z) .

Lemma 8 ((Hardt et al., 2016)). Assume for all z ∈ Z, the function w 7→ f(w; z) is convex and L-smooth.
Then for η ≤ 2/L we have

∥ (w − η∇f (w; z))−
(
w′ − η∇f

(
w′; z

))
∥2 ≤ ∥w −w′∥2.

Furthermore, if w 7→ f(w; z) is µ-strongly convex and η ≤ 1/L then

∥ (w − η∇f (w; z))−
(
w′ − η∇f

(
w′; z

))
∥2 ≤ (1− ηµ/2) ∥w −w′∥2,

∥ (w − η∇f (w; z))−
(
w′ − η∇f

(
w′; z

))
∥22 ≤ (1− ηµ) ∥w −w′∥22.

We can now prove Theorem 2. For simplicity, we define Jτ,t = {i(1)τ,t , . . . , i
(b)
τ,t}, where i

(j)
τ,t ∼ Unif([n]) is the

j-th index sampled to compute a stochastic gradient for minibatch SGD, i.e., Bτ,t = {z
i
(1)
τ,t

, . . . , z
i
(b)
τ,t

}.

Proof. To begin with, define
A

(m)
τ,t = |{j : i

(j)
τ,t = m}|,

that is, A(m)
τ,t represents the number of indices equal to m in the batch of t-th outer loop iteration, and τ -th inner

loop iteration. Then we can reformulate the Lookahead update as

wt+1 = (1− α)wt + αvk,t+1

= (1− α)wt + α
(
vk−1,t+1 −

ηk−1,t+1

b

n∑
m=1

A
(m)
k−1,t+1∇f(vk−1,t+1; zm)

)
,

w
(i)
t+1 = (1− α)w

(i)
t + α

(
v
(i)
k−1,t+1 −

ηk−1,t+1

b

n∑
m:m̸=i

A
(m)
k−1,t+1∇f(v

(i)
k−1,t+1; zm)

−
A

(i)
k,t+1ηk−1,t+1

b
∇f(v

(i)
k−1,t+1; z

′
i)
)
,

(A.1)

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

from which we know

∥wt+1 −w
(i)
t+1∥2 ≤

(
1− α

)
∥wt −w

(i)
t ∥2 + α∥vk,t+1 − v

(i)
k,t+1∥2

≤ (1− α) ∥wt −w
(i)
t ∥2 + α

∥∥vk−1,t+1 −
ηk−1,t+1

b

n∑
m:m̸=i

A
(m)
k−1,t+1∇f(vk−1,t+1; zm)

−
A

(i)
k−1,t+1ηk−1,t+1

b
∇f (vk−1,t+1; zi)− v

(i)
k−1,t+1 +

ηk−1,t+1

b

n∑
m:m̸=i

A
(m)
k−1,t+1∇f(v

(i)
k−1,t+1; zm)

+
A

(i)
k−1,t+1ηk−1,t+1

b
∇f(v

(i)
k−1,t+1; z

′
i)
∥∥
2
.

Define C
(i)
k−1,t+1 = ∥∇f (vk−1,t+1; zi) − ∇f(v

(i)
k−1,t+1; z

′
i)∥2. By assumption, f is L-smooth and∑n

m:m̸=i A
(m)
k−1,t+1 ≤ b, from which we know v 7→ 1

b

∑n
m:m̸=i A

(m)
k−1,t+1f (v; zm) is L-smooth. Since

by assumption ηk−1,t+1 ≤ 1
L

, by Lemma 8 we have

∥wt+1 −w
(i)
t+1∥2

≤ (1− α)∥wt −w
(i)
t ∥2 +

αA
(i)
k−1,t+1ηk−1,t+1

b
∥∇f (vk−1,t+1; zi)−∇f(v

(i)
k−1,t+1; z

′
i)
∥∥
2

+ α
∥∥vk−1,t+1 −

ηk−1,t+1

b

n∑
m:m̸=i

A
(m)
k−1,t+1∇f(vk−1,t+1; zm)−

(
v
(i)
k−1,t+1 −

ηk−1,t+1

b

n∑
m:m̸=i

A
(m)
k−1,t+1∇f(v

(i)
k−1,t+1; zm)

)∥∥
2

≤ (1− α) ∥wt −w
(i)
t ∥2 +

αηk−1,t+1A
(i)
k−1,t+1C

(i)
k−1,t+1

b
+ α∥vk−1,t+1 − v

(i)
k−1,t+1∥2.

(A.2)

Note the above inequality actually shows a recurrent relationship on ∥vk,t+1 − v
(i)
k,t+1∥2 and ∥vk−1,t+1 −

v
(i)
k−1,t+1∥2. By iteration on inner-loop, we have

∥wt+1 −w
(i)
t+1∥2 ≤ (1− α) ∥wt −w

(i)
t ∥2 +

α

b

k−1∑
j=0

ηj,t+1A
(i)
j,t+1C

(i)
j,t+1 + α∥wt −w

(i)
t ∥2

= ∥wt −w
(i)
t ∥2 +

α

b

k−1∑
j=0

ηj,t+1A
(i)
j,t+1C

(i)
j,t+1,

where we have used that v0,t+1 = wt. By iteration on outer-loop, we have

∥wt+1 −w
(i)
t+1∥2 ≤ α

b

t+1∑
h=1

k−1∑
j=0

ηj,hA
(i)
j,hC

(i)
j,h. (A.3)

By definition of A(m)
k,t , it is a random variable following the binomial distribution B(b, 1

n
), it then follows that

E
[
A

(m)
k,t

]
=

b

n
, Var

(
A

(t)
k,m

)
=

b

n

(
1− 1

n

)
≤ b

n
. (A.4)

Furthermore, by Lemma 7, we know

C
(i)
j,h ≤ ∥∇f(vj,h; zi)∥2 + ∥∇f(v

(i)
j,h; z

′
i)∥2 ≤

√
2Lf (vj,h; zi) +

√
2Lf(v

(i)
j,h; z

′
i). (A.5)

Since (xi, yi) and (x′
i, y

′
i) are symmetric, we know E [f (vj,h; zi)] = E [f (vj,h; z

′
i)]. This, together with

Eq (A.5), further implies that

E
[
C
(i)
j,h

]
≤ 2E

[√
2Lf

(
vj,h; zi

)]
. (A.6)

By combining (A.3) and (A.4), we have

E
[
∥wt+1 −w

(i)
t+1∥2

]
≤ α

b

t+1∑
h=1

k−1∑
j=0

ηj,hE
[
A

(i)
j,hC

(i)
j,h

]
=

α

b

t+1∑
h=1

k−1∑
j=0

ηj,hE
[
EJj,h

[
A

(i)
j,h

]
C
(i)
j,h

]
=

α

n

t+1∑
h=1

k−1∑
j=0

ηj,hE
[
C
(i)
j,h

]
≤ 2α

n

t+1∑
h=1

k−1∑
j=0

ηj,hE
[√

2Lf(vj,h; zi)
]
, (A.7)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

where we used (A.6) in the last inequality. By the concavity of x 7→
√
x, we have

1

n

n∑
i=1

E
[
∥wt+1 −w

(i)
t+1∥2

]
≤ 2α

n

n∑
i=1

t+1∑
h=1

k−1∑
j=0

ηj,h
n

E
[√

2Lf(vj,h; zi)
]

≤ α

t+1∑
h=1

k−1∑
j=0

2ηj,h
n

√√√√2L

n

n∑
i=1

E [f(vj,h; zi)]

= α

t+1∑
h=1

k−1∑
j=0

2ηj,h
√

2LE [FS(vj,h)]

n
. (A.8)

This established the stated ℓ1-stability (5.1).
To study the ℓ2-stability, we apply the following expectation-variance decomposition to Eq. (A.3).

∥wt+1 −w
(i)
t+1∥2 ≤ α

b

t+1∑
h=1

k−1∑
j=0

ηj,h
(
A

(i)
j,h − b

n

)
C
(i)
j,h +

α

n

t+1∑
h=1

k−1∑
j=0

ηj,hC
(i)
j,h. (A.9)

Taking square on both sides, then applying expectation with respect to S and Jk,t for t ∈ [T] and k ∈ [k], we
have

E
[
∥wt+1 −w

(i)
t+1∥

2
2

]
≤ 2α2

b2
E
[(t+1∑

h=1

k−1∑
j=0

ηj,h
(
A

(i)
j,h − b

n

)
C
(i)
j,h

)2]
+

2α2

n2
E
[(t+1∑

h=1

k−1∑
j=0

ηj,hC
(i)
j,h

)2]

=
2α2

b2
E
[t+1∑

h,h′=1

k−1∑
j,j′=0

ηj,hηj′,h′

(
A

(i)
j,h − b

n

)(
A

(i)

j′,h′ −
b

n

)
C
(i)
j,hC

(i)

j′,h′

]
+

2α2

n2
E
[(t+1∑

h=1

k−1∑
j=0

ηj,hC
(i)
j,h

)2]
,

(A.10)

where we have used (a+ b)2 ≤ 2(a2 + b2). Note that if (h, j) ̸= (h′, j′), then (we can assume h < h′, j < j′

without loss of generality)

E
[(

A
(i)
j,h − b

n

)(
A

(i)

j′,h′ −
b

n

)
C
(i)
j,hC

(i)

j′,h′

]
= EEJj′,h′

[(
A

(i)
j,h − b

n

)(
A

(i)

j′,h′ −
b

n

)
C
(i)
j,hC

(i)

j′,h′

]
= E

[(
A

(i)
j,h − b

n

)
EJj′,h′

[
A

(i)

j′,h′ −
b

n

]
C
(i)
j,hC

(i)

j′,h′

]
= 0, (A.11)

where we notice A
(i)
j,h, C(i)

j,h, and C
(i)

j′,h′ are independent of Jj′,h′ . It then follows that

E
[
∥wt+1 −w

(i)
t+1∥

2
2

]
≤ 2α2

b2
E
[t+1∑
h=1

k−1∑
j=0

η2
j,h

(
A

(i)
j,h − b

n

)2(
C
(i)
j,h

)2]
+

2α2

n2
E
[(t+1∑

h=1

k−1∑
j=0

ηj,hC
(i)
j,h

)2]

=
2α2

b2
E
[t+1∑
h=1

k−1∑
j=0

η2
j,h Var

(
A

(i)
j,h

)(
C
(i)
j,h

)2]
+

2α2

n2
E
[(t+1∑

h=1

k−1∑
j=0

ηj,hC
(i)
j,h

)2]

≤ 2α2

nb
E
[t+1∑
h=1

k−1∑
j=0

η2
j,h

(
C
(i)
j,h

)2]
+

8α2

n2
E
[(t+1∑

h=1

k−1∑
j=0

ηj,h∥∇f(vj,h; zi)∥2
)2]

,

where we used Var(A
(i)
j,h) =

b
n
(1− 1

n
) ≤ b

n
in the second inequality and used the fact that

E
[(t+1∑

h=1

k−1∑
j=0

ηj,hC
(i)
j,h

)2]
≤ 2E

[(t+1∑
h=1

k−1∑
j=0

ηj,h∥∇f(vj,h; zi)∥2
)2]

+ 2E
[(t+1∑

h=1

k−1∑
j=0

ηj,h∥∇f(v
(i)
j,h; z

′
i)∥2

)2]

= 4E
[(t+1∑

h=1

k−1∑
j=0

ηj,h∥∇f (vj,h; zi) ∥2
)2]

.

We also notice that

E
[(
C
(i)
j,h

)2] ≤ 2E
[
∥∇f(vj,h, zi)∥22

]
+ 2E

[
∥∇f(v

(i)
j,h; z

′
i)∥22

]
≤ 4LE

[
f (vj,h; zi) + f

(
v
(i)
j,h; z

′
i

)]
= 8LE [f (vj,h; zi)] . (A.12)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

It then follows that

E
[
∥wt+1 −w

(i)
t+1∥

2
2

]
≤ 16α2L

nb

t+1∑
h=1

k−1∑
j=0

η2
j,hE [f (vj,h; zi)] +

8α2

n2
E
[(t+1∑

h=1

k−1∑
j=0

ηj,h∥∇f (vj,h; zi) ∥2
)2]

.

(A.13)

By taking an average over all i ∈ [n], we have

1

n

n∑
i=1

E
[
∥wt+1 −w

(i)
t+1∥

2
2

]
≤ 16α2L

n2b

t+1∑
h=1

k−1∑
j=0

n∑
i=1

η2
j,hE [f (vj,h; zi)] +

8α2

n3

n∑
i=1

E
[(t+1∑

h=1

k−1∑
j=0

ηj,h∥∇f (vj,h; zi) ∥2
)2]

≤ 16α2L

nb

t+1∑
h=1

k−1∑
j=0

η2
j,hE [FS (vj,h)] +

8(t+ 1)kα2

n3

n∑
i=1

t+1∑
h=1

k−1∑
j=0

η2
j,hE

[
∥∇f (vj,h; zi) ∥22

]
≤
(16α2L

nb
+

16α2L(t+ 1)k

n2

) t+1∑
h=1

k−1∑
j=0

η2
j,hE [FS (vj,h)] , (A.14)

where the second inequality holds by applying Cauchy-Schwarz inequality, and the third inequality follows from
self-bounding property. The proof is completed.

A.2 PROOF OF THEOREM 3

We first introduce the optimization error bound for Lookahead in the convex case.

Lemma 9 (Optimization Errors of Lookahead: Convex Case). Suppose the assumptions in Theorem 2 hold, and
further assume that η < b

L(b+1)
, then the following inequality holds

E [FS (vR)− FS (w∗)] ≤
bE
[
∥w0 −wS∥2

]
2αηkT

(
b− Lη(b+ 1)

) +
LηE

[
FS

(
wS

)]
b− Lη(b+ 1)

, (A.15)

where v̄R = 1
Tk

∑T
t=1

∑k−1
τ=0 vτ,t.

We need the following property for the L-smooth and convex functions for the proof.

Lemma 10 ((Woodworth et al., 2020)). For any L-smooth and convex F , and any x, and y,

∥∇F (x)−∇F (y) ∥2 ≤ L⟨∇F (x)−∇F (y) , x− y⟩,

and

∥∇F (x)−∇F (y) ∥2 ≤ 2L (F (x)− F (y)− ⟨∇F (y) , x− y⟩) .

Proof of Lemma 9. Since FS(wS) ≤ FS(w
∗), an upper bound for FS(vR)− FS(wS) is also an upper bound

for FS(vR) − FS(w
∗). For the proof below, we assume that the learning rate is constant, that is, ητ,t = η.

We denote Bk,t = {z
i
(1)
k,t

, . . . , z
i
(b)
k,t

} and f
(
v;Bk,t

)
= 1

b

∑b
j=1 f(v; zi(j)

k,t

). We can hence reformulate the

minibatch SGD update as

vτ+1,t = vτ,t − η∇f
(
vτ,t;Bτ,t

)
.

We first notice that

E
[
∥∇f

(
vτ,t;Bτ,t

)
∥2
]
= E

[
∥∇f

(
vτ,t;Bτ,t

)
−∇FS (vτ,t) ∥2

]
+ E

[
∥∇FS (vτ,t) ∥2

]
=

1

b
E
[
∥∇f

(
vτ,t; zi(1)τ,t

)
−∇FS (vτ,t) ∥2

]
+ E

[
∥∇FS (vτ,t) ∥2

]
=

E
[
∥∇f

(
vτ,t; zi(1)τ,t

)
∥2
]

b
−

E
[
∥∇FS (vτ,t) ∥2

]
b

+ E
[
∥∇FS (vτ,t) ∥2

]
≤

2LE
[
FS(vτ,t)

]
b

+ E
[
∥∇FS (vτ,t) ∥2

]
≤

2LE
[
FS(vτ,t)

]
b

+ 2LE[FS(vτ,t)− FS(wS)], (A.16)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where the last inequality follows from Lemma 10, where we set y = wS . We then analyze the single step in the
inner-loop,

E
[
∥vτ+1,t −wS∥2

]
= E

[
∥vτ,t − η∇f

(
vτ,t;Bτ,t

)
−wS∥2

]
= E

[
∥vτ,t −wS∥2 − 2η⟨vτ,t −wS ,∇f

(
vτ,t;Bτ,t

)
⟩+ η2∥∇f

(
vτ,t;Bτ,t

)
∥2
]

= E
[
∥vτ,t −wS∥2

]
− 2ηE [⟨vτ,t −wS ,∇FS (vτ,t)⟩] + η2E

[
∥∇f

(
vτ,t;Bτ,t

)
∥2
]
.

(A.17)

By convexity, we have ⟨vτ,t −wS ,∇FS (vτ,t)⟩ ≥ FS (vτ,t) − FS (wS). Substituting this and the above
result, we get

E
[
∥vτ+1,t −wS∥2

]
≤ E

[
∥vτ,t −wS∥2

]
− 2ηE [FS (vτ,t)− FS (wS)] + η2

(2LE[FS(vτ,t)
]

b
+ 2LE

[
FS(vτ,t)− FS(wS)

])
= E

[
∥vτ,t −wS∥2

]
−
(
2η − 2Lη2(b+ 1)

b

)
E [FS (vτ,t)− FS (wS)] +

2Lη2E
[
FS (wS)

]
b

.

It then follows that

2η
(
1−Lη(b+ 1)

b

)
E [FS (vτ,t)− FS (wS)] ≤ E

[
∥vτ,t −wS∥2 − ∥vτ+1,t −wS∥2

]
+
2Lη2E

[
FS (wS)

]
b

.

Recall the assumption of η ≤ b
L(b+1)

, we can divide by 2η(1− Lη(b+1)
b

) and get

E [FS (vτ,t)− FS (wS)] ≤
b

2η
(
b− Lη(b+ 1)

)E [∥vτ,t −wS∥2 − ∥vτ+1,t −wS∥2
]
+

LηE
[
FS

(
wS

)]
b− Lη(b+ 1)

.

We take an average of the above inequality from τ = 0 to k − 1, and get

1

k

k−1∑
τ=0

E [FS (vτ,t)− FS (wS)] ≤
b

2ηk
(
b− Lη(b+ 1)

) k−1∑
τ=0

E
[
∥vτ,t −wS∥2 − ∥vτ+1,t −wS∥2

]
+

LηE
[
FS

(
wS

)]
b− Lη(b+ 1)

=
b

2ηk
(
b− Lη(b+ 1)

)E [∥v0,t −wS∥2 − ∥vk,t −wS∥2
]
+

LηE
[
FS

(
wS

)]
b− Lη(b+ 1)

.

(A.18)

By the slow updating rule of Lookahead, we know (1−α)(wt−1−w∗) = (wt−w∗)−α(vk,t−w∗) and get

∥v0,t −wS∥2 − ∥vk,t −wS∥2 = ∥wt−1 −wS∥2 − ∥vk,t −wS∥2 ≤ 1

α

(
∥wt−1 −wS∥2 − ∥wt −wS∥2

)
.

Substituting this into (A.18), we have

1

k

k−1∑
τ=0

E [FS (vτ,t)− FS (wS)] ≤
b

2αηk
(
b− Lη(b+ 1)

)E [∥wt−1 −wS∥2 − ∥wt −wS∥2
]
+

LηE
[
FS

(
wS

)]
b− Lη(b+ 1)

.

We take an average of the above inequality and get

1

kT

T∑
t=1

k−1∑
τ=0

E [FS (vτ,t)− FS (wS)] ≤
b

2αηkT
(
b− Lη(b+ 1)

) T∑
t=1

E
[
∥wt−1 −wS∥2 − ∥wt −wS∥2

]
+

LηE
[
FS

(
wS

)]
b− Lη(b+ 1)

≤
bE
[
∥w0 −wS∥2

]
2αηkT

(
b− Lη(b+ 1)

) +
LηE

[
FS

(
wS

)]
b− Lη(b+ 1)

≤
bE
[
∥w0 −wS∥2

]
2αηkT

(
b− Lη(b+ 1)

) +
LηE

[
FS

(
w∗)]

b− Lη(b+ 1)
. (A.19)

We complete the proof by applying the Jensen’s inequality.

Proof of Theorem 3. By Lemma 1 (part (b)) and (5.2), we have (note our stability bounds also apply to v̄R due
to the convexity of norm)

E [F (vR)− FS(vR)] ≤
L

γ
E[FS(vR)] + (L+ γ)

(
8α2L

nb
+

8α2LTk

n2

) T∑
h=1

k−1∑
j=0

η2
j,hE [FS (vj,h)] .

(A.20)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

By (A.19) we know that

1

kT

T∑
t=1

k−1∑
τ=0

E [FS (vτ,t)] ≲ F (w∗) +
LηF (w∗)

b
+

1

αηkT
. (A.21)

Let R = Tk. We combine the above inequalities and get

E [F (vR)− FS(vR)] ≲
L(F (w∗) + LηF (w∗)/b+ 1/(αηR))

γ

+ L(L+ γ)α2η2

(
1

nb
+

R

n2

)
(RF (w∗) +RLηF (w∗)/b+ 1/(αη)) . (A.22)

We plug (A.22) and the optimization error bound (A.15) back into (3.1) and get

E [F (vR)]− F (w∗) ≲
LηF (w∗)

b
+

1

αηR
+

F (w∗) + LηF (w∗)/b+ 1/(αηR)

γ
+

L(L+ γ)α2η2

(
1

nb
+

R

n2

)
(RF (w∗) +RLηF (w∗)/b+ 1/(αη)) .

The proof is completed.

Proof of Corollary 4. We first consider the case F (w∗) ≥ 1
n

. Fix any constant α ∈ (0, 1], we choose
η = b√

nF (w∗)
, R ≍ n

b
, and γ =

√
nF (w∗) ≥ 1. Note the assumption b ≤

√
nF (w∗)/(2L) ensures that

η ≤ 1/(2L). Then Eq. (5.3) implies

E [F (vR)− F (w∗)] ≲
LF (w∗)√
nF (w∗)

+
F (w∗)

1
2

√
n

+
(nF (w∗))

1
2 + L+ 1

n

+
2L

n2F (w∗)

(
L+ (nF (w∗))

1
2
)
)
(
nF (w∗) + (L+ 1)(nF (w∗))

1
2
)

≲
LF (w∗)1/2√

n
+

L2

n
.

We now consider the case F (w∗) < 1
n

. We fix α ∈ (0, 1] as a constant, and choose η = 1
2L

, R ≍ n, and γ = 1.
Then Eq. (5.3) implies

E [F (vR)− F (w∗)] ≲ F (w∗) +
L

n
+

L+ 1

4nL

(
nF (w∗) + 2L

)
≲

L

n
+ F (w∗).

The proof is completed.

A.3 PROOF OF THEOREM 5

Proof. Recalling from Eq. (A.1) the refined Lookahead updating rule, we have

∥wt+1 −w
(i)
t+1∥2

≤ (1− α) ∥wt −w
(i)
t ∥2 + α

∥∥vk−1,t+1 −
ηk−1,t+1

b

n∑
m:m̸=i

A
(m)
k−1,t+1∇f(vk−1,t+1; zm)− v

(i)
k−1,t+1

+
ηk−1,t+1

b

n∑
m:m̸=i

A
(m)
k−1,t+1∇f(v

(i)
k−1,t+1; zm)

∥∥
2
+

αA
(i)
k−1,t+1ηk−1,t+1

b
∥∇f (vk−1,t+1; zi)−∇f(v

(i)
k−1,t+1; z

′
i)∥2.

Since f is smooth and
∑n

m:m̸=i A
(m)
k−1,t+1 ≤ b, therefore v 7→ 1

b

∑n
m:m̸=i A

(m)
k−1,t+1f(v; zm) is L-smooth. It

follows from Lemma 8 and the assumption ηk−1,t+1 ≤ 1
L

that

∥wt+1 −w
(i)
t+1∥2 ≤ (1− α) ∥wt −w

(i)
t ∥2+

αηk−1,t+1A
(i)
k−1,t+1C

(i)
k−1,t+1

b
+ α

(
1− µηk−1,t+1

2

)
∥vk−1,t+1 − v

(i)
k−1,t+1∥2. (A.23)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We take the expectation on both sides and get

E
[
∥wt+1 −w

(i)
t+1∥2

]
≤ (1− α)E

[
∥wt −w

(i)
t ∥2

]
+

2αηk−1,t+1

√
2LE [f (vk−1,t+1; zi)]

n

+ α
(
1− µηk−1,t+1

2

)
E
[
∥vk−1,t+1 − v

(i)
k−1,t+1∥2

]
,

where we have used (A.4) and (A.6). We do the iteration on inner-loop, and get

E
[
∥wt+1 −w

(i)
t+1∥2

]
≤ (1− α)E

[
∥wt −w

(i)
t ∥2

]
+

2α
√
2L

n

k−1∑
j=0

ηj,t+1

√
E [f (vj,t+1; zi)]

k−1∏
j′=j+1

(
1− µηj′,t+1

2

)

+ αE
[
∥wt −w

(i)
t ∥2

] k−1∏
j=0

(
1− µηj,t+1

2

)

≤ (1− α

2
)E
[
∥wt −w

(i)
t ∥2

]
+

2α
√
2L

n

k−1∑
j=0

ηj,t+1

√
E [f (vj,t+1; zi)]

k−1∏
j′=j+1

(
1− µηj′,t+1

2

)
,

where we have used the following inequality due to the the assumption ηj,t+1 ≥ 2 ln 2
kµ

k−1∏
j=0

(
1− µηj,t+1

2

)
≤ exp

(
−

k∑
j=0

µηj,t+1

2

)
≤ exp

(
− k

µ2 log 2

2kµ

)
=

1

2
. (A.24)

By iteration on outer-loop,

E
[
∥wt+1 −w

(i)
t+1∥2

]
≤ 2α

√
2L

n

t+1∑
t′=1

(1− α

2
)t+1−t′

k−1∑
j=0

ηj,t′
√

E [f (vj,t′ ; zi)]

k−1∏
j′=j+1

(
1− µηj′,t′

2

)
.

(A.25)

Taking an average over i and using the concavity of x 7→
√
x, we get

1

n

n∑
i=1

E
[
∥wt+1 −w

(i)
t+1∥2

]
≤ 2α

√
2L

n2

t+1∑
t′=1

(1− α

2
)t+1−t′

k−1∑
j=0

n∑
i=1

ηj,t′
√

E [f (vj,t′ ; zi)]

k−1∏
j′=j+1

(
1− µηj′,t′

2

)

≤ 2α
√
2L

n

t+1∑
t′=1

(1− α

2
)t+1−t′

k−1∑
j=0

ηj,t′
(1
n

n∑
i=1

E [f (vj,t′ ; zi)]
) 1

2
k−1∏

j′=j+1

(
1− µηj′,t′

2

)

=
2α

√
2L

n

t+1∑
t′=1

(1− α

2
)t+1−t′

k−1∑
j=0

ηj,t′
√

E [FS (vj,t′)]

k−1∏
j′=j+1

(
1− µηj′,t′

2

)
.

This established the stated ℓ1-stability bound (5.4).
We now prove Eq. (5.5). Recall Eq. (A.2), we do iteration on inner-loop in Eq. (A.23) and get

∥wt+1 −w
(i)
t+1∥2

≤ (1− α) ∥wt −w
(i)
t ∥2 +

α

b

k−1∑
j=0

ηj,t+1A
(i)
j,t+1C

(i)
j,t+1

k−1∏
j′=j+1

(
1− µηj′,t+1

2

)
+ α∥wt −w

(i)
t ∥2

k−1∏
j=0

(
1− µηj,t+1

2

)

≤ ∥wt −w
(i)
t ∥2 +

α

b

k−1∑
j=0

ηj,t+1A
(i)
j,t+1C

(i)
j,t+1

k−1∏
j′=j+1

(
1− µηj′,t+1

2

)
.

Then we iterate on outer-loop and get

∥wt+1 −w
(i)
t+1∥2 ≤ α

b

t+1∑
t′=1

k−1∑
j=0

ηj,t′A
(i)

j,t′C
(i)

j,t′

k−1∏
j′=j+1

(
1− µηj′,t′

2

)

=
α

b

t+1∑
t′=1

k−1∑
j=0

ηj,t′
(
A

(i)

j,t′ −
b

n

)
C
(i)

j,t′

k−1∏
j′=j+1

(
1− µηj′,t′

2

)
+

α

n

t+1∑
t′=1

k−1∑
j=0

ηj,t′C
(i)

j,t′

k−1∏
j′=j+1

(
1− µηj′,t′

2

)
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

By taking the square and the expectation on both sides, we get

E
[
∥wt+1 −w

(i)
t+1∥

2
2

]
≤ 2α2

b2
E
[(t+1∑

t′=1

k−1∑
j=0

ηj,t′
(
A

(i)

j,t′ −
b

n

)
C
(i)

j,t′

k−1∏
j′=j+1

(
1− µηj′,t′

2

))2]
+

2α2

n2
E
[(t+1∑

t′=1

k−1∑
j=0

ηj,t′C
(i)

j,t′

k−1∏
j′=j+1

(
1− µηj′,t′

2

))2]

=
2α2

b2

t+1∑
t′=1

k−1∑
j=0

η2
j,t′E

[(
A

(i)

j,t′ −
b

n

)2(
C
(i)

j,t′
)2 k−1∏

j′=j+1

(
1− µηj′,t′

2

)2]
+

2α2

n2
E
[(t+1∑

t′=1

k−1∑
j=0

ηj,t′C
(i)

j,t′

k−1∏
j′=j+1

(
1− µηj′,t′

2

))2]

≤ 2α2

nb

t+1∑
t′=1

k−1∑
j=0

η2
j,t′E

[(
C
(i)

j,t′
)2] k−1∏

j′=j+1

(
1− µηj′,t′

2

)2
+

2α2

n2
E
[(t+1∑

t′=1

k−1∑
j=0

ηj,t′C
(i)

j,t′

k−1∏
j′=j+1

(
1− µηj′,t′

2

))2]
(A.26)

where we used (A.11) and EBj,t′

[(
A

(i)

j,t′ −
b
n

)2] ≤ b
n

. For the second term, we apply the Cauchy-Schwarz
inequality,

(t+1∑
t′=1

k−1∑
j=0

ηj,t′C
(i)

j,t′

k−1∏
j′=j+1

(
1− µηj′,t′

2

))2
≤
(t+1∑

t′=1

k−1∑
j=0

ηj,t′
(
C
(i)

j,t′
)2 k−1∏

j′=j+1

(
1− µηj′,t′

2

))(t+1∑
t′=1

k−1∑
j=0

ηj,t′
k−1∏

j′=j+1

(
1− µηj′,t′

2

))

≤ 2(t+ 1)

µ

(t+1∑
t′=1

k−1∑
j=0

ηj,t′
(
C
(i)

j,t′
)2 k−1∏

j′=j+1

(
1− µηj′,t′

2

))
, (A.27)

where the following result is used in the last inequality

k−1∑
j=0

ηj,t′
k−1∏

j′=j+1

(
1− µηj′,t′

2

)
=

2

µ

k−1∑
j=0

(
1−

(
1− µηj,t′

2

)) k−1∏
j′=j+1

(
1− µηj′,t′

2

)

=
2

µ

k−1∑
j=0

(k−1∏
j′=j+1

(
1− µηj′,t′

2

)
−

k−1∏
j′=j

(
1− µηj′,t′

2

))

=
2

µ

(
1−

k−1∏
j′=0

(
1− µηj′,t′

2

))
≤ 2

µ
. (A.28)

Combining the above discussions together, we further get

E
[
∥wt+1 −w

(i)
t+1∥

2
2

]
≤

t+1∑
t′=1

k−1∑
j=0

(2α2η2
j,t′

nb
+

4 (t+ 1)α2ηj,t′

n2µ

)
E
[(
C
(i)

j,t′
)2] k−1∏

j′=j+1

(
1− µηj′,t′

2

)
.

Recalling result in (A.12), E
[(
C
(i)

j,t′
)2] ≤ 8LE [f (vj,h; zi)], we further derive

E
[
∥wt+1 −w

(i)
t+1∥

2
2

]
≤

t+1∑
t′=1

k−1∑
j=0

(16α2η2
j,t′

nb
+

32 (t+ 1)α2ηj,t′

n2µ

)
E [f (vj,t′ ; zi)]

k−1∏
j′=j+1

(
1− µηj′,t′

2

)
.

Taking an average over i ∈ [n], we get the stated bound

1

n

n∑
i=1

E
[
∥wt+1 −w

(i)
t+1∥

2
2

]
≤

t+1∑
t′=1

k−1∑
j=0

(16α2η2
j,t′

nb
+

32 (t+ 1)α2ηj,t′

n2µ

)
E [FS (vj,t′)]

k−1∏
j′=j+1

(
1− µηj′,t′

2

)
.

The proof is completed.

A.4 PROOF OF THEOREM 6

We first state and prove the optimization error bound.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Lemma 11 (Optimization Error of Lookahead: Strongly Convex Case). Suppose the assumptions in Theorem 5
hold, by setting the learning rate η = bµ

2L2(b+1)
, the optimization error of the output wT of Lookahead satisfies

E[FS(wT)− FS(w
∗)] ≤ L

2
e−

3
4
αkµηT E

[
∥w0 −wS∥2

]
+

Lα

2

T−1∑
t=0

e−
3
4
αkµηt

k−1∑
k′=0

e−
3
4
µηk′ 2η2L

b
E[FS(wS)] . (A.29)

Furthermore, by choosing b ≲ n, k = 2L
αµ

, and T ≍ log(µn), we have

E[FS(wT)− FS(w
∗)] ≲

L

n
E[∥w0 −wS∥2] + E[FS(wS)]. (A.30)

Proof. Since FS(wS) ≤ FS(w
∗), an upper bound for FS(wT)−FS(wS) is also an upper bound for FS(wT)−

FS(w
∗). Since the function FS(w) is µ-strongly convex and wS is the optimum of FS(w), we have

FS(vτ−1,t) ≥ FS(wS) + ⟨∇FS(wS), wS − vτ−1,t⟩+
µ

2
∥wS − vτ−1,t∥22

= FS(wS) +
µ

2
∥wS − vτ−1,t∥22 .

Similarly, we have

FS(wS) ≥ FS(vτ−1,t) + ⟨∇FS(vτ−1,t) , wS − vτ−1,t⟩+
µ

2
∥wS − vτ−1,t∥22 .

It then follows that

E[
∥∥vτ,t −wS

∥∥2] = E
[∥∥vτ−1,t − η∇f

(
vτ−1,t;Bτ−1,t

)
−wS

∥∥2]
= E

[∥∥vτ−1,t −wS

∥∥2 − 2η
〈
vτ−1,t −wS , ∇f

(
vτ−1,t;Bτ−1,t

)〉
+ η2

∥∥∇f
(
vτ−1,t;Bτ−1,t

)∥∥2]
= E

[∥∥vτ−1,t −wS

∥∥2 − 2η
〈
vτ−1,t −wS , ∇FS(vτ−1,t)

〉
+ η2

∥∥∇f
(
vτ−1,t;Bτ−1,t

)∥∥2]
≤ E

[∥∥vτ−1,t −wS

∥∥2 + 2η
(
FS(wS)− FS(vτ−1,t)−

µ

2

∥∥wS − vτ−1,t

∥∥2
2

)
+ η2

∥∥∇f
(
vτ−1,t;Bτ−1,t

)∥∥2]
≤ E

[∥∥vτ−1,t −wS

∥∥2 + 2η
(
− µ

2

∥∥wS − vτ−1,t

∥∥2
2
− µ

2

∥∥wS − vτ−1,t

∥∥2
2

)
+ η2

∥∥∇f
(
vτ−1,t;Bτ−1,t

)∥∥2]
≤ (1− 2µη)E[

∥∥vτ−1,t −wS

∥∥2] + η2E
[∥∥∇f

(
vτ−1,t;Bτ−1,t

)∥∥2].
For the second term, we use the result of (A.16) and have

E
[∥∥vτ,t −wS

∥∥2] ≤ (1− 2µη)E
[∥∥vτ−1,t −wS

∥∥2]+ η2 2LE
[
FS(vτ−1,t)

]
b

+ 2Lη2E[FS(vτ−1,t)− FS(wS)]

≤ (1− 2µη + η2L2)E
[∥∥vτ−1,t −wS

∥∥2]+ η2 2LE
[
FS(vτ−1,t)− FS(wS)

]
+ 2LE[FS(wS)]

b

≤ (1− 2µη + η2L
2(b+ 1)

b
)E
[∥∥vτ−1,t −wS

∥∥2]+ η2 2LE[FS(wS)]

b
,

where we have used FS(w)− FS(wS) ≤ L
2
∥w −wS∥22. For simplicity, we define C as

C =
L2(b+ 1)

b
.

The recurrence relation simplifies as

E[∥vτ,t −wS∥2] ≤
(
1− 2µη + Cη2)E[∥vτ−1,t −wS∥2] + η2 2LE[FS(wS)]

b
. (A.31)

We now choose
η =

µ

2C
=

µb

2L2(b+ 1)
.

Substituting this value back into the multiplicative factor gives

1− 2µ
(µ

2C

)
+ C

(µ

2C

)2
= 1− µ2

C
+

µ2

4C
= 1− 3µ2

4C
= 1− 3

2
µη.

With this choice, the one-step recurrence (A.31) becomes

E[∥vτ,t −wS∥2] ≤
(
1− 3

2
µη

)
E[∥vτ−1,t −wS∥2] + η2 2LE[FS(wS)]

b
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

By applying the previous inequality recursively for the inner loop, we have

E[∥vk,t −wS∥2] ≤
(
1− 3

2
µη

)k

E[∥wt−1 −wS∥2] +
k−1∑
k′=0

(
1− 3

2
µη

)k′

η2 2LE[FS(wS)]

b
.

We now substitute this result back to the outer-loop. Recall the slow weights recurrence wt = (1− α)wt−1 +
αvk,t,

∥wt −wS∥2 = ∥(1− α)(wt−1 −wS) + α(vk,t −wS)∥2

≤ (1− α)∥wt−1 −wS∥2 + α∥vk,t −wS∥2.
Taking the expectation gives

E[∥wt −wS∥2] ≤ (1− α)E[∥wt−1 −wS∥2] + αE[∥vk,t −wS∥2]

≤ (1− α)E[∥wt−1 −wS∥2] + α

(
1− 3

2
µη

)k

E[∥wt−1 −wS∥2] + α

k−1∑
k′=0

(
1− 3

2
µη

)k′
2Lη2E[FS(wS)]

b

=

[
1− α+ α

(
1− 3

2
µη

)k
]
E[∥wt−1 −wS∥2] + α

k−1∑
k′=0

(
1− 3

2
µη

)k′
2Lη2E[FS(wS)]

b

=

[
1− α

(
1−

(
1− 3

2
µη

)k
)]

E[∥wt−1 −wS∥2] + α

k−1∑
k′=0

(
1− 3

2
µη

)k′
2Lη2E[FS(wS)]

b
.

Let ρ be the contraction factor for the outer loop:

ρ = 1− α

(
1−

(
1− 3

2
µη

)k
)
.

Since 0 < (1− 3
2
µ2/C) < 1 and α > 0, we have 0 < ρ < 1. Unwinding this recurrence from t = 1 to T :

E[∥wt −wS∥2] ≤ ρtE[∥w0 −wS∥2] + α

t−1∑
t′=0

ρt
′

k−1∑
k′=0

(
1− 3

2
µη

)k′
2Lη2E[FS(wS)]

b
. (A.32)

Finally, using the L-smoothness property, E[FS(wt)− FS(wS)] ≤ L
2
E[∥wt −wS∥2], we arrive at the final

optimization error bound.

E[FS(wT)− FS(wS)] ≤
L

2

[
1− α

(
1−

(
1− 3

2
µη

)k
)]T

E[∥w0 −wS∥2

+
Lα

2

T−1∑
t′=0

[
1− α

(
1−

(
1− 3

2
µη

)k
)]t′ k−1∑

k′=0

(
1− 3

2
µη

)k′
2Lη2E[FS(wS)]

b
.

(A.33)

We use the inequalities 1 + x ≤ ex for all real x and 1− e−x ≥ x
1+x

for all x ≥ 0 to get the following.[
1− α

(
1− (1− 3

2
µη)k

)]T
≤ exp

{
− α

[
1− (1− 3

2
µη)k

]
T
}

≤ exp
{
− α

(
1− exp

{
− 3

2
kµη

})
T
}

≤ exp
{
− α

3kµη

3kµη + 2
T
}
.

Then the optimization error bound becomes

E[FS(wT)− FS(wS)] ≤
L

2
exp

{
− α

3kµη

3kµη + 2
T
}
E
[
∥w0 −wS∥2

]
+

Lα

2

T−1∑
t=0

exp
{
− α

3kµη

3kµη + 2
t
} k−1∑

k′=0

exp{−3

2
µηk′}2η

2L

b
E[FS(wS)] . (A.34)

We now choose the parameters to be k = 2L
µα

, T ≍ log(n), and we fix α. Since b ≥ 1, we have Lη =
bµ

2L(b+1)
∈ [1/4, 1/2). Then with the above k, we know

kµη ≥ 2L

µα
µη =

2

α
Lη ≥ 1

2α
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Hence

3kµη

3kµη + 2
≥ 3

3 + 4α
. (A.35)

It then follows that
T−1∑
t=0

exp
{
− α

3kµη

3kµη + 2
t
}
≤ 1

1− e−3α/(3+4α)
≍ 1.

Also, since µη ≤ µ/2L ≤ 1, we can use 1− e−x ≥ x/2 for x ∈ (0, 1] and get

k−1∑
k′=0

e−
3
2
µηk′

=
1− e−

3
2
µηk

1− e−
3
2
µη

≤ 1

1− e−µη
≤ 2

µη
.

Plugging these into (A.34) yields the bound for the second term

Lα

2

T−1∑
t=0

exp
{
− α

3kµη

3kµη + 2
T
} k−1∑

k′=0

exp{−3

2
µηk′}2η

2L

b
E [FS(wS)] ≲

Lα

2

2

µη

2η2L

b
E [FS(wS)]

≲
L2η

µb
E [FS(wS)] .

Since η = µb
2L2(b+1)

, this simplifies to

Lα

2

T−1∑
t=0

exp
{
− α

3kµη

3kµη + 2
t
} k−1∑

k′=0

exp{−3

2
µηk′}2η

2L

b
E [FS(wS)] ≲

1

2(b+ 1)
E [FS(wS)] ≲ E [FS(wS)] .

(A.36)

For the first term, together with (A.35), our choice of T ensures

L

2
exp

{
− α

3kµη

3kµη + 2
T
}
E
[
∥w0 −wS∥2

]
≲

L

n
E
[
∥w0 −wS∥2

]
. (A.37)

Combining (A.36) and (A.37) gives the final result.

We now state and prove the generalization bound.

Lemma 12 (Generalization Gap of Lookahead: Strongly Convex Case). Suppose the assumptions in Theorem 5
hold. Let wT be the final output of Lookahead optimizer. By setting the learning rate η = bµ

2L2(b+1)
, we have

E[F (wT)− FS(wT)] ≲
1

nµ
+

1

n2
E[∥w0 −wS∥2] +

1

nL
E[FS(wS)].

Proof of Lemma 12. We now assume the constant step size ητ,t = η. Let wS = argminw∈W FS(w). We
denote Bk,t = {z

i
(1)
k,t

, . . . , z
i
(b)
k,t

} and f
(
v;Bk,t

)
= 1

b

∑b
j=1 f(v; zi(j)

k,t

). We can hence reformulate the

minibatch SGD update as

vτ+1,t = vτ,t − η∇f(vτ,t;Bτ,t). (A.38)

By the strong convexity of f ,

E[∥vτ+1,t −wS∥22] = E[∥vτ,t − η∇f(vτ,t;Bτ,t)−wS∥22]
= E[∥vτ,t −wS∥22]− 2ηE[⟨vτ,t −wS ,∇FS(vτ,t)⟩] + η2E[∥∇f(vτ,t;Bτ,t)∥22]
≤ (1− µητ,t)E[∥vτ,t −wS∥22]− 2ηE[FS(vτ,t)− FS(wS)] + η2E[∥∇f(vτ,t;Bτ,t)∥22].

(A.39)

For the last term, we bound it using (A.16) and get

E[∥vτ+1,t −wS∥22] ≤ (1− µη)E[∥vτ,t −wS∥22 −
(
2η − 2Lη2(b+ 1)

b

)
E [FS (vτ,t)− FS (wS)] +

2Lη2E
[
FS (wS)

]
b

.

For η = bµ
2L2(b+1)

≤ b
2L(b+1)

, we have

E[∥vτ+1,t −wS∥22] ≤ (1− µη)E[∥vτ,t −wS∥22]− ηE[FS(vτ,t)− FS(wS)] +
2Lη2E

[
FS (wS)

]
b

.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We multiply both sides by
(
1− α

2

)T−t
(1− µη/2)k−τ and get(

1− α

2

)T−t
(1− µη/2)k−τE[∥vτ+1,t −wS∥22] ≤

(
1− α

2

)T−t
(1− µη/2)k−τ+1E[∥vτ,t −wS∥22]−(

1− α

2

)T−t
η(1− µη/2)k−τE[FS(vτ,t)− FS(wS)] +

2L(1− α
2
)T−t(1− µη/2)k−τη2E

[
FS (wS)

]
b

.

By taking a summation of the above inequality, we have
T∑

t=1

(
1− α

2

)T−t
k−1∑
τ=0

ητ,t(1− µη/2)k−τE[FS(vτ,t)− FS(wS)]

≤
T∑

t=1

(
1− α

2

)T−t
(1− µη/2)k+1E[∥wt−1 −wS∥22] + 2L

T∑
t=1

(
1− α

2

)T−t
k∑

τ=0

(1− µη/2)k−τη2E
[
FS (wS)

]
b

≤ 1

2

T∑
t=1

(
1− α

2

)T−tE[∥wt−1 −wS∥22] + 2L

T∑
t=1

(
1− α

2

)T−t
k∑

τ=0

(1− µη/2)k−τη2E
[
FS (wS)

]
b

,

(A.40)

where we have used Eq. (A.24). We first look at the first term of Eq. (A.40). By (A.32), we have

E[∥wt−1 −wS∥22] ≤ ρtE[∥w0 −wS∥2] + α

t−2∑
t′=0

ρt
′

k−1∑
k′=0

(
1− 3

2
µη

)k′
2Lη2E[FS(wS)]

b

≲
1

n
E[∥w0 −wS∥2] +

1

L
E[FS(wS)].

where the last inequlity follows from the result of (A.30) and the fact that E[FS(wt)−FS(wS)] ≤ L
2
E[∥wt −

wS∥2] ≲ L
n
E[∥w0 −wS∥2] + E[FS(wS)]. Together with the summation, we have

1

2

T∑
t=1

(
1− α

2

)T−tE[∥wt−1 −w∥22] ≲
1

2

T∑
t=1

(
1− α

2

)T−t(1
n
E[∥w0 −wS∥2] +

1

L
E[FS(wS)]

)
≤ 1

2

1

1− (1− α
2
)

(1
n
E[∥w0 −wS∥2] +

1

L
E[FS(wS)]

)
≲

1

n
E[∥w0 −wS∥2] +

1

L
E[FS(wS)]. (A.41)

For the second term of (A.40), by Eq. (A.28) and η ≤ µ
2L2 ,

2L

T∑
t=1

(
1− α

2

)T−t
k∑

τ=0

(1− µη/2)k−τη2E
[
FS (wS)

]
b

≤ µ

αL

k∑
τ=0

(1− µη/2)k−τηE
[
FS (wS)

]
b

≲
E
[
FS (wS)

]
αL

. (A.42)

We fix the outer-loop learning rate α and combine Eq. (A.41) and Eq. (A.42) to obtain
T∑

t=1

(
1− α

2

)T−t
k−1∑
τ=0

η(1− µn/2)k−(τ+1)E[FS(vτ,t)− FS(wS)] ≲
1

n
E[∥w0 −wS∥2] +

1

L
E[FS(wS)].

(A.43)

Recall from Eq. (5.4), we denote ST :

ST =

T∑
t′=1

(
1− α

2

)T−t
k−1∑
j=0

ηj,t′
√

E[FS(vj,t′)](1− µn/2)k−(τ+1).

We use the inequality
√
x ≤ (1 + x)/2 for non-negative x. This gives:

ST ≤ 1

2

T∑
t′=1

(
1− α

2

)T−t
k−1∑
j=0

ηj,t′ (1 + E[FS(vj,t′)]) (1− µn/2)k−(τ+1).

We split this into two parts,

ST ≤ 1

2

[T∑
t′=1

(
1− α

2

)T−t
k−1∑
j=0

ηj,t′(1− µn/2)k−(τ+1)
]

︸ ︷︷ ︸
Part A

+
1

2

[T∑
t′=1

(
1− α

2

)T−t
k−1∑
j=0

ηj,t′E[FS(vj,t′)](1− µn/2)k−(τ+1)
]

︸ ︷︷ ︸
Part B

.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We bound each part:

Part A: This part is bounded using the result from Eq. (A.28). The identity shows that for each outer step t′, the
inner sum over j is bounded by 2/µ. Summing over T outer steps yields:

1

2

T∑
t′=1

(
1− α

2

)T−t
k−1∑
j=0

ηj,t′(1− µn/2)k−(τ+1) ≲
1

µ
. (A.44)

Part B: Notice that
T∑

t=1

(
1− α

2

)T−t
k−1∑
τ=0

η(1− µn/2)k−(τ+1)E[FS(vτ,t)]

=

T∑
t=1

(
1− α

2

)T−t
k−1∑
τ=0

η(1− µn/2)k−(τ+1)E[FS(vτ,t)− FS(wS)] +

T∑
t=1

(
1− α

2

)T−t
k−1∑
τ=0

η(1− µn/2)k−(τ+1)E[FS(wS)]

≲
1

n
E[∥w0 −wS∥2] +

1

L
E[FS(wS)]. (A.45)

Combining (A.44) and (A.45) we have:

1

n

n∑
i=1

E
[
∥wT −w

(i)
T ∥2

]
≲

1

nµ
+

1

n2
E[∥w0 −wS∥2] +

1

nL
E[FS(wS)]. (A.46)

By Lemma 1 (a), (A.46) implies

E[F (wT)− FS(wT)] ≲
1

nµ
+

1

n2
E[∥w0 −wS∥2] +

1

nL
E[FS(wS)]. (A.47)

The proof is completed.

Proof of Theorem 6. Note that for α ≤ bµ
2 ln 2(b+1)L

, we have

η =
bµ

2L2(b+ 1)
≥ ln 2

L
α =

2 ln 2

µ

αµ

2L
=

2 ln 2

µk

Which satisfy the required condition in theorem 5. We now combine the results of lemma 12 and lemma 11
together and get

E[F (wT)− F (w∗)] ≲
1

nµ
+
(1

nL
+ 1
)
E[FS(wS)] +

(1

n2
+

L

n

)
E[∥w0 −wS∥2]. (A.48)

for k = 2L
αµ

, and T ≍ log(µn). This completes the proof.

22

	Introduction
	Related Work
	Notations and Preliminaries
	Algorithmic Stability
	Lookahead Optimizer

	Generalization Analysis of Lookahead Algorithm
	Convex Case
	Strongly Convex Case

	Conclusion
	Proof of Results in Section 5
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 5
	Proof of Theorem 6

