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ABSTRACT

While language models (LMs) have shown potential on a range of decision-
making tasks, their reliance on simple acting processes limits their broad deploy-
ment as autonomous agents. In this paper, we introduce Language Agent Tree
Search (LATS) — the first general framework that synergizes the capabilities of
LMs in reasoning, acting, and planning. By leveraging the in-context learning
ability of LMs, we integrate Monte Carlo tree search into LATS to enables LMs
as agents, along with LM-powered value functions and self-reflections for cleverer
exploration and thus enhanced decision-making. A key feature of our approach
is the incorporation of an environment for external feedback, which offers a more
deliberate and adaptive problem-solving mechanism that surpasses the constraints
of existing techniques. Our experimental evaluation across diverse domains, in-
cluding programming, interactive QA, web navigation, and math, validates the
effectiveness and generality of LATS in decision-making while maintaining com-
petitive or improved reasoning performance. Notably, LATS achieves state-of-
the-art pass@1 accuracy (94.4%) for programming on HumanEval with GPT-4,
and demonstrates gradient-free performance (average score of 75.9) comparable
to gradient-based fine-tuning for web navigation on WebShop with GPT-3.5.

1 INTRODUCTION

General autonomous agents capable of reasoning and decision-making in a variety of environments
(Wooldridge & Jennings, 1995) have been of longstanding interest in the field of artificial intelli-
gence. While this has traditionally been studied in reinforcement learning, the recent rise of lan-
guage models (LMs) (Brown et al., 2020; Touvron et al., 2023; OpenAl, 2023) with strong reason-
ing and general adaptability offers an alternative paradigm. Not only have LMs excelled on standard
NLP tasks such as summarization (Nallapati et al., 2016) and language inference (Bowman et al.,
2015), but they have been adapted to an increasingly diverse set of tasks that often require advanced
common-sense reasoning or quantitative skills (Cobbe et al., 2021; Saparov & He, 2023). LMs are
also capable of performing in complex environments that involve knowledge and reasoning, such as
web navigation (Deng et al., 2023), tool-use (Schick et al., 2023), and games (Fan et al., 2022).
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Approach Reasoning Acting Planning Self External
Reflection Memory

CoT (Wei et al., 2022) X X
ReAct (Yao et al., 2023b) X X X

X
X

ToT (Yao et al., 2023a) X

RAP (Hao et al., 2023) X X

Self-Refine (Madaan et al., 2023) X X X
Beam Search (Xie et al., 2023) X X X
Reflexion (Shinn et al., 2023) X

LATS (Ours)

Table 1: A summary of related work on reasoning, acting, and planning. LATS is the first work
incorporating designs from all three domains, allowing use in all corresponding tasks. We refer to
planning as the use of a search algorithm, self-reflection as the use of LM-generated feedback, and
external memory as storaging past text context for future updates of solution.

While enabling planning, such methods operate in isolation, lacking the incorporation of external
feedback that can improve reasoning.

To overcome these challenges, we propose Language Agent Tree Search (LATS) — a unified frame-
work for decision-making and reasoning with language models. As illustrated in Fig. 1, LATS
synergizes LM reasoning, acting, and planning strategies by expanding ReAct (Yao et al., 2023b)
into a search over a combinatorial space of possible reasoning and acting steps. This effort is non-
trivial — adapting search algorithms to language agents and shifting from non-interactive tasks to
interactive ones requires a substantial novel design on nodes, prompts, and search algorithms. In
particular, nodes and prompts must effectively store and retrieve external feedback, with the search
algorithm incorporating this information into useful heuristics for value assignment. Indeed, our
empirical evaluation, as demonstrated on HotPotQA (Yang et al., 2018) in Sec. 5.1, reveals that a
simple combination of existing methods is inadequate, even failing to surpass internal reasoning
performance, despite having access to ground truth from the environment.

Our key insight underpinning LATS is adapting Monte Carlo tree search (MCTS), inspired by its
success in model-based reinforcement learning (Silver et al., 2017) and the observation that many
LM tasks allow reverts to earlier steps, to language agents, repurposing pretrained LMs as agents
with LM-powered value functions and self-reflections for cleverer exploration. Leveraging the gen-
eral capabilities and in-context learning abilities of modern LMs, we use text as an interface between
each component, allowing LATS to adapt planning to environmental conditions without additional
training. To the best of our knowledge, LATS is the first framework that incorporates each of reason-
ing, acting, and planning to enhance LM performance. Notably, LATS doubles the performance of
ReAct (Yao et al., 2023b) on HotPotQA (Yang et al., 2018) and raises the average score by 22.1 on
WebShop (Yao et al., 2022) with GPT-3.5. When used with GPT-4, LATS achieves a 94.4 Pass@1
rate on HumanEval (Chen et al., 2021), setting the state of the art.

Our contributions are the following: 1) We introduce LATS, a framework based on Monte Carlo
tree search to construct the best trajectory from sampled actions, enabling more flexible and adaptive
problem-solving compared with reflexive prompting methods. 2) We propose a novel value func-
tion that guides the search process and incorporates successful heuristics such as self-refinement
and self-consistency. 3) By integrating external feedback and self-reflection, LATS enhances model
sensibility and enables agents to learn from experience, surpassing reasoning-based search meth-
ods. Through experiments across diverse domains, including programming, interactive QA, web
navigation, and math, we demonstrate the versatility of LATS in harnessing LMs for autonomous
reasoning and decision-making.

2 RELATED WORK

LMs for reasoning. For LMs, reasoning involves decomposing complex inputs into sequential
intermediate steps towards a final answer (Cobbe et al., 2021), demonstrated with chain-of-thought
(CoT) prompting (Wei et al., 2022) and its variants (Wei et al., 2022; Kojima et al., 2022; Wang
et al., 2023b). However, these methods, which create chains autoregressively in a single step, often
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suffer from error propagation as the number of steps increases (Guo et al., 2018; Chen et al., 2023b),
due to compound errors. Various advancements aim to mitigate this issue; some approaches, such
as self-consistency (Wang et al., 2023b), employ majority voting over sampled chains, while others
focus on multi-step decomposition, such as least-to-most prompting (Zhou et al., 2023). Recently,
CoT has been improved with search algorithms (Yao et al., 2023a; Hao et al., 2023; Besta et al.,
2024) that can sample trajectories more effectively. Tree-of-thought (ToT) prompting (Yao et al.,
2023a) uses DFS or BFS-based (depth/breadth-first) search guided by an LM-generated heuristic,
while reasoning via planning (RAP) (Hao et al., 2023) uses MCTS with rollouts simulated by LMs.
However, they rely solely on LM internal knowledge and cannot adapt to useful external feedback.

LMs for acting. The strong reasoning and common-sense abilities of LMs have also been adapted
for decision-making or acting tasks as a policy model in interactive environments. In robotics, LMs
have been employed as high-level controllers of control policies (Ahn et al., 2022; Huang et al.,
2022; Driess et al., 2023). Similar work (Baker et al., 2022; Wang et al., 2023a) has also adapted LM
agents to complex multimodal games such as Minecraft (Guss et al., 2019; Fan et al., 2022). LMs
are particularly useful in text-based environments (Liu et al., 2018; Shridhar et al., 2021; Liu et al.,
2023), where acting-based methods such as ReAct (Yao et al., 2023b) have seen success. Similar
to CoT, ReAct is limited by its simplicity and cannot effectively adapt to environment conditions.
Many extensions have been proposed to address this issue, including self-refine (Madaan et al., 2023)
and Reflexion (Shinn et al., 2023), which uses self-reflection to enhance reasoning and decision-
making, and AdaPlanner (Sun et al., 2023), which incorporates both positive and negative feedback.
However, these methods focus on refining a single plan or trajectory and do not consider alternative
choices at each step. In addition, recent work (Huang et al., 2023) has suggested LMs cannot
self-correct their internal reasoning, making it critical to use external feedback. Alternatively to
decision-making environments, the reasoning and practical abilities of LMs have been enhanced by
access to external tools, such as APIs, search engines, calculators, and other models (Schick et al.,
2023; Shen et al., 2023; Suris et al., 2023). We summarize prior work in Tab. 1.

Tree-based search. Tree-based search, where multiple branches of outcomes are explored during
search, is widely used in many planning algorithms (Swiechowski et al., 2023; LaValle et al., 2001)
and reinforcement learning (RL) (Hafner et al., 2019; Du et al., 2023; Wu et al., 2023) algorithms
for its good exploration-exploitation trade-off. Note that though tree-based search necessitates an
environment model that can expand from an arbitrary state (Vodopivec et al., 2017), often requiring
extra training in RL (Hafner et al., 2023), such a problem does not exist for most LM tasks. This
is because we can conveniently revert to any state by setting the input to be the context and corre-
sponding previous output by the LM for many tasks. Thus, we operate on the tree-based framework
and use MCTS (Swiechowski et al., 2023) to fully release the potential of LMs.

3 PRELIMINARIES

3.1 PROBLEM SETTING AND PROMPTING

We first define our problem and outline a few established methods that leverage language models for
reasoning or decision-making. In LM reasoning or decision making, we are given an input x in nat-
ural language and a pretrained language model pg(z) parameterized by 6; our goal is to generate a
final output y ~ py(y|z) that corresponds to the answer (reasoning) or completes the task (decision-
making). Both x and y are language sequences, which are comprised of a list of fokens (the basic el-
ements of natural language, often words), denoted as x = (z[1],. .., z[l;]) and y = (y[1],. .., y[ly])
where [, and [, are the length. The LM decodes text autoregressively, i.e., without other inputs, the
probability for an LM to generate a sequence y is given by pg(y|z) = Hﬁ; 1po(zfi]|zl...i—1]).
Usually, to improve reasoning, prompts are provided along with the input z, which are specific
instructions or few-shot input-output examples. We denote the generic process where an input
prompto(x) is transformed into an output y by LM: y ~ pg(y|prompt ;o (z)).

Chain-of-thought (CoT) prompting (Wei et al., 2022) caters to scenarios where direct mapping
from x to y is intricate, e.g., when x is from a mathematical query or challenging question. It
hinges on creating thoughts z1, ...,z that act as stepping stones between x and y; each thought
z; 1s a language sequence. To employ CoT prompting, thoughts are extracted sequentially as z; ~

pS°T(2i|z, 21...i-1), with the final output being y ~ p§°T (y|z, 21...1).
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Tree-of-thought (ToT) prompting (Yao et al., 2023a) extends CoT prompting by exploring multiple
reasoning paths over thoughts. It frames problems as a search over a tree, where each node s =
[x, z1.;] represents a partial solution state comprising the original input 2 and thought sequence z...;.
Thoughts 2; are generated by proposal or sampling with CoT z; ~ p§°T(2;|z, 21...;i—1). Deliberate
search algorithms like depth-first (DFS) or breadth-first (BFS) search are used to systematically
explore the tree, guided by heuristics based on LM evaluations V' (s) of each state.

ReAct (Yao et al., 2023b) extends LMs to tasks where the mapping from x to y is enhanced by or
requires interactions with an external environment, such as a game or API. This technique constructs

an action space A = AU Z that adds permissible actions a € A to the reasoning traces z € Z from
CoT. Observations o from the environment are used to improve both reasoning and acting. To
solve problems with ReAct, after each observation, actions are generated from py sequentially as
ai ~ peiet(a;|z, 01...i—1,a1...i—1), with the final output being y ~ pFeA<t(y | x,01..4,a1..4). In
this paper, consistent with other LM agent methods such as ReAct and Reflexion Shinn et al. (2023),
we focus on decision-making tasks where reverting between iterations is feasible.

While the previously described prompting techniques improve LM performance on reasoning tasks,
they falter on difficult tasks that involve multifaceted decision-making due to several shortcomings:
1) Flexibility: Base prompting methods (CoT or ReAct) autoregressively sample from the LM,
neglecting potential alternative continuations from specific states. 2) Sensibility: Reasoning-based
methods (CoT, RAP Hao et al. (2023), or ToT) rely solely on the internal representations of the
LM and cannot consider external observations. This dependency risks fact hallucination and error
propagation, while setting a performance ceiling. 3) Adaptability: Current planning strategies (RAP
or ToT) use simple search algorithms such as BFS or cannot leverage environmental feedback to
improve planning. Additionally, the agent is static and cannot reuse previous experience or learn
from trial and error. While RAP also adopts MCTS, it is constrained to tasks where the LM can
become a world model and accurately predict states. These shortcomings limit the ability of LMs to
be deployed as general problem-solving agents and form the motivation for LATS.

3.2 MONTE CARLO TREE SEARCH (MCTS)

Monte Carlo Tree Search (MCTS) is a heuristic search algorithm that is proved successful on many
decision-making environments, such as Atari (Ye et al., 2021) and Go (Silver et al., 2016). MCTS
builds a decision tree where every node in the tree is a state and edge is an action. MCTS runs
for k episodes; for each episode, it starts from the root (i.e., initial state) and iteratively conducts
two steps to expand the tree: 1) Expansion, where multiple children states s are explored from the
current parent state p by sampling n actions, and 2) Selection, where the children with the highest
UCT (Upper Confidence bounds applied to Trees) (Kocsis & Szepesvari, 2006) value is selected for
expansion by the next iteration. The UCT of a child state s is calculated as follows:

In N (p)
N(s) ’

UCT(s)=V(s)+w (1)
where N (s) is the number of visits to a node s, V'(s) is the value function (expected return) from the
subtree of s, w is the exploration weight, and p is the parent node of s. When the end of an episode
is reached, a backpropagation is carried out: the return r is used for updating every V' (s) along the

path with the formula V (s) = W, where Voia(s) is the old value function. Normally,
the major shortcoming of MCTS is that it requires an environment model to undo previous steps and
form a searching tree, which could be a strong assumption. However, this limitation does not exist
for many LM tasks, as we can conveniently reset to any step by simply copy-pasting historical text

input. Such a special property is the key motivation of our work.

4 UNIFYING REASONING, ACTING, AND PLANNING

4.1 LM AGENT

Depending on the base prompt design, LATS supports sequential reasoning or decision-making
tasks. At time step ¢, an agent receives an observation o; € O from the environment and takes
an action a; € A following some policy m(a¢|x, 01...4—1,a1...4—1). We initialize the agent with py
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1) Selection 2) Expansion 3) Evaluation 4) Simulation 5) Backpropagation 6) Reflection
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Figure 2: Overview of the six operations of LATS. A node is selected, expanded, evaluated, then
simulated until a terminal node is reached, and then the resulting value is backpropagated. If the

trajectory fails, a reflection is generated and used as additional context for future trials. These
operations are performed in succession, until the budget is reached or the task is successful.

to leverage the useful language representations of an LM as a base decision-maker. We follow the

ReAct instantiation, in which the action space A = AU Z consists of both the space of permis-
sible actions A and language space of reasoning traces Z. Actions directly affect the environment
and result in observation, while thoughts are used to formalize decisions by organizing information,
planning future actions, or injecting internal knowledge. The exact instantiation of the action space
depends on the particular environment — for decision-making tasks actions might consist of com-
mands on a website, while for reasoning tasks the action space might be limited to a few external
tools or APIs. In environments without feedback, such as reasoning tasks, we use CoT.

Instead of greedily decoding one trajectory or solution, we sample n actions from py using the
current state. This is based on the intuition that for complex decision-making tasks, there is likely
to be a range of potential trajectories or reasoning paths that are correct (Evans, 2010). Sampling
a diverse set of candidates at each step mitigates the stochastic nature of LM text generation and
enables greater exploration in both the decision-making and reasoning space. We wrap py within
our proposed search algorithm to deliberately construct the best trajectory from sampled actions.

4.2 LATS

The main component of LATS is a search algorithm that controls the problem-solving process with
planning. To find the most promising trajectory and systemically balance exploration with exploita-
tion, we adopt a variant of Monte Carlo Tree Search (MCTS) that frames decision-making as a tree
search, in which each node s = [z, a;...;, 01...;] represents a state comprising the original input x,
action sequence aq.;, and observation sequence o1 .;.

Our main technical contribution is adapting MCTS to language agents. LATS repurposes py as an
agent, state evaluator, and feedback generator, leveraging the useful language priors of modern LMs
to facilitate planning. While standard MCTS and RAP Hao et al. (2023) rely on internal dynamics
models to facilitate simulation, LATS is model-free and uses environment interaction. As depicted
in Fig. 2, LATS consists of a series of operations — selection, expansion, evaluation, simulation,
backpropagation, and reflection — performed in succession until the task is successfully completed or
a computational limit is reached. The psuedocode of LATS can be found in Sec. A in the Appendix.

Selection. In the first operation, the algorithm identifies a segment of the current tree most suitable
for subsequent expansion. Starting from the root node, denoted as the initial state s, a child node is
selected at each tree level until a leaf node is reached. To balance exploration and exploitation, we
use the UCT algorithm as shown in Eq. 1.

Expansion. After selecting a node, the second operation expands the tree by sampling n actions
from pyg, as described in the prior section. The environment receives each action and returns corre-
sponding feedback as an observation. This results in n new child nodes added to the tree. This tree
is stored in an external long-term memory structure.

Evaluation. The third operation assigns a scalar value to each new child node for selection and
backpropagation. This value effectively quantifies the agent’s progress in task completion, serving
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as a heuristic to steer the search algorithm towards the most promising regions of the tree. As
LATS does not involve training, we propose a novel value function for this setting based on two
components: (1) a self-generated LM score and (2) a self-consistency score.

Inspired by Yao et al. (2023a), we repurpose py into a value function by prompting it to reason
about a given state. To obtain a scalar value, we instruct py to end its reasoning trace with a score
indicating the correctness of the trajectory. Our key distinction from Yao et al. (2023a) is that
we obtain this value after environment feedback is obtained, improving value assignment. This
also enables scaling to more challenging environments, as it is difficult for LMs to improve their
responses without external feedback Huang et al. (2023). Additionally, to further improve value
assignment, we introduce an additional heuristic based on self-consistency Wang et al. (2023b), in
which actions sampled multiple times at the same state tend to be more accurate. This results in the
overall value function,

V(s) = A« LM(s) + (1 — A) = SC(s), (2)

where A is a hyperparameter. Notably, our method offers enhanced flexibility over programmed
heuristics (Campbell et al., 2002) and greater efficiency than learned heuristics (Silver et al., 2017).

Simulation. The fourth operation expands the currently selected node until a terminal state is
reached. At each depth level, we sample and evaluate nodes with the same operations, but prioritize
nodes of highest value. Reaching a terminal state provides objective feedback on the correctness of
a trajectory. If the task is completed successfully, then LATS terminates the search. If the solution is
partially successful or unsuccessful, then we perform two additional operations as described below.

Backpropagation. This operation updates the values of the tree based on the outcome of a trajectory.
For each node sg, s1,...,s; in the trajectory from root (initial state sg) of the searching tree to
leaf (terminal state s;), its value is updated to reflect the outcome of the simulation by N(s;) =

Now(si) + 1and V(s;) = %, where r is the return and Ny, Voiq are the old number
of visits and value function, respectively. These updated values are used in the UCT formula (Eq. 1)

to guide the selection of the next node.

Reflection. In addition to the environmental feedback, we also leverage self-reflection to further
refine the decision-making process (Shinn et al., 2023; Madaan et al., 2023). Upon encountering an
unsuccessful terminal node, py is prompted with the trajectory and final reward to provide a verbal
self-reflection that summarizes the errors in the reasoning or acting process and proposes superior
alternatives. We store both failed trajectories and corresponding reflections in the memory. In sub-
sequent iterations, these are integrated as additional context to the agent and value function, refining
both through in-context learning. This imparts a semantic gradient signal more useful than a scalar
value, enabling the agent to learn from trial and error without the cost of expensive optimization
processes such as reinforcement learning.

Conceptually, LATS has several notable advantages as a general framework for reasoning and
decision-making with LM agents. (1) Generality: LATS supports both reasoning and decision-
making tasks by defining a shared space of thoughts and actions. (2) Deliberation: Leveraging
MCTS and LM value function in LATS ensures a principled search that selects options with high
value while exploring promising alternatives. (3) Adaptability: Incorporating external feedback
through observations and self-reflection in LATS enables greater adaptation during problem-solving.
(4) Flexibility: LATS can accommodate different scenarios, environments, and resource stipulations
by modifying state design and tree dimensions. (5) Modularity: The base LM agent, reflection
generator, and value function can be independently altered and adapted to individual LM properties.

5 EXPERIMENTS

To demonstrate the general applicability of LATS, we evaluate our method on a variety of domains
that require reasoning and acting ability: programming (Chen et al., 2021; Austin et al., 2021),
HotPotQA (Yang et al., 2018), WebShop (Yao et al., 2022). Results on Game of 24 Yao et al.
(2023a) can also be found in the Appendix.
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Prompt Method | HotpotQA (EM) | Prompt Method | HotpotQA (EM)
1/0 0.32 Reflexion (Shinn et al., 2023) 0.51
CoT (Weietal., 2022) 0.34 ReAct (Yaoetal., 2023b) 0.32
CoT - SC (Wang et al., 2023b) 0.38 ReAct (best of k) 0.38
ToT (vao et al.,, 2023a) 0.55 LATS (CoT) 0.62
ToT (ReAct) 0.39 LATS (ReAct) 0.63
RAP (Hao et al., 2023) 0.60 LATS (n = 3) 0.58
RAP (n = 10) 0.60 LATS (n = 10) 0.65
RAP (ReAct) 0.54 LATS (CoT + ReAct) 0.71

Table 2: GPT-3.5 acting-based prompting results on HotpotQA. LATS achieves the highest exact
match (EM) for acting. We sample n = 5 nodes and use £ = 50 trajectories. We also evaluate
sampling ReAct k times and using both CoT and ReAct base prompts for LATS, which achieves
the best performance. Note LATS outperforms ToT and RAP with ReAct prompting, which are the
simple adaptations of search algorithms to decision-making.

5.1 HoOTPOTQA

For a task that can be approached with both reasoning-based and acting-based strategies, we consider
HotPotQA (Yang et al., 2018), a multi-hop question-answering benchmark that requires retrieval
over two or more Wikipedia passages. For the action space, in addition to LM thoughts, we follow
the setup from Yao et al. (2023b), which provides the agent with API calls to search and lookup
information. The output of these API calls and self-generated reflections form the observation space.
Note that consistent with previous work Yao et al. (2023b); Shinn et al. (2023), we use an oracle
setup for HotPotQA, in which the environment provides feedback about the answer’s correctness
upon receiving an answer. This enables a fair comparison between our method and baselines in
scenarios where the quality of feedback is high, allowing us to focus our evaluation on how well the
agent incorporates external feedback. We use a subset of 100 questions and three few-shot examples
for each method. For ToT, we use DFS as the base search algorithm. For all methods that involve
sampling, including LATS, we sample k£ = 50 trajectories. More details are in Appendix Sec. D.

We evaluate internal reasoning strategies by removing actions and observations from the context,
corresponding to CoT (Wei et al., 2022) and its variants, CoT-SC (Wang et al., 2023b), ToT (Yao
etal., 2023a), and RAP (Hao et al., 2023). These methods rely solely on the agent’s existing knowl-
edge to answer the question. We further consider acting-based methods ReAct, Reflexion, and
LATS, which augment the agent with the interactive API environment and primarily evaluate its
information retrieval abilities. We also design a simple integration of search algorithms with LM
agents, extending ToT and RAP with ReAct prompting to handle external observations. In addition,
while LATS is designed for scenarios where external feedback can enhance reasoning, we also im-
plement a reasoning-only version with CoT as the base prompt. Moreover, we combine internal and
external reasoning in LATS by first prompting with a CoT-based prompt, and then switching to a
ReAct-based prompt upon failure. This is closer to how humans might approach this task, by using
tools to lookup additional information only when the answer is not already known.

Results. We observe in Tab. 2 that both internal reasoning and external retrieval strategies perform
well on HotPotQA. Due to their large-scale training corpus, modern LMs already encode factual
knowledge and can often directly answer the question correctly. While CoT can slightly enhance
performance on questions requiring reasoning, larger gains are observed with search methods ToT
and RAP (Tab. 2, Row 4, 5), which can sample and explore more outputs. We observe similar
results for acting-based methods. LATS surpasses ReAct, even when sampling the same number of
trajectories, by expanding more nodes with principled search. This is demonstrated when modifying
n, the number of nodes expanded during each iteration. Increasing n can consistently improve
performance, although at greater computational and inference costs. LATS also outperforms RAP
on internal reasoning, but has higher performance on the decision-making setting of HotPotQA
than the reasoning setting. Contrary to LATS, the ReAct versions of ToT and RAP (Tab. 2, Row
4, 5) perform even worse than the reasoning-only setting of HotPotQA, which indicates that the
acting-based setting is more challenging and adaptation of search algorithms to decision-making
scenarios is non-trivial. Combining internal and external reasoning in LATS results in the highest
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Prompt Method Model | Pass@1 Prompt Method | Pass@1
CoT (Wei et al.,, 2022) GPT-3.5 46.9 CoT (Wei et al., 2022) 54.9
ReAct (vao et al., 2023b) GPT-3.5 56.9 ReAct (Wei et al., 2022) 67.0
Reflexion (Shinnetal,2023) GPT-3.5 68.1 Reflexion (Shinn et al., 2023) 70.0
ToT (Yao et al., 2023a) GPT-3.5 54.4 ToT (vaoetal., 2023a) 65.8
RAP Hao et al., 2023) GPT-3.5 63.1 RAP (Hao et al,, 2023) 71.4
LATS (Ours) GPT-3.5 86.9 LATS (Ours) 81.1
1/0 GPT-4 80.1 (b) MBPP

Reflexion GPT-4 91.0

LATS GPT-4 94.4

(a) HumanEval

Table 3: GPT-3.5 and GPT-4 Pass @1 accuracy on HumanEval (Chen et al., 2021) and MBPP (Austin
etal., 2021). Prompting with LATS achieves the highest performance. We sample 5 solutions during
expansion for 8 iterations.

performance, indicating the importance of external feedback in augmenting reasoning even in tasks
where the base LM can already perform.

5.2 PROGRAMMING

To demonstrate the importance of external observations for complex reasoning tasks, we evaluate
the baselines and LATS on programming with Humaneval (Chen et al., 2021) and MBPP (Austin
et al., 2021). Both datasets measure the correctness of synthesized programs in Python from natural
language docstrings. We use individual solutions as the action space and test suite and compiler
feedback as the external observation. We follow Chen et al. (2023a) and use an LM to generate
a synthetic test suite of syntactically valid “assert” statements for each question. For each step,
the solution is evaluated on this test suite, and the results, including successful and failed tests and
compiler output, are added to the context as an observation.

For this task, the reasoning and acting baselines share an action space, but acting methods are able
to incorporate observations as additional context. For LATS, since each action corresponds to a
complete solution, we skip the simulation step of LATS and directly use the percentage of passed
tests as the backpropagated reward. We use k = 8§ iterations, set the number of generated tests at 4,
and sample n = 5 solutions during expansion. After the search is completed, we select the solution
with the highest value and evaluate it on the real test suite for the pass@1 accuracy evaluation. More
details can be found in Appendix Sec. D.

Results. Tab. 3 show that both search and semantic feedback are crucial for better performance.
Despite not using observations, ToT and RAP are competitive with Reflexion. LATS has the highest
performance on both datasets. RAP uses a search algorithm similar to LATS, which reveals the
importance of external feedback for difficult reasoning tasks such as programming. With GPT-4,
using LATS sets the state of the art for HumanEval, validating that LATS can be used with more
advanced LMs for higher performance.

5.3 WEBSHOP

For a complex decision-making environment with practical applications, we consider WebShop (Yao
etal.,2022), an online shopping environment composed of a website with 1.18M real-world products
and 12k human instructions. Agents must navigate a website through a variety of commands to
purchase an item matching a user specification. We use the preconstructed action space of search
and click commands and browser feedback and reflections for the observation. The performance is
gauged using two metrics: an average score, reflecting the percentage of user-specified attributes met
by the selected product, and a success rate, indicating the frequency with which the chosen product
fulfills all given conditions. We compare against acting-based prompting methods and RL-based
approaches. We evaluate on 50 instructions, expand n = 5 children for LATS, and set £ = 30 for
LATS, ReAct best of k, and Reflexion. More details and prompts are in Appendix Sec. D and G.
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Method | Score SR
ReAct (Yao et al., 2023b) 53.8 28.0 Prompt Method | HotPotQA (EM)
ReAct (best of k) 59.1  32.0 ToT (ReAct) 0.39
Reflexion (Shinn et al., 2023) 642 350 RAP (ReAct) 054
LATS 759  38.0 LATS (No LM Heuristic) 037
IL 59.9 29.1 LATS (DFS) 0.42
IL+RL 624 28.7 LATS (No Reflection) 0.58
Fine-tuning (Furutaetal,2023) | 67.5  45.0 LATS 0.63
Expert | 82.1 596

Table 5: Ablation results on LATS and baseline
variants in HotPotQA; we use ReAct as the base
prompt and sample n = 5 children and £ = 50
maximum trajectories. LATS requires every com-
ponent and operation for optimal performance.

Table 4: Score and success rate (SR) on Web-
shop. Table is separated into prompting, RL-
based training, and human performance. For the
same number of iterations, LATS improves both
score and success rate, and surpasses RL-based
training. IL/IL+RL taken from Yao et al. (2022).

Results. We find in Tab. 4 that GPT-3.5 with ReAct is competitive to imitation learning, and can
exceed reinforcement learning techniques with stronger prompting strategies. Sampling & = 30
trajectories with ReAct and Reflexion results in a similar performance, suggesting the semantic
feedback is not as helpful in complex environments like WebShop. Similar to Shinn et al. (2023),
we find that generated reflections are often generic and do not provide useful feedback, resulting in
a tendency for the agent to become stuck in local minima. However, using LATS indeed results in a
noticeable improvement, indicating a more effective exploration for the same number of iterations.

5.4 ABLATION STUDY AND ADDITIONAL ANALYSIS

We further test LATS’ reasoning ability on Game of 24, and also conduct additional experiments on
HotPotQA to demonstrate the effect of each component of LATS (results shown in Tab. 5). More
ablations for token consumption on HotPotQA are in Tab. 7 in Appendix Sec. C.

Self-reflection. We use self-reflection to provide additional semantic signals for the agent in Tab. 5
(Row 5). We observe a 0.05 performance drop when self-reflection is removed from LATS, vali-
dating its usefulness. This is a smaller gain than the 0.19 gain that Reflexion has over ReAct as
shown in Tab. 2, suggesting overlap between the questions where an answer can be improved by
self-reflection and search. This variant outperforms RAP-ReAct, reflecting our improvements to
MCTS.

Search Algorithm. MCTS is a more principled search algorithm than variants like A* or DFS and
is the basis for observed performance gains. We observe the effects of using DFS, and incorporate
the LM-based heuristic used in ToT in which branches with low values are pruned. This removes
the selection and backpropagation operations, and we observe a 0.11 drop in performance in Tab. 5
(Row 4) when sampling the same number of nodes but outperforms ToT-ReAct. Despite also bene-
fiting from ground-truth feedback, LATS uses it better than ToT and RAP and can outperform these
methods. We also find in Tab. 5 (Row 3) that LM scoring, the main component of our value function,
is crucial for leveraging external feedback and strong performance.

6 CONCLUSION

This work introduces Language Agent Tree Search (LATS), the first framework to unify reasoning,
acting, and planning for enhanced LM problem-solving. LATS addresses key limitations of prior
prompting techniques by deliberately constructing trajectories with search algorithms, incorporat-
ing external feedback, and enabling agents to learn from experience. Our evaluation demonstrates
the ability of LATS to harness LM capabilities for various decision-making tasks while maintaining
its reasoning ability without additional training. The proposed synergies between search, interac-
tion, and reflection offer a versatile approach to autonomous decision-making, highlighting LM’s
potential as generalist agents. Limitations are discussed in Appendix Sec. B.
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7 APPENDIX

The appendix is organized as follows. First in Sec. A, we show the pseudocode of our proposed
algorithm, LATS; then in Sec. B, we provide further discussion of our method and its limitations,
future direction and broader impact; then in Sec. C we provide additional experimental results; then
in Sec. D, we specify the environment details in our experiments; finally, we list our prompts used
for the three environments in Sec. E (HotPotQA), Sec. F (Programming) and Sec. G (Webshop)
respectively.

A LATS PSEUDOCODE

Alg. 1 shows the pseudocode of our algorithm LATS. Nodes are stored explicitly in the memory.
Unless otherwise specified, in all experiments we use n = 5 and w = 1. We use A = 0.5 for
HotPotQA and Game of 24, and A = 0.8 for Programming and Webshop.

Algorithm 1 LATS(Sy, pe, pv , Dret, d, ky 1, w, a, b)

Require: Initial state s1, action generator pg, value function py, reflection generator prr, number
of generated actions n, depth limit L, number of roll-outs K, context ¢, and exploration weight
w, value function weight A
Initialize action space A, observation space O
Initialize the state-action value function py : .S x A — R and visit counter N : S — N to one
fork < 0,...,K —1do

fort < 0,...,L —1do
if s; not terminal then > Expansion & Simulation
fori < 1,...,ndo

Sample aii) ~po(a| st)

Get 0,"” from environment, sgil — (c,(fi), ogi), aii)), cgle — (oii)7 aii))
Evaluate Vt(i) ~ A% pv(sgi)) +(1—=X) =% SC(ay)) > Evaluation
V(st) < V1
Add s{" to children
end for
end if
if s; is terminal then > Reflection
Get r from environment
if r not success then
reflection < prer(ct)
¢ < reflection
end if
end if

Gy < argMaXgee(s,) [V(s,«,) +w > Selection

In N (s¢) :|
N(st41)

Get corresponding o; from memory, s¢4+1 < (ct, 0¢, at), ce41 < (0¢, ar)
N(St+1) < N(SH_l) +1
if a; is an output action then break
end for
T < the actual number of steps
fort < T —1,...,0do > Backpropagation

V(st)(N(st)—1)+7r
V(st) ( t)(NESz; )+

end for
end for

B LIMITATIONS

LATS has two main limitations:

Computational cost. Although LATS can improve reasoning and decision-making, this arrives at a
higher computational cost relative to simpler prompting methods like ReAct or Reflexion. However,
the following facts serve as mitigations to this issue:
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Prompt Method | HotpotQA (EM) ) Homantus! PassoL Acc
LATS (w=0.5) 0.55 N

LATS (w=2.0) 0.63 — |
LATS (d=4) 0.58 "
LATS (CoT) 0.62 "
LATS (No LM Heuristic) 0.37

LATS 0.63 i
Table 6: Ablation results on LATS and base- "
line variants in HotPotQA measured by Exact *
Match (EM). We test different depth d, explo- 0

ration factor w, and versions of LATS using
CoT and without the LM value function. We Fjgyre 3: Performance over successive itera-

sample n = 5 and k = 50 trajectories. tions on HumanEval with GPT-3.5.

* Asymtotically, our method has the same sample complexity as ToT Yao et al. (2023a) and
RAP Hao et al. (2023), but achieves better performance, expands fewer nodes and use less
tokens on average upon success. This suggests that our method is not only stronger in
problem-solving, but also has higher efficiency. A full analysis of the cost can be found in
Tab. 7 in Appendix C.

* The number of nodes n expanded at every step provides a natural trade-off between perfor-
mance and efficiency. In fact, setting n = 1 makes the method as efficient as ReAct Yao
et al. (2023b) with multiple trials or CoT-SC Wang et al. (2023b).

In general, we recommend using LATS for difficult tasks like programming or for situations where
performance is prioritized over efficiency in practice. We hope that continued advancements in
LLMs will reduce costs and increase the practicality of LATS.

Assumption of environment backup in decision-making. Since our method is based on Monte-
Carlo tree search and model-free, one limitation of our method on decision-making tasks is that it
requires the agent to be able to back up to earlier states in the environments. However, the backup
property is feasible in many real-world environments and applications (despite being not universally
applicable in all possible environments), including programming (HumanEval Chen et al. (2021)),
web search (Webshop Yao et al. (2022)), text-based manipulation tasks (Alfworld Shridhar et al.
(2021)), and LLM with tool use (ToolBench Qin et al. (2023)). Therefore, we believe that leveraging
the backup property is not a shortcoming, but rather a feature that has not been explicitly given
notice by the LLM decision-making community; it opens up new opportunities in the emerging
LLM decision-making community.

Additionally, the benchmarks we use in this paper are relatively simple and focused on decision-
making, compared to the complexity of real-world interactive environments. In addition, some
environments might not easily support rollbacks to previous states. However, the design of LATS is
flexible and can be adjusted to various resource constraints. Using planning-based prompting meth-
ods like LATS in environments like Minecraft (Fan et al., 2022) and more reasoning benchmarks
would be interesting avenues for future work.

C ABLATIONS

In this section, we ablate various designs of LATS. Experiments are conducted on HotPotQA with
a maximum of k = 50 trajectories and sampling size of n = 5 and HumanEval with a maximum
of k = 8 trajectories and sampling size of n = 5. The result for HotPotQA is shown in Tab. 5 and
HumanEval in Fig. 3.

Exploration weight. We find that there is lower performance on HotPotQA when the exploration
weight w in the selection formula is decreased to 0.5, suggesting that this reduces the effectiveness of
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the search. Increasing w to 2.0 does not lead to a performance improvement, but we tend to observe
faster convergence. The optimal setting depends on the particular environment and complexity of
the state space.

Depth. In our main experiments we use a maximum depth of d = 7 on HotPotQA for all methods,
following previous work (Yao et al., 2023b). We ablate the effect on LATS after reducing it to d = 4.
This results in only a slight drop in performance. We find that most questions can be answered within
four steps, and using a greater number of steps tends to force the agent into local minima and rarely
improves success.

LM value function. The LM value function scores states based on expected future reward. Without
this heuristic, the only signal to guide search would be from environment rewards for completed
trajectories, which are scarce and often binary. When we remove the evaluation operation, we
observe a dramatic 0.26 drop in performance.

Performance over time. To see the effects of increasing the number of trajectories sampled, we
change k to different values. We conduct this experiment on HumanEval, which has a more notice-
able difference due to sampling less trajectories. The results are shown in Fig. 3, in which LATS
scales better with more iterations than Reflexion.

Sample complexity and Token cost. One possible concern of LATS is that the tree-structured
search might consume much more tokens than existing methods. To further study the computational
cost of LATS compared to prior methods, we examine the sample complexity (i.e. asymptotic token
cost) of all methods considered in this paper, and count the average number of nodes expanded by
our method and other tree-structured methods (ToT and RAP) upon successful search on HotPotQA.
We present the results in Tab. 7; the result shows that our method has the same sample complexity
as other tree-based search methods, and has less average number of nodes expanded upon success,
as well as less token cost upon success. The token cost gap will be even larger when taking failed
trajectories into account, since our method has higher success rate and reaches computational budget
limit less often.

Method | Performance (1) | Sample complexity (}) | Avg. #nodes upon success (})
ReAct (Best k = 250) 0.42 O(k) N/A
CoT-SC (n = 1, k = 250) 0.40 O(k) N/A
LATS (n = 1,k = 50) 0.48 O(k) N/A
ToT (ReAct) 0.49 O(kn) 84.05
RAP (ReAct) 0.54 O(kn) 70.60
LATS (n = 5,k = 50) 0.61 O(kn) 66.65

Table 7: The performance, sample complexity of different methods and average number of nodes
expanded upon success by methods with tree-based search. n is the number of children nodes ex-
panded at every step and % is the number of trajectories. Our method has the same sample complexity
as other methods with tree-based search and expands less nodes upon success, which indicates lower
token cost.

Reasoning on Game of 24. To show how LATS can be applied to purely internal reasoning tasks,
we additionally evaluate on Game of 24 Yao et al. (2023a), a mathematical reasoning task where
the agent must construct 24 out of a set of numbers and basic operations. We use CoT as the base
prompt, and use the same operations as in other settings. We find in Tab. 8 that LATS outperforms
previous methods proposed specifically for reasoning. This is due to our proposed value function,
which incorporates self-consistency as an additional heuristic.

D ENVIRONMENT DETAILS

D.1 HoTPoTQA

HotPotQA (Yang et al., 2018) is a question-answering dataset that requires reasoning over multi-
ple supporting documents to answer questions. It contains 113k Wikipedia-based question-answer
pairs crafted by crowdworkers to be diverse, multi-hop, and explainable. Questions cover a range
of types like entities, locations, dates, and comparison of shared properties between two entities.
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Prompt Method \ Game of 24 (Success Rate)

CoT 0.08
Reflexion 0.12
ToT 0.20
RAP 0.40
LATS 0.44

Table 8: Results on Game of 24 Yao et al. (2023a) with GPT-3.5. We use CoT as the base prompt
and sample n = 5 children and £ = 30 maximum trajectories.

ReAct Question: Fearless is the debut single of a South Korean LATS
girl group that was formed by who?
z Thought: | need to search Fearless and find the South z Thought: | need to search Fearless and find the South
1 Korean girl group. Then, find who formed the group. 1 Korean girl group. Then, find who formed the group.
a1 { Action: Search[Fearless] 31 { Action: Search[Fearless] }
Observation: Fearless is the debut single recorded by Observation: Fearless is the debut single recorded by
o1 South Korean girl group Le Sserafim...It was released o South Korean girl group Le Sserafim...It was released ‘
as the EP’s lead single by Source Music... as the EP’s lead single by Source Music...
Thought: Fearless is the debut .
Thought: Fearless is the debut album of South Korean Thought: Fearless was
album of South Korean group | dby S Musi
2 group Le Sserafim, which is under Source Music. | z, oS T sod CIEREEE 2 SRE LATEE
2 need to search Le Sserafim (South Korean band) and
find who formed it. on-
Action: Search[Le Sserafim Action: Search[Le Sserafim]
a, formation]
a2 [ Action: Search[Le Sserafim formation] Observation: Could not find O e e y——
0, [Le Sserafim formation] a South Korean girl group...

02 [ Observation: Could not find [Le Sserafim formation]

v=0.1 v=0.9

Figure 4: Example trajectories on HotPotQA for ReAct (left) and LATS (right). LATS can sample
more actions and avoid failure from previous mistakes by evaluating states with an LM to guide the
search toward promising areas of the tree.

Crowdworkers also provide supporting facts from the documents that justify the answer. We use the
HotPotQA benchmark setting with all the Wikipedia paragraphs to test retrieval. We use a randomly
selected subset of 100 questions for our experiments and a maximum depth limit of 6. Fig. 4 illus-
trates how ReAct and LATS work on an example task of HotPotQA, and gives a qualitative example
on how LATS outperforms ReAct on the task. For value function hyperparameters, we use A = 0.5
for the LM score and self-consistency score.

Action Space. We adopt the Wikipedia web API proposed in Yao et al. (2023b), with three types of
actions to support interactive information retrieval:

(1) search[entity], which returns the first 5 sentences from the corresponding ent ity wiki
page if it exists, or else suggests top-5 similar entities from the Wikipedia search engine,

(2) lookup[string], which returns the next sentence in the page containing st ring,

(3) £inish[answer], which finishes the current task with answer.

These API calls and free-form thoughts form the action space for this environment.

D.2 PROGRAMMING

The HumanEval dataset (Chen et al., 2021) is a collection of 164 handwritten programming prob-
lems introduced to evaluate the functional correctness of models for synthesizing programs from

natural language descriptions. Each problem includes a function signature, docstring description,
reference implementation, and multiple unit tests, with an average of 7.7 tests per problem. The
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programming tasks assess comprehension of natural language, reasoning, algorithms, and basic
mathematics, at a difficulty level comparable to simple software interview questions. Pass rates
are evaluated with the pass@k metric, where k samples are generated per problem and a problem is
considered solved if any sample passes all tests. We use all 164 problems for our experiments and a
maximum depth limit of 8. For value function hyperparameters, we use A = 0.8 for the LM score
and self-consistency score.

The Mostly Basic Programming Problems (MBPP) Austin et al. (2021) benchmark contains 974
short Python functions designed to evaluate program synthesis techniques. The dataset was con-
structed by crowdsourcing from workers with basic Python knowledge. Each data point consists
of a natural language description of a programming task, a reference solution implementation, and
three test cases for functional correctness. The natural language prompts are typically short, one-
sentence descriptions. Solutions cover common programming constructs including mathematical
operations, list processing, string manipulation, and usage of the Python standard library. On aver-
age, solutions are 6.8 lines of code. The dataset is also supplemented with an additional set of 426
problems that were manually verified for unambiguous specifications, standard function signatures,
and accurate test cases. We use a randomly selected subset of 397 problems for our experiments.
For value function hyperparameters, we use A = 0.8 for the LM score and self-consistency score.

D.3 WEBSHOP

WebShop (Yao et al., 2022) is an interactive web-based environment designed to evaluate agents
on grounded language understanding and decision-making. It simulates an e-commerce shopping
task by providing agents with over 1 million real-world products scraped from Amazon, spanning
5 categories and 113 subcategories. These products contain rich linguistic information, with an
average text length of 262 words and a vocabulary size of 224k. In addition, there are over 800k
unique product options available for customization. The environment renders webpages in two
modes: HTML mode provides pixel-level observations with interactive elements, while simple
mode converts the raw HTML into a structured text observation more amenable for training
agents. The action space consists of query searches and button clicks, which transition between 4
page types: search, results, item and item-detail. Instructions are crowdsourced natural language
specifying product attributes and options, with a total of 12k collected. Automatic rewards are
computed by comparing the product purchased by the agent against the attributes and options
specified in the instruction, using both lexical matching and semantic similarity metrics.

Type Argument State — Next State

search [Query] Search — Results
choose Backtosearch x — Search
choose Prev/Next page Results — Results
choose [Product title] Results — Item

choose [Option] Item — Item
choose Desc/Overview Item — Item-Detail
choose Previous Item-Detail — Item
choose Buy Item — Episode End

Table 9: Action space of webshop.

There are two evaluation metrics used in WebShop: (1) Task Score: defined as (100 x avg. reward),
which captures the average reward obtained across episodes; and (2) Success Rate (SR) defined
as the portion of instructions where » = 1. The reward is calculated based on the number of at-
tributes satisfied by the selected item. We use 50 environments for our experiments and a maximum
depth limit of 15. For value function hyperparameters, we use A = 0.8 for the LM score and
self-consistency score.
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Prompt Method \ Game of 24 (Success Rate)

LATS (\ = 1) 0.40
LATS 0.44

Table 10: Ablations on A in Game of 24 Yao et al. (2023a) with GPT-3.5. A = 0.5 used in the main
paper outperforms A = 1, which indicates that the self-consistency score improves the performance
of LATS.

D.4 GAME OF 24

Game of 24 is a mathematical reasoning challenge where the goal is to use basic arithmetic oper-
ations to construct 24 out of 4 numbers. We follow the setup from (Yao et al., 2023a), where we
measure success if the agent produces a correct equation that equals 24 and uses each input num-
ber only once. We report success rate over 50 games. We use k = 30 iterations and a maximum
depth limit of 5. For value function hyperparameters, we use A = 0.5 for the LM score and the
self-consistency score. Tab. 10 shows the performance comparison between A = 0.5 and A = 1,
which validates our design of self-consistency term.

E HOTPOTQA PROMPTS

E.1 BASE ACTING PROMPT
Solve a question answering task with interleaving Thought, Action, Observation steps. Thought can
reason about the current situation, and Action can be three types:

(1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it
exists. If not, it will return some similar entities to search.

(2) Lookup[keyword], which returns the next sentence containing keyword in the current passage.
(3) Finish[answer], which returns the answer and finishes the task.

After each observation, provide the next Thought and next Action.

Here are some examples:

Question: Which magazine was started first Arthur’s Magazine or First for Women?

Thought 1: I need to search Arthur’s Magazine and First for Women, and find which was started
first.

Action 1: Search[Arthur’s Magazine]

Observation 1: Arthur’s Magazine was an American literary periodical published in Philadelphia in
the 19th century. Edited by Timothy Shay Arthur, it featured work by Edgar A. Poe, J.H. Ingraham,
Sarah Josepha Hale, Thomas G. Spear, and others.[1][2] In May 1846 it was merged into Godey’s
Lady’s Book.[3]

Thought 2: Arthur’s Magazine was started in 1844. I need to search First for Women next.
Action 2: Search[First for Women]

Observation 2: First for Women is a woman’s magazine published by Bauer Media Group in the
USA.[1] The magazine was started in 1989. It is based in Englewood Cliffs, New Jersey.[2] In 2011
the circulation of the magazine was 1,310,696 copies.[3]

Thought 3: First for Women was started in 1989. 1844 (Arthur’s Magazine) ; 1989 (First for
Women), so Arthur’s Magazine was started first.

Action 3: Finish[Arthur’s Magazine]

(examples)
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You have attempted to answer the following question before and failed. The following reflection(s)
give a plan to avoid failing to answer the question in the same way you did previously. Use them to
improve your strategy of correctly answering the given question.

(trajectories)

(input)

E.2 BASE REASONING PROMPT

Solve a question answering task by having a Thought, then Finish with your answer. Thought can
reason about the current situation. Finish[answer] returns the answer and finishes the task. You will
be given context that you should use to help you answer the question. Start your response with either
Action or an indexed Thought

Here are some examples:

Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny
extends into?

Let’s think step by step.

Thought 1: The eastern sector of Colorado orogeny extends into the High Plains.
Thought 2: High Plains rise in elevation from around 1,800 to 7,000 ft

Thought 3: The answer is 1,800 to 7,000 ft.

Action: Finish[1,800 to 7,000 ft]

(examples)

Previous trial: (trajectories)

(input)

E.3 VALUE FUNCTION PROMPT

Analyze the trajectories of a solution to a question answering task. The trajectories are labeled by
environmental observations about the situation, thoughts that can reason about the current situation
and actions that can be three types:

(1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it
exists. If not, it will return some similar entities to search.

(2) Lookup[keyword], which returns the next sentence containing keyword in the current passage.
(3) Finish[answer], which returns the answer and finishes the task.

Given a question and a trajectory, evaluate its correctness and provide your reasoning and analysis
in detail. Focus on the latest thought, action, and observation. Incomplete trajectories can be correct
if the thoughts and actions so far are correct, even if the answer is not found yet. Do not generate
additional thoughts or actions. Then at the last line conclude “Thus the correctness score is s”, where
s is an integer from 1 to 10.

Question: Which magazine was started first Arthur’s Magazine or First for Women?

Thought 1: I need to search Arthur’s Magazine and First for Women, and find which was started
first.

Action 1: Search[Arthur’s Magazine]

Observation 1: Arthur’s Magazine was an American literary periodical published in Philadelphia in
the 19th century. Edited by Timothy Shay Arthur, it featured work by Edgar A. Poe, J.H. Ingraham,
Sarah Josepha Hale, Thomas G. Spear, and others.[1][2] In May 1846 it was merged into Godey’s
Lady’s Book.[3]
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This trajectory is correct as it is reasonable to search for the first magazine provided in the question.
It is also better to have simple searches corresponding to a single entity, making this the best action.

Thus the correctness score is 10
(other examples)
(failed trajectories)

(context)

E.4 REFLECTION PROMPT

Analyze the trajectories of a solution to a question answering task. The trajectories are labeled by
environmental observations about the situation, thoughts that can reason about the current situation
and actions that can be three types:

(1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it
exists. If not, it will return some similar entities to search.

(2) Lookup[keyword], which returns the next sentence containing keyword in the current passage.
(3) Finish[answer], which returns the answer and finishes the task.

Given a question and a trajectory, evaluate its correctness and provide your reasoning and analysis
in detail. Focus on the latest thought, action, and observation. Incomplete trajectories can be correct
if the thoughts and actions so far are correct, even if the answer is not found yet. Do not generate
additional thoughts or actions. Then at the last line conclude ”Thus the correctness score is s”’, where
s is an integer from 1 to 10.

Question: Which magazine was started first Arthur’s Magazine or First for Women?

Thought 1: I need to search Arthur’s Magazine and First for Women, and find which was started
first.

Action 1: Search[Arthur’s Magazine]

Observation 1: Arthur’s Magazine was an American literary periodical published in Philadelphia in
the 19th century. Edited by Timothy Shay Arthur, it featured work by Edgar A. Poe, J.H. Ingraham,
Sarah Josepha Hale, Thomas G. Spear, and others.[1][2] In May 1846 it was merged into Godey’s
Lady’s Book.[3]

This trajectory is correct as it is reasonable to search for the first magazine provided in the question.
It is also better to have simple searches corresponding to a single entity, making this the best action.

Thus the correctness score is 10
(other examples)
(failed trajectories)

(context)

F PROGRAMMING PROMPTS

F.1 HUMANEVAL FUNCTION IMPLEMENTATION EXAMPLE

Sample function signature:

def minSubArraySum (nums ):
Given an array of integers nums,
find the minimum sum of any
non—empty sub-—array of nums.
Example
minSubArraySum ([2, 3, 4, 1, 2, 4]) == 1
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minSubArraySum([-1, -2, -3]) == -6

Sample function body implementation:

min_sum = float(’inf )
for i in range(len(nums)):
current_sum = 0
for j in range(i, len(nums)):
current_sum += nums]|j ]
if current_sum < min_sum:
min_sum = current_sum
return min_sum

F.2 BASE ACTING/REASONING PROMPT

You are an Al Python assistant. You will be given your previous implementation of a function, a
series of unit tests results, and your self-reflection on your previous implementation. Write your full
implementation (restate the function signature).

Example 1:
[previous impl]:

def add(a: int, b: int) —> int:

999393

Given integers a and b,
return the total value of a and b.

399393

return a — b

[unit test results from previous impl]:
Tested passed:

Tests failed:

assert add(1, 2) == 3 # output: -1
assert add(1, 2) == 4 # output: -1
[reflection on previous impl]:

The implementation failed the test cases where the input integers are 1 and 2. The issue arises
because the code does not add the two integers together, but instead subtracts the second integer
from the first. To fix this issue, we should change the operator from ‘-* to ‘+° in the return statement.
This will ensure that the function returns the correct output for the given input.

[improved impl]:

def add(a: int, b: int) —> int:

999999

Given integers a and b,
return the total value of a and b.

999999

return a + b

F.3 REFLECTION PROMPT
You are a Python programming assistant. You will be given a function implementation and a series

of unit test results. Your goal is to write a few sentences to explain why your implementation is
wrong as indicated by the tests. You will need this as guidance when you try again later. Only
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provide the few sentence description in your answer, not the implementation. You will be given a
few examples by the user.

Example 1:
[previous impl]:

def add(a: int, b: int) —> int:

999999

Given integers a and b,
return the total value of a and b.

999999

return a — b

[unit test results from previous impl]:
Tested passed:

Tests failed:

assert add(1, 2) == 3 # output: -1
assert add(1, 2) == 4 # output: -1
[reflection on previous impl]:

The implementation failed the test cases where the input integers are 1 and 2. The issue arises
because the code does not add the two integers together, but instead subtracts the second integer
from the first. To fix this issue, we should change the operator from ‘-‘ to ‘+° in the return statement.
This will ensure that the function returns the correct output for the given input.

F.4 TEST CASE GENERATION PROMPT

You are an Al coding assistant that can write unique, diverse, and intuitive unit tests for functions
given the signature and docstring.

(input)

G WEBSHOP PROMPTS

G.1 ACTING PROMPT

Webshop
Instruction:

1 would like a 3 ounce bottle of bright citrus deodorant for sensitive skin, and price lower than 50.00
dollars

[Search]

Action: search[3 ounce bright citrus deodorant sensitive skin]
Observation:

[Back to Search]

Page 1 (Total results: 50)

[Next ] [BO78GWRC1J]

Bright Citrus Deodorant by Earth Mama — Natural and Safe for Sensitive Skin, Pregnancy and
Breastfeeding, Contains Organic Calendula 3-Ounce

$10.99
[BO78GTKVXY]
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Ginger Fresh Deodorant by Earth Mama — Natural and Safe for Sensitive Skin, Pregnancy and
Breastfeeding, Contains Organic Calendula 3-Ounce

$10.99
[BOSKBVJ4XN]

Barrel and Oak - Aluminum-Free Deodorant, Deodorant for Men, Essential Oil-Based Scent, 24-
Hour Odor Protection, Cedar & Patchouli Blend, Gentle on Sensitive Skin (Mountain Sage, 2.7 oz,
2-Pack)

$15.95

Action: think[BO78GWRC1J and BO78GTKVXY are bright citrus deodorant less then 50 dollars. I
can check BO78GWRC1]J first.]

Observation: OK.

Action: click|[BO78GWRC11J]
Observation:

[Back to Search]

[Prev]

scent [assorted scents][bright citrus][calming lavender][ginger fresh][simply non-scents] size [travel
set (4-pack)][3 ounce (pack of 1)][3-ounce (2-pack)] Bright Citrus Deodorant by Earth Mama —
Natural and Safe for Sensitive Skin, Pregnancy and Breastfeeding, Contains Organic Calendula 3-
Ounce

Price: $10.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

Action: think[For 3 ounce bottle of bright citrus deodorant for sensitive skin, the item has options
“bright citrus’ and ’3 ounce (pack of 1)’ and seems good to buy.]

Observation: OK.

Action: click[bright citrus]

Observation: You have clicked bright citrus.

Action: click[3 ounce (pack of 1)]

Observation: You have clicked 3 ounce (pack of 1).
Action: click[Buy Now]

G.2 VALUE FUNCTION PROMPT

Given an item to purchase and a trajectory that aims to buy an item that exactly matches the specifi-
cation, which corresponds to the ideal score of 1.0, analyze the following trajectory, then at the last
line conclude Thus the correctness score is s”, where s is an integer from 1 to 10.
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Here are some examples

Webshop

Instruction:

i am looking for dairy free and apple variety pack of chips, and price lower than 30.00 dollars
[Search]

Action: search[dairy free and apple variety pack of chips]
Observation:

[Back to Search]

Page 1 (Total results: 50)

[Next]

[BO7THRFIWPS]

Enjoy Life Foods Soft Baked Ovals, Breakfast Bars, Nut Free Bars, Soy Free, Dairy Free, Non
GMO, Gluten Free, Vegan, Variety Pack, 4 Boxes (20 Bars Total)

$100.0
[BOIKMHYS5PG]

Enjoy Life Soft Baked Chewy Bars, Variety Pack, Nut Free Bars, Soy Free, Dairy Free, Gluten Free,
6 Boxes (30 Total Bars)

$21.49
[BOO8D2X8C4]

Enjoy Life Lentil Chips Variety Pack, Dairy Free Chips, Soy Free, Nut Free, Non GMO, Vegan,
Gluten Free, 24 Bags (0.8 0z)

$100.0

Action: think[The first two items are not what I want. The third item is the dairy free and apple
variety pack of chips I want.]

Observation: OK.

Action: click[BOO8D2X8C4]
Observation:

[Back to Search]

[Prev]

flavor name [dill and sour cream][garlic & parmesan][light sea salt][margherita pizza][thai chili
lime][variety pack] size [0.8 ounce (pack of 24)][4 ounce (pack of 12)]

Price: $100.0
Rating: N.A.

Description]

[

[Features]
[Reviews]
[

Buy Now]
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Action: think[The item has options ’variety pack’ and 0.8 ounce (pack of 24)’ and seems good to
buy.]

Observation: OK.

Action: click[variety pack]

Observation: You have clicked variety pack.

Action: click[0.8 ounce (pack of 24)]
Observation: You have clicked 0.8 ounce (pack of 24).

Action: click[Buy Now]

Reflection: In this attempt, I was unsuccessful. I accidentally bought a product that was $100, which
is more than my budget of $30. Either way, the initial search results were not good. Next time, I
will do search[”variety pack of chips”] and then check if the results meet the dairy free and the $30
budget constraints. I will continue to refine my searches so that I can find more products.

Thus the correctness score is 5
(input)

G.3 REFLECTION PROMPT

Given an item to purchase and a trajectory that aims to buy an item that exactly matches the specifi-
cation, which corresponds to the ideal score of 1.0, analyze the following trajectory, then at the last
line conclude ”Thus the correctness score is s”, where s is an integer from 1 to 10.

Here are some examples

Webshop
Instruction:
i am looking for dairy free and apple variety pack of chips, and price lower than 30.00 dollars

[Search]

Action: search[dairy free and apple variety pack of chips]
Observation:

[Back to Search]

Page 1 (Total results: 50)

[Next]

[BOTHRFIJWPS]

Enjoy Life Foods Soft Baked Ovals, Breakfast Bars, Nut Free Bars, Soy Free, Dairy Free, Non
GMO, Gluten Free, Vegan, Variety Pack, 4 Boxes (20 Bars Total)

$100.0
[BOIKMHY5PG]

Enjoy Life Soft Baked Chewy Bars, Variety Pack, Nut Free Bars, Soy Free, Dairy Free, Gluten Free,
6 Boxes (30 Total Bars)

$21.49
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[BOO8D2X8C4]

Enjoy Life Lentil Chips Variety Pack, Dairy Free Chips, Soy Free, Nut Free, Non GMO, Vegan,
Gluten Free, 24 Bags (0.8 o0z)

$100.0

Action: think[The first two items are not what I want. The third item is the dairy free and apple
variety pack of chips I want.]

Observation: OK.

Action: click[BOOSD2X8C4]
Observation:

[Back to Search]

[Prev]

flavor name [dill and sour cream][garlic & parmesan][light sea salt][margherita pizza][thai chili
lime][variety pack] size [0.8 ounce (pack of 24)][4 ounce (pack of 12)]

Price: $100.0
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

Action: think[The item has options ’variety pack’ and 0.8 ounce (pack of 24)’ and seems good to
buy.]

Observation: OK.

Action: click[variety pack]

Observation: You have clicked variety pack.

Action: click[0.8 ounce (pack of 24)]
Observation: You have clicked 0.8 ounce (pack of 24).

Action: click[Buy Now]

Reflection: In this attempt, I was unsuccessful. I accidentally bought a product that was $100, which
is more than my budget of $30. Either way, the initial search results were not good. Next time, I
will do search[variety pack of chips”] and then check if the results meet the dairy free and the $30
budget constraints. I will continue to refine my searches so that I can find more products.

(input)

Reflection:
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