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Abstract

Recently, Vision Transformer and its variants have shown great promise on various
computer vision tasks. The ability of capturing local and global visual dependencies
through self-attention is the key to its success. However, this also brings challenges
due to quadratic computational overhead, especially for the high-resolution vision
tasks (e.g., object detection). Many recent works have attempted to reduce the cost
and improve model performance by applying either coarse-grained global attention
or fine-grained local attention. However, both approaches cripple the modeling
power of the original self-attention mechanism of multi-layer Transformers, leading
to sub-optimal solutions. In this paper, we present focal attention, a new attention
mechanism that incorporates both fine-grained local and coarse-grained global
interactions. In this new mechanism, each token attends its closest surrounding
tokens at fine granularity and the tokens far away at coarse granularity, and thus can
capture both short- and long-range visual dependencies efficiently and effectively.
With focal attention, we build a new variant of Vision Transformer models, called
Focal Transformers, which achieve superior performance over the state-of-the-
art (SoTA) Vision Transformers on a range of public image classification and
object detection benchmarks. In particular, our Focal Transformer models with
a moderate size of 51.1M and a large size of 89.8M achieve 83.6% and 84.0%
Top-1 accuracy, respectively, on ImageNet classification at 224 × 224. When
employed as the backbones, Focal Transformers achieve consistent and substantial
improvements over the current SoTA Swin Transformers [43] across 6 different
object detection methods. Our largest Focal Transformer yields 58.7/59.0 box
mAPs and 50.9/51.3 mask mAPs on COCO mini-val/test-dev, and 55.4 mIoU on
ADE20K for semantic segmentation, creating new SoTA on three of the most
challenging computer vision tasks. Our code is available at: https://github.
com/microsoft/Focal-Transformer.

1 Introduction
Nowadays, Transformer [57] has become a prevalent model architecture in natural language pro-
cessing (NLP) [20, 6]. In the light of its success in NLP, there is an increasing effort on adapt-
ing it to computer vision (CV) [47, 50]. Since its promise firstly demonstrated in Vision Trans-
former (ViT) [21], we have witnessed a flourish of full-Transformer models for image classifica-
tion [55, 60, 64, 43, 76, 56], object detection [8, 85, 79, 18] and semantic segmentation [58, 62].
Beyond these static image tasks, it has also been applied on various temporal understanding tasks,
such as action recognition [40, 78, 10], object tracking [13, 59], scene flow estimation [38].

The self-attention mechanism is arguably the key component that differentiates Transformers from
the widely used convolutional neural networks (CNNs) [37] in computer vision. At each Transformer
layer, self-attention enables global content-dependent interactions among different image regions for
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Figure 1: Left: Visualization of the attention maps of the three heads at the given query patch (blue)
in the first layer of the DeiT-Tiny model [55]. Right: An illustrative depiction of focal attention
mechanism. Three granularity levels are used to compose the attention region for the blue query.

modeling short- and long-range dependencies, respectively. Through the visualization of full self-
attention results1, we indeed observe that self-attention learns to attend local surroundings (like CNNs)
and the global contexts at the same time, as illustrated in Fig. 1 (Left). Nevertheless, when dealing
with high-resolution vision tasks such as object detection or segmentation, an efficient implementation
of a global and fine-grained self-attention becomes non-trivial due to the quadratic computational cost
with respect to the number of tokens in feature maps. Recent works have alternatively exploited either
a coarse-grained global self-attention [60, 64] or a fine-grained local self-attention [43, 76, 56], for the
sake of reducing the computational cost. However, both approaches cripple the power of the original
full self-attention i.e., the ability to simultaneously capture local and global visual dependencies.

In this paper, we present a new attention mechanism to capture both short- and long-range interactions
in Transformer layers for high-resolution input images. Considering that the visual dependencies
between the nearby (local) regions are usually much stronger than the dependencies between the
regions that are far away, we perform the fine-grained attention only in local regions while the
coarse-grained attention globally. As depicted in Fig. 1 (Right), a query token in the feature map
attends its closest local surroundings at the finest granularity as itself. However, when it goes to the
regions far away, it attends to summarized tokens to capture coarse-grained visual dependencies. We
call this new mechanism focal attention, as each token attends the others in a focal manner. We will
show in this study that focal attention allows to effectively model visual dependencies among all
regions covering the whole high-resolution feature maps while introducing much less number of
tokens in the computation than that in the standard self-attention mechanism.

Equipped with focal attention, a series of Focal Transformers are developed and validated via a
comprehensive empirical study across three core vision tasks, including image classification, object
detection and segmentation. Results show that Focal Transformers consistently outperform the SoTA
Vision Transformers across various settings (i.e., in model sizes and complexities). Notably, the small
Focal Transformer with 51.1M parameters achieves 83.6% top-1 accuracy on ImageNet-1K, and the
base model with 89.8M parameters obtains 84.0% top-1 accuracy. In the fine-tuning experiments for
object detection, Focal Transformers consistently outperform the SoTA Swin Transformers [43] across
six popular object detection methods. Our largest Focal Transformer model achieves 59.0 box mAP
and 51.3 mask mAP on COCO test-dev for object detection and instance segmentation, respectively,
and 55.4 mIoU on ADE20K for semantic segmentation. These results demonstrate that focal attention
is highly effective in modeling the global interactions in Vision Transformers.

2 Related work
Vision Transformers. Vision Transformer (ViT) is first introduced in [21]. It applies a standard
Transformer, originally developed for NLP [57], to encode an image by analogously splitting the
image into a sequence of visual tokens. It has demonstrated superior performance to CNNs such
as ResNet [33] on multiple image classification benchmarks, when trained with sufficient data [21]
and carefully designed data augmentation and regularization methods [55]. The results thus inspire
researchers to explore the applications of ViT on various vision tasks beyond image classification,
such as self-supervised learning [14, 9, 39], object detection [8, 85, 79, 18] and semantic segmenta-
tion [58, 62, 81]. There are also increasing number of studies for improving ViT via data-efficient

1DeiT-Tiny model, checkpoint downloaded from https://github.com/facebookresearch/deit.
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Figure 2: Model architecture for our Focal Transformers. As highlighted in light blue boxes, our
main innovation is the proposed focal attention in each Transformer layer.

training [55], improved patch embedding/encoding [16, 71, 31], integrating convolutional projections
into transformers [64, 70], and using multi-scale architectures and efficient self-attention mechanisms
for high-resolution vision tasks [60, 64, 43, 76, 15]. Recent surveys include [36, 30, 36]. This paper
focuses on improving the self-attention mechanism of ViT for encoding high-resolution images.

Efficient global and local self-attention. In many real-world tasks, Transformers need to cope
with a large number of input tokens, such as long documents in NLP and high-resolution images
in computer vision (CV). Recently, many efficient self-attention mechanisms have been proposed
to deal with the quadratic computational and memory cost incurred by the standard self-attention
mechanism. On one hand, a number of works in both NLP and CV resort to coarse-grained global
self-attention (i.e., attending the down-sampled or summarized tokens) to capture the long-range
interactions [49, 46, 60, 64, 31, 23]. Although this approach improves the model efficiency, it
loses the detailed context information surrounding the query tokens. On the other hand, to make
the computational cost manageable, various local fine-grained attention mechanism (i.e., attending
neighboring tokens within a pre-set window size) are used for both NLP [3, 74, 1] and CV [56, 43, 76].
In this paper, we argue that both global and local attentions are important for model performance.
This is also validated by some recent studies that aim to improve CNNs by incorporating ways of
modeling global attentions [35, 63, 61, 68, 2, 7, 51]. The standard self-attention mechanism used
by ViT can indeed learned both types of attentions, as shown in Fig. 1 (Left). But it often incurs
a prohibitively high cost for high-resolution images. To the best of our knowledge, the proposed
focal attention provides the first mechanism to incorporate local and global attention in a single
Transformer layer 2. It can capture both short- and long-range interactions as standard self-attention
but in a much more efficient and effective way, especially for high-resolution images.

3 Method

3.1 Model architecture

To accommodate high-resolution dense prediction tasks, we employ a multi-scale model architecture
as in [60, 76, 43]. As shown in Fig. 2, an image I ∈ RH×W×3 is first partitioned into patches of size
4× 4, resulting in H

4 ×
W
4 visual tokens with dimension 4× 4× 3. Then, we use a patch embedding

layer, consisting of a convolutional layer with filter size and stride both equal to 4, to project these
patches into hidden features with dimension d. We then pass this spatial feature map to the four stages
of Focal Transformer blocks. In each stage i ∈ {1, 2, 3, 4}, the Focal Transformer block consists of
Ni Focal Transformer layers. After each stage, we use a patch embedding layer to reduce the spatial
size of feature map by factor 2 and increase the feature dimension by 2. For image classification tasks,
we take the average of the output from the last stage and send it to a classification layer. For object
detection, the feature maps from the last 3 or all 4 stages are fed to a particular object detector head,

2A similar focal mechanism has been used in CNNs for NLP [27].
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depending on the specific detection method we choose to use. The model capacity can be customized
by varying the input feature dimension d and the number of Focal Transformer layers.

Standard self-attention can capture both short- and long-range interactions at fine-grain, but suffers
from high computational cost when it performs attention on high-resolution feature maps as noted
in [76]. Take stage 1 in Fig. 2 as an example. For a feature map of size H

4 ×
W
4 × d, the complexity

of self-attention is O((H4 ×
W
4 )2d), resulting in an explosion of time and memory cost, considering

that min(H,W ) could be 800 or even larger for object detection. In the next section, we describe
how we address this issue with the proposed focal attention mechanism.

3.2 Token-wise focal attention
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Figure 3: The size of receptive field (y-
axis) as a function of the number of used
visual tokens (x-axis) in regular (stan-
dard) self-attention and focal attention.
When plotting the curve for focal atten-
tion, we increase the focal window size
by 2 for each focal level up to the maxi-
mal window size of 8.

Focal attention is proposed to make the Transformer lay-
ers suitable for encoding high-resolution input images.
Instead of attending all tokens at fine-grain, we attend the
fine-grain tokens only locally, but the summarized ones
(i.e., the coarse-grained tokens generated by sub-window
pooling, which is illustrated in Fig. 4 and will be described
later) globally. As such, focal attention can cover the same
amount of image regions as standard self-attention but
with much less cost. In Fig. 3, we show the size of the
receptive field for standard self-attention and our focal
attention as a function of the number of attended tokens.
For a given query position, by reducing the granularity of
its surroundings based on their distance to the query, focal
attention can have significantly larger receptive fields at
the same cost measured by the number of visual tokens,
compared to the standard self-attention mechanism.

Theoretically, the focal attention mechanism enables global interaction with much less time and
memory cost, because it attends a much smaller number of surrounding (summarized) tokens. In
practice, however, extracting the surrounding tokens for each query position could incur high time
cost since we need to duplicate the extraction of each token for all queries that the token surrounds.
This issue had been extensively discussed in [56, 76, 43] and a common solution is to partition the
input feature map into windows. Thus, in our Focal Transformers, we resort to performing focal
attention at the window level. We elaborate the window-wise focal attention in the following.

3.2.1 Window-wise focal attention

Given a feature map of x ∈ RM×N×d with spatial size M × N , we first partition it into a grid
of windows of size sp × sp. Then, we extract the surroundings for each window rather than each
individual token. The proposed window-wise focal attention is illustrated in Fig. 4. To clarify, we
first define three terms:

• Focal level L refers to the granularity level at which we extract the tokens for focal attention.
• Focal window size slw is the size of sub-window on which the summarized tokens are formed via

sub-window pooling at granularity level of l ∈ {1, ..., L}.
• Focal region size slr denotes the number of sub-windows that are filled up horizontally (or verti-

cally) in an attended region at level l.

Now, we detail how window-wise focal attention works in the following two steps, sub-window
pooling and attention computing.

Sub-window pooling. Consider input feature map x ∈ RM×N×d, where M × N is the spatial
dimension and d the feature dimension. We perform sub-window pooling for all L levels. At focal
level l, we first split the input feature map x into a grid of sub-windows with size slw × slw. Then we
use a linear projection layer f l

p to pool the sub-windows spatially by

xl = f l
p(x̂) ∈ R

M
slw
× N

slw
×d

, x̂ = Reshape(x) ∈ R
( M
slw
× N

slw
×d)×(slw×slw)

. (1)

The pooled feature maps {xl}L1 at different levels l provide rich information at both fine-grain and
coarse-grain. Since we set slw = 1 for the first focal level which has the same granularity as the input
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Figure 4: An illustration of focal attention at window level. Each of the square cells represents a
visual token that is either from the original feature map or a summarized token formed by sub-window
pooling. Suppose we have an input feature map of size 20 × 20. We first partition it into 5 × 5
windows of size 4 × 4. Take the 4 × 4 blue window in the middle as the query set, we extract its
surrounding tokens at three granularity levels as its keys and values. For the first level, we extract the
8× 8 tokens which are closest to the blue window at the finest grain. At the second level, we expand
the attention region and pool the surrounding 2× 2 sub-windows to form summarized tokens, which
results in 6× 6 summarized tokens. At the third level, we attend a larger region covering the whole
feature map and pool 4× 4 sub-windows, which leads to 5× 5 summarized tokens. Finally, these
three levels of tokens are concatenated to compute the keys and values for the 4 × 4 = 16 tokens
(queries) in the blue window.

feature map, there is no need to perform any sub-window pooling. Considering that the focal window
size is usually very small (7 maximally in our settings), the number of extra parameters introduced by
sub-window pooling is negligible.

Attention computing. Once we obtain the pooled feature maps {xl}L1 at all L levels, we compute
the query at the first level, and key and value for all levels using three linear projection layers fq , fk
and fv , respectively, as

Q = fq(x
1), K = {Kl}L1 = fk({x1, ..., xL}), V = {V l}L1 = fv({x1, ..., xL}). (2)

To perform focal attention, we need to first extract the surrounding tokens for each query token in the
feature map. As mentioned earlier, tokens inside a window partition sp × sp share the same set of
surroundings. For the queries inside the i-th window Qi ∈ Rsp×sp×d, we extract the slr × slr keys
and values from Kl and V l surrounding the window which the query lies in, and then gather the keys
and values from all L levels to obtain Ki = {K1

i , ...,K
L
i } ∈ Rs×d and Vi = {V 1

i , ..., V
L
i } ∈ Rs×d,

where s is the sum of focal regions from all levels, i.e., s =
∑L

l=1(s
l
r)

2. Note that a canonical
implementation of focal attention following Fig. 1 requires to exclude the overlapped regions across
different levels. In our implementation, we intentionally keep them in order to capture the pyramid
information for the overlapped regions. Finally, we follow [43] to include a relative position bias and
compute the focal attention for Qi by

Attention(Qi,Ki, Vi) = Softmax(
QiK

T
i√
d

+B)Vi, (3)

where B = {Bl}L1 is the learnable relative position bias. It consists of L subsets for L focal levels.
Similar to [43], for the first level, we parameterize it as B1 ∈ R(2sp−1)×(2sp−1), considering that
the horizontal and vertical position ranges are both in [−sp + 1, sp − 1]. For the other focal levels,
considering that they have different granularity with respect to the queries, we treat all the queries
inside a window equally and use Bl ∈ Rslr×s

l
r to represent the relative position bias between the

query window and each of slr × slr summarized tokens. Since the focal attention for each window
can be performed independent of the others, we can compute Eq. (3) in parallel. Once we obtain
attention scores for the whole input feature map, we send them to LayerNorm and the MLP block.
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Output Size Layer Name Focal-Tiny Focal-Small Focal-Base

stage 1

56× 56 Patch Embedding p1 = 4; c1 = 96 p1 = 4; c1 = 96 p1 = 4; c1 = 128

56× 56
Transformer

Block

[
s0w,r = {1, 13}
s1w,r = {7, 7}

]
× 2

[
s0w,r = {1, 13}
s1w,r = {7, 7}

]
× 2

[
s0w,r = {1, 13}
s1w,r = {7, 7}

]
× 2

stage 2

28× 28 Patch Embedding p2 = 2; c2 = 192 p2 = 2; c2 = 192 p2 = 2; c2 = 256

28× 28
Transformer

Block

[
s0w,r = {1, 13}
s1w,r = {7, 5}

]
× 2

[
s0w,r = {1, 13}
s1w,r = {7, 5}

]
× 2

[
s0w,r = {1, 13}
s1w,r = {7, 5}

]
× 2

stage 3

14× 14 Patch Embedding p3 = 2; c3 = 384 p3 = 2; c3 = 384 p3 = 2; c3 = 512

14× 14
Transformer

Block

[
s0w,r = {1, 13}
s1w,r = {7, 3}

]
× 6

[
s0w,r = {1, 13}
s1w,r = {7, 3}

]
× 18

[
s0w,r = {1, 13}
s1w,r = {7, 3}

]
× 18

stage 4

7× 7 Patch Embedding p4 = 2; c4 = 768 p4 = 2; c4 = 768 p4 = 2; c4 = 1024

7× 7
Transformer

Block

[
s0w,r = {1, 7}
s1w,r = {7, 1}

]
× 2

[
s0w,r = {1, 7}
s1w,r = {7, 1}

]
× 2

[
s0w,r = {1, 7}
s1w,r = {7, 1}

]
× 2

Table 1: Model configurations for Focal Transformers. We use three configurations with different
model capacities: Focal-Tiny, Focal-Small and Focal-Base.

3.2.2 Complexity analysis
We analyze the computational complexity for the two steps of focal attention described above. For the
input feature map x ∈ RM×N×d, we have M

slw
× N

slw
sub-windows at focal level l. For each sub-window,

the pooling operation in Eq.1 has the complexity of O((slw)2d). Aggregating all sub-windows brings
us O((MN)d). Then for all focal levels, we have the complexity of O(L(MN)d) in total, which is
independent of the sub-window size at each focal level. Regarding the attention computation in Eq. 3,
the computational cost for a query window sp × sp is O((sp)2

∑
l(s

l
r)

2d), and O(
∑

l(s
l
r)

2(MN)d)
for the whole input feature map. To sum up, the overall computational cost for focal attention is
O((L+

∑
l(s

l
r)

2)(MN)d). In an extreme case, one can set sLr = 2×max(M,N)/sLw to ensure a
global receptive field for all queries (including both corner and middle queries) in this layer.

3.3 Model configurations
For fair comparison, we consider three network configurations for Focal Transformers, follow-
ing [60, 64, 43]. Specifically, we follow the design of the Tiny, Small and Base models in Swin
Transformer [43], as shown in Table 1. Our models take 224× 224 images as inputs and the window
partition size is set to 7 to make our models comparable to Swin Transformers. For the focal attention
layer, we introduce two levels, one for fine-grained local attention and the other for coarse-grained
global attention. Except for the last stage, the focal region size is set to 13 for the window partition
size of 7, which means that we expand 3 tokens for each window partition. For the last stage, since
the whole feature map is 7× 7, the focal region size at level 0 is set to 7, which is sufficient to cover
the entire feature map. For the coarse-grained global attention, we set its focal window size the same
as the window partition size 7, but gradually decrease the focal region size to get {7, 5, 3, 1} for
the four stages, respectively. For the patch embedding layer, the spatial reduction ratio pi for the
four stages are all {4, 2, 2, 2}. Note that Focal-Base has a higher hidden dimension ci, compared to
Focal-Tiny and Focal-Small.

4 Experiments
4.1 Image classification on ImageNet-1K
We compare different methods on ImageNet-1K [19]. For fair comparison, we follow the training
recipes in [55, 60]. All models are trained for 300 epochs with batch size 1024. The initial
learning rate is set to 10−3 with 20 epochs of linear warm-up starting from 10−5. For optimization,
we use AdamW [44] as the optimizer with a cosine learning rate scheduler. The weight decay
is set to 0.05 and the maximal gradient norm is clipped to 5.0. We use the same set of data
augmentation and regularization strategies used in [55] after excluding random erasing [82], repeated
augmentation [4, 34] and exponential moving average (EMA) [48]. The stochastic depth drop rates
are set to 0.2, 0.2 and 0.3 for our tiny, small and base models, respectively. During training, we crop
images randomly to 224× 224, while a center crop is used during evaluation on the validation set.
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Model #Params. FLOPs Top-1 (%)

ResNet-50 [33] 25.0 4.1 76.2
DeiT-Small/16 [55] 22.1 4.6 79.9
PVT-Small [60] 24.5 3.8 79.8
ViL-Small [76] 24.6 5.1 82.0
CvT-13 [64] 20.0 4.5 81.6
Swin-Tiny [43] 28.3 4.5 81.2
Focal-Tiny (Ours) 28.9 4.9 82.2
ResNet-101 [33] 45.0 7.9 77.4
PVT-Medium [60] 44.2 6.7 81.2
CvT-21 [64] 32.0 7.1 82.5
ViL-Medium [76] 39.7 9.1 83.3
Swin-Small [43] 49.6 8.7 83.1
Focal-Small (Ours) 51.1 9.4 83.6
ResNet-152 [33] 60.0 11.0 78.3
ViT-Base/16 [21] 86.6 17.6 77.9
DeiT-Base/16 [55] 86.6 17.5 81.8
PVT-Large [60] 61.4 9.8 81.7
ViL-Base [76] 55.7 13.4 83.2
Swin-Base [43] 87.8 15.4 83.4
Focal-Base (Ours) 89.8 16.4 84.0

Table 2: Comparison of image classification
on ImageNet-1K for different models. Except
for ViT-Base/16, all other models are trained
and evaluated on 224× 224 resolution.

Backbone RetinaNet Mask R-CNN

AP b AP b APm

ResNet-50 [33] 36.3 38.0 34.4
PVT-Small 40.4 40.4 37.8
ViL-Small [76] 41.6 41.8 38.5
Swin-Tiny [43] 42.0 43.7 39.8
Focal-Tiny (Ours) 43.7 (+1.7) 44.8 (+1.1) 41.0 (+1.3)
ResNet-101 [33] 38.5 40.4 36.4
ResNeXt101-32x4d [67] 39.9 41.9 37.5
PVT-Medium [60] 41.9 42.0 39.0
ViL-Medium [76] 42.9 43.4 39.7
Swin-Small [43] 45.0 46.5 42.1
Focal-Small (Ours) 45.6 (+0.6) 47.4 (+0.9) 42.8 (+0.7)
ResNeXt101-64x4d [67] 41.0 42.8 38.4
PVT-Large [60] 42.6 42.9 39.5
ViL-Base [76] 44.3 45.1 41.0
Swin-Base [43] 45.0 46.9 42.3
Focal-Base (Ours) 46.3 (+1.3) 47.8 (+0.9) 43.2 (+0.9)

Table 3: Comparisons with CNN and Transformer
baselines and SoTA methods on COCO object detec-
tion. The box mAP (AP b) and mask mAP (APm)
are reported for RetinaNet and Mask R-CNN trained
with 1× schedule. More detailed comparisons with
3× schedule are in Table 4.

In Table 2, we summarize the results for baseline models and the state-of-the-art models on image
classification task. We can see that Focal Transformers consistently outperform other methods with
similar model sizes (#Params.) and computational complexities (GFLOPs). Specifically, Focal-Tiny
improves over the Transformer baseline DeiT-Small/16 by 2.3%. Meanwhile, using the same model
configuration (2-2-6-2) and a few extra parameters and computations, Focal-Tiny improves over
Swin-Tiny by 1.0 point. For small and base models, Focal-Small with 51.1M parameters can reach
83.6% which is better than all the counterpart small and base models using much less parameters. By
increasing the model size, Focal-Base model achieves 84.0%, surpassing all the other models with
comparable parameters and FLOPs.

To compare with the large-scale models, we further build Focal-Large Transformer by increasing the
hidden dimension in Focal-Base from 128 to 196 while keeping all the other hyperparameters the
same. We follow the common practice to pretrain our Focal-Large Transformer on ImageNet-22K
and transfer it to detection and segmentation tasks [64, 43].

4.2 Object detection and instance segmentation
We benchmark our models on object detection with COCO 2017 [42]. The pretrained models are used
as visual backbones and then plugged into two representative pipelines, RetinaNet [41] and Mask
R-CNN [32]. All models are trained on the 118k training images and the results are reported on 5K
validation set. We use the two standard training schedules, 1× with 12 epochs and 3× with 36 epochs.
For the 1× schedule, we resize image’s shorter side to 800 while keeping its longer side no more than
1,333. For the 3× schedule, we use the multi-scale training strategy by randomly resizing its shorter
side to the range of [480, 800]. Considering this higher input resolution, we adaptively increase the
focal sizes at four stages to (15, 13, 9, 7), to ensures that the focal attention covers more than half of
the image region at the first two stages, and the whole image at the last two stages. With the focal size
increased, the relative position biases are accordingly up-sampled to the corresponding sizes using
bilinear interpolation. During training, we use AdamW [44] for optimization with initial learning
rate 10−4 and weight decay 0.05. Similarly, we use 0.2, 0.3 and 0.5 stochastic depth drop rates to
regularize the training for our Tiny, Small and Base models, respectively. Since Swin Transformer
does not report the results on RetinaNet, we obtain the results by ourselves using their official code
with the same hyper-parameters as that of Focal Transformers.

In Table 3, we show the performance for both CNN-based models and the current Transformer-
based state-of-the-art models. The bbox mAP (AP b) and mask mAP (APm) are reported. We see
that Focal Transformers outperform the CNN-based models consistently with the gap of 4.8-7.1
points. Compared with the other methods which also use multi-scale Transformer architectures,
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Backbone #Params FLOPs RetinaNet 3x schedule + MS Mask R-CNN 3x schedule + MS

(M) (G) AP b AP b
50 AP b

75 APS APM APL AP b AP b
50 AP b

75 APm APm
50 APm

75

ResNet50 [33] 37.7/44.2 239/260 39.0 58.4 41.8 22.4 42.8 51.6 41.0 61.7 44.9 37.1 58.4 40.1
PVT-Small[60] 34.2/44.1 226/245 42.2 62.7 45.0 26.2 45.2 57.2 43.0 65.3 46.9 39.9 62.5 42.8
ViL-Small [76] 35.7/45.0 252/174 42.9 63.8 45.6 27.8 46.4 56.3 43.4 64.9 47.0 39.6 62.1 42.4
Swin-Tiny [43] 38.5/47.8 245/264 45.0 65.9 48.4 29.7 48.9 58.1 46.0 68.1 50.3 41.6 65.1 44.9
Focal-Tiny (Ours) 39.4/48.8 265/291 45.5 66.3 48.8 31.2 49.2 58.7 47.2 69.4 51.9 42.7 66.5 45.9

ResNet101 [33] 56.7/63.2 315/336 40.9 60.1 44.0 23.7 45.0 53.8 42.8 63.2 47.1 38.5 60.1 41.3
ResNeXt101-32x4d [67] 56.4/62.8 319/340 41.4 61.0 44.3 23.9 45.5 53.7 44.0 64.4 48.0 39.2 61.4 41.9
PVT-Medium [60] 53.9/63.9 283/302 43.2 63.8 46.1 27.3 46.3 58.9 44.2 66.0 48.2 40.5 63.1 43.5
ViL-Medium [76] 50.8/60.1 339/261 43.7 64.6 46.4 27.9 47.1 56.9 44.6 66.3 48.5 40.7 63.8 43.7
Swin-Small [43] 59.8/69.1 335/354 46.4 67.0 50.1 31.0 50.1 60.3 48.5 70.2 53.5 43.3 67.3 46.6
Focal-Small (Ours) 61.7/71.2 367/401 47.3 67.8 51.0 31.6 50.9 61.1 48.8 70.5 53.6 43.8 67.7 47.2

ResNeXt101-64x4d [67] 95.5/102 473/493 41.8 61.5 44.4 25.2 45.4 54.6 44.4 64.9 48.8 39.7 61.9 42.6
PVT-Large[60] 71.1/81.0 345/364 43.4 63.6 46.1 26.1 46.0 59.5 44.5 66.0 48.3 40.7 63.4 43.7
ViL-Base [76] 66.7/76.1 443/365 44.7 65.5 47.6 29.9 48.0 58.1 45.7 67.2 49.9 41.3 64.4 44.5
Swin-Base [43] 98.4/107 477/496 45.8 66.4 49.1 29.9 49.4 60.3 48.5 69.8 53.2 43.4 66.8 46.9
Focal-Base (Ours) 100.8/110.0 514/533 46.9 67.8 50.3 31.9 50.3 61.5 49.0 70.1 53.6 43.7 67.6 47.0

Table 4: COCO object detection and segmentation results with RetinaNet [41] and Mask R-CNN [33].
All models are trained with 3× schedule and multi-scale inputs (MS). The numbers before and after
“/” at column 2 and 3 are the model size and complexity for RetinaNet and Mask R-CNN, respectively.

Focal Transformers show substantial gains across all settings and metrics. Particularly, Focal
Transformers brings 0.7-1.7 points of mAP against the current best approach Swin Transformer [43]
at comparable settings. Different from the other multi-scale Transformer models, Focal Transformers
can simultaneously enable short-range fine-grain and long-range coarse-grain interactions for each
visual token, and thus capture richer visual contexts at each layer for better dense predictions. To have
more comprehensive comparisons, we train all models using the 3× schedule and show the detailed
numbers for RetinaNet and Mask R-CNN in Table 4. As we can see, even with the 3× schedule, Focal
Transformers can still achieve 0.3-1.1 gain over Swin Transformer models in comparable settings.

Comparison with large SoTA detection models. We follow Swin Transformers to use HTC [11]
as the detection method in that it reported SoTA performance on COCO detection when using Swin
Transformer as the backbone. For fair comparison, we also use soft-NMS [5], instaboost [24] and a
multi-scale training strategy with the shorter side in range [400, 1400] and the longer side no more
than 1600. We train the model using AdamW [44] with base learning rate 1e-4 and weight decay
0.1. The model is trained using the standard 3× schedule. The box and mask mAPs on COCO
validation set and test-dev are reported in Table 5, where both single-scale evaluation and multi-scale
evaluation results are presented. Our Focal-Large model with multi-scale test achieves 58.1 box
mAP and 50.9 mask mAP on mini-val set, which is better than the reported numbers for Swin-Large
in [43]. When evaluating our model on the test-dev set, it achieves 58.4 box mAP and 51.3 mask
mAP, which is slightly better than Swin Transformer. Note that because our model does not include
the global self-attention layer used in Swin Transformer at the last stage, it has a smaller model size
and fewer FLOPs. More recently, DyHead [17] achieves new SoTA on COCO, when combined with
Swin-Large. We replace the Swin-Large model with the Focal-Large model, and use the same 2×
training schedule as in [17]. We report the box mAPs for both mini-val and test-dev. Focal-Large
achieves 58.7 and 59.0 on mini-val and test-dev, respectively.

4.3 Semantic Segmentation
In addition to the instance segmentation results, we also evaluate our models on the semantic
segmentation task which usually takes high-resolution input images and requires capturing long-range
interactions. We benchmark our methods on ADE20K [83]. We use UperNet [65] as the segmentation
method and Focal Transformers as the backbones. We train three models as Focal-Tiny, Focal-Small,
Focal-Base, respectively. For all the models, we use a standard recipe that sets the input size to
512× 512 and trains the model for 160k iterations with batch size 16. Table 6 shows the comparison
results. We see that Focal-Tiny, Focal-Small and Focal-Base models consistently outperform Swin
Transformers of the similar size in single-scale and multi-scale mIoUs.
Comparison with large SoTA semantic segmentation models. We use the pretrained Focal-Large
model as the backbone for semantic segmentation. Follow the setting in [43], we use input image
size 640 × 640 and train the model for 160k iterations with a batch size of 16. We set the initial
learning to 6e-5 and use a polynomial learning rate decay. The weight decay is set to 0.01. For
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Method #Param FLOPs mini-val test-dev

AP b APm AP b APm

X101-64x4d [67] 155M 1033G 52.3 46.0 - -
EfficientNet-D7 [54] 77M 410G 54.4 - 55.1 -
GCNet∗ [7] - 1041G 51.8 44.7 52.3 45.4
ResNeSt-200 [75] - - 52.5 - 53.3 47.1
Copy-paste [28] 185M 1440G 55.9 47.2 56.0 47.4
BoTNet-200 [51] - - 49.7 - - -
SpineNet-190 [22] 164M 1885G 52.6 - 52.8 -
CenterNet2 [84] - - - - 56.4 -

Swin-L (HTC++) [43] 284M 1470G 57.1 49.5 57.7 50.2
Swin-L (DyHead) [17] 213M 965G 56.2 - - -
Swin-L† (HTC++) [43] 284M - 58.0 50.4 58.7 51.1
Swin-L† (DyHead) [17] 213M - 58.4 - 58.7 -
Swin-L† (QueryInst) [25] - - 56.1 - 56.1 -

Focal-L (HTC++) (Ours) 265M 1165G 57.0 49.9 - -
Focal-L (DyHead) (Ours) 229M 1081G 56.4 - - -
Focal-L† (HTC++) (Ours) 265M - 58.1 50.9 58.4 51.3
Focal-L† (DyHead) (Ours) 229M - 58.7 - 59.0 -

Table 5: Comparison with state-of-the-art methods
on COCO object detection and instance segmen-
tation. The numbers are reported on 5K val set
and test-dev. Augmented HTC [11] (denoted by
HTC++) and DyHead [17] are used as the detec-
tion methods. † means multi-scale evaluation.

Backbone Method #Param FLOPs mIoU +MS

ResNet-101 DANet [45] 69M 1119G 45.3 -
ResNet-101 ACNet [26] - - 45.9 -
ResNet-101 DNL [69] 69M 1249G 46.0 -
ResNet-101 UperNet [65] 86M 1029G 44.9 -

HRNet-w48 [53] OCRNet [73] 71M 664G 45.7 -
ResNeSt-200 [75] DLab.v3+ [12] 88M 1381G 48.4 -

Swin-T [43] UperNet [65] 60M 945G 44.5 45.8
Swin-S [43] UperNet [65] 81M 1038G 47.6 49.5
Swin-B [43] UperNet [65] 121M 1188G 48.1 49.7
Twins-SVT-L [15] UperNet [65] 133M - 48.8 50.2
MiT-B5 [66] SegFormer [66] 85M - 51.0 51.8
ViT-L/16† [21] SETR [80] 308M - 50.3 -
Swin-L‡ [43] UperNet [65] 234M 3230G 52.1 53.5
ViT-L/16‡ [21] Segmenter [52] 334M - 51.8 53.6
Swin-L‡ [43] K-Net [77] - - - 54.3
Swin-L‡ [43] PatchDiverse [29] 234M - 53.1 54.4
VOLO-D5 [72] UperNet [65] - - - 54.3

Focal-T (Ours) UperNet [65] 62M 998G 45.8 47.0
Focal-S (Ours) UperNet [65] 85M 1130G 48.0 50.0
Focal-B (Ours) UperNet [65] 126M 1354G 49.0 50.5
Focal-L‡ (Ours) UperNet [65] 240M 3376G 54.0 55.4

Table 6: Comparison with SoTA methods
for semantic segmentation on ADE20K [83]
val set. Single- and multi-scale evaluations
are reported in the last two columns. ‡

means ImageNet-22K is used as the pretrain-
ing dataset.

Model W-Size FLOPs Top-1 (%) AP b APm

Swin-Tiny 7 4.5 81.2 43.7 39.8
14 4.9 82.1 44.0 40.5

Focal-Tiny 7 4.9 82.2 44.9 41.1
14 5.2 82.3 45.5 41.5

Table 7: Impact of different window sizes (W-
Size). We alter the default size 7 to 14 and ob-
serve consistent improvements for both methods.

Model W-Shift Top-1 (%) AP b APm

Swin-Tiny - 80.2 38.8 36.4
X 81.2 43.7 39.8

Focal-Tiny - 82.2 44.8 41.0
X 81.9 44.9 41.1

Table 8: Impact of window shift (W-Shift) on
Swin Transformer and Focal Transformer. Tiny
models are used.

multi-scale evaluation, we use the same scaling ratios [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] as in previous
works. The results in Table 6 show that Focal-Large achieves significantly better performance than
Swin-Large. In both single-scale and multi-scale evaluations, Focal-Large leads to more than 1 point
mIoU improvement, creating new SoTA for semantic segmentation on ADE20K.

4.4 Ablation studies
We conduct a series of ablation studies to inspect the model’s capacity from different aspects. We use
Focal-Tiny and the image classification and object detection tasks.

Effect of varying the window size. We have demonstrated that it is crucial to model both short- and
long-range interactions. Thus, a related question is whether increasing the window size helps as it
leads to a larger receptive field. Table 7 shows the performance of Swin-Tiny and Focal-Tiny with
window sizes 7 and 14. Clearly, a larger window size is beneficial for both methods measured in all
three metrics, and Focal-Tiny consistently outperforms Swin-Tiny in both window sizes. Comparing
the second and third row, we find that Focal-Tiny outperforms Swin-Tiny even with a smaller window
size (7 v.s. 14). We suspect that the gain is attributed to our focal attention’s superior capability of
capturing long-range dependencies among visual tokens.

The necessity of window shift. In Swin Transformer [43], window shift is proposed to capture cross-
window interactions between two successive layers. In contrast, visual tokens in Focal Transformers
can always communicate with each other across windows at both fine- and coarse-grain. Thus, it
is interesting to investigate whether adding window shift to Focal Transformers can lead to any
improvement. To answer the question, we remove window shift from Swin Transformer while adding
it to Focal Transformers. As shown in Table 8, Swin Transformer shows a severe degradation after
removing the window shift. However, adding window shift to Focal Transformer hurts classification
performance. The result indicates that window shift is unnecessary for Focal Transformers. While in
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Figure 5: Ablating Focal-Tiny model by adding
local, global and both interactions, respectively.
Blue bars are image classification results and
orange bars object detection results. This figure
is better viewed in color.

Depths Model #Params. FLOPs Top-1 (%) AP b APm

2-2-2-2 Swin 21.2 3.1 78.7 38.2 35.7
Focal 21.7 3.4 79.9 40.5 37.6

2-2-4-2 Swin 24.7 3.8 80.2 41.2 38.1
Focal 25.4 4.1 81.4 43.3 39.8

2-2-6-2 Swin 28.3 4.5 81.2 43.7 39.8
Focal 29.1 4.9 82.2 44.8 41.0

Table 9: Impact of the change of model depth.
We gradually reduce the number of transformer
layers at the third stage from original 6 to 4 and
further 2. Our Focal Transformers has much
slower drop rate than Swin Transformer.

Swin Transformers, there should always be an even number of layers in each stage for the alternative
window shift operation, Focal Transformers do not have such a constraint.

Contributions of local and global interactions. To investigate the relative contributions of capturing
local fine-grain and global coarse-grain interactions in Focal Transformers, we have developed several
variants of Focal-Tiny: a) Focal-Tiny-Window merely performs attention inside each window; b)
Focal-Tiny-Local attends the additional fine-grain surrounding tokens and c) Focal-Tiny-Global
attends the extra coarse-grain summarized tokens. We train these models using the same setting as
Focal-Tiny and report their performance on image classification and object detection using Mask
R-CNN 1× schedule. As shown in Fig. 5, Focal-Tiny-Window suffers from a significant performance
drop on both image classification (82.2→80.1) and object detection (44.8→38.3). This is expected
since the communication across windows is completely cut off at each Transformer layer. After
we enable either the local fine-grain or global coarse-grain interactions (middle two columns), we
observe significant performance boost. When we combine short- and long-range interactions, we
observe additional improvements on both tasks. This implies that these two type of interactions are
complementary and both are beneficial to model performance.

Model capacity against model depth. Focal attention allows a Transformer model to capture short-
and long-range interactions at each Transformer layer. An interesting question is whether Focal
Transformers need fewer layers to obtain a similar modeling capacity as the Transformer models
that does not use focal attention, such as Swin Transformer. To answer this question, we conduct
an experiment by training a series of Swin-Tiny and Focal-Tiny models by varying the number of
Transformer layers at stage 3. As shown in Table 9, Focal-Tiny outperforms Swin-Tiny consistently
with the same depth. More importantly, using fewer layers, Focal-Tiny can sometimes achieve
comparable or even better performance than Swin Transformer. For example, Focal-Tiny with
(2-2-4-2) achieves 81.4 on image classification which is better than Swin-Tiny with (2-2-6-2).

5 Conclusion
In this paper, we have presented a new focal attention mechanism that enables efficient long-range
interactions in Vision Transformers. Different from previous works, it performs the local attention at
fine-grain and global attention at coarse-grain, providing an effective way of capturing both short-
and long-range context with a manageable computational cost. By applying focal attention into a
multi-scale Transformer architecture, we propose Focal Transformers as general-purpose backbones
for a wide range of dense vision tasks. A comprehensive empirical study shows that our Focal
Transformers outperform the SoTA Vision Transformers on a range of vision tasks including image
classification, object detection and segmentation.

Limitations and future work. Although our experiments show that focal attention can significantly
boost the performance on image classification and dense prediction tasks, focal attention does
introduce extra computational and memory cost, since each query token needs to attend more
(summarized) tokens in addition to tokens inside a window. A cost-effective implementation of Focal
Transformer is necessary to make it more applicable to many real-world scenarios. This study focuses
on incorporating focal attention into multi-scale Vision Transformers for CV tasks. However, we
notice that focal attention is an effective sparse attention mechanism that is widely applicable to all
attention-based neural network models that are developed for processing natural language, images,
videos etc. This is an exciting future direction.
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