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ABSTRACT

The Lookahead optimizer (Zhang et al.,|2019) enhances deep learning models by
employing a dual-weight update mechanism, which has been shown to improve
the performance of underlying optimizers such as SGD. However, most theoret-
ical studies focus on its convergence on training data, leaving its generalization
capabilities less understood. Existing generalization analyses are often limited by
restrictive assumptions, such as requiring the loss function to be globally Lipschitz
continuous, and their bounds do not fully capture the relationship between opti-
mization and generalization. In this paper, we address these issues by conducting
a rigorous stability and generalization analysis of the Lookahead optimizer with
minibatch SGD. We leverage on-average model stability to derive generalization
bounds for both convex and strongly convex problems without the restrictive Lips-
chitzness assumption. Our analysis demonstrates a linear speedup with respect to
the batch size in the convex setting.

1 INTRODUCTION

Stochastic optimization has become the method of choice to train modern machine learning models
due to its efficiency and scalability (Kingma & Ba,2014). A simple stochastic optimization method is
the minibatch stochastic gradient descent (minibatch SGD) (Cotter et al., 2011b; |Dekel et al., 2012 |Li
et al., 2014; Shamir & Srebro, [2014), where a minibatch of training examples are randomly sampled
to build gradient estimates with a reduced variance. Due to its simplicity, computational efficiency
and strong generalization in practice (Zhou et al.| 2020; Bottou et al.| [2018)), minibatch SGD remains
one of the most preferable algorithms. Another representative stochastic optimization method is
Adam (Kingma & Ba} 2014)), which augments SGD with coordinate-wise adaptive learning rates and
momentum, often accelerating convergence and improving robustness to ill-conditioning.

To further enhance generalization performance, the Lookahead optimizer (Zhang et al.,2019) was
introduced as an orthogonal method. It introduces a two-timescale updating framework of two
parameters: the fast weights v and the slow weights w. In the inner loop, starting from the slow
weights w, the fast weights are updated by applying a standard optimizer A for k times and output vy;
for the outer loop, the slow weights are updated towards the fast weights by w1 = avy + (1 — a)w,
where o € (0,1] is an interpolation parameter. This mechanism dampens oscillations, reduces
sensitivity to learning-rate schedules and synchronization periods, and improves robustness across
tasks with negligible overhead, often matching or improving the accuracy of the underlying base
optimizer (Zhang et al.,[2019).

The empirical efficiency of the Lookahead optimizer motivates a lot of theoretical studies to under-
stand its behavior. However, most of existing studies focus on their convergence to minimize the
training errors (Yang et al.,|2024; [Chen et al.l 2022b} Zhang et al.,[2019). As a comparison, there are
far less studies on how the training behavior generalizes to testing examples, which is a concept of
central interest in machine learning. To our best knowledge, the only work on the generalization anal-
ysis is|Zhou et al.|(2021)), which conducted a stability analysis to argue that the Lookahead optimizer
can generalize better than SGD and Adam. While these results provide a sound foundation on the use
of the Lookahead mechanism, there are still some issues to be addressed. For example, their analysis
hinges on the Lipschitzness condition on the loss, which is often restrictive in high-dimensional
problems where gradients can be unbounded and the loss landscapes are non-Lipschitz globally.
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Furthermore, their stability bounds are not optimistic and cannot fully capture the connection between
generalization and optimization.

This paper aims to address the above issues by improving the existing stability and generalization
analysis of the Lookahead optimizer. Our main contributions can be summarized as follows.

1. We leverage the on-average model stability to analyze the generalization behavior of the
Lookahead methods for both convex and strongly convex problems. Our analysis removes
the restrictive Lipschitzness assumptions of the loss functions, which can imply effective
generalization bounds in the case with unbounded gradients. Furthermore, our analysis
clearly shows how the interpolation parameter « strengthens the stability, which shows a
clear benefit of the Lookahead mechanism.

2. Our stability bounds are optimistic, meaning that they depend on the empirical risk of the
iterates produced by the algorithm. As the optimizer minimizes the empirical risk during the
optimization process, our bounds become progressively tighter, offering a more refined and
practical characterization of stability compared to existing bounds that rely on worst-case
global constants.

3. By carefully combining our stability bounds with the convergence rates, we establish optimal
excess risk rates for SGD with Lookahead. We show that it achieves a rate of O(1/n) for
convex problems and a rate of O(1/(nu)) for p-strongly convex problems, where n is the
sample size. Furthermore, our analysis shows a linear speedup with respect to the batch size
b, meaning that the number of required iterations is decreased by a factor of b to achieve the
optimal excess risk bounds.

The paper is organized as follows. We review the related work in Section[2]and introduce the problem
formulation in Section[3] We present our main theoretical results in Section[5] The detailed proofs
are provided in Appendix [A] We conclude the paper in Section 6]

2 RELATED WORK

Stability and Generalization Analysis A central challenge in machine learning is ensuring that mod-
els generalize well from finite training data to unseen examples. Algorithmic stability is an effective
concept to study the generalization gap of learning algorithms, which can incorporate the special
property of learning algorithms to derive algorithm-dependent generalization bounds (Bousquet &
Elisseeffl 2002)). A most widely used stability measure is the uniform stability, which is frequently
used to analyze the generalization of regularization methods (Bousquet & Elisseett,[2002)) and stochas-
tic optimization methods (Hardt et al.| 2016)). This stability concept was relaxed to on-average stability
and on-average model stability to derive data-dependent generalization bounds (Shalev-Shwartz
et al.| 2010; |[Kuzborskij & Lampert, 2018};|Le1 & Ying| [2020; [Schliserman & Koren, [2022). Recently,
algorithm stability has found very successful applications in understanding the generalization be-
havior of complex models and training paradigms, including zeroth-order SGD (Nikolakakis et al.|
2022;|Chen et al., 2023)), differential privacy (Bassily et al., 20195 2020), asynchronous SGD (Deng
et al.} 2025)) and neural network training (Richards & Kuzborskijl 2021 [Wang et al., 2025aj [Taher1 &
Thrampoulidis| 2024} Deora et al.| 2024).

Lookahead Optimizer The Lookahead optimizer (Zhang et al., [2019) represents a significant
advancement in optimization techniques for deep learning by employing a dual-weight update mech-
anism that separates “fast weights” (updated via a base optimizer) and “slow weights” (updated
through exponential moving averaging). It reduces sensitivity to hyperparameters such as learning
rates and synchronization periods, making it particularly robust in complex training scenarios where
conventional optimizers struggle with oscillation or divergence (Nag}, 2020; Zuo et al., 2024). Looka-
head is widely adopted and extended across diverse domains including online learning (Chen et al.,
2022a), aircraft maintenance scheduling (Deng & Santos| [2022), reinforcement learning (Merlis,
2024; Winnicki et al., 2025 [Zhang et al.| 2025)), precision path tracking (Wang et al.| 2025b), and
healthcare prediction (Chen et al., 2022c; |Adeshina & Adedigba, |[2022). Various algorithmic exten-
sions for Lookahead have also been introduced, including Multilayer Lookahead (Pushkin & Barba,
2021)), Sharpness-Aware Lookahead (SALA) (Tan et al.| 2024), Multi-step Lookahead Bayesian
Optimization (Byun et al.} 2022), and Lookaround Optimizer (Zhang et al., | 2023).
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3  NOTATIONS AND PRELIMINARIES

Let D be a probability measure defined on a sample space Z = X x ), where X is an input space
and ) is an output space. Let S = {21, 22, . . ., z,, } be a sample drawn independently and identically
(i.i.d.) from D, based on which we aim to learn a model h : X +— R for prediction. We assume
the model is characterized by a parameter w € YW C R?, where W is a parameter space. The
performance of a model w on a single data point z is measured by a non-negative loss function
f(w; 2), from which we can define empirical risks Fs(w) and population risks '(w) to measure the
behavior of w on training and testing datasets, respectively

n

Zf(w; zi) and F(w):=E,.p[f(w;z2)],

i=1

Fs(w) = %

where E.[-] means the expectation w.r.t. z.

We often apply a randomized optimizer A to approximately minimize Fs to train a model. We use
A(S) to denote the model produced by applying A to .S, and are interested in its relative performance
w.r.t. the best model w* = argmin,y, F'(w), which is quantified by the excess risk defined by
E[F(A(S)) — F(w™*)]. A powerful method to study the excess risk is to decompose it into two
components (Bousquet & Bottoul 2008)):

E[F(A(S)) = F(w")] = E[F(A(S)) — F5(A(5))] + E[Fs(A(S)) — Fs(w")], (3.1

Generalization Error Optimization Error

where the expectation is taken over the randomness of the training set .S and any randomness within
the algorithm itself. Here we use the identity E[Fs(w*)] = F(w*). We refer to E[F(A(S)) —
Fs(A(S))] as the generalization gap, which shows the cost we suffer when we generalize the behavior
from training to testing. A small generalization gap indicates that the model does not overfit the
training data and its performance is likely to be representative of its true performance. We refer to
E[Fs(A(S)) — Fs(w™*)] as the optimization error, which measures the gap between the estimated
model and the true optimal model on empirical risk.

We introduce the following necessary definitions for our analysis. Let || - ||z denote the Euclidean
norm.

Definition 1. Letg: W — R, G, L > 0 and p > 0. We denote the gradient of g by Vg.

1. A function g(w) is p-strongly convex for some p > 0 if it satisfies:
g(w1) = g(w2) + (Vg(wz), w1 — wa) + gle —wall5, Vwi,wyEeW.

A function g(w) is convex if it is p-strongly convex with p = 0.
2. A function g(w) is G-Lipschitz continuous if the function value is bounded in its change:
lg(w1) — g(W2)| < Gllwi — walla, Vwi,wyeW.
3. A differentiable function g(w) is L-smooth if its gradient is Lipschitz continuous with the
constant L:

||Vg(W1) — Vg(Wg)”Q < L||W1 — WQHQ, VWl,WQ cW.

4 ALGORITHMIC STABILITY

To control the generalization gap, we analyze the stability of our learning algorithm. We say an
algorithm is on-average stable if its output model does not change significantly when a single data
point in the training set is modified. Let A be a learning algorithm that takes a dataset .S and outputs a
model A(S). We denote S ~ S’ if S and S’ differ by at most one data point. Specifically, we let S()
be a dataset identical to S except that the i-th data z; is replaced with a new point 2}, drawn from the
same distribution D. That is, S = {Z1y o s Zic1, 20y Zit 1y -+ s Zn )
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Definition 2 (Uniform Stability). An algorithm A has uniform stability e if
sup sup B|f(A(S);2) = FA(S);2)] < e

z€Z S~S

Definition 3 (On-Average Model Stability (Lei & Ying| [2020)). We say a randomized optimizer A is
£1 on-average model e-stable if

Essa| Z JA(S) = ASD)]ls| < e

We say A is 5 on-average model e—stable 1f
Ess,a { ZHA I [F }

The following lemma provides a connection between the generalization gap and on-average model
stability.

Lemma 1 ((Lei & Ying, [2020)). Let S, S’ and S be constructed as in Definition 2, and let v > 0.

(a) Suppose for any z, the function w — f(w; z) is convex. If A is £1 on-average model e-stable
and sup,, ||V f(A(S); 2)||2 < G for any S, then |Eg a[Fs(A(S)) — F(A(S9))]| < Ge.

(b) Suppose for any z, the function w — f(w;z) is nonnegative and L-smooth. If A is {5
on-average model e-stable, then the following inequality holds

s alF(A(S)~Ps(A(S))] < ZEsal Fs(AS)+75-2 3 Bs.o allAGSV)-A(S) ]

4.1 LOOKAHEAD OPTIMIZER

The Lookahead optimizer (Zhang et al.l[2019), detailed in Algorithm[I} employs a two-loop structure:
an inner loop to update fast weights, and an outer loop to update slow weights. In the inner loop, a
standard optimizer A (e.g. SGD or Adam) starts from the previous slow weight model w;_; and
updates fast weights vy, ; with appropriate inner step sizes 1, ; for & iterations. In the ¢-th iteration of
the outer loop, the fast weight model vy, ; is then used to update the slow weight model via a linear
interpolation

wi = (1 —a)wi1 + avy 4.1)
where a € (0, 1) is the outer step size.

Algorithm 1 Lookahead Optimizer

1: Inputs: Data set S, initial model wy, base optimizer .A, fast-weight step number k and learning
rates {{n,.,}*Zt}]_,, slow-weight step number 7" and learning rate a € (0, 1).

2: fort=1,2,...,Tdo

3 Vo= Wi

4. fort=1,2,...,kdo

5: Vrt = A<V771,ta777717t78)
6: end for

7. wi=(1—)wiy +aviy
8: end for

9: Qutputs: Slow model wp

We use minibatch SGD as the standard optimizer .4, which is widely used in deep learning. The inner
loop is then reformulated as in Algorlthml 2l At the 7’th iteration, SGD collects a minibatch B, ; by
randomly drawing | 3. ;| data points from S independently, where | - | denotes the cardinality. Then it
updates {v,}*_; by

777'—1,,
Vrt = Vr—1,t — B ! Z Vf(vr-1t2),

| T’t| z€EB- ¢

where 1), ; is a positive step size.
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Algorithm 2 Stochastic Gradient Descent (SGD)
1: Inputs: Data set S, learning rates {nm}lj;é, initial model v 4,
2: forr=1,2,...,kdo
3 Vit = Veoig — % Zzesm Vf(vr-1452)
4: end for
5: Outputs: Fast model vy, ;

5 GENERALIZATION ANALYSIS OF LOOKAHEAD ALGORITHM

In this section, we discuss the stability performance of Lookahead on convex and strongly convex
problems. While previous work has shown that Lookahead achieves lower excess risk error compared
to its vanilla inner optimizer when choosing .4 as SGD (Zhou et al.| [2021)), existing analysis of its
generalization and optimization error suffer from two key limitations. First, they hinge on a restrictive
Lipschitzness condition on the loss function. Second, they cannot imply optimistic rates to show the
benefit of low-noise condition to get fast rates. In the following sections, we will analyze the stability
bound of Lookahead via the /5 on-average model stability. This approach notably allows us to derive
generalization bounds for Lookahead without requiring the Lipschitzness condition (Lei et al., 2025).
Furthermore, by carefully selecting the algorithm’s hyperparameters, we establish optimal excess risk
bounds.

5.1 CONVEX CASE

We first investigate stability bounds of Lookahead under convex condition, where Eq. (5.1)) considers
the ¢; on-average stability and Eq. (3.2)) considers the ¢5 on-average stability. The proof will be given

in Appendix

Theorem 2 (Stability Bound of Lookahead: Convex Case). Suppose the map W f (w; 2) is convex,
nonnegative and L-smooth for all z € Z. Let {vs+} and {w;}, {V } and {Wf )} be produced
based on S and S@ respectively with 1, ; <1 7. We have

t+1 k—1
2 \/2LE |Fg (v
7Z]E ||Wt+1 Wt+1|| <O‘ZZ Nj,h [ S( jh)] (5.1)

n
=1 h=1j=1
and
1 ; 16a2L  16a2L( t—|— k) 22
ﬁZE[HWtH —Wt(421||§] < ( T )ZZH; WE[Fs (vin)].  (5.2)
i=1 h=1j=1

Remark 1 (Comparison with existing stability bounds for Lookahead). For L-smooth, G-Lipschitz
and convex problems, a similar ¢;-stability bound was derived in (Zhou et al., 2021) as shown below

1 n
ﬁ;E[Hwt“ Wt+1|| ] <

This bound grows linearly with kT, is independent of the mini-batch size b, and involves the global
Lipschitz constant G. Our analysis removes the global G-Lipschitz requirement and thus avoids the G
factor. A notable feature of our bound is its dependence on the empirical risk, E[Fs (v )], rather than
the global Lipschitz constant G in (Zhou et al.,[2021). Since the objective of the inner-loop optimizer
is precisely to minimize Fg, we expect this term to decrease as training progresses. Consequently,
our stability bounds become progressively tighter throughout the optimization process (Kuzborskij
& Lampert, |2018; Lei & Ying, [2020). Furthermore, the bound in Eq. provides clear intuition
about the role of Lookahead’s hyperparameters:

2anGEkT

n

* Batch Size (b): The term 1/nb shows that increasing the minibatch size improves stability.
As a comparison, the stability analysis in (Zhou et al.,|2021)) does not show the effect of the
batch size since their stability bound is independent of b.
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* Inner Loop Iteration Number (k): The bound increases with &, suggesting that running the
inner loop for too many steps can degrade stability, likely due to the fast weights overfitting
to the training set S.

* Outer Loop Step Size («): Stability is proportional to . A smaller v dampens the influence
of the potentially unstable fast weights, leading to a more stable trajectory for the slow
weights. This shows a clear advantage of the Lookahead mechanism in improving the
stability and generalization.

We get the generalization bound via plugging the stability bounds in Theorem [2] into Lemma [T}
Together with the optimization bound in Lemma [0} we have the following excess risk bound. The
proof is given in Appendix[A.2] We denote A < B if there exists a universal constant C' > 0 such
that A < C'B. We denote A > B if there exists a universal constant C' such that A > CB. We
denote A < Bif A < Band A 2 B.

Theorem 3 (Excess Risk Bound of Lookahead: Convex Case). Let the assumptions of Theorem
hold and R = Tk. Then for vg = %k 23:1 Zf;é v and v > 0, we have

B(F(wa)] - Fw) s 20, Ly T e njbe Llenf)

9 o 1 R «~  RLn 1
+ L(L +v)a*n <nb + n2> <RF(w )+ 5 + a??) . (5.3)
Since there are terms directly proportional to F'(w™*), the excess risk bound will be tighter when the
optimal risk F'(w*) is small, which is common in many machine learning problems where a model
can fit the data well. Excess risk bounds with this feature are called optimistic bounds (Srebro et al.|
2010). The terms involving F'(w™*) are directly related to gradient noise, as the variance of stochastic
gradients can often be bounded by the function’s value at the optimum.

Remark 2 (Comparison with Minibatch SGD). The excess risk bound for Lookahead in Theorem
E] shares a fundamental structure with the bound for Minibatch SGD as in (Lei et al., [2025)). Both
are optimistic bounds that explicitly depend on the optimal risk. This similarity is expected, as both
analyses aim to control generalization gap by plugging stability bounds into Lemma 3.1, then adding
optimization error terms. Although the structure is similar, the specific coefficients and dependencies
on parameters such as « and the structure of the variance term differ due to the unique dynamics of
the Lookahead optimizer compared to standard SGD.

We now develop an explicit excess risk bound for Lookahead by choosing step sizes and number of
iterations. The proof is given in Appendix[A.2]

Corollary 4. Let the assumptions of Theorem[3| hold.
1. If F(w*) > 1/n, we can take n = \/ﬁ, R < 3, v = nF(w*) > 1, and
b < /nF(w*)/(2L) to derive E[F(VR)] — F(w*) < %\ﬂw + %2

2. If F(w*) < 1/n, we can take n) =
L4 FP(wr).

Remark 3. Corollary[]distinguishes between two key regimes based on the magnitude of the optimal
risk F(w*) relative to the sample size n.

5. R<n, and vy = 1 to derive E[F(vg)] — F(w*) <

1. F(w*) > 1/n: Our analysis shows that the algorithm achieves an excess risk bound of
O(ﬁ) Crucially, the number of required iterations R is on the order of /b, demonstrating
a linear speedup (Cotter et al.| 201 1a)). This means that by increasing the minibatch size b,
one can use a proportionally larger learning rate 1 and achieve the same error bound with
fewer iterations. This acceleration is a direct benefit of variance reduction from larger batch
sizes.

2. F(w*) < 1/n: Now the required number of iterations R scales with n, irrespective of the
batch size b. In this case, the linear speedup vanishes. The optimal learning rate becomes
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constant, and increasing the batch size does not reduce the number of iterations needed to
reach the desired error threshold. This suggests a small stochastic gradient noise, which
means variance is no longer the main limitation of the learning process.

Remark 4 (Comparison with Existing Excess Risk Bounds with Lookahead). The work (Zhou
et al.,[2021)) gave the following excess risk bound for Lookahead under convexity and G-Lipschitz
continuity assumption

LGQ n anG2kT

E[F(vr)] - F(w®) < .

1
= 2ankT
By setting 7 < 1/4/n and choosing aTk = n, all three terms can be made to be of the order
O(1/y/n). This leads to an optimized excess risk bound of order G?//n, which is standard for
stochastic convex optimization under a Lipschitz assumption. However, it is not adaptive and can
be suboptimal in many practical scenarios. In the case of F(w*) > 1/n, our bound is of order

E[||wo — w*[|*] +

Livjéw*) As the optimal risk F'(w*) decreases, our bound becomes tighter. For problems where

L\/F(w*) < G?, our bound is substantially sharper than the generic O(G?//n) rate. In the case

of F(w*) < 1/n, our analysis reveals a much faster convergence rate of < % This is a linear
convergence rate with respect to the sample size n. Achieving an O(1/n) rate is a major acceleration
compared to the standard O(1/+/n) rate. It shows that Lookahead can effectively leverage low-
noise conditions to converge significantly faster, a behavior that the existing bound fails to capture.
Furthermore, our analysis shows a linear speedup on the batch size, while the discussions in (Zhou
et al.,2021) do not show the benefit of considering minibatch in both generalization and optimization.

5.2 STRONGLY CONVEX CASE

We now consider strongly convex problems. The following theorem provides stability bounds for
Lookahead. The proof is given in Appendix [A.3]

Theorem 5 (Stability Bound of Lookahead: Strongly Convex Case). Suppose the map w +— f(w; z)
is pi-strongly convex, nonnegative and L-smooth for all z € Z. Let {v,} and {w.}, {vﬁ}} and
{wgi)} be produced based on S and S respectively with 2,1—“2 <nrt < % We have

Lo 2077 o ”
EZE[”W“A Wt+1|| | < “ Z o) an A/ E[Fs (vj)] H (1_ /M?; 7t)

i=1 t'=1 J'=j+1
54
and
n t+1 k—1 k—1
1 ; 16an?,, 32(t+1)0¢2n"f
=Y Eflwen —wii 3] < 303 (—2 B Fs (vie)) T (1-
i=1 t'=1j=0 H J'=j+1
(5.5)

Eq. (5.4) provides an ¢;-on-average stability bound. A key feature of this bound is its dependence
on the empirical risk, /E[Fs(v;)]. This indicates that the stability of the Lookahead algorithm
improves as it finds iterates with smaller empirical risks. Eq. (3.3) provides an ¢5-on-average stability

2
bound. This bound explicitly shows the benefit of minibatching. The term % demonstrates that
increasing the batch size b directly improves the stability bound by reducing the variance introduced
by the stochastic gradients. This is a crucial property for large-scale learning, confirming that larger
batches contribute to a more stable training process for the Lookahead algorithm.
Theorem 6 (Excess Risk Bound of Lookahead: Strongly Convex Case). Let assumptions in Theorem
E]hold and let ) = %, k= % and T =< log(un), we have

B{F(wr)] - Fv') $ =+ (o7 + DE[Fs(ws) + (55 + 2)BlIwo —wslPl. 6.9

Remark 5 (Comparison with Existing Excess Risk Bound with Lookahead). Compared with the
existing Lookahead bound in the work (Zhou et al., |2021)), which yields a sum of terms of order

Hngr e

2

)
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O(1/(A%((t + 1)k)?*)) + O(G/(n))) and therefore requires tk to scale polynomially with n to
reach the O(1/n) regime, our Theorem 6 delivers a fast-rate excess risk of order 1/(nu) with
only T =< log(un) iterations. Moreover, our bound is adaptive: it tightens with the data through
(1/(nL) + 1)E[Fs(ws)] and through (1/n% 4+ L/n)E[|wo — ws||?], becoming much smaller under
interpolation, which is not captured by the existing result. Finally, the stepsize 7 scales with the
minibatch b, implying linear speedup in b, while prior analyses do not show such minibatch gains.

6 CONCLUSION

In this work, we investigate the stability and generalization properties of the Lookahead optimizer, a
widely used algorithm for large-scale machine learning problems. While many discussions focus on
its optimization benefits, we provide a rigorous analysis from the perspective of statistical learning
theory. We develop on-average stability bounds for both convex and strongly convex problems, and
we show how stability can be improved by small training errors, leading to optimistic bounds that
depend on the empirical risk rather than a restrictive, global Lipschitz constant.

Our stability analysis implies optimal excess population risk bounds for both settings. Specifically,
we demonstrate that Lookahead achieves the standard O(1/+/n) rate for convex problems and the
optimal O(1/(nu)) rate for strongly convex problems. A key finding is the adaptivity of Lookahead
in the convex case, which achieves its rate without prior knowledge of the optimal risk F'(w*), a
practical advantage over standard Minibatch SGD.

There are several limitations to our current work which open avenues for future research. A primary
limitation is that our analysis is confined to convex and strongly convex loss functions. Given the
prevalence of non-convex optimization in modern deep learning, extending our stability analysis to
the non-convex setting is a crucial next step. Furthermore, while we establish the optimal statistical
rate for the strongly convex case, our analysis does not demonstrate a linear speedup with respect to
the batch size, a property observed in Minibatch SGD. Investigating whether different hyperparameter
schedules could unlock such a speedup for Lookahead would be of significant interest. We plan to
address these limitations in our future research.
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A  PROOF OF RESULTS IN SECTION [3

A.1 PROOF OF THEOREM[2]

Our proof of Theorem [2]relies on the following two lemmas. Lemma [7]shows the self-bounding property for
nonnegative and smooth functions, meaning that the norm of gradients can be bounded by function values.
Lemma §]establishes the co-coercivity of smooth and convex functions, as well as the non-expansiveness of the
gradient operator w — w — 0V f(w; z).

Lemma 7 (Self-Bounding Property (Srebro et all 2010)). Assume for all z, the function w — f(w;z) is
nonnegative and L-smooth. Then

IVf(w;2) |3 <2Lf (w;2).

Lemma 8 ((Hardt et al., 2016)). Assume for all z € Z, the function w — f(w; z) is convex and L-smooth.
Then for n < 2/L we have

(W =0V f(w;z)) = (W =0V [ (W;2)) [l < |lw — wl|2.
Furthermore, if w — f(w; z) is u-strongly convex and n < 1/ L then
(W =0V f(w;2) = (W = 0Vf(w;2))[l2 < (1= np/2) [w — |2,
(W =nVf(w;2)) = (W =V f (wi2)) |3 < (1—np) W —w'[3.

We can now prove Theorem For simplicity, we define J-; = {im .., where z(f 2 ~ Unif([n]) is the

Tt YTt

j-th index sampled to compute a stochastic gradient for minibatch SGD, i.e., B+ = {Zi(l) yee e Z,(0) }.
Tt Tt

Proof. To begin with, define
ATY = {5 i) = m},

that is, A(TT;L) represents the number of indices equal to m in the batch of ¢-th outer loop iteration, and 7-th inner
loop iteration. Then we can reformulate the Lookahead update as

wit1 = (1 — o) We + v 41

n

=(1-a)w + a(kal,tJrl /s Hax) Z A;(Cﬂj)l’t+1vf(vk71,t+l;Zm)):

b
m=1
i i i Mk—1,t+1 = m i (A.D)
Wiﬁl =(1-a WE T+ O‘(Vl(cl1,t+1 Ty Z Al(c—>1,t+lvf(vl(cll,t+l; Zm)
mimz£i

A;(Ci) 1Me—1,t+1 i
_ %Vf(v,@lytﬂ;z;)),

10
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from which we know

[Wesr — w2 < (1= a)llwe — w2 + al[ Vi — v 2

< (1—a) [we = w2+ al|vi_1,e1 — Lt ;t“ Z A V (Vi 1415 2m)
mimz£i
Agl1,t+177k*1,t+1 v@ Mhe1t11 o (m) (%)
- fvf (Vi—1,e415 2i) — Vil1,t+1 +T Z Ak—l,t+1vf(vk—1,t+1§zm)
mimz£i
A](Ciil7t+17]kfl,t+1 ()
e
Define Qﬁ,(:)ltH = IVf (Ve-1,641;21) — Vf(v,c 1t+l’ 2i)||2. By assumption, f is L-smooth and

D mmati Al w1 <0h, from which we know v — 3> ot Al t1f (Vizm) is L-smooth. Since
by assumption ng—1,¢+1 < + by Lemmalwe have

[Wepr — wity 2

(4)
(4) ll2 + QAL k=141

< (1 -a)|we - ; IVF (Virernizi) = VI a2l

+O‘HV’“—LHJ - mﬂ_lTH_l Z A,i’f)lytHVf(vk_l,Hl;zm) - (Vl(c>1 t+1 Toslotl t+1 Z Ak 1 t+1vf(vl<cizl,t+l;zm))H2

mimz£i mim##i

(2) (2)
f ankfl,tJrlA _ ¢ _ i
< (1—a)lwe = w2 + S v = vl

(A2)

Note the above inequality actually shows a recurrent relationship on ||vg,t41 — v,(;)t sall2 and [[Ve—1641 —

(i) PRI
Vi_1,t41[2- By iteration on inner-loop, we have

k—1
i i (e} i i
Iwesr = wilillo < (1= a) [we = Wil + 5 D mjer A€+ allwe = w2
j=0

k—1

7 (&7 7
= [lwe — Wg )H2 + b Z t+1AJ,t+1€§ t+1°
j=0

where we have used that vo ;11 = w;. By iteration on outer-loop, we have

t+1 k—1
i a i i
Iwers = wilillo < 3 0D " minAf e (A3)
h=1 j=0

By definition of A;:t‘), it is a random variable following the binomial distribution B(b, %) it then follows that

b

,(1_

n

l) < Ly (A4)
n

m b
A =L var(a,) = 2o

Furthermore, by Lemma[7] we know

€ < IV IV 20l + IV F (Vs 202 < V2LF (Vi 22) + £ 2LF (v 2). (A5)

Since (z;,v;) and (x,y;) are symmetric, we know E [f (v, n;2:)] = E[f (vjn;2;)]. This, together with
Eq (AZ3), further implies that

E[e{)] < 2B[\/2Lf (vini2) . (A6)
By combining (A3) and (Ad), we have

t+1 k-1 t+1 k—1

E[|[werr — wity 2] < %ZZW,ME[A;?)@ 0= 3 ZZ%JJE [EJ; 1)]6%]
h=1 j=0 h=1j=0
t+1 k—1 2a t+1 k—1
_ ZZV;MIE [eh] <=2 sz,hE[ 2Lf(V],h,zZ)} (A7)
=15=0 n h=1 j3=0

11
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where we used (A.6) in the last inequality. By the concavity of  — /x, we have

n t+1 k-1

fZEuwM wilila] < 2255 ST AR [\aL (v )|

i=1 h=1 j=0

2min | 2L &
2 — E il Zi
n - > E[f(Vin; )]

-
+
[un
=

—1

IA
Q
g

=0 =
t+1 k—1
2n; 2LE |F. i
. 1i.h [ (vin)] (A8)
n
h=1 j=0
This established the stated ¢; -stability (3.1).
To study the £»-stability, we apply the following expectation-variance decomposition to Eq. (A3).
t+1 k—1 t+1 k—1
[weer = wiill < 50D mn(4 G“) 23T mael). (A.9)
h=1 j=0 h 15=0

Taking square on both sides, then applying expectation with respect to S and J ; for t € [T] and k € [k], we
have

E[me — w13

(e ) (o)

h=1 j=0
202 [ & POERAYZ A PO e e a0)
1 1 1
=] 25 (A5 1) (4 - )] S E[ (S i) |
h,h/=14,j'=0 h=1 j=0

(A.10)

where we have used (a + b)? < 2(a® + b%). Note that if (h, j) # (', '), then (we can assume h < b/, j < j'
without loss of generality)

o{(40-2) (42 - D)t ] ~mm o [(4 - ) (4 - )]
=E[(af) - E)JEJ,h, (42, - b}ﬁ“ ¢ ] =0, @

where we notice Aﬁl, L’ZY;L, and €§f)h, are independent of J;/ . It then follows that

k—1

0 2 202 t+1 k—1 , o N2/ )\ ? t+1
=l ~wili] < G B[S St (453 - 2) (6) ]+ SB[ (S Somaeii) ]
h=1j=0 h=1j=0
20{2 t+1 k—1 ) ; ; 2 20{2 t+1 k—1
= SB[ atavar (403) (€2) ]+ SB[ (X X i) ]
h=1j=0 h=1j=0
202 t+1 k-1 9 t+1 k—1
< 2B S nda(e) ] + 7E[(ZZ77J,AIIVJ‘ vinizi)lz) |,
h=1j=0 h=1j=0

where we used Var(A;f;l) = 2(1 - 1) < 2 in the second inequality and used the fact that

t+1 k-1 t+1 k—1 t+1 k-1

E[(S S mn€)] < 22[(S S mial v la) | + 28] (32 S miall w20l ) |
h=1 j=0 h=1j=0 h=1j=0
- [(szlm,hnw (viniz) ) ]

We also notice that
E[(€)%] < 2E[[IVf(vsn, 20)I13] +2E[||Vf( EEAH
SALE [f (viniz) +  (v§0i20)| = SLE S (vins 2] (A.12)

12
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It then follows that

1602 S22 t+1 k—1
E[l|weer — wity 3] < b M nELf (Vin; 20)] [(EZWMHV]” (Vin; 2i) |2 ) ]
h=1j=0 h=1j=0
(A.13)
By taking an average over all ¢ € [n], we have
RN ;
o D [Iwens = wils 3]
Ly
162 St e 41 k—1
< SO S S I AELS (i 2] + Z (S minlVf vins =) I2) ]
h=1j=0 i=1 P
1602 LLkt t—l—lka n t+1k—1
<=3 > i nE[Fs (vin)] + SIS T REIVS (vingzi) [13]
h=1j=0 i=1 h=1 j=0
160°L 16a2L t+1 AR
S( T )ZZ% WE[Fs (vin)], (A.14)
h=1j=0

where the second inequality holds by applying Cauchy-Schwarz inequality, and the third inequality follows from
self-bounding property. The proof is completed. O

A.2 PROOF OF THEOREM[3]

We first introduce the optimization error bound for Lookahead in the convex case.
Lemma 9 (Optimization Errors of Lookahead: Convex Case). Suppose the assumptions in Theorem|2|hold and

further assume that n < ¢ C +1)’ then the following inequality holds

bE [[[wo — ws|?] LnE[Fs(ws)]
~ 2ankT(b— Ln(b+1))  b—Lnb+1)’

E[Fs (Va) — Fs (w")] < (A.15)

where VR = 7 Zthl Zﬁ;é Vit

We need the following property for the L-smooth and convex functions for the proof.

Lemma 10 ((Woodworth et al., 2020)). For any L-smooth and convex F, and any x, and vy,
IVF () = VF (y) |” < L(VF () = VF (y) ,z —y),

and

IVF (z) = VF (y) |* <2L(F (2) = F (y) = (VF (y) .2 — ).

Proof of Lemmal9] Since Fs(wg) < Fs(w"), an upper bound for Fs(Vr) — Fs(ws) is also an upper bound

for Fs(Vr) — Fs(w™). For the proof below, we assume that the learning rate is constant, that is, n,: = 7.

We denote By,. = {z, ()5 Z,0) }and f(v;Bi:) = 3 2271 F(v; z.¢;)). We can hence reformulate the
Ykt - Ykt

minibatch SGD update as
Vegtt = Ve — V[ (Ve Bry).
We first notice that
E[IVf(vre; Bro)I’] =E[IVf(Vrt;Bri) — VEs (voo) [|’] + E[[VEs (vr1) 7]
= %E[HVf(vm; 21(712) = VEs (V) I’] + E[VFs (voo) ]

E(IVF (vriizo)IF] [V Fs (v2) 7]

_ o = FE[IVEs (ved) |I]
< w +E[|VFs (vro) |I?]
< w +2LE[Fs(vrs) — Fs(ws)], (A-16)

13
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where the last inequality follows from Lemma[T0] where we set y = ws. We then analyze the single step in the
inner-loop,

E[||vre — 0V f(Vre; Bre) — wsl?]
E [[vre —ws|® = 20(vrie — W,V (Vra; Brt)) + 07|V f (Ve Brt) |1
E

(Ve = wsl*] = 20E [(vrt — Ws, VFs (ve))] + 0°E [IV f (vr,0; Bro)|I°] -
(A.17)

E [[[vr1: — wsl?]

By convexity, we have (v ; —ws, VFs (vr:)) > Fs(vs:) — Fs (wg). Substituting this and the above
result, we get

2LE[Fs(v..
B Ve~ wl®] < B [Ivrs = wsll?] = 20 [P (ve) — s (ws)] + 7 (2Ll

2Ln* (b + 1))
b

+2LE[Fs(vr) — Fs(ws)])

2LT]2E [FS (Ws) ] .

=E [Hv.r,t — W5H2] — (277 - b

E [Fs (V-r,t) — Fys (WS)] +

It then follows that

Ln(b+1 2Ln*E[Fs (w
(1O DV (15 (1) — P (ws)] < B[V~ wll? — [V - wl2] 2L ELEs (ws)]

b
Recall the assumption of < L(b+1), we can divide by 2n(1 — W) and get
b : Ly [Fs (ws)]
E[Fs (vrt) — F <——————— —FE|||vrt — — v, — —_— 7=
[Fs (vr) = Ps (ws)] < 5 B (e = wsl® = vrane = wsll] + 57 52
We take an average of the above inequality from 7 = 0 to & — 1, and get
k— k—1
1 b 2 2 LnE[Fs(ws)]
— [F. rt) — F < E it — —|lv, _ S S
p g s (vrt) — Fs (ws)] < 2nk(b— Lu(b+ 1) ; [[vre = wsll® = [[vrsre — ws]] b—Lnb+1)
b : Ly [Fs (ws)]
2k (b= I+ 1)) [Ivo.: —ws|* = vk, — ws]|”] b= I+ 1)
(A.18)

By the slow updating rule of Lookahead, we know (1 — a)(wi—1 —w™) = (wy —w™) —a(vg,. — w") and get

(Iwer = ws||* = [[we — ws|*) .

1
Ivo.r = wsl* = [Ilvie = wsl* = [lwiz = ws||* = [|lvi, — ws|* < =

Substituting this into (A:T8), we have

k—1
1 b 2 2 L'I’]]E [FS (WS)}
- t) — < = _ _
? ;E [Fs (vrt) — Fs (wg)] < 2anh (b= Lo+ 1))IE [lwi1 —ws||” = lwe —ws|*] + b= Lo+ 1)
We take an average of the above inequality and get
T k-1 T
b 2 27, LnE[Fs(ws)]
E[Fs (vr:) — F. E 1= - - -_—
T;TZO s (Vrt) — Fs (ws)] < 2ankT (b= Ln(b + 1)) ; [lwi1 — ws||* = lwe — ws||*] + b L 1)
bE [[[wo — ws||?] N LnE[Fs(ws)]
~ 2ankT(b— Ln(b+1))  b—Ln(b+1)
bE [[wo —ws|?]  LuB[Fs(w")] (A19)
= 2ankT(b— Ln(b+1))  b—Lnb+1)" ’
We complete the proof by applying the Jensen’s inequality. O

Proof of Theorem[3] By Lemmal[I](part (b)) and (3.2), we have (note our stability bounds also apply to Vr due
to the convexity of norm)

9 9 T k-1
BIF(va) - Fo(va)] < ZBIFsa] + (1 +) (F + 2R ) SO o m s (v0].
h=1j=0

(A.20)
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By (AI9) we know that

T k-1

LnF(w") 1
E[Fs(v-¢)] S F . A21
o 2 S Bl (v S Fw) + ) (a21)

Let R = T'k. We combine the above inequalities and get

L(F(w”) + LnF(w")/b+1/(ank))
¥

E[F(Vr) - Fs(Vr)] £

+ L(L +~)a’n” (% + %) (RF(w*) + RLnF(w*)/b+1/(am)). (A22)

We plug (A22) and the optimization error bound (A:T3) back into (3-I) and get

LnF(w™*) n 1 n F(w*) + LnF(w*)/b+ 1/(a77R)+

EF(ER) - Fw) 5“5 4 :

L(L +y)a’y’ (% + f;) (RE(w") + RLnF(w")/b+1/(am)).

The proof is completed. O

ProofofCorollaryl We first consider the case F(w™) > % Fix any constant a@ € (O, 1], we choose

n= \/? R =< 2, and v = \/nF(w*) > 1. Note the assumption b < /nF(w*)/(2L) ensures that
n < 1/(2L). Then Eq. @ implies

E[F(VR) — F(W)] £ % F(:’/V%)E " (nF(w*))j +L+1

nzp%i(Lw*)(L + (nF(w")?)) (nF(w") + (L + 1)(nF(w"))

< LF(W*)I/Q +£2
~ Vn n’

[N
~—

Jr

We now consider the case F/(w*) < % We fix a € (0, 1] as a constant, and choose ) = ﬁ, Rx=xmn,andy = 1.
Then Eq. (3.3) implies

E[F(Vvg) — F(w")]| S F(w") + % + %(TLF(W*) +2L) <

SHE e

+ F(w").

The proof is completed. O

A.3 PROOF OF THEOREM[3]
Proof. Recalling from Eq. (AT the refined Lookahead updating rule, we have

Wit — wity 2
n

< (=) we = wi o+ @[ vicr e = EE ST A, VIV zn) = ViDL

mim#t

n

(1)
QAR g1 Mhe—1,41

Nk—1,t+1 n i -1, s i
+ T Y AL VI e, + ; IVF (Vkeransz) = VIV 2.

mim##i

Since f is smoothand >0 . Agcml 1 <b, therefore Vi gy i A,fﬂ’tﬂf(v; Zm) is L-smooth. It
follows from Lemmaland the assumption Nx—1,441 < + that

[Werr = widill2 < (1) lwe — w2+

(i) (1)
Oénkfl,tJrlAk_1,1+1¢k_1,t+1 +a (1 _ OMME—1,t4+1

b B )IIVk—l,t+1fv,§ill,t+1||2. (A.23)
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We take the expectation on both sides and get

i i 20mp—1,t41 v/ 2LE [f (Vi—1,041; 21)]
Ef[werr —wils o] < (1= @) EfJlwe —wi”l2] + Y ,

+a (1 - %) E[llvi-1,41 — vliizl,t+1“2}a

where we have used (A4) and (A:6). We do the iteration on inner-loop, and get

k—1

i i 204\/
E[llwess = wilyllo] < (1= @) E[llwe = w”|l2] Zm,m Tz T (1-

J'=j+1

+ B [[lwe —wi o] H (1 - Fet)

o k-1
<(1-5)E

2 ‘
i'=i+1
where we have used the following inequality due to the the assumption 7, +4+1 > 2 ,i‘:f

k—1
[lwe — wi”|l2] + % Zﬁj,tHvE [f (Vje415 20)] H (1 -
=0 j

K157 t+1

2

K157 41

2

E= ) ) p2log2y 1
1— j,t+1) < (_ j,t+1) <e ( pHelog= ) 1 A24
J_EIO ( 2 ) =P ;0 2 /= 2% 2 (A.24)

By iteration on outer-loop,

YNGY fas. o _lk—l k—1 e
B[ wiss = wililla] < =230 (0= 50 S m JE (vesz) [T (1= 25

t/=1 Jj=0 J'=j+1

(A.25)

Taking an average over 7 and using the concavity of = — \/x, we get

1 n ) 2% /72[1 t+1 a 1yt k—1 n k—1 [nr v
n ZE[”WtJrl - W§21H2] < 2 Z(l - §)t+ ! ZZ%,N\/E[ (Ve 2i)] H ( J )
i=1 =1 J=0 i=1 §'=j+1
2V 2L 1 A1t = % un;s ¢
R RIS ES TR L | (T
t'=1 j=0 j'=j+1
2 41 k1 s
_ V2 Z(l_§)t+1 t 0 /E[Fs (ij/ ( J t )
t/'=1 7=0 =j+1
This established the stated ¢; -stability bound (5.4).
We now prove Eq. (5.3). Recall Eq. (A.2), we do iteration on inner-loop in Eq. (A223) and get
[wirr = wis 2
o k= k—1 i k—1 i
i i i 41 i j t+1
<(-a)we - w2+ 5 Z e AN €0 T (1= F55) +allwe —wi?lo TT (1 - #2254 )
Jj=0 J'=j+1 Jj=0
ok k-1 i
i i’ t+1
< flwe _WE )”2"'32 t+1AJ z+1¢§ 2-0-1 H (1_ jT) :
J=0 J'=i+1
Then we iterate on outer-loop and get
o HELES k—1 .
i it
[Wegr —wi |2 < " S e A e T (1 - JT)
t/=1j=0 J'=j+1
t+1 k—1 k—1 t+1 k—1 k—1

=5 ome(al - ) T (1-52) + 23 Sonweld I (1- 25

t/=1j=0 jl=j+1 v 1j=0 =741
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By taking the square and the expectation on both sides, we get

E[nwtﬂ —wi113]

t+1 k—1 k—1 4 5 202 t4+1 k—1 k—1 un 5
© (@) it () it/
< 2e[( el - e T (- 2%)) 4 2 ](S e T (1-"5))]
t'=1j=0 jl=j+1 t/'=1j=0 j'=j+1
o? t+1 k—1 b k—1 1 5 202 t+1 k—1 k—1 1 9
_ (%) (%) 57t (1) 5t
=% 2o e[(a - ) @)t TT (- "5) ]+ e[ (2 Emeen T1 (1- %)) ]
t/'=1j=0 j'=j+1 t’'=1j=0 j'=j+1
o t+1 k—1 k—1 un 9 202 t+1 k—1 k—1 un 9
(1) 575t (%) 5t
<o ke[ T1 (-5 + SrE[(X Emees TT (1-5)) ]
t/=17=0 jl=j+1 t/=13=0 J'=j+1
(A.26)

where we used (ATT) and Ep, , [(A;’t, - %)2} < 2. For the second term, we apply the Cauchy-Schwarz
inequality,

t+1 k—1 k—1

) NN 2
(X X mee TI (1-55))
t'=175=0 §'=i+1
t+1 k—1 ) k—1 n; t+1 k—1 k—1 n
. X% i/t
< (XX me@)’ IT (-529)) (X X TT (1-554))
t'=17=0 i'=j+1 t/=1j=0 §r=j+1
t+1 t+1 k— k—1 [N o
(ZZ% v(e) T1 (1* — )) (A27)
t/=1j=0 =541

where the following result is used in the last inequality

k—1 k—1

M1yt 2 M5, IR
Zw I (") =23 (- (- %)) TT (=)
= [ Lo
=j+1 j=0 Jj'=j+1
g kol k-t un k—1 un
== - Ay T (1= )
4 ( 4 ( 2 H 2
J=0 j'=j+1 J'=3j
k—1
:2(1— (1—’“7#)) <2 (A.28)
K 0 2 s
=
Combining the above discussions together, we further get
t+1 k—1 2 k—1
20° 77 t/ 4(t+ 1) UiR% (4) ung e
Eflwein —wily |3 Z Z ( j n2p : )E[(Q:J )] H (1 B JT) ’
=1 j=0 §=j+1
Recalling result in (A.12), E[(Gélz,)z] < 8LE[f (vjn; 2i)], we further derive
t+1 k-1 2 k—1
5 16a77 / 2(t+1)a nj,¢/ M5
E[jtwes = wii 3] < D03 (— S EBOEf ()] [T (-5,
t/'=1j=0 H §'=j+1
Taking an average over ¢ € [n], we get the stated bound
n t+1 k—1 2 k—1
1 i 16an / 32(t—|—1)a N/ UG
=S E[wen — w3 < 303 (2 B E Fs (vie)) [T (1- 251,
i=1 t/=1j=0 H J'=j+1
The proof is completed. O

A.4 PROOF OF THEOREMI6]

We first state and prove the optimization error bound.

17
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Lemma 11 (Optimization Error of Lookahead: Strongly Convex Case). Suppose the assumptions in Theorem
hold, by setting the learning rate n = %, the optimization error of the output wr of Lookahead satisfies

L

E[Fs(wr) = Fs(w)] < S e “ieMT R o — w|]
T—1 k—1
Lo 7§o¢k,unt ,unk 277 L
+t D et > e 5 ElFs(ws)]. (A.29)
t=0 k=0
Furthermore, by choosing b < n, k = and T = log(un), we have
E[Fs(wr) — Fs(w")] < EE[HWO — ws||’] + E[Fs(ws)]. (A.30)

Proof. Since Fs(wg) < Fs(w™), an upper bound for F's (w1 )—Fs(wg) is also an upper bound for F's (wr)—
Fs(w™). Since the function F's(w) is p-strongly convex and w is the optimum of F's(w), we have

Fs(Vr14) 2 Fs(ws) + (VFs(ws), ws = Vro1) + 5 lws = vo1ill3

= Fs(ws) + 5 [lws —

Similarly, we have
Fs(ws) > Fs(vr—1,t) + (VFs(Vr_1,t), Ws — Vr_14) + g [ws —vr1.43 -

It then follows that

[Vrere = n VIVt Brore) = ws]|”]

[veere = ws || = 20(vross = ws, V(vro1Brose)) +0°|[VF(vrres Brore) ]

Bff]vre = ws|’]

[vere = wsll* + 20 (Fs(ws) = Fs(vei) = Gliws = veorall3) + 7 [V A1 Be1) ]

IN

E[

E[

E[|[vr-1e = ws|* = 2n(vr 10 = Ws, VFs(vr-1,0)) + 0° | VA(vr-1,; Br-1,0)|°]
E[

<E[

v = wsl* 4 2n( = 2 llws = veorall2 = 2 llws = veoral2) + 07 [V A©r 10 B ]

< (1= 2um)Ef[[ve—ve = ws"] +7°E HIVf(VT—mBT—u)HQ}
For the second term, we use the result of (A:16) and have
22LE[Fs(Vr-1,4)]

E[[|vre — ws|*] < (1 = 2umE[||vr-1, — ws|*] + 7 2L E[Fs(vro14) — Fs(ws)]
2LE|Fs(vr-1,t) — Fs(ws)| + 2LE[Fs(ws
< (1 2+ P LB v — w] 2 ) )] 4 LR ()
L*(b+1 2LE[Fs(w
< (1= 2m+ WQ%)]E[HVT—M —ws|[*] + sz,
where we have used Fis(w) — Fs(ws) < Z|jw — ws||3. For simplicity, we define C as
2
C— L*(b+ 1).
b
The recurrence relation simplifies as
2LE|[F
Bl — wsl?] < (1~ 2+ On?) Elvo1. — w7 + 2 ZEEEV 0y
We now choose
s pb

"ToC T ar2(b 1 1)
Substituting this value back into the multiplicative factor gives

poop 3u® 3

1*2“(20)”(20)2:1*6*@ o Tl e

With this choice, the one-step recurrence (A-31) becomes

3 2LE[F,
BV~ wsl ] < (1= Jum) Bllwros. = w4 g ZEELE )

18
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By applying the previous inequality recursively for the inner loop, we have
3 \* = 3 \" L2LE[Fs(ws
Bllvie —wsl < (1= Jum) Bllwes = wsl)+ 3 (1 Jn) o2 2EEECSIL
k'=0

We now substitute this result back to the outer-loop. Recall the slow weights recurrence w; = (1 — a)wy—1 +
AV t,

[we —ws|* = |(1 = @) (W1 = ws) + a(Vie — ws)|”
< (L =a)|wer —ws|* + afvi, — wsll*.
Taking the expectation gives
El|we — ws|] < (1 = @)E[[we1 — ws]|*] + aE[||vi.e — ws|’]
= ( 3 )’“ 2Ln?E[Fs(ws)]

3 k
< (1- E[Iwi—1 — ws|?] +a (1 - §un) Bllwes = well)+ o 3 (1= G d
3 \* = 3 \* 2Ly?E[Fs(ws)]
= |:1 —a+ta (1 — i,un) ] El||wi—1 — ws||”] —I—ozk?_o (1 - ilm) T
3 \* 2, = 3\ 2Ln?E[Fs(ws)]
= |:1 -« (1 — <1 - 5#77) >:| El||lwi—1 — ws||"] + akéo 1-— SH B

Let p be the contraction factor for the outer loop:

p—l—a<1—(1—§un)k>.

Since 0 < (1 — 24°/C) < 1and a > 0, we have 0 < p < 1. Unwinding this recurrence from t = 1 to T*:

t—1 k—1 k/ 2
’ 3 2Ln°E[F.
E[nwt—vvsnﬂSptE[||wO—wS|2}+a§ptMzo(l—ym) PEIESOl (a )

Finally, using the L-smoothness property, E[Fs(w;) — Fg(wg)] < %E[Hwt - ws||2], we arrive at the final
optimization error bound.

E[Fs(wr) — Fs(ws)] < % [1 —a <1 - (1 _ g,,m) )

+ % Til [1 —a <1 - (1 - glm>k>] ) ki:l <1 — gun> : —QLWQE[SS(WS)].

Ef|lwo — ws]|”

=0 k'=0
(A.33)
We use the inequalities 1 + = < e” forallreal z and 1 — ™" > == forall z > 0 to get the following.
3 T 3
[1,a(1,(1,§m7) )] { afl—( 1f§,u77) ]T}
<exp{ lfexp{ffkm]}) }
3kun
— T
{ Sk:;m + 2 }
Then the optimization error bound becomes
L
E[Fs(wr) — Fs(ws)] < = exp{ — Q%T}E [lwo — W5H2]
3kun 27] L
+—Zexp{—a3k’u +2 ZGXP{—*H k'} == E[Fs(ws)]. (A34)

We now choose the parameters to be k = i—i, T = log(n), and we fix a. Since b > 1, we have Ln =
% € [1/4,1/2). Then with the above k, we know
1

2L
kun > —un = —L > —.
- Lo B = M= 5,

19
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Hence
3kun 3
> . A.35
3kun+2 — 3+4a ( )
It then follows that .
-1
3kun 1 _
; exp { - o+ 270 = 1 e sa/@ram < 1
Also, since un < p/2L < 1,wecanuse 1 —e~* > z/2 forz € (0,1] and get
k—1 —3unk
Z e SHmk _ 1—e 23“" < 1 < 2
frr 1— e 3k 1—e#n un
Plugging these into (A-34) yields the bound for the second term
T-1 2
La 3kun La 2 2n°L
~a Pl ol 3 Y 2 R R [ (we) < EE 2 E[F.
. gexp{ e Zexp{ Sk Y EE (P (ws)] S 5 2R E (s (ws)]
L?n
—E[F:
b [Fs(ws)]
Since n = WEH)’ this simplifies to
o  3kun 1
— - — Sk’ F, < —E[F S E[F; .
> exp{ — g ot Z exp{—gunk'} 2B [Fs(ws)] £ g B 1Fs(ws) S E[Fs(ws)]
(A.36)
For the first term, together with (A-33), our choice of T" ensures
L 3kun 2 L 2
— —a———T1E — <—-E — . A.37
5 exp { T ——) JE [Ilwo — ws|[*] S —E [wo — ws]|’] (A.37)
Combining (A36) and (A37) gives the final result. O

We now state and prove the generalization bound.
Lemma 12 (Generalization Gap of Lookahead: Strongly Convex Case). Suppose the assumptions in Theorem[)]

hold. Let wr be the final output of Lookahead optimizer. By setting the learning rate n = %, we have

BLF(wr) = Fs(wr)] § o+ 25Bllwo = wsl’) + 2 -E[Fs (ws)l.

ProofofLemmaU_?l We now assume the constant step size 7+ = 1. Let wg = argming, ¢, Fs(w). We

denote By = {z, (1),...,21_(17)} and f(v;Brt) = %22:1 f(v;z,i)). We can hence reformulate the
k,t k,t

minibatch SGD update as

Vi1t = Vot — an(V-,-’t; B-,—yt). (A38)
By the strong convexity of f,

E(|vri1e — ws 3] = E[|Vrt — 0V f(Vrt; Brt) — ws|[3]
=E[|vr: — ws 3] — 20E[(vr1 — Ws, VFs(vr.0))] + n°E[|V f (vr1; Br1) 3]

< (1= e B[V = wsl3] = 20E[Fs(vre) — Fs(ws)] + 1 B[V f (Vr.e; Bro)|[3].
(A.39)

For the last term, we bound it using (A:16) and get

2Ln*(b+ 1)

2Ln°E[Fs (ws) |
2 —_

JE[Fs (vre) — Fs (ws)] + A

El[vrsre —wsl3] < (1= pn)E[|vre — wsll3 — (2n —

Forn = we have

b < b
2L2(b+1) = 2L(b+1)°

2Ln°E[Fs (ws) ] .

E[|[vrs1s = wsl3] < (1= pn)E[|vr.e — wsl|3] — nE[Fs (vre) = Fs(ws)] + b
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We multiply both sides by (1 — f)T “(1 = pn/2)"7 and get

T— _r T— —r
(1= 5)" "= /2 B = wsll3) < (1= 5)" 70— pn/2)" B[ — w3
- 2L(1 — £)"7H(1 = pun/2)  T’E[F
(1- %)T ‘(1 — pn/2)* TE[Fs(vr.) — Fs(ws)] + (=5 W?b/ )T E[Fs (ws) ] .
By taking a summation of the above inequality, we have
T QT k—1
—t -7
Do (1=5) Y el un/2)Y TE[Fs (vre) — Fs(ws)]
t=1 7=0
T T k k—1, 2
a\T— (1 —pn/2)" "n"E[Fs (ws)
<> (=) W=/ T E Wi — w8+ 20y (1-5) Y0 ; : }
t=1 t=1 =0
1 T a\T—t 2 a a\NT—t k (1*/”7/2)]%7772E[FS (WS)]
< 52(1—5) ]E[”Wtfl—WSHQ}‘FZLZ(l_ 5) Z b )

o
Il
-

t=1 T=0

(A.40)
where we have used Eq. (A:24). We first look at the first term of Eq. (A.40). By (A:32), we have

t—2 k—1 K’ 2
’ 3 2Ln°E[Fs(w
Bllwees = wslE] < pBllwo — wsl) +a 3 f k}/:0<1—2w7) 2 ElFsiws)]

FEl[wo — ws| + £ E[Fs(ws)]

where the last inequlity follows from the result of (A:30) and the fact that E[Fs(w¢) — Fs(ws)] < SE[||w: —
ws|’] £ LE[|lwo — wsl||?] + E[Fs(ws)]. Together with the summation, we have

~

—_

N | =
)

(1= 5)" Bllwes —wiB) S 5 30 (1= )7 (Bllwo — ws ! + FEIFs(ws)

<y (Bl — Wl + ZElFs(ws))
< ~E[llwo - ws|[*] + E[Fs(ws)] (A41)

For the second term of (A-40), by Eq. (A28) and n < 345,

- ot e (1= )k "n?E[Fs (w ko — N THE[Fg (w
QLZ(1_§) Z( un/2) ;7 [Fs ( S)]SOTMLZ( un/2) b77 [Fs (ws) ]

T7=0 T
E[Fs (ws) ]
al '
We fix the outer-loop learning rate @ and combine Eq. (A4T) and Eq. (A-42) to obtain

< (A.42)

z (-2 'S a1 = /2B (v ) — Fs(ws)] S CE[lwo — ws|*] + TE[Fs(ws)].

7=0
(A.43)
Recall from Eq. (5.4), we denote St:
T I .
—t k—(T+1
Sr=3 (1= 5)" 7 Yo mwJEIFs(vi)](1 = pn/2) =Y.
t'=1 7=0
We use the inequality /z < (1 + x)/2 for non-negative x. This gives:
1 X N
—t —(r
Sr< 3D (1= 5)T Y i (1 + E[Fs(vi)) (1 - pun/2) =740,
=1 3=0
‘We split this into two parts,
1 I o k—1 k-1
T—t kE—(17+1 T t kE—(1+1
Sr <5 [2(1—5) > w1 = um/2)* )} [Z(l—— S 0o ELFs (vy0))(1 — n/2)* )]
t'=1 Jj=0 t/'=1 =0
Part A Part B
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We bound each part:

Part A: This part is bounded using the result from Eq. (A228). The identity shows that for each outer step ¢’, the
inner sum over j is bounded by 2/u. Summing over T outer steps yields:

T
%Z -5 U3 (1 2 i (A.44)
/=1 ji=0
Part B: Notice that
T a k—1
(=5 D0 = pn/2)" VRS (v )
t=1 =0
T ar k—1 T T
—t —(7 t T
=Y (- 5) > (= pn/2) T TTVE[Fs(vey) - Fs(ws)]+ > (1— 5 Z’i (1 — un/2)*~ " TVE[Fs(ws)]
t=1 7=0 t=1 7=0
1 1
S ~E[lwo — ws||’] + 7 ElFs(ws)]. (A45)

Combining (A44) and (A43) we have:

i 1
fZMWr-Wﬂ o 2aEllwo = ws ]+ S E{Fs(ws)] (A.46)
nL
By Lemmal(l](a), (AZ46) implies
11 0 1
_ < -4 _ -
E[F(wr) — Fs(wr)] < m T —Elllwo — ws||"] + —E[Fs(ws)]. (A47)
The proof is completed. O
Proof of Theorem[f] Note that for o < 21“2?72‘_%%, we have

bu In2 2In2 ap  2In2
_ > = —/ =
2L2(b+1) — L uw 2L uk

77:

Which satisfy the required condition in theorem El We now combine the results of lemma @and lemma E
together and get

) 1 1 1 L )
E[F(wr) — F(w")] < o + (E + 1)E[Fs(ws)] + (ﬁ + E)]E[HWO —wsl|"]. (A.48)
for k = 2=, and T < log(un). This completes the proof. O
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