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ABSTRACT

The modified universality hypothesis proposed by Jones et al. (2022) suggests
that adversarially robust models trained for a given task are highly similar. We
revisit the hypothesis and test its generality. We find that predictive behavior
does not converge with increasing robustness and thus is not universal. Further,
with additional similarity measures, we uncover differences in the representations
that were invisible with the measures used in prior work. While robust models
tend to be more similar than standard models, robust models remain distinct
in important aspects. Moreover, the importance of similarity measures when
comparing representations is highlighted as the absolute level of similarity—and
thus the assessment of universality—is heavily dependent on the measure used.

1 INTRODUCTION

The universality hypothesis (Olah et al.,[2020) suggests that all trained neural networks for a given
task are highly similar. If this hypothesis held generally, interpretability research would be simplified,
as insights for a specific model could be more easily transferred to other models. While the hypothesis
is unlikely to hold in a strict sense (Li et al., [2015; |Breiman, [2001)), Jones et al.[(2022) proposed
and presented evidence fo a modified universality hypothesis (MUH): adversarial robustness may
function as a strong prior on neural networks such that adversarially robust models will learn similar
representations “regardless of exact training conditions (i.e., architecture, random initialization,
learning parameters)”. They showed empirically that robust CNNs trained on ImageNet (Deng et al.,
2009) are highly similar in the input features of the data that they use and in the representations they
produce, whereas standard models are not. Thus, training a single robust model is sufficient to mimic
the behavior of any other or in their words "if you’ve trained one, you’ve trained them all”.

However, their work has three key limitations which motivate us to revisit the link between robustness
and universality. First, the experiments were centered around representational similarity, while one
of the direct and arguably practically most relevant ways to study model similarity is to compare
their predictions. Second, a key part of the evidence was gathered with Centered Kernel Alignment
(CKA) (Kornblith et al., 2019)), a method to measure similarity of representations, which adopts a
specific perspective on neural network similarity and was recently shown to have multiple pitfalls
(Cui et al.} 20225 |IDuymovic et al., 2022} |[Davari et al.,[2022; Nguyen et al., [2022). Numerous other
similarity measures have been proposed (Klabunde et al., 2023} |Sucholutsky et al., 2023)), which
provide alternative views on neural network similarity. Third, experiments exclusively used ImageNet
as input data, which leaves the role of data uncertain, e.g., whether results transfer to other vision
datasets or out-of-distribution data.

In this work, we thus critically reassess the modified universality hypothesis that suggests that all
adversarially robust models for a given task are highly similar. We conduct an extensive empirical
study that involves multiple similarity measures, model architectures and datasets. In contrast to
previously published results, our study indicates that robust models cannot be considered universal.
Our main contributions are:

1. We show that predictions of robust models are not universal (see Figure[I). Their agreement
scores do not converge with increasing robustness and the variance of Jensen-Shannon
Divergence (JSD) scores increases with higher robustness levels (Section [3.1)).
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Figure 1: Predictive behavior remains distinct at high robustness contrary to the MUH. The
boxplots show distributions of agreement (A) and scaled Jensen-Shannon divergence (JSDSim) (B)
across all model pairs when given regular images. The MUH predicts that robust models converge to a
universal solution, which should be reflected in highly similar predictions with increasing robustness
e. However, predictions do not converge with increasing robustness, with agreement dropping and
JSD showing increasing variance. This points towards an issue with the MUH.

2. We observe that representations of robust models are highly similar according to CKA, but
not according to other measures like Procrustes or Jaccard similarity. These discrepancies
between similarity measures indicate that, on the one hand, adversarial training causes some
degree of convergence in the representation space. On the other hand, representations still
exhibit critical differences that persist through the final layer and affect model predictions

(Section32).

3. We evaluate similarity across different datasets as well as in- and out-of-distribution data. We
find that the data has little effect on model similarity. The previously observed phenomena
are robust (Section [3:3).

Code and data of our experiments are publicly available (see Appendix D).

2 BACKGROUND AND METHODS

Adversarial Robustness While neural networks achieve high performance in many tasks, they
are susceptible to —often imperceptible— modifications of inputs that lead to wrong predictions
(Szegedy et all 2014). These modifications § are usually computed via a constrained optimization
problem:

0 = argmgtxﬁ(f(m +9),y) st 0], <e, (1)

where L is the loss function, x,y the input and target, respectively, and e is the strength of the
adversarial attack, i.e., the maximal allowed modification of the input. By augmenting training data
with adversarial examples, the space of potentially good models is constrained and robust models
are produced, which are less susceptible to such attacks (Madry et al [2019). For these models,
perturbations need to be larger to induce misclassifications.

Comparing Predictive Behavior A simple test for universality is comparing predictions of models.
If models are universal, we should expect highly similar predictions. Hence, we compare the predicted
probability distributions and classifications using average Jensen-Shannon Divergence (JSD) and
the agreement rate, respectively. For JSD, we normalize the outputs of the last network layer with a
softmax, then compute:

1
JSD(L,L') = L(Li[| L) + 5 KL(L{| L), )

l\D\»—A

where L, L’ € RNV*C are the collections of the predicted class probabilities, i.e., the softmaxed
logits, for C' classes and N fixed inputs, and KL is the Kullback-Leibler Divergence. In the rest of
the paper, we report JSDSim, i.e., scaled and normalized JSD to the range of [0, 1], such that a score
of 1 indicates identical predicted distributions.

Z\H
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The agreement rate is the rate of instances that are predicted as the same class. This can be notated as
the argmax of the logits, with 1[-] as the indicator function:

N
Agreement(L, L") = Z 1larg max L;; = arg maxL ne 3)

i=1

Comparing Representations Another approach at testing universality is comparing the internal
representations, i.e., the activation of a layer for some input. Again, if models are universal, we
expect that their internal processes are highly similar, which should lead to similar representations.
To measure representational similarity, activations are collected for a set of inputs resulting in a
matrix R € RV*P_ where N is the number of inputs and D is the number of neurons in the layer. A
representational similarity measure typically takes two such matrices as input and produces a single
number that quantifies the similarity of these matrices. The matrices may come from different layers
or models, but are based on the same set of inputs such that the rows between the matrices correspond.
The similarity score respects certain transformations between representations that would keep them
equivalent, e.g., switching neuron order, which would result in a different order of the columns of the
compared matrices. For a detailed introduction, we refer to the survey by |[Klabunde et al.[(2023).

In this work, we use three similarity measures: linear CKA (Kornblith et al., [2019)), Orthogonal
Procrustes (Procrustes) (Ding et al., 2021} |Williams et al., [2021), and k-NN Jaccard Similarity
(Jaccard). Intuitively, these measures summarize the similarity of representations across multiple
different aspects, e.g., specific properties of their geometry. These measures have been empirically
shown to give meaningful similarity assessments (Klabunde et al., 2024)), but highlight different
discrepancies between representations. Thus, employing a set of similarity measures enables a more
multi-faceted comparison of representations. At the same time, the measures we use consider the
same representations equivalent, i.e., any representations that only differ in rotation, reflection, scale,
and translation. This means we should expect similar similarity scores when representations are close
to equivalent.

Formally, CKA computes a similarity score between 0 and 1 given two centered representations
R e RVXP R’ € RVNXD' je., with zero mean columns, as follows:

IR R|%

KA " =
CRARB) = B R RTR

“

where || - || p is the Frobenius norm. Based on the overall feature correlations, CKA measures global
representational similarity.

Procrustes is another measure with a global view on similarity and satisfies the criteria of a metric.
Procrustes finds the optimal orthogonal alignment between two representation spaces:

Procrustes(R. B') = min [RQ — R'|l» = (|RI} + | R} — 2[RTRI)'2,

where || - ||« is the nuclear norm, i.e., the sum of the singular values. As R, R’ need to have equal
dimension for Procrustes, we zero-pad the representation with lower dimension. In addition to
zero-centering the columns, we scale the representation matrix to unit norm. With this, we report
2=Procrustes 44 ProcrustesSim, which is scaled to [0, 1], where 1 indicates maximal similarity. Finally,
we use Jaccard for a local view on representation similarity. Jaccard is defined as the average
intersection over union of the nearest neighbors in the representation spaces:

Nk k R
Jaccard(R, R') = Z :/\/k Bﬁ/@-’“ER%’ (6)

where N¥(R) are the k nearest neighbors of the representation of input i in R. We use k& = 10 and
cosine similarity on the centered representations to find the nearest neighbors.

Detecting Differences in the Representation Mechanism with Image Inversion One problem
of similarity measures is that they do not pick up on differences in the usage of input features as
long as models produce similar representations or predictions (Jones et al.|[2022). This may lead
to overestimation of similarity between two neural networks. We thus aim to test the similarity of
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Figure 2: Example of seed, target, and inverted image. Shown for VGG16 (left) and DenseNet161
(right) trained in ImageNet1k. The top rows shows results for standard models (¢ = 0), the bottom
for robust models (¢ = 3). The inverted images produced by robust and standard models are quite
different. Inverted images of standard models are visually extremely similar to the seed image. For
robust models, inverted images contain elements clearly belonging to the target image. They show
how feature cooccurrence can be lessened, e.g., the background of the fish was not added to the image
as both models mainly rely on the fins and texture of the fish.

the combination of the input feature reliance and the processing into a representation. We call this
combination the representation mechanism.

Image inversion (Ilyas et al.) presents a way to create a model-specific variant of an input that
produces nearly the same representation as the original input, but only consistently contains the input

features that the model actually uses. Hence, enable the study of the similarity of
representation mechanisms. If one model has a different mechanism that relies on another set of input
features, it will not find those features in the inverted image of another model and thus will be unable
to produce a similar representation. Comparing the representations given inverted images gives us
information about the similarity of the mechanisms.

To create an inverted image & for a given target image x, a seed image s from a different class is
modified such that it produces a representation similar to the representation of the target image. More
precisely, let fZ(x) € RP be the representation of model f for the target image x in the penultimate
layer L, then the inverted image & is computed as the output of

LS (s) — fH ()2
min .
s 175 (@)l
The optimization is done with gradient descent, so the naive solution of s = z is not reached. Instead,
the most relevant input features for the model f are introduced to the seed image. As the seed image
is sampled randomly from all images with a different class than the target image, feature cooccurrence
in natural images, e.g., dog fur texture and dog ears, can be eliminated if only of those features is
relevant for f. See Figure[2]for an example.

@)

3 EXPERIMENTS
We will now lay out the general setup for the experiments to test the MUH.

Models We initially use Ly-robust models trained on ImageNet-1k (Deng et al.,[2009) and CIFAR-
10 (Krizhevsky, [2009). The full list of models is given in Appendix |A] While we train most of these
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Figure 3: Similarity of predictions on increases with robustness. The boxplots
show the agreement (A) and JSDSim (B) distribution across all model pairs when given

. Both agreement and JSDSim increase with increasing robustness on both ImageNetlk and
CIFAR-10. This means that robustness does lead to increased similarity in some aspects of the
models, but arguably not to universality as the absolute similarity remains relatively low.

models ourselves, we use the checkpoints released by Salman et al.| (2020) for ImageNet-1k. We
study models with robustness of € € {0,0.25,0.5,1.0,3.0} on ImageNet-1k, but stop at ¢ = 1 for
CIFAR-10 due to the lower resolution of images.

General Setup We compare models either using regular images or as input. For
convenience, figures have color schemes corresponding to the type of input. As inverted images
are model specific, each pair of models A, B is compared given inverted images of A and of B. All
comparisons are made within one level of robustness, i.e., A and B always were trained with the
same €. Comparisons are made with multiple similarity measures, as outlined in Section [2| For
representational similarity, we collect the model activations at the second to last, or penultimate,
layer.

3.1 PREDICTIONS OF ROBUST MODELS NOT UNIVERSAL

If adversarially robust models are universal in a strict sense, we would expect that their predictions
overlap to a very high degree. Figure shows that this is not the case. On regular images, the
agreement between predictions of highly robust models is much lower than the theoretical maximum
imposed by small accuracy differences (Fort et al., 2019) and comparable to the agreement between
standard models. Comparing the predicted distributions with Jensen-Shannon divergence (Figure[IB)
instead of just the final predictions leads to the same conclusion: the predictive behavior is not
universal.

However, using as input, which highlight differences in the representation mechanism,
reveals that robustness does have a profound impact on similarity of models. Figure 3] shows how
predictive behavior on these kind of inputs become more similar with increasing robustness. Jones
et al.|(2022) showed similar effects for similarity of the representations directly. Nevertheless, the
differences in predictions given regular data must have an origin. In the following section, we will
present a possible explanation.

3.2 DIFFERENCES IN REPRESENTATION MECHANISMS OF ROBUST MODELS

Closely connected to the final predictions are the representations at the penultimate layer of the neural
network as they are the input for the final classification layers. Should these representations be highly
similar, we intuitively expect that the classification layers will lead to similar predictions. Conversely,
if the representations are not similar, similar predictions might still be possible, but we expect them
to be less likely. Hence, inspecting the representations may lead to an explanation why predictions of
models are different.

Using inverted images as inputs lets us study similarity of the whole representation mechanism, i.e.,
the combination of input feature reliance and feature processing, as mentioned in Section [2] If this
mechanism is similar, predictions should be similar as well as the only degrees of freedom remain in
the final classifier layers. Jones et al.|(2022) found high similarity between the representations of
inverted images using CKA, a highly popular similarity measure. We now compare the representation
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Figure 4: Multiple perspectives on representation mechanism similarity reveal differences.
Distributions of representational similarity within each robustness level given as
input. Each group of boxes corresponds to one dataset, with robustness increasing from left to right.
Each panel shows the results for a different similarity measure. While CKA increases steadily with
increased robustness, the effect on ProcrustesSim is minor. Jaccard similarity increases slowly but
remains low on an absolute level even with high robustness. Its values indicate that there is no overlap
between the ten nearest neighbors on average as it is less than 0.05 in most cases. ProcrustesSim
reveals the existence of differences in global structure of the representations that CKA does not
recognize. Jaccard additionally highlights differences in local structure, which cannot be detected by
a global measure like linear CKA.

mechanism using two additional measures, namely ProcrustesSim and Jaccard similarity, to get a
more comprehensive view on the similarity of representation mechanisms.

Figure [] shows that robustness does not lead to highly similar representation mechanisms from
all perspectives. Instead, the additional ProcrustesSim and Jaccard similarity measures suggest
that the absolute level of similarity is relatively low and increases only little with higher levels of
robustness. In particular, ProcrustesSim barely changes on CIFAR-10 across all robustness levels.
On ImageNetlk, ProcrustesSim is higher, but still far from 1 and displays a U-like shape. We do not
have an explanation for the shape—the models are taken from |Salman et al.[|(2020) and were trained
identically across € levelﬂ In contrast, the CIFAR-10 models, which we trained ourselves, do not
display such a pattern. As the pattern does not have a major impact on our conclusions regarding
universality, we regard investigating the origin of the pattern as an interesting question for future
work. Jaccard similarity shows that on average there is no overlap between the ten nearest neighbors
in representation space. Appendix [B|presents results with other neighborhood sizes; overlap remains
small.

Overall, our results suggest that adversarial training causes robust representations to converge to
some extent. However, the representations still maintain differences which some similarity measures
fail to detect. This demonstrates a pitfall when analyzing model similarity by relying only on a single
measure as well as the importance of a multifaceted analysis.

3.3 How ROBUST IS THE EFFECT OF ROBUSTNESS ON SIMILARITY ?

So far, we have shown on ImageNetlk and CIFAR-10 that robustness increases similarity of neural
networks in some aspects, but also that increasing robustness does not eliminate all differences
between models. However, the degree of model similarity might be impacted by the training data
and we have yet to examine the influence of data in detail. On the one hand, larger datasets might
lead to increased model similarity as more data could lead to less overfitting. On the other hand,
larger datasets tend to be more complex, i.e., contain more classes as well as a larger variety of
images, which could lead to a more complex loss landscape that makes it difficult to converge to
similar optima. Additionally, out-of-distribution (OOD) behavior might differ significantly from
in-distribution behavior and is particularly well suited to highlight differences between models (Ding
et al.l[2021).

We thus evaluate the influence of data on model similarity in two experiments. First, we compare
models on three variations of ImageNet, i.e., ImageNetlk, ImageNet100 and ImageNet50, to assess

"However, we found that checkpoint metadata like the epoch number was inconsistent with the performance
of some models hinting at a potential issue.
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Figure 5: Effect of dataset size on representation mechanism similarity across robustness
levels. We test the influence of the training data on model similarity by repeating the experiment of
Section [3.2]across models trained on ImageNet subsets with 50 and 100 randomly sampled classes.
For the comparisons, models use . Each group of boxes corresponds to the results
for one dataset, with robustness increasing from left to right. Observations are generally similar
across datasets, i.e., CKA and Jaccard increase, whereas ProcrustesSim remains roughly constant
over robustness levels. Differences are that CKA rises more slowly on ImageNetlk and that it does
not seem to saturate. Further, the absolute level on ProcrustesSim increases slightly with dataset
size. The U-shape on Imagenetlk is absent on the other datasets, but we hypothesize that the training
procedure of those models was not identical. Hence, the diversity of the data seems to have only a
small effect on similarity of robust models.
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Figure 6: Effect of OOD data on representation mechanism similarity across robustness levels.
We use generated with SAT-6 as inputs for ImageNetlk and CIFAR-10 models to
test the effect of OOD data on representational similarity. Each group of boxes shows the results for
one dataset, with robustness increasing from left to right. Increasing robustness has similar effects
across datasets, even though the scales of similarity scores differ. Overall, similarity on OOD data is
higher than on in-distribution images.

the effect of dataset size and complexity. ImageNet50 and ImageNet100 contain a sample of the
full ImageNet1k classes, but are otherwise identical. Second, we evaluate how out-of-distribution
data impacts model similarity using the SAT-6 dataset (Basu et al., 2015)) as input. SAT-6 consists of
28x28 pixel airborne images of California, thus image content and perspective are OOD for models
trained on ImageNet1k or CIFAR-10.

Effect of Dataset Size Figure [5] shows the similarity of the representation mechanisms given
inverted images as inputs. Across the ImageNet variations, the trends are similar. CKA increases
quickly with increasing robustness, ProcrustesSim stays roughly constant, and Jaccard Similarity
increases slowly. Notably, on the smaller datasets, CKA increases more quickly compared to Ima-
geNetlk. However, the range of similarity scores remains large initially. Additionally, ProcrustesSim
is lower on the small datasets. Hence, the amount of data seems to have some but little influence on
the similarity of robust models.

Effect of OOD Data  Figure[6|shows representation mechanism similarity on inverted images that
were generated using the SAT-6 dataset. Both ImageNetlk and CIFAR-10 models exhibit similar
trends on OOD data. CKA and Jaccard Similarity increase with robustness and are higher than the
scores on inverted images from the respective dataset reported in Figure[d In contrast, ProcrustesSim
scores are lower for both CIFAR-10 and ImageNet1k.
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All in all, these experiments show that while the MUH does not hold completely, robustness leads to
consistently increased similarity of models in some aspects. The phenomenon is robust across dataset
size and OOD data.

4 DISCUSSION

MUH Only Holds Partially With our experiments, we demonstrated that predictions of robust
models do not converge with increasing robustness and highlighted the existence of differences in the
representation mechanism. Hence, the MUH does not hold in full. However, consistent with |Jones
et al.[(2022)), we also observed that representation mechanisms consistently become more similar
with increased robustness, when measured by CKA and Jaccard—albeit slowly. While more work
is needed to understand the origin of the observations in detail, they point towards an interesting
direction of future work: why is it that some aspects of models seem to be strongly constrained by
robustness whereas others are not?

(Un-)Interpretability of Representational Similarity Measures As we found in Section Pro-
crustes highlights that there is some difference in the representations from inverted images. However,
in contrast to interpretable measures like agreement on predictions or Jaccard on representations, the
score of Procrustes is hard to interpret. While we know from the definition of the similarity measure
that representations must be unable to be aligned well, what exactly makes this alignment difficult is
unclear. The similarity scores point us towards model pairs that appear dissimilar and is thus useful
as a first step, but ultimately gives limited insights into the representation space. We conducted some
exploratory analysis, but finding the origin of a low representational similarity score is not straight
forward. At the same time, the observation is unlikely to be a defect of the similarity measure as
it performs well in benchmarking tests (Klabunde et al., 2024). This may highlight a fundamental
problem of representational similarity measures trying to break down similarity between objects with
many facets into a single number.

Impact on Interpretability Research On the one hand, the observed differences point out a attack
point for future work to understand both robust models and representational similarity measures
better. This could lead to more effective use of similarity measures as explorative tools. On the other
hand, our work is another point of evidence against universality in a strong sense, where all parts of a
model are highly similar, and towards a world where models consist of universal and non-universal
parts. Studying universal parts may be of general interest, whereas non-universal parts may be only
interesting for frontier models or specific models with high interest. Hence, identifying universal
components is an interesting direction of future work.

Increasing Robustness Beyond Our Experiments We observed that increasing robustness up
to € = 3 for ImageNet models lead to increased similarity in some aspects of the models, e.g., the
trend for CKA similarity appears to continue further. Thus, extremely robust models may be a way to
studying the whole model class at once—at least with respect to the aspects that make them similar
from the CKA perspective. However, increasing robustness even further would likely lead to further
accuracy degradation. Ultimately, such models may be not comparable to more widely used models,
which could make detailed study of these models not worth it despite the aforementioned benefit.

Value of Multi-Faceted Similarity Analysis Our work demonstrates that reliance on a single
measure when evaluating model similarity can lead to over- or underestimation of similarity. Com-
bining similarity measures and analyzing predictions as well as representations provides a more
comprehensive view of relations between models. Thus, the similarity assessment is less prone to rely
on shortcomings of individual measures. While this approach comes at a (small) cost—the popular
CKA is very fast compared to other measures—we argue that the trade-off is worth it.

Exchanging Models in Production When a model that delivers predictions to users should be
exchanged, e.g., by a more efficient variant, consistency of predictions may be desired (Milani Fard
et al.,|2016a). The MUH suggested an easy approach to increase prediction consistency by using
(slightly) adversarially robust models. As we find that predictions do not become more similar, other
methods to improve consistency are necessary.
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5 RELATED WORK

Universality The question to what extent models are universal has attracted significant interest in
prior work. On the one hand, model multiplicity, i.e., the existence of multiple models with almost
equal performance but different input-output behavior or representations, has been studied extensively
(Breiman, 2001} Black et al.| [2022} |Heljakka et al., 2023). Architecturally similar models trained or
updated on near-identical data can differ significantly (Klabunde and Lemmerich| 2023} [Somepalli
et al.,[2022} [Marx et al., [2020; Black and Fredrikson, 20215 [Liu et al., [2022; [McCoy et al., [2020; [L1
et al., 2015). Modifications to training or inference may be necessary to enforce consistent behavior
between different models (Milani Fard et al., 2016b; Summers and Dinneen, [2021)). In mechanistic
interpretability, a more fine-grained view on universality is taken, i.e., whether the input-output
behavior of a network is also implemented in the same way. It leads to further evidence against
universality (Zhong et al.||2023;|Chughtai et al., 2023)).

On the other hand, there is evidence for universality in certain scenarios. Some features consistently
appear in CNNs (Schubert et al., 2021). Further, attention heads with specific functionality can be
found across many transformer-based language models (Olsson et al., [2022; |Gould et al., [2023]).
Additionally, some of their internal processes for tasks such as indirect object identification (Merullo
et al., 2023) and retrieval (Variengien and Winsor, 2023) seem to be universal, at least across
certain model classes. On the smallest scale, certain neurons appear universal (Gurnee et al., [2024).
Further, parts of two different models (trained for the same task) can be connected using simple
transformations with little accuracy loss (Csiszarik et al., [2021} Bansal et al., |2021} [Lahner and
Moeller, [2023; Moschella et al., 2023) indicating representational compatibility (Brown et al., 2023)).

While the two above collections of evidence for and against universality might seem contradicting,
the scope of universality as well as what would be considered equivalent between networks differs
drastically. In fact, universality has multiple non-binary facets (Gurnee et al., [2024). Further,
universality may only occur for certain types of models (Jones et al., [2022).

Neural Network Similarity To measure similarity of neural networks, especially of their represen-
tations, numerous similarity measures have been proposed across machine learning and neuroscience
(Klabunde et al., 2023; Sucholutsky et al.,[2023). These measures represent different views on what
kind of behavior is considered equivalent. Due to its popularity, Centered Kernel Alignment (CKA)
(Kornblith et al., |2019) has attracted particular interest and was also used by Jones et al.[(2022) who
propose the hypothesis of universality across robust models. However, several caveats of CKA are
known: few data points may dominate the similarity score (Nguyen et al.,[2022), the choice of inputs
may determine similarity measurements in early layers (Cui et al., [2022), and scores are generally
brittle (Davari et al., [2022).

6 CONCLUSION

We revisit the modified universality hypothesis which states that adversarially trained models are
highly similar. We show that predictions of robust models are not universal as their agreement on
regular images does not converge with robustness. Additionally, the similarity of representation
mechanisms, i.e., the combination of input feature reliance and processing of the input into a
representation, is highly dependent on the way similarity is measured. While CKA shows that robust
representation mechanisms are highly similar, ProcrustesSim does not increase with robustness.
Our multi-faceted similarity analysis reveals that while adversarial training causes robust models to
converge to some degree, they still exhibit critical differences that some similarity measures fail to
detect, but affect predictive behavior. Our results show that the modified universality hypothesis in its
original form does not hold and highlights the importance of using a broader set of measures when
evaluating model similarity.

REPRODUCIBILITY STATEMENT

All code and data to reproduce our results are publicly available, see Appendix [DJfor details.
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Table 1: The number of parameters and accuracy (Acc) and adversarial accuracy (Adv. Acc.) for
models trained on ImageNetlk. The adversarial accuracy of models with € = 0 was evaluated with
€ = 0.25. For the models marked in gray, we used the checkpoints provided by [Salman et al.| (2020).

Archi Parameters e=0 e=0.25 e=0.5 e=1 e=3
rchitectures Acc.  Adv. Acc. | Acc.  Adv. Acc. | Acc.  Adv. Acc. | Acc.  Adv. Acc. | Acc.  Adv. Acc.

ResNet-18 11.7M 69.80 20.30 67.42 60.02 65.48 55.97 62.31 55.65 53.11 49.70

ResNet-50 25.6M 75.80 25.97 74.13 67.42 73.17 64.23 70.42 64.32 62.83 59.47

Wide ResNet-50-2 68.9M 76.98 29.37 76.22 69.82 75.11 66.70 73.42 67.36 66.90 63.45
Wide ResNet-50-4 223.4M 77.91 32.74 77.10 72.82 76.52 69.00 75.51 62.78 69.67 45.17
ResNeXt-50 32x4d 28.7M 77.32 26.00 - - 59.74 49.73 72.45 66.71 65.92 62.39

Densenet-161 25.0M 77.38 28.78 - - - - 60.12 13.33 66.12 62.72
VGG-16-BN 138.4M 73.67 10.86 68.49 61.57 68.32 59.29 66.33 60.14 56.79 53.51
TinyViT M 72.65 24.03 71.16 65.27 69.30 60.87 66.49 60.58 56.45 53.22

A ADDITIONAL MODEL INFORMATION

A.1 IMAGENETIK MODELS

Table|l|shows all model architectures with their accuracy and number of parameters. We use seven
Lo-robust CNNs: ResNet-18, ResNet-50 (He et al.,[2016), Wide ResNet-50-2, Wide ResNet-50-4
(Zagoruyko and Komodakis| [2017)), ResNeXt-50 32x4d (Xie et al., [2017)), Densenet-161 (Huang
et al., 2017), and VGG-16-BN (Simonyan and Zissermanl 2015) along with a TinyViT (Wu et al.,
2022) trained from scratch.

Training Details (Salman et al., 2020) trained their Lo-robust ImageNet models for 90 epochs
using an initial learning rate of 0.1 which is reduced every 30 epochs by a factor of 10. The training
uses stochastic gradient descent (SGD) with a batch size of 512, a momentum of 0.9 and weight
decay of 1e~*. For standard training, cross-entropy was used as a loss function. Robust training was
conducted using projected gradient descent (PGD) (Madry et alJ,2019) allowing Ly perturbation of
the respective € value. Adversarial examples were generate in three attack steps with a step size of %e.
The Tiny ViT models were trained with the same setup but with a lower batch size of 256. We used an

identical setting for training the remaining ImageNet1k models.

Inverted Images Inverted images were generated on the ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012) validation set using the Robustness library (Engstrom et al.l 2019).
First 10,000 target images were randomly sampled from the dataset. Then, for each sampled image, a
seed image was sampled at random. If the sampled seed image had the same class as the target, a
new image was sampled until seed and target classes were different. To generate an inverted image,
the seed image was modified in three steps and the best result taken.

A.2 IMAGENET100 MODELS
Table 2] shows accuracy scores for ImageNet100 models.

Training Details We trained the ImageNet100 models using the same training procedure as for
ImageNet.

Inverted Images The process for generating inverted images is identical to that on ImageNet. Seed
and target images were sampled from the ImageNet100 train set.

Table 2: The number of parameters and accuracy (Acc) and adversarial accuracy (Adv. Acc.) for
models trained on ImageNet100. The adversarial accuracy of models with e = 0 was evaluated with
e = 0.25.

. . P e=0 €e=0.25 e=0.5 e=1 e=3
Architectures AMELETS  Ace. Adv. Acc. | Acc. Adv. Acc. | Acc.  Adv. Acc. | Acc.  Adv. Acc. | Acc.  Adv. Acc.
ResNet-50 25.6M 79.00 45.92 79.28 73.60 77.16 68.44 74.30 60.86 69.88 47.54
‘Wide ResNet-50-2 68.9M 80.50 51.44 80.22 74.88 79.92 72.40 75.64 63.98 69.22 46.56
Densenet-161 25.0M 83.30 57.48 83.24 78.32 82.16 75.22 81.20 69.60 76.26 54.24
VGG-16-BN 138.4M 82.52 41.36 80.02 74.56 78.62 69.46 73.86 62.06 66.46 45.76
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Table 3: The number of parameters and accuracy (Acc) and adversarial accuracy (Adv. Acc.) for
models trained on ImageNet50. The adversarial accuracy of models with € = 0 was evaluated with
€ = 0.25.

Architectur Parameters €e=0 €=0.25 e=0.5 e=1 e=3
chitectures Acc.  Adv. Acc. | Acc.  Adv. Acc. | Acc.  Adv. Acc. | Acc.  Adv. Acc. | Acc.  Adv. Acc.
ResNet-50 25.6M 72.32 40.80 78.32 72.80 76.92 69.28 74.76 63.20 67.84 49.16
Wide ResNet-50-2 68.9M 76.76 48.44 77.36 72.04 76.04 68.24 75.52 64.84 70.52 50.64
Densenet-161 25.0M 81.28 58.24 81.56 76.00 80.20 72.40 78.20 68.36 73.36 54.12
VGG-16-BN 138.4M 73.80 40.96 80.80 75.88 76.32 68.84 71.48 59.16 65.60 45.60

A.3 IMAGENET50

Dataset Creation The dataset was created by sampling a random subset of 50 classes from
ImageNet100 and taking all images of the chosen classes.

Training Details The training procedure for ImageNet50 models was the same as for ImageNetlk
with a few deviations. As models converged faster on the smaller datasets, we reduced the epochs to
60 with the exception of VGG-16-BN for ¢ = 1 and ¢ = 0.5. As the VGG-16-BN models with ¢ = 3
and € = 0.25 initially did not converge, we reduced the learning rate to 0.05 and trained them with
batch size 256. Due to availability of hardware, other models were trained with batch size 128 for
regular training, except DenseNet-161 with batch size 64. For adversarial training, batch size was
reduced to 64 and 32, respectively.

Inverted Images The process for generating inverted images is identical to that on ImageNet. Seed
and target images were sampled from the ImageNet50 train set.

A.4 CIFAR-10 MODELS

Table ] shows the accuracy and number of parameters of each CIFAR-10 CNN.

Training Details The CIFAR-10 models were trained using almost the same configuration as the
Lo-robust ImageNetlk CNNs. The only modification for standard training was using a weight decay
of 5e 4.

Inverted Images Seed and target images were taken from the CIFAR-10 test set, which contains
10,000 images.

B JACCARD SIMILARITY WITH VARYING NEIGHBORHOOD SIZE

Figure [7|shows additional result for Jaccard similarity with neighborhood sizes k € {10, 100, 500}.

Table 4: The number of parameters, accuracy (Acc.) and adversarial accuracy (Adv. Acc.) for models
trained on CIFAR-10. The adversarial accuracy of models with ¢ = 0 was evaluated with € = 0.25.

Archi . Parameters e=0 e=0.25 e=10.5 e=1
rehitectures Acc.  Adv. Acc. | Acc.  Adv. Acc. | Acc.  Adv. Acc. | Acc.  Adv. Acc.

ResNet-18 11.2M 93.20 2.84 81.86 49.02 90.30 26.96 86.14 41.99

ResNet-50 23.5M 90.03 0.17 86.10 25.52 78.73 37.67 71.34 45.59

Wide ResNet-50-2 66.9M 83.31 1.59 77.81 23.28 71.99 33.13 60.05 38.53
Wide ResNet-50-4 221.4M 82.52 1.67 78.47 22.88 70.09 31.81 59.21 38.60
ResNeXt-50 32x4d 26.5M 81.45 2.06 77.53 22.52 68.17 32.12 57.48 36.89
Densenet-161 23.0M 94.22 1.00 91.91 29.14 88.27 43.99 83.60 48.18
VGG-16 14.7M 91.20 0.02 87.88 22.72 82.38 37.67 70.20 46.63
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Figure 7: Jaccard similarity with varying neighborhood size k. Neighborhood overlap increases
with larger k but trends are similar. As k increases, Jaccard Similarity becomes more similar to
measures with a global perspective on similarity like CKA.

C COMPUTE RESOURCES

All models were trained using A100s with 80GB memory or RTX3090s (for ImageNet50 models).
The training time varied depending on the dataset and model size. Training on the small CIFAR-10
dataset took around two hours at most using adversarial training. Training a robust TinyViT on
ImageNetlk took around four days. Execution time for calculating model similarity was likewise
dependent on the dataset as well as the measures. Reproducing the similarity results shown in this
paper would take around 24 hours.

D CODE AND DATA

Our code is available as supplementary material on OpenReview. We are in the process of uploading
our model checkpoints and data to Zenodo and expect to be finished by the time the reviewers check
our submission. Links to the Zenodo repositories are available in our code’s README file.
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