
The Journey of Action Recognition
Xi Ding

Australian National University
Canberra, Australian Capital Territory, Australia

Xi.Ding1@anu.edu.au

Lei Wang∗
Griffith University

Brisbane, Queensland, Australia
Australian National University

Canberra, Australian Capital Territory, Australia
l.wang4@griffith.edu.au

Abstract
Action recognition has evolved from a niche research area into
a fundamental aspect of video understanding, driven by the dy-
namic interplay between data, model architectures, and learning
paradigms. Early studies, constrained by limited datasets and hand-
crafted features, laid the groundwork for the field, but the rapid
growth of data and advancements in deep learning techniques ig-
nited a revolution. From 2D- and 3D-CNNs to spatiotemporal graph
convolutional networks, these models have advanced the ability
to capture complex, multidimensional actions across increasingly
diverse and multimodal datasets. Simultaneously, innovative learn-
ing paradigms such as self-supervised, few-shot, and zero-shot
learning have transformed how we use data, enabling models to
generalize across tasks with minimal labeled data. The advent of
transformer-based architectures has catalyzed a new era in action
recognition, excelling in capturing long-range temporal depen-
dencies and overcoming previous limitations in spatiotemporal
modeling. Furthermore, the rise of video masked autoencoders has
introduced new ways to balance spatial and temporal information,
leading to breakthroughs in understanding motion dynamics. This
paper presents a comprehensive exploration of action recognition
through three critical lenses: the evolution of model architectures,
the expanding diversity of data, and the emergence of innovative
learning techniques. By tracing the trajectory of these develop-
ments, we highlight how the convergence of these elements has
broadened the scope of action recognition to tackle more complex
video processing challenges, including anomaly detection, caption-
ing, and video question answering. In particular, we underscore the
transformative role of large language models in infusing semantic
context, significantly enhancing the performance and versatility of
action recognition systems. Our work not only reflects on the past
but also provides a roadmap for future advancements. We reveal
how action recognition has transcended its original focus, position-
ing itself at the heart of general video analysis. By synthesizing
these insights, we offer a forward-thinking perspective on how the
integration of multimodal, temporal, and semantic information will
shape the future of AI-powered video understanding. Our paper’s
GitHub repository can be found here.
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1 Introduction
Action recognition, the task of identifying and understanding hu-
man actions in video, has become a pivotal area of research in
computer vision and machine learning [85]. It plays a crucial role
in a wide range of applications, from surveillance systems and
autonomous driving to video indexing and human-computer inter-
action. Early research works in action recognition focus on small,
labeled video datasets and rely heavily on handcrafted features to
capture motion and spatial information [9, 48, 117, 199, 202, 250].
However, with the rapid growth of video data and advancements
in machine learning techniques, the field has undergone signifi-
cant transformations, leading to more robust, scalable, and accurate
methods [13, 21, 234, 250, 265].

The evolution of action recognition can be understood through
three key interconnected dimensions: the data, the learning paradigms,
and the model architectures. As datasets grow in scale and complex-
ity, researchers begin to shift from simple, labeled datasets to more
diverse and larger video repositories. This shift enables the develop-
ment of learned representations through deep learning techniques,
which outperform traditional methods that rely on handcrafted fea-
tures [32, 49, 101, 223, 312]. Concurrently, new learning paradigms,
such as unsupervised, self-supervised, and few-shot learning, are
introduced to better use the expanding volume of unlabeled video
data [41, 50, 76, 81]. These paradigms enable models to generalize
more effectively, making it possible to learn action recognition tasks
without the need for large amounts of manually labeled data.

In parallel, model architectures evolve from simple 2D convo-
lutional networks (CNNs) to more complex 3D and two-stream
networks designed to capture spatial and temporal features [33,
183, 215, 231]. Recent advancements in transformer-based models
and videomasked autoencoders have further pushed the boundaries
of action recognition, allowing for better handling of long-range
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temporal dependencies and improving the capture of both spatial
and temporal motion features [70, 230, 251, 278]. The integration
of language models and vision-language models into action recog-
nition has further enhanced the field, enabling richer contextual
understanding of actions and their relationships to textual descrip-
tions [106, 161, 273].

This paper aims to provide a comprehensive exploration of the
journey of action recognition from its early stages to its current
state. We discuss the evolution of the field from both data and model
perspectives and examine how learning paradigms have shaped the
progress of action recognition research. Through this analysis, we
uncover valuable insights into the challenges, breakthroughs, and
future directions of action recognition, as it continues to advance
and become an integral part of broader video processing tasks. The
main contributions of this paper are as follows:
i. A detailed review of the evolution of action recognition from
data, learning, and model perspectives, highlighting key mile-
stones and breakthroughs.

ii. An in-depth exploration of the co-evolution of paradigms, data,
and architectures, offering a unified view of the interdepen-
dencies that have shaped the field.

iii. A discussion on the future directions and emerging trends in
action recognition, emphasizing the integration of multimodal
data, transformer-based architectures, and vision-language
models, and their potential to address the challenges in video
understanding and processing.

2 Related Work
Action recognition has garnered substantial attention over the past
few decades, resulting in numerous survey papers that examine the
evolution of methods, datasets, and models [53, 109, 225, 249, 252].
These surveys provide valuable insights into the historical pro-
gression of action recognition, categorize various approaches, and
identify the challenges and future directions. However, despite the
wealth of surveys, each focuses on different aspects of the problem,
and most either emphasize specific models, learning paradigms,
or datasets, without providing a comprehensive analysis of the
interplay between data, learning methods, and models.

Early surveys on action recognition primarily focus on the progress
of handcrafted features. These papers, including [252] and [225],
provide a thorough examination of early video descriptors and their
effectiveness for action recognition in the context of small labeled
datasets. They explore how different feature extraction methods
contributed to the performance of action recognition models and
discuss the limitations of traditional methods when applied to large-
scale datasets. While informative, these surveys do not emphasize
the evolving role of deep learning, and therefore miss the pivotal
transition from handcrafted features to learned representations that
would shape future advancements in the field.

As deep learning began to dominate, surveys such as [111] and
[80] explore the impact of convolutional neural networks (CNNs),
3D CNNs, and two-stream architectures on action recognition.
These works review the evolution from simple 2D architectures
to more complex 3D and temporal models, which incorporate the
crucial temporal dimension alongside spatial features. They also
focus on datasets like UCF101, HMDB51, and Kinetics, which play a

significant role in advancing the field. While these surveys provide
in-depth analyses of different architectures, they are often limited in
scope, concentrating mainly on model innovations without explor-
ing the full spectrum of learning paradigms, such as unsupervised
and self-supervised learning, that would later play a crucial role in
overcoming the challenges posed by limited labeled data.

In more recent years, there has been an increasing interest in
action recognition models that use large-scale multimodal datasets
and emerging learning paradigms, including self-supervised learn-
ing, few-shot learning, and transfer learning. Surveys such as [175],
[167], and [277] provide insights into these newer approaches and
highlight how they use large video datasets, e.g., Kinetics-400, to
improve action recognition performance. These works focus on the
advantages of training models on large, diverse datasets and dis-
cuss the trade-offs between supervised and unsupervised learning.
However, they often treat learning paradigms and model archi-
tectures as separate topics, without sufficiently considering how
they co-evolve in tandem with the increasing complexity of data.
A few recent surveys, such as [46, 95, 100, 115], have started to ad-
dress the role of transformers and vision-language models in action
recognition, emphasizing the growing importance of incorporating
semantic context into video understanding. These works explore
how transformers, with their ability to model long-range dependen-
cies, have become a powerful tool for capturing temporal dynamics
in action recognition tasks. While these surveys acknowledge the
synergy between models like BERT or GPT and vision models, they
generally do not delve deeply into how these models interact with
the data and learning paradigms to shape the development of action
recognition.

Differences from existing work.While existing surveys on ac-
tion recognition have made significant contributions by examining
various aspects of the field, there are key differences in the scope
and focus of this work. First, this paper takes a more holistic ap-
proach by integrating the perspectives of data, learning paradigms,
and model architectures in a unified framework. Rather than treat-
ing each component in isolation, we explore how they co-evolve
and influence one another, offering a comprehensive understanding
of the factors driving advancements in action recognition.

Second, this paper provides a deeper exploration of the evolution
of learning paradigms in action recognition, including the transition
from supervised learning to unsupervised, self-supervised, and few-
shot learning. This is an important distinction, as it highlights the
increasing reliance on large-scale unlabeled datasets and the emer-
gence of pretraining techniques, which are essential for handling
the complexities of modern video datasets. Unlike many existing
surveys that focus primarily on model architectures or specific
datasets, this work emphasizes the shifting learning paradigms that
are enabling the field to scale and generalize.

Finally, this work incorporates a forward-looking perspective
by discussing the integration of vision-language models and trans-
formers in action recognition, which are still underexplored in
existing surveys. While other surveys mention these advances,
they often fail to address their potential for cross-modal learning
and the broader impact on video processing tasks. This paper not
only examines the impact of transformers and language models on
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Table 1: The journey of action recognition (Part 1): Methods based on RGB videos, including handcrafted features, 2D CNNs,
(2+1)D CNNs, 3D CNNs, two-stream networks, and transformers. Columns detail learning paradigms, data modalities, and
publication venues (year).

Method Venue Learning Dataset Modality

Handcrafted

HL-STIP[117] IJCV 2005 Supervised Outdoor scenes [117] RGB
Spatio-temporal Cuboids[48] VS-PETS 2005 Supervised Human Action Dataset[201] RGB
3D-SURF[9] ECCV 2006 Supervised Mikolajczyk[163] RGB
3D-SIFT[202] ACM MM 2007 Supervised Weizmann[74] RGB
NNMF Detector [284] ICCV 2007 Supervised KTH[201] RGB
HOG3D[107] BMVC 2008 Supervised KTH[201], Weizmann[74], Hollywood[118] RGB
Laptev et al.[118] CVPR 2008 Supervised KTH[201] RGB+Optical flow
Action MACH[192] CVPR 2008 Supervised KTH[201], Weizmann[74] RGB+Optical flow
Extended SURF[282] ECCV 2008 Supervised KTH[201], TRECVID 2006[179] RGB
LTP[309] ICCV 2009 Supervised KTH[201], Hollywood[118], Kissing and slapping dataset[192], UCF Sports[192] RGB
Messing et al.[159] ICCV 2009 Supervised KTH[201] RGB
Bregonzio et al.[16] CVPR 2009 Supervised KTH[201], Weizmann[74] RGB
Tracklet Descriptors [190] ECCV 2010 Supervised KTH[201], ADL[159], Hollywood[118] RGB+Optical flow
Dense Long-Duration Trajectories[224] ICME 2010 Supervised KTH[201] RGB+Optical flow
Dense Trajectories[240] IJCV 2013 Supervised KTH[201], YouTube[141], Hollywood2[155], UCF Sports[192], IXMAS[280], Olympic Sports[171], UCF50[191], UIUC[232], HMDB51[114] RGB+Optical flow
iDT[242] ICCV 2013 Supervised Hollywood2[155], HMDB51[114], Olympic Sports[171], UCF50[191] RGB+Optical flow
Taylor videos [266] ICML 2024 Supervised HMDB51[114],CATER[71],MPII Cooking[193], Kinetics-400[103], -600[19], Something-Something V2[77],NTU RGB+D[142, 205], Kinetics-skeleton[295] RGB+Skeleton

2D-based

Slow fusion[101] CVPR 2014 Supervised Sports-1M[101], UCF101[221] RGB
CNN-LSTM[312] CVPR 2015 Supervised Sports-1M[101], UCF101[221] RGB+Optical flow
LRCN[49] CVPR 2015 Supervised UCF101[221] RGB+Optical flow
Composite LSTM[223] ICML 2015 Unsupervised UCF101[221], HMDB51[114] RGB
Rank Pooling[63] TPAMI 2016 Supervised HMDB51[114], Hollywood2[155], MPII Cooking[193] RGB+Optical flow
LENN[67] CVPR 2016 Supervised UCF101[221] RGB
Bilen et al.[14] TPAMI 2017 Supervised UCF101[221], HMDB51[114] RGB
TSN[265] TPAMI 2018 Supervised HMDB51[114], UCF101[221], Kinetics-400[103], ActivityNet[18], THUMOS14[91] RGB+RGB differences+Optical flow+Warped optical flow+Audio
Attention-LSTM[152] CVPR 2018 Supervised UCF101[221], HMDB51[114], Kinetics-400[103] RGB+Optical flow+Audio
PEAR[288] ICME 2019 Reinforcement UCF101[221], Sports-1M[101] RGB+Optical flow
TSM[134] ICCV 2019 Supervised Something-Something V1[77], Something-Something V2[77], Kinetics-400[103], UCF101[221], HMDB51[114] RGB
VINCE[73] arXiv 2020 Self-supervised Kinetics-400[103] RGB
C2LSTM[154] Neurocomputing 2020 Supervised UCF101[221], HMDB51[114] RGB
MoCo[61] CVPR 2021 Self-supervised Kinetics-400[103], UCF101[221], HMDB51[114] RGB
TCL[216] CVPR 2021 Semi-supervised+Contrastive Mini-Something-V2[23], Kinetics-400[103], Charades-Ego[213] RGB
TDN[263] CVPR 2021 Supervised Something-Something V1[77], Something-Something V2[77], Kinetics-400[103] RGB
DB-LSTM[83] Neurocomputing 2021 Supervised UCF101[221], HMDB51[114] RGB+Optical flow
SeCo[308] AAAI 2021 Self-supervised Kinetics-400[103], UCF101[221], HMDB51[114], ActivityNet[18] RGB
Xiao et al.[286] CVPR 2022 Semi-supervised+Contrastive Kinetics-400[103], UCF101[221], HMDB51[114] RGB
GCSM[310] ACM MM 2023 Few-shot UCF101[221], HMDB51[114], Kinetics-400[103] RGB
GgHM[290] ICCV 2023 Few-shot HMDB51[114], UCF101[221], Kinetics-400[103], Something-Something V2[77] RGB

3D-based

C3D[231] ICCV 2015 Supervised UCF101[221] RGB
I3D[21] CVPR 2017 Supervised Kinetics-400[103], UCF101[221], HMDB51[114] RGB
P3D[183] ICCV 2017 Supervised Sports-1M[101], UCF101[221], ActivityNet[18] RGB
ResNet3D[82] CVPR 2018 Supervised Kinetics-400[103], UCF101[221], HMDB51[114], ActivityNet[18] RGB
S3D[289] ECCV 2018 Supervised Kinetics-400[103], Something-Something V1[77], UCF101[221], HMDB51[114] RGB+Optical flow
CSN[233] ICCV 2019 Supervised Sports-1M[101], Kinetics-400[103], Something-Something V1[77] RGB
SlowFast[60] ICCV 2019 Supervised Kinetics-400[103], Kinetics-600[19], Charades[214], AVA[79] RGB
STM[94] ICCV 2019 Supervised Something-Something V1[77], Something-Something V2[77], Kinetics-400[103], UCF101[221], HMDB51[114] RGB
DEEP-HAL [258] ICCV 2019 Self-supervised HMDB51[114], Charades[214],MPII Cooking[193] RGB+Optical flow
Xv et al.[292] CVPR 2019 Self-supervised UCF101[221], HMDB51[114] RGB
X3D[58] CVPR 2020 Supervised Kinetics-400[103], Kinetics-600[19], Charades[214], AVA[79] RGB
TPN[298] CVPR 2020 Supervised Kinetics-400[103], Something-Something V1[77], Something-Something V2[77], Epic-Kitchens[38] RGB
SpeedNet[12] CVPR 2020 Self-supervised Kinetics-400[103], UCF101[221], HMDB51[114], NfS[66] RGB
CoCLR[81] NeurIPS 2020 Self-supervised UCF101[221], HMDB51[114], Kinetics-400[103] RGB+Optical flow
VTHCL[297] arXiv 2020 Self-supervised Kinetics-400[103], UCF101[221], HMDB51[114] RGB
MvPL[291] ICCV 2021 Semi-supervised Kinetics-400[103], UCF101[221], HMDB51[114] RGB+Optical flow
CVRL[181] CVPR 2021 Self-supervised Kinetics-400[103], Kinetics-600[19], UCF101[221], HMDB51[114] RGB
Yang et al.[302] CVPR 2021 Supervised Kinetics-400[103], Kinetics-700[20], Charades[214], Something-Something V1[77], AVA[79] RGB
3DResNet+ATFR[57] CVPR 2021 Supervised Kinetics-400[103], Kinetics-600[19], UCF101[221], HMDB51[114], Something-Something V2[77] RGB
MoViNet[108] CVPR 2021 Supervised Kinetics-400[103], Kinetics-600[19], Kinetics-700[20], Something-Something V2[77], Epic-Kitchens-100[39], MiT[165], Charades[214] RGB
ODF+SDF [253] ACM MM 2021 Self-supervised HMDB51[114], Charades[214],MPII Cooking[193], EPIC-Kitchen[38] RGB+Optical flow + object / saliency detectors
CLASTER [76] ECCV 2022 Reinforcement+Zero-shot UCF101[221], HMDB51[114], Olympic Sports[171] RGB+Optical flow+Semantic embeddings
TFCNet[316] arXiv 2022 Supervised Diving48[133], CATER[71] RGB
Multi-Transforms[237] ICMEW 2024 Self-supervised UCF101[221], HMDB51[114] RGB
HoT [262] ICASSP 2024 Supervised HMDB51[114],MPII Cooking[193] RGB+Optical flow
Flow corr. [257] ICASSP 2024 Supervised HMDB51[114], Charades[214],MPII Cooking[193] RGB+Optical flow

Two-stream

Two-Stream ConvNet[215] NeurIPS 2014 Supervised UCF101[221], HMDB51[114] RGB+Optical flow
P-CNN[33] ICCV 2015 Supervised JHMDB[93], MPII Cooking[193] RGB+Optical Flow+Joint
TDD[261] CVPR 2015 Supervised HMDB51[114], UCF101[221] RGB+Optical flow
Two-Stream Fusion[62] CVPR 2016 Supervised UCF101[221], HMDB51[114] RGB+Optical flow
TSN-Two-Stream[264] ECCV 2016 Supervised HMDB51[114], UCF101[221] RGB+RGB differences+Optical flow+Warped optical flow
DOVF[116] CVPR 2017 Supervised UCF101[221], HMDB51[114] RGB+Optical flow
TLE[44] CVPR 2017 Supervised UCF101[221], HMDB51[114] RGB+Optical flow
ActionVLAD[72] CVPR 2017 Supervised HMDB51[114], UCF101[221], Charades[214] RGB+Optical flow
TRN-Two-Stream[321] ECCV 2018 Supervised Something-Something V1[77], Something-Something V2[77], Charades[214] RGB
TSM-Two-Stream[134] ICCV 2019 Supervised Something-Something V1[77], Something-Something V2[77], Kinetics-400[103], UCF101[221], HMDB51[114] RGB+Optical flow
KTSN[146] arXiv 2020 Supervised FSD-10[146] RGB+Optical flow+Skeleton
MSM-ResNets[326] IVC 2021 Supervised UCF101[221], HMDB51[114] RGB+Optical Flow+Motion Saliency
MAT-EffNet[320] MMSys 2023 Supervised UCF101[221], HMDB51[114], Kinetics-400[103] RGB+Optical flow
TTFA[41] SPL 2024 Few-shot Something-Something V2[77], Kinetics-400[103] RGB+Optical flow

(2+1)D-based

R(2+1)D[234] CVPR 2018 Supervised Kinetics-400[103], Sports-1M[101], UCF101[221], HMDB51[114] RGB+Optical flow
R(2+1)D+BERT[99] ECCVW 2020 Supervised HMDB51[114], UCF101[221] RGB
XDC[6] NeurIPS 2020 Self-supervised HMDB51[114], UCF101[221] RGB+Audio
ELo[180] CVPR 2020 Self-supervised Kinetics-400[103], UCF101[221], HMDB51[114] RGB+Optical flow+Audio
Jin et al.[97] ICICSP 2021 Supervised UCF101[221] RGB
GDT[176] arXiv 2021 Self-supervised Kinetics-400[103], UCF101[221], HMDB51[114] RGB+Audio
AVID[166] CVPR 2021 Self-supervised Kinetics-400[103], UCF101[221], HMDB51[114] RGB+Audio

Transformer-based

VTN[170] ICCV 2021 Supervised Kinetics-400[103], MiT[165] RGB
TimeSformer[13] ICML 2021 Supervised Kinetics-400[103], Kinetics-600[19] RGB
STAM[207] arXiv 2021 Supervised Kinetics-400[103], UCF101[221], Charades[214] RGB
ViViT[7] ICCV 2021 Supervised Kinetics-400[103], Kinetics-600[19], Epic-Kitchens-100[39], MiT[165], Something-Something V2[77] RGB
MViT[54] ICCV 2021 Supervised Kinetics-400[103], Kinetics-600[19], Something-Something V2[77], Charades[214], AVA[79] RGB
Motionformer[177] NeurIPS 2021 Supervised Kinetics-400[103], Kinetics-600[19], Something-Something V2[77], Epic-Kitchens-100[39] RGB
X-ViT[17] NeurIPS 2021 Supervised Kinetics-400[103], Kinetics-600[19], Something-Something V2[77], Epic-Kitchens-100[39] RGB
TallFormer[29] ECCV 2022 Supervised THUMOS14[91], ActivityNet[18] RGB
VideoSwin[150] CVPR 2022 Supervised Kinetics-400[103], Kinetics-600[19], Something-Something V2[77] RGB
ORViT[86] CVPR 2022 Supervised Something-Something V2[77], SomethingElse[156], Diving48[133], AVA[79], Epic-Kitchens-100[39] RGB
BEVT[270] CVPR 2022 Self-supervised Kinetics-400[103], Something-Something V2[77], Diving-48[133] RGB
MaskFeat[278] CVPR 2022 Self-supervised Kinetics-400[103], Kinetics-600[19], Kinetics-700[20] RGB
UniFormer[125] arXiv 2022 Supervised Kinetics-400[103], Kinetics-600[19], Something-Something V1[77], Something-Something V2[77] RGB
VideoMAE[230] NeurIPS 2022 Self-supervised Kinetics-400[103], Something-Something V2[77], UCF101[221], HMDB51[114], AVA[79] RGB
MTV[294] CVPR 2022 Supervised Kinetics-400[103], Kinetics-600[19], Kinetics-700[20], Something-Something V2[77], Epic-Kitchens-100[39], MiT[165] RGB
MAE-ST[59] arXiv 2022 Self-supervised Kinetics-400[103], Something-Something V2[77], AVA[79] RGB
CAST[120] NeurIPS 2023 Supervised Kinetics-400[103], Something-Something V2[77], Epic-Kitchens-100[39] RGB
UniFormerV2[126] ICCV 2023 Supervised+Contrastive Kinetics-400[103], Kinetics-600[19], Kinetics-700[20], MiT[165], Something-Something V1[77], Something-Something V2[77], ActivityNet[18], HACS[319] RGB
OmniMAE[70] CVPR 2023 Self-supervised Something-Something V2[77], Epic-Kitchens-100[39], Kinetics-400[103] RGB
MVD[271] CVPR 2023 Self-supervised Kinetics-400[103], Something-Something V2[77], UCF101[221], HMDB51[114] RGB
Hiera[196] ICML 2023 Self-supervised Kinetics-400[103], Kinetics-600[19], Kinetics-700[20], Something-Something V2[77], AVA[79] RGB
VideoMAE V2[251] CVPR 2023 Self-supervised Kinetics-400[103], Something-Something V2[77], UCF101[221], HMDB51[114] RGB
SOAP[88] ACM MM 2024 Few-shot Something-Something V2[77], Kinetics-400[103], UCF101[221], HMDB51[114] RGB
C2C[129] ECCV 2024 Zero-shot Sth-com[129] RGB
VMPs [25] ACML 2024 Supervised HMDB51[114],MPII Cooking 2[194], FineGym [206] RGB+Motion prompts
TIME Layer [24] arXiv 2024 Self-supervised UCF101[221], HMDB51[114], UWA3D Multiview Activity II[186], NTU RGB+D[205], NTU RGB+D 120[142] RGB+Depth

action recognition, but also explores how these developments con-
tribute to the broader landscape of video understanding, anomaly
detection, captioning, and beyond.

3 From Actions to Insights
In this section, we systematically explore the evolution of action
recognition through the interconnected lenses of data, model ar-
chitectures, and learning paradigms. We delve into how each per-
spective has driven advancements in the field, while highlighting
their co-evolution, showcasing how innovations in one domain
have influenced and been shaped by progress in the others. Tables
1 and 2 show the progression of action recognition methods, while
Table 3 highlights the evolution of action recognition datasets.

3.1 From a Data Perspective
The development of action recognition has been fundamentally
shaped by the evolution of datasets, which act as the foundation for
learning paradigms and model architectures. This journey shows a
dynamic interplay between the characteristics of data and techno-
logical advancements in extracting meaningful patterns, leading to
a continuous refinement of methods.

Data evolution and paradigm shifts. Early datasets like KTH
[201], Hollywood2 [155], and Olympic Sports [171] mark the initial
phase of action recognition research. These datasets, collected in
controlled environments, feature a limited number of subjects and
simple actions such as walking, waving, or running. Their simplicity
inspires researchers to focus on handcrafted features [159, 190, 242],
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Table 2: The journey of action recognition (Part 2): Methods using alternative modalities, including skeleton-based, depth-based,
infrared-based, point cloud-based, and multi-modal approaches (e.g., text or audio). Columns detail learning paradigms, data
modalities, and publication venues (year).

Method Venue Learning Dataset Modality

Skeleton-based

Dynamic Skeletons [87] CVPR 2015 Supervised MSRDailyActivity[247], CAD-60[227], SYSU 3D HOI[87] Depth+Joint
HBRNN-L [52] CVPR 2015 Supervised MSRAction3D[132], Berkeley MHAD[173], HDM05[168] Joint
Part-aware LSTM[205] CVPR 2016 Supervised NTU RGB+D[205] RGB+Depth+Joint+Infrared
LARP-SO[236] CVPR 2016 Supervised Florence3D-Action[203], MSRActionPairs3D[174], G3D-Gaming[15] Joint
STA-LSTM [218] AAAI 2017 Supervised NTU RGB+D[205] Joint
LieNet [90] CVPR 2017 Supervised NTU RGB+D[205], HDM05[168], G3D-Gaming[15] Joint+Bone
Two-Stream RNN [243] CVPR 2017 Supervised NTU RGB+D[205] Joint
Ke et al. [104] CVPR 2017 Supervised NTU RGB+D[205] Joint
VA-LSTM [315] ICCV 2017 Supervised NTU RGB+D[205], SYSU 3D HOI[87] Joint
View Invariant[145] Pattern Recognit. 2017 Supervised NTU RGB+D[205], Northwestern-UCLA[248], UWA3D Multiview Activity II[186], MSRC-12[64] Joint
Two-Stream CNN[123] ICMEW 2017 Supervised NTU RGB+D[205], PKU-MMD I[137] Joint+Skeleton motion
LSTM-CNN[122] ICMEW 2017 Supervised NTU RGB+D[205] Joint
ST-LSTM+Trust Gate [143] TPAMI 2018 Supervised NTU RGB+D[205], MSRAction3D[132], SYSU 3D HOI[87], Berkeley MHAD[173] Joint
ST-GCN[295] AAAI 2018 Supervised Kinetics-400[103], NTU RGB+D[205] Joint
Tang et al. [229] CVPR 2018 Reinforcement NTU RGB+D[205], SYSU 3D HOI[87], UTKinect-Action3D[285] Joint+Bone
AS-GCN [128] CVPR 2019 Supervised NTU RGB+D[205], Kinetics-400[103] Joint+Bone
2s-AGCN[211] CVPR 2019 Fully-supervised NTU RGB+D[205], Kinetics-skeleton[295] Joint+Bone
DGNN [210] CVPR 2019 Supervised NTU RGB+D[205], Kinetics-skeleton[295] Joint+Bone
EfficientGCN[219] ACM MM 2020 Supervised NTU RGB+D[205], NTU RGB+D 120[142] Joint+Velocity+Bone
RA-GCN [220] TCSVT 2020 Supervised NTU RGB+D[205], NTU RGB+D 120[142] Joint+Bone
Shift-GCN [30] CVPR 2020 Supervised NTU RGB+D[205], NTU RGB+D 120[142], Northwestern-UCLA[248] Joint+Bone
MS-G3D [151] CVPR 2020 Supervised NTU RGB+D 60[205], NTU RGB+D 120[142], Kinetics-skeleton[295] Joint+Bone
DSTA-Net [212] ACCV 2020 Supervised NTU RGB+D[205], NTU RGB+D 120[142] Joint+Bone
SCK+DCK / SCK⊕+DCK⊕ [110] TPAMI 2020 Supervised UTKinect-Action3D[285], Florence3D-Action[203],MSRAction3D[132],NTU RGB+D 60[205], Kinetics-400[103], HMDB51[114], MPII Cooking[193] Joint
CTR-GCN[27] ICCV 2021 Supervised NTU RGB+D[205], NTU RGB+D 120[142], Northwestern-UCLA[248] Joint+Bone
FGCN [301] TIP 2022 Supervised NTU RGB+D[205], NTU RGB+D120[142], Northwestern-UCLA[248] Joint+Bone
AGE-Ens [182] TNNLS 2022 Supervised NTU RGB+D[205], NTU RGB+D 120[142] Joint+Bone
PoseConv3D[53] CVPR 2022 Supervised Kinetics-400[103], UCF101[221], HMDB51[114] Joint+Bone+RGB
InfoGCN [34] CVPR 2022 Supervised NTU RGB+D[205], NTU RGB+D 120[142], Northwestern-UCLA[248] Joint+Bone
DASTM[153] ECCV 2022 Few-shot NTU RGB+D 120[142], Kinetics-skeleton[295] Joint+Bone
Uncertainty-DTW [255] ECCV 2022 Supervised/Unsupervised few-shot NTU RGB+D[205], NTU RGB+D 120[142], Kinetics-skeleton[295] Skeleton sequences
TranSkeleton [139] TCSVT 2023 Supervised NTU RGB+D[205], NTU RGB+D 120[142] Joint+Bone
HiCo [50] AAAI 2023 Unsupervised+Contrastive NTU RGB+D[205], NTU RGB+D 120[142], PKU-MMD I[144], PKU MMD II[144] Joint
FR-Head [322] CVPR 2023 Supervised+Contrastive NTU RGB+D[205], NTU RGB+D 120[142], Northwestern-UCLA[248] Joint+Bone
3Mformer [256] CVPR 2023 Supervised NTU RGB+D[205], NTU RGB+D 120[142], Kinetics-400[103], Northwestern-UCLA[248] Joint + Hyper-edge
HYSP [65] ICLR 2023 Self-supervised NTU RGB+D[205], NTU RGB+D 120[142], PKU-MMD I[144] Joint
PAINet[148] ICCV 2023 Few-shot NTU RGB+D 120[142], Kinetics-skeleton[295] Joint+Bone
PCM3 [314] ACM MM 2023 Self-supervised NTU RGB+D[205], NTU RGB+D 120[142], PKU-MMD I[144] Joint+Bone+Motion
Stream-GCN [304] IJCAI 2023 Supervised NTU RGB+D[205], NTU RGB+D 120[142], Northwestern-UCLA[248] Joint+Bone
SkeletonGCL [89] arXiv 2023 Self-supervised NTU RGB+D[205], NTU RGB+D 120[142], Northwestern-UCLA[248] Joint+Bone
DSCNet [31] ESWA 2024 Supervised+Multimodal NTU RGB+D[205], NTU RGB+D 120[142], PKU-MMD I[144], UAV-Human[127], IKEA ASM[11], Northwestern-UCLA[248] RGB+Joint+Bone
Skeleton-OOD [293] Neurocomputing 2024 Supervised NTU RGB+D[205], NTU RGB+D 120[142], Kinetics-400[103] Joint
ViA [300] IJCV 2024 Self-supervised Posetics[299], NTU RGB+D[205], NTU RGB+D 120[142], Toyota Smarthome[40], UAV-Human[127], Penn Action[317] Joint+Motion
DeGCN [169] TIP 2024 Supervised NTU RGB+D[205], NTU RGB+D 120[142], Northwestern-UCLA[248] Joint+Bone
Js-SaPR-GCN[121] TCSVT 2024 Supervised NTU RGB+D[205], NTU RGB+D 120[142], Northwestern-UCLA[248] Joint+Bone+Motion
BlockGCN [323] CVPR 2024 Supervised NTU RGB+D[205], NTU RGB+D 120[142], Northwestern-UCLA[248] Joint+Bone+Motion
JEANIE [260] IJCV 2024 Supervised/Unsupervised few-shot NTU RGB+D[205], NTU RGB+D 120[142], Kinetics-skeleton[295], MSRAction3D[132], UWA3D Multiview Activity[187] Skeleton sequences
SA-DVAE[130] arXiv 2024 Zero-shot NTU RGB+D[205], NTU RGB+D 120[142], PKU-MMD[144] Joint
ProtoGCN [140] arXiv 2024 Self-supervised+Prototype NTU RGB+D[205], NTU RGB+D 120[142], Kinetics-skeleton[295], FineGYM[206] Joint
HSIC-based[303] arXiv 2024 Supervised NTU RGB+D[205], NTU RGB+D 120[142], Northwestern-UCLA[248] Joint+Bone
USDRL[281] AAAI 2025 Self-supervised NTU RGB+D[205], NTU RGB+D 120[142], PKU-MMD I[144], PKU-MMD II[144] Joint+Bone+Motion

Depth-based

HON4D[174] CVPR 2013 Supervised MSRAction3D[132], MSRDailyActivity3D[246], MSRActionPairs3D[174] Depth
HOPC[187] ECCV 2014 Supervised MSRAction3D[132], MSRActionPairs3D[174], UWA3D Multiview Activity[187] Depth+point cloud
Wang et al.[268] Trans. Human-Mach. Syst. 2016 Supervised MSRAction3D[132], MSRDailyActivity3D[246], UTKinect-Action3D[285] Depth
Rahmani et al.[188] CVPR 2016 Supervised Northwestern-UCLA[248], UWA3D Multiview Activity II[186] Depth
S2DDI[269] ICCVW 2017 Supervised MSRAction3D[132], G3D-Gaming[15], MSRDailyActivity3D[246], SYSU 3D HOI[87], UTD-MHAD[22] Depth
Wang et al.[267] TMM 2018 Supervised NTU RGB+D[205] Depth
MVDI[287] Inf. Sci. 2018 Supervised NTU RGB+D[205], Northwestern-UCLA[248], UWA3D Multiview Activity II[186] Depth
3DFCNN[197] Multimed. Tools Appl. 2020 Supervised NTU RGB+D[205], Northwestern-UCLA[248], UWA3D Multiview Activity II[186] Depth
Liu et al.[138] ICASSP 2017 Supervised MSRAction3D[132], DHA[136] Depth
Dhiman et al.[43] TIP 2020 Supervised NTU RGB-D[205], UWA3D Multiview Activity II[186], Northwestern-UCLA[248] RGB+Depth
Stateful ConvLSTM[198] arXiv 2020 Supervised NTU RGB+D[205] Depth
DEAR[189] arXiv 2024 Supervised Something-Something V2[77] RGB+Depth

Infrared-based

Gao et al.[68] Neurocomputing 2016 Supervised InfAR[68] Infrared+Optical flow
Jiang et al.[96] CVPRW 2017 Supervised InfAR[68] Infrared+Optical flow
Kawashima et al.[102] AVSS 2017 Supervised Custom Dataset[102] Infrared
Shah et al.[204] SPIE 2018 Supervised Custom IR Dataset[204] Infrared
TSTDDs[149] SPL 2018 Supervised InfAR[68], NTU RGB+D[205] Infrared+Optical flow
Akula et al.[3] CSR 2018 Supervised Custom IR Dataset[3] Infrared
Imran et al.[92] Infrared Phys. Technol. 2019 Supervised InfAR[68], IITR-IAR[92] Infrared+Optical flow
Meglouli et al.[157] CEAI 2019 Supervised InfAR[68] Infrared+Optical flow
Mehta et al.[158] ICPR 2020 Adversarial TSF[235] Infrared+Optical flow

Point cloud

MeteorNet[147] ICCV 2019 Supervised MSRAction3D[132] Point cloud
PointLSTM[164] CVPR 2020 Supervised MSRAction3D[132] Point cloud
3DV-PointNet++[275] CVPR 2020 Supervised NTU RGB+D[205], NTU RGB+D 120[142], Northwestern-UCLA[248], UWA3D Multiview Activity II[186] Depth
ASTA3DConv[239] Trans. Instrum. Meas. 2020 Supervised MSRAction3D[132] Point cloud
Wang et al.[244] WACV 2021 Self-supervised NTU RGB+D[205], NTU-PCL[205], MSRAction3D[132] Point cloud
P4Transformer[55] CVPR 2021 Supervised MSRAction3D[132], NTU RGB+D[205], NTU RGB+D 120[142] Point cloud
PSTNet[56] ICLR 2021 Supervised MSRAction3D[132], NTU RGB+D[205], NTU RGB+D 120[142] Point cloud
PST2[279] WACV 2022 Supervised MSRAction3D[132] Point cloud
MaST-Pre[208] ICCV 2023 Self-supervised MSRAction3D[132], NTU RGB+D[205] Point cloud
PointCPSC[209] ICCV 2023 Self-supervised MSRAction3D[132], NTU RGB+D[205] Point cloud
3DInAction[10] CVPR 2024 Supervised MSRAction3D[132] Point cloud
KAN-HyperpointNet[28] arXiv 2024 Supervised NTU RGB+D[205], MSRAction3D[132] Point cloud

Text / Audio

CPD[131] arXiv 2020 Self-supervised Kinetics-400[103], HMDB51[114], UCF101[221] RGB+Text
G-Blend[272] CVPR 2020 Multi-task Kinetics-400[103], Mini-Sports[101], EPIC-Kitchen[38] RGB+Optical flow+Audio
MIL-NCE [161] CVPR 2020 Self-supervised HowTo100M[162], HMDB51[114], UCF101[221] RGB+Text
MMV[5] NeurIPS 2020 Self-supervised UCF101[221], HMDB51[114], Kinetics-600[19] RGB+Audio+Text
VIMPAC[228] arXiv 2021 Self-supervised Something-Something V2[77], Diving48[133], UCF101[221], HMDB51[114] RGB+Text
InternVideo[274] CVPR 2023 Self-supervised Kinetics-400[103], Kinetics-600[19], Kinetics-700[20], Something-Something V1[77], Something-Something V2[77], ActivityNet[18], HACS[319], HMDB51[114] RGB+Text
Side4Video[306] arXiv 2023 Self-supervised Something-Something V1[77], Something-Something V2[77], Kinetics-400[103] RGB+Text
EZ-CLIP[2] arXiv 2024 Zero-shot Kinetics-400[103], HMDB51[114], UCF101[221], Something-Something V2[77] RGB+Text
SATA[135] arXiv 2024 Zero-shot UCF101[221], HMDB51[114] RGB+Text
TC-CLIP[106] ECCV 2024 Zero-shot/Few-shot/Fully-supervised HMDB51[114], UCF101[221], Kinetics-400[103], Something-Something V2[77] RGB+Text
InternVideo2[273] arXiv 2024 Self-supervised+Multimodal Kinetics-400[103], Kinetics-600[19], Kinetics-700[20], MiT[165], Something-Something V2[77], ActivityNet[18], HACS[319], Charades[214], HMDB51[114] RGB+Audio+Text
OmniViD[245] CVPR 2024 Supervised Kinetics-400[103], Something-Something V2[77], UCF101[221], HMDB51[114] RGB+Text
LoCATe-GAT[200] TETCI 2024 Zero-shot UCF101[221], HMDB51[114], ActivityNet[18], Kinetics-400[103] RGB+Text
STDD[311] arXiv 2024 Zero-shot Kinetics-600[19], UCF101[221], HMDB51[114] RGB+Text

such as Histogram of Oriented Gradients (HOG) [37] and dense
trajectories [241]. These manually crafted descriptors, combined
with traditional classifiers like Support Vector Machines (SVMs),
excel in recognizing these straightforward actions.

The next wave of datasets, such as HMDB51 [114], UCF101 [221],
and Sports-1M [101], introduce more diversity in terms of actions,
scenes, and contexts. The increased scale and variety requires a
paradigm shift towards data-driven methods [152, 154, 223]. These
datasets facilitate the adoption of deep learning, as convolutional
neural networks (CNNs) could now exploit the broader representa-
tion power of larger and more complex datasets [305].

Larger-scale datasets like the Kinetics family [19, 20, 103], Something-
Something V1 and V2[77], and Moments in Time [165] further push
the field towards supervised learning. These datasets, with millions
of labeled videos, provide the necessary foundation for deep models

to achieve state-of-the-art results [58, 108, 298]. However, the high
cost of annotating video data leads to innovations in unsupervised
and self-supervised learning. For instance, unlabeled datasets like
HowTo100M [162] spur progress in contrastive learning approaches
[61, 73, 81], while multimodal datasets, such as video-text pairs from
ActivityNet Captions [113] and WebVid [8], enable breakthroughs
in vision-language models like CLIP [184] and Flamingo [4]. These
advancements demonstrate how the evolution of datasets directly
influences paradigm shifts, from supervised learning to unsuper-
vised, self-supervised, and multimodal approaches. Each paradigm
addresses the growing complexity and scale of modern video data.

Learning paradigms driven by data. The nature of datasets
plays a pivotal role in determining the choice of learning paradigms.
Supervised learning thrives on large, labeled datasets, where explicit
annotations like action labels provide clear supervision signals.
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Table 3: The journey of action recognition datasets: An overview of their evolution over time. This table includes detailed
statistics, covering key aspects such as sensors, modalities, and characteristics, providing insights into their diversity and scope.

Datasets Year #Classes #Subjects #Views #Video clips Sensor Modalities Dataset type
KTH[201] 2004 6 25 1 2391 Static camera RGB Human actions (e.g., walking, jogging)
Weizmann[74] 2005 10 9 1 90 - RGB Human actions (e.g., jumping, running)
IXMAS[280] 2006 11 10 5 330 - RGB Movie Scenes (e.g., kissing, running)
Hollywood[118] 2008 8 - - 1422 - RGB Movie Scenes (e.g., eating, driving)
Hollywood2[155] 2009 12 - - 1709 - RGB Movie Scenes (e.g., running, kissing)
ADL[160] 2009 10 5 - 150 Static camera RGB Daily Activities (e.g., brushing teeth, reading)
Olympic Sports[171] 2010 16 - - 783 - RGB Sports (e.g., high jumping, diving)
MSRAction3D[132] 2010 20 10 1 567 Kinect v1 Depth+3DJoints Daily Activities (e.g., drinking, walking)
CAD-60[227] 2011 14 4 - 68 Kinect v1 RGB+Depth+3DJoints Human performing activities (e.g., cleaning objects)
HMDB51[114] 2011 51 - - 6,766 - RGB Human actions (e.g., jumping, running)
MSRDailyActivity3D[246] 2012 16 10 1 320 Kinect v1 RGB+Depth+3DJoints Daily Activities (e.g., calling, playing game)
UCF101[221] 2012 101 - - 13,320 - RGB Body motion, Human-object interactions, sports etc.
UTKinect-Action3D[285] 2012 10 10 1 199 Kinect v1 RGB+Depth+3DJoints Human actions (e.g., waving hands, pushing)
MPII Cooking[193] 2012 64 12 1 3,748 - RGB Cooking
G3D-Gaming[15] 2012 20 10 1 - Kinect v1 RGB+Depth+3DJoints Gaming scenario (e.g., defending, climbing)
Berkeley MHAD[173] 2013 11 12 4 660 Multi-baseline stereo cameras RGB+Depth+3DJoints+Accelerometer+Audio Human actions (e.g., throwing, clapping hands)
CAD-120[112] 2013 10 4 - 120 Kinect v1 RGB+Depth+3DJoints Human performing activities (e.g., picking objects)
UCF50[191] 2013 50 - - 6676 - RGB Body motion, Human-object interactions, sports etc.
Florence3D-Action[203] 2013 9 10 1 215 Kinect v1 RGB+Depth+3DJoints Human actions (e.g., bowing, drinking)
MSRActionPairs3D[174] 2013 12 10 1 360 Kinect v1 RGB+Depth+3DJoints Human actions (e.g., picking up, putting down)
Sports-1M[101] 2014 487 - - 1,000,000 - RGB Sports (e.g., swimming, skiing)
THUMOS14[91] 2014 101 - - 5,613 - RGB Human Actions (e.g., making up, archery)
Northwestern-UCLA[248] 2014 10 10 3 1494 Kinect v1 RGB+Depth+3DJoints Human actions (e.g., dropping trash)
UWA3D Multiview Activity[187] 2014 30 10 1 701 Kinect v1 RGB+Depth+3DJoints Daily Activities (e.g., holding head, walking)
ActivityNet[18] 2015 203 - - 27,801 - RGB Human actions (e.g., drawing, washing)
MPII Cooking 2[194] 2015 67 30 1 273 Static camera RGB Cooking
UWA3D Multiview Activity II[186] 2015 30 9 4 1,070 Kinect v1 RGB+Depth+3DJoints Daily Activities (e.g., waving head, jumping)
SYSU 3D HOI[87] 2015 12 40 - 480 Kinect v1 RGB+Depth+3DJoints Human-Object Interactions (e.g., sweeping the floor)
NTU RGB+D[205] 2016 60 40 80 56,880 Kinect v2 RGB+Depth+3DJoints Daily actions, health-realted actions etc.
InfAR[68] 2016 12 40 - 600 Infrared camera Infrared Human actions (e.g., jogging)
TSF[235] 2016 2 - 1 44 FLIR ONE Infrared Falls and normal activities
Charades[214] 2016 157 - - 66,500 - RGB+Flow Indoor activities (e.g., cleaning)
PKU-MMD I[137] 2017 51 66 3 1,076 Kinect v2 RGB+Depth+Infrared+3DJoints Human actions (e.g., walking)
NfS[66] 2017 - - - 100 240 FPS camera RGB Visual object tracking
Kinetics-400[103] 2017 400 - - 306,245 - RGB Human-centered actions (e.g., playing instruments)
Something-Something V1[77] 2017 174 - - 108,499 - RGB Human performing actions with everyday objects
Kinetics-skeleton[295] 2017 400 - - 260,232 - 2DJoints Human-centered actions
HACS[319] 2017 200 - - 1,500,000 - RGB+Flow Human actions (e.g., dancing)
Charades-Ego[213] 2018 157 112 2 68,536 Head-mounted+standard camera RGB Egocentric indoor activities
AVA[79] 2018 80 - - 211,000 - RGB+Flow Human actions (e.g., talking, sitting)
Diving48[133] 2018 48 - - 18,404 - RGB+Flow Diving actions
Epic-Kitchens[38] 2018 149 32 - 39,594 - RGB+Flow Cooking
Something-Something V2[77] 2018 174 - - 220,847 - RGB Human performing actions with everyday objects
MiT[165] 2018 339 - - 1,000,000+ - RGB+Audio+Flow Dynamic actions (e.g., human, animals)
Kinetics-600[19] 2018 600 - - 495,547 - RGB Human-centered actions (e.g., playing instruments)
NTU RGB+D 120[142] 2019 120 106 155 114,480 Kinect v2 RGB+Depth+3DJoints+Infrared Daily actions, health-realted actions etc.
IITR-IAR[92] 2019 21 35 - 1,470 FLIR T1020 Infrared Human actions (hugging, fighting)
Kinetics-700[20] 2019 700 - - 650,317 - RGB Human-centered actions (e.g., playing instruments)
HowTo100M[162] 2019 23,611 - - 136,000,000 - RGB Instructional videos (e.g., cooking)
CATER[71] 2019 301 - - 5,500 - RGB Compositional actions and temporal reasoning
FineGym[206] 2020 530 - - 32,697 - RGB Gymnasium videos (e.g., balance beam)
PKU-MMD II[144] 2020 41 13 3 1,009 Kinect v2 RGB+Depth+Infrared+3DJoints Human actions (e.g., standing)
EPIC-KITCHENS-100[39] 2020 4,053 37 - 89,977 GoPro Hero7 Black RGB+Flow Cooking
UAV-Human[127] 2021 155 119 - 22,476 UAV Camera RGB+3DJoints Human Actions (e.g., walking, jogging)

However, challenges such as noisy labels and class imbalance in
real-world datasets can degrade performance, necessitating robust
loss functions and data augmentation techniques [36, 75, 307].

Unsupervised learning, by contrast, eliminates the reliance on
labels and aims to learn generalizable representations. For example,
methods like MoCo [61] and BYOL [78] use contrastive learning
to distinguish video instances based on their spatiotemporal fea-
tures. These methods benefit from diverse datasets with varied
contexts, enabling the model to capture a broad range of patterns
[69, 195]. However, the lack of labels complicates evaluation, as
metrics often depend on downstream tasks [50, 223]. Few-shot and
zero-shot learning paradigms address the scarcity of labeled exam-
ples [129, 277]. Few-shot methods, such as prototypical networks
[217], rely on curated support sets to generalize across classes. Zero-
shot approaches [2, 106], powered by vision-language models, use
textual descriptions to infer knowledge about unseen actions. For
example, CLIP [184] can recognize actions like “playing guitar” by
aligning visual features with corresponding textual embeddings,

even when such actions are absent in the training data [306]. Self-
supervised learning builds on unlabeled data through pretext tasks,
such as temporal order prediction or video masking [59, 230]. These
tasks encourage the model to learn useful features without explicit
supervision. However, the design of pretext tasks must align with
downstream objectives; otherwise, the learned representations may
not generalize effectively.

Architectural innovation. Video datasets, unlike static image
datasets such as ImageNet [195], introduce temporal complexity,
requiring specialized architectures. The sequential nature of video
data drives innovation in model design to capture both spatial and
temporal dependencies. Early attempts [63, 67, 101, 312] to adapt
2D CNNs for video processing fall short, as they are ill-equipped to
handle temporal relationships. This limitation leads to the devel-
opment of 3D CNNs and two-stream networks, such as C3D[231]
and I3D[21], which either extend convolutional operations into the
temporal dimension to capture motion dynamics or model spatial
and temporal information separately. More recently, transformers
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[7, 54, 170, 177] have emerged as a powerful alternative. Models like
TimeSformer[13] and Video Swin Transformer [150] use attention
mechanisms to capture long-range temporal dependencies, making
them particularly effective for large-scale and complex datasets.
These architectures outperform earlier methods in tasks requiring
fine-grained temporal reasoning [88, 196, 251].

Multimodal datasets [137, 205, 214, 285] have further driven the
design of architectures that integrate multiple data types. For exam-
ple, models like CLIP [184] and Flamingo [4] fuse video and textual
information, enabling cross-modal reasoning. Similarly, methods
tailored for RGB-D data (e.g., combining RGB frames with depth
maps) use specialized components to process the complementary
modalities effectively. Data augmentation and preprocessing also
influence architectural choices. For instance, datasets with high
variability in lighting, viewpoint, or action dynamics require archi-
tectures with robust components like dropout layers or attention
mechanisms [39, 77, 142, 205]. Self-supervised models [5, 274] ben-
efit from contrastive augmentation techniques, where diverse crops
or temporal shifts enhance the model’s ability to learn invariant
spatiotemporal features. Finally, the scale of datasets dictates the
complexity of models. Large datasets enable the training of deeper
architectures with millions of parameters, while smaller datasets
necessitate simpler models or the use of transfer learning [1]. Pre-
trained models on large visual datasets (e.g., Kinetics [103] or Ima-
geNet [195]) can be fine-tuned to smaller, domain-specific datasets,
demonstrating how data availability shapes model design [42]. Rep-
resentative models include [59, 120, 196, 230, 251, 273, 274, 306].

The journey of action recognition datasets underscores their
central role in shaping the field. From early handcrafted descriptors
[284] to cutting-edge transformers [13] and multimodal models
[272], the evolution of datasets has driven progress in both learn-
ing paradigms and architectures. As datasets become increasingly
diverse and complex, they will continue to inspire innovations in
action recognition, pushing the boundaries of what machines can
learn from video data.

3.2 From a Model Perspective
The journey of action recognition models has been shaped by the in-
terplay between data characteristics and the demand for capturing
spatiotemporal relationships. Early approaches, intermediate inno-
vations, and the latest breakthroughs all reflect how the challenges
and opportunities in data have driven model evolution.

Early models: handcrafted descriptors and motion-aware
designs. Initial attempts at action recognition rely heavily on hand-
crafted descriptors tailored to conventional RGB videos [118, 190].
These methods focus on extracting spatiotemporal and motion in-
formation. For example, spatiotemporal features like 3D-SIFT [202],
extended SURF [282], HOG3D [107], and local trinary patterns
[309] are developed to analyze relationships across frames. These
descriptors effectively capture the dynamics of simple actions (e.g.,
walking, waving) in controlled settings. However, they struggle
with the complexity of real-world videos, particularly when camera
motion introduces noise [324]. To address these challenges, dense
trajectories [240] and improved dense trajectories [242] emerge as
robust solutions. By tracking local features through video frames,
these methods mitigate the impact of camera motion and enabled

better representation of dynamic actions. Bag-of-visual-words [178]
and Fisher vector embeddings [119] further enhance their effec-
tiveness, allowing these descriptors to achieve significant success
despite limited training data.

Deep learning revolution: spatiotemporal feature learning.
The advent of large-scale datasets like Sports-1M and Kinetics-400
catalyzes a paradigm shift toward learned feature representations
[233]. Inspired by the success of 2D CNNs in image recognition, re-
searchers initially explore 2D networks with temporal aggregation,
such as CNN-LSTM[312] and TSN[265], which fuse spatial features
across frames. However, these methods lack the capacity to fully
capture temporal dynamics [276].

To overcome these limitations, models like two-stream ConvNets
[215] and 3D CNNs (e.g., C3D[231] and I3D[21] are introduced.
Two-stream architectures use separate branches for spatial and
motion information, often using optical flow [116, 261] for the mo-
tion stream. Meanwhile, 3D CNNs extend convolutional operations
into the temporal dimension, directly modeling spatiotemporal fea-
tures [183]. Despite their success, both approaches face challenges:
two-stream models incur high computational costs [134], while 3D
CNNs require extensive data and computational resources [108].

Innovations like (2+1)D convolution decompose 3D operations
into separate spatial and temporal components, balancing efficiency
and performance [99, 238]. Examples include R(2+1)D networks[234]
and their integration with transformers [97], which enhance the
ability to model long-range temporal dependencies.

Transformer era andmultimodal integration. Transformers
have redefined action recognition by introducing global attention
mechanisms [222]. Vision transformers (ViTs) initially demonstrate
the potential for spatial feature extraction in videos [51]. Subse-
quent transformer-based video models, such as TimeSformer[13]
and Motionformer [177], extend this approach to capture com-
plex spatiotemporal relationships. These models excel at handling
diverse data distributions and variability in lighting, scale, and
viewpoint [88, 129, 251].

Recent advancements include video masked autoencoders (e.g.,
VideoMAE [230] andVideoMAEV2 [251]), which use self-supervised
learning to extract spatial and temporal representations. These ar-
chitectures, inspired by masked autoencoders in image tasks [84],
have set new benchmarks in efficiency and performance for video
analysis. Simultaneously, multimodal models such as CLIP [184]
and BLIP [124] have integrated video and text data, unlocking
new capabilities in action recognition. By aligning video frames
with textual descriptions, these models facilitate tasks like zero-
shot action recognition and general-purpose video understanding
[106, 135, 200]. This integration has paved the way for applications
extending beyond action recognition, including video captioning
and anomaly detection [45, 47, 296, 325].

Expanding modalities: depth, skeleton, and large foun-
dation models. The introduction of depth videos and skeleton
sequences through devices like the Microsoft Kinect expands the
scope of action recognition [185]. Depth-based models, such as
HON4D [174] and HOPC [187], effectively segment human sub-
jects in cluttered scenes, while skeleton-based models capitalize
on the structural and temporal continuity of 3D joint movements
[53, 300, 322]. Handcrafted skeleton features (e.g., LARP-SO [236])
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evolve into learned representations like ST-GCN [295] and its suc-
cessors [34, 121, 140, 169, 219, 220, 254, 259, 301, 304, 323], includ-
ing ShiftGCN [30] and CTR-GCN [27]. These graph-based mod-
els advance the field by using human pose information for more
accurate action recognition. Point cloud-based methods include
[10, 164, 275].

Large foundation models like InternVideo2 [273] represent the
latest milestone in action recognition. Trained on vast, multimodal
datasets, these models demonstrate exceptional versatility across
video processing tasks [245, 272, 274]. They exemplify how in-
creased data volume and multimodal integration enable the devel-
opment of deeper, more powerful architectures, bridging the gap
between specialized tasks and general video understanding [5, 46].

Insights. The evolution of action recognition models under-
scores a recurring theme: data characteristics dictate model de-
sign. Early handcrafted methods prioritize robustness to motion
noise, while deep learning models embrace scale and diversity
[175]. Transformers and multimodal architectures have further
transformed the field, emphasizing the importance of flexibility and
scalability [272, 273]. As video data continues to grow in complex-
ity and volume, future models must navigate challenges such as
motion diversity, temporal resolution, and ethical considerations
in data use. This journey, driven by both data availability and com-
putational advances, highlights the symbiotic relationship between
datasets and model architectures in shaping the trajectory of action
recognition.

3.3 From a Learning Perspective
The evolution of action recognition models is closely tied to the de-
velopment of learning paradigms, each offering unique insights and
solutions to the challenges posed by video data. From supervised
methods relying on large labeled datasets to emerging paradigms
like self-supervised and zero-shot learning, the journey reflects a
dynamic interplay between data availability, model architecture,
and task complexity.

The supervised learning era. Supervised learning has been
the dominant paradigm in action recognition for decades [67, 101,
231, 326]. Early models rely on fully labeled datasets, where each
video is paired with a specific label, such as an action category
or bounding box. This explicit mapping between inputs and out-
puts, guided by loss functions like cross-entropy, enables models
to learn spatiotemporal patterns effectively [318]. However, the
reliance on high-quality labeled datasets introduces limitations
[105]. Labeling video data is costly, time-consuming, and prone to
biases, such as noisy labels or skewed class distributions, which
degrade model performance. Despite these challenges, supervised
learning establishes foundational architectures, including convo-
lutional neural networks (CNNs) [49, 289, 312] and two-stream
networks [134, 264, 321], that excel in tasks requiring spatial and
motion analysis. Pretraining on large-scale datasets like Kinetics
[19, 20, 103] allows models to capture diverse motion patterns, re-
ducing the need for task-specific data through transfer learning
[21]. This paradigm demonstrates how large labeled datasets can
accelerate progress but also highlights the necessity for alternative
approaches to address scalability and diversity challenges.

The rise of self-supervised and semi-supervised learning.
To overcome the dependence on labeled data, self-supervised learn-
ing emerges as a powerful alternative [12, 81]. In this paradigm,
models generate pseudo-labels from the data itself, using auxil-
iary tasks such as predicting motion trajectories [292], solving spa-
tiotemporal puzzles [237], or reconstructing masked regions [230].
Methods like contrastive learning (e.g., SimCLR [26], MoCo [61] and
video masked autoencoders (e.g., VideoMAE [230]) demonstrate
the ability to learn high-quality spatiotemporal features without
explicit supervision [251]. These approaches use data augmentation
to create positive and negative pairs, enabling models to distinguish
between similar and dissimilar samples [308].

Self-supervised learning has proven particularly effective for pre-
training on large-scale unlabeled datasets, significantly enhancing
performance on downstream tasks like action recognition. For in-
stance, VideoMAEmodels, pretrained on small datasets likeHMDB51,
achieve competitive results, showcasing the paradigm’s efficiency
in using limited data [230, 251]. Semi-supervised learning bridges
the gap between supervised and self-supervised approaches by
combining small amounts of labeled data with large volumes of un-
labeled data [98, 216, 286, 291]. This paradigm reduces the reliance
on extensive labeling efforts, using labeled examples to guide the
learning of representations from unlabeled data. Semi-supervised
techniques have proven valuable in scenarios where labeled video
data is scarce or expensive to obtain.

Emerging paradigms: few-shot, zero-shot, and unified learn-
ing.Recent advancements [2, 200, 290, 310] have focused onmaking
action recognition models more flexible and adaptable. Few-shot
learning enables models to generalize to new action categories
using only a handful of labeled examples. Architectures like proto-
typical networks [217] and relation networks [226] are designed to
perform well under limited data conditions, using meta-learning
principles. Zero-shot learning goes a step further, enabling models
to classify unseen action categories using multimodal inputs, such
as textual descriptions or video-text pairs [106]. Models like CLIP
[184] demonstrate the effectiveness of vision-language pretraining
in achieving generalization across tasks.

Transformers have been instrumental in advancing these paradigms
[13, 170]. Originally developed for natural language processing
[283], transformers excel in multimodal and unified learning set-
tings. Their attention mechanisms capture long-range dependen-
cies, enabling robust temporal dynamics modeling [35, 172]. By
integrating vision and text modalities, transformers facilitate cross-
domain learning, paving the way for unified multimodal frame-
works capable of handling diverse tasks, from action recognition
to video question answering [313].

Insights.The trajectory of action recognition learning paradigms
underscores the evolving role of data. Labeled datasets have driven
supervised learning, while unlabeled and multimodal datasets fuel
the rise of self-supervised, semi-supervised, and zero-shot approaches
[175]. The interplay between data characteristics and learningmeth-
ods has shapedmodels, fromCNNs to vision transformers [7, 13, 49].
Future innovations will likely focus on unified learning paradigms
that integrate multimodal data and use pretrained video foundation
models for broader generalization across tasks.



WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Xi Ding and Lei Wang

4 Future Directions
In this section, we highlight three key areas poised to shape the
future of action recognition: multimodal integration, transformer-
based architectures, and vision-language models (VLMs). These
directions not only aim to enhance model performance but also
tackle some of the most pressing challenges in video understanding.

Integration of multimodal data. As video data alone often
fails to capture the full complexity of actions, integrating multi-
modal data (visual, auditory, and textual) has become a critical focus
in advancing action recognition. This integration enables models
to use complementary information, such as speech, environmental
sounds, or contextual text, to better understand actions in diverse
and noisy settings. For example, recognizing an action like “talking
on the phone” becomes more accurate when the auditory signal
(speech) is paired with visual information (body language). The abil-
ity to simultaneously process multiple data streams presents new
challenges in synchronizing and aligning heterogeneous modalities,
but the potential for more robust and nuanced action recognition is
vast. This shift to multimodal systems may help models understand
actions with greater contextual awareness, reducing ambiguity and
improving performance in real-world applications where visual
cues alone are often insufficient.

Transformer-based architectures. The rise of transformer-
based architectures represents a monumental shift in how temporal
dependencies are modeled in action recognition. Unlike traditional
CNNs, which rely on local spatial filters, transformers excel at cap-
turing long-range dependencies across sequences, making them
ideal for video data where context over time is crucial. Transform-
ers enable better modeling of complex temporal dynamics, such
as long-range interactions between frames or global motion pat-
terns that span the entire video. By using self-attention mecha-
nisms, transformers can selectively focus on relevant parts of the
video sequence, allowing for more accurate action classification,
even in the presence of noise or occlusions. This ability to handle
long-range dependencies also opens the door to more sophisticated
methods for action recognition in dynamic and highly variable
environments, such as sports or surveillance footage, where actions
are often interdependent and occur over extended periods. While
transformer models are computationally intensive, their increasing
efficiency and scalability make them a promising avenue for the
next generation of action recognition systems.

Vision-language models. Another transformative trend in
action recognition is the integration of vision-language models
(VLMs), which combine the understanding of visual content with
linguistic representations. These models have the potential to over-
come one of the biggest challenges in action recognition: under-
standing ambiguous or context-dependent actions. By incorporat-
ing natural language processing (NLP) techniques, VLMs can infer
the meaning behind a sequence of actions in a video based on
textual descriptions or situational context. For instance, the ac-
tion of “grabbing a cup” could be interpreted differently based on
the surrounding environment or verbal cues, such as “grabbing a
cup of coffee” versus “grabbing a cup to throw”. This alignment
between vision and language facilitates more comprehensive rea-
soning about actions and allows models to handle complex, abstract

tasks like action sequencing, goal recognition, and activity predic-
tion. Furthermore, VLMs enable the development of systems that
can interact with users or adapt to specific contexts, making them
highly applicable for interactive media, autonomous systems, and
personalized healthcare applications.

Potential for cross-domain advancements. The integration
of these emerging trends also opens new opportunities for cross-
domain advancements in action recognition. Multimodal data and
transformer architectures, for instance, can be combined to tackle
complex video datasets where both long-range temporal dependen-
cies and multimodal context are essential. Similarly, VLMs can be
enhanced with transformer-based architectures to refine the atten-
tion mechanisms, improving both the understanding of temporal
dynamics and the contextual alignment between visual and lin-
guistic data. These hybrid approaches not only promise to address
current challenges but also pave the way for a new generation of
action recognition systems that are adaptable, context-aware, and
capable of reasoning about actions in a human-like manner.

The future of action recognition lies in the intersection of multi-
modal data integration, transformer-based architectures, and VLMs.
By addressing the challenges of temporal complexity, contextual
ambiguity, and cross-domain generalization, these trends have the
potential to revolutionize the field, making action recognition more
accurate, adaptable, and robust across diverse real-world applica-
tions. As these technologies mature, we anticipate a significant leap
forward in how video content is understood and processed, leading
to more intelligent systems that can interpret, predict, and interact
with the world in ways previously imagined only in science fiction.

5 Conclusion
Action recognition has evolved significantly, driven by advance-
ments in data, model architectures, and learning paradigms. Initially
relying on handcrafted features and small labeled datasets, the field
shifted with the advent of large-scale video datasets and learned rep-
resentations, usingmodels like 2D, 3D, and (2+1)D CNNs, and GCNs.
As video data grow more complex, innovative learning paradigms,
such as self-supervised, few-shot, and contrastive learning, help
harness the power of large, unlabeled datasets. The introduction
of transformer-based models marks a key milestone, enhancing
the ability to capture temporal dynamics. Masked autoencoders
improve the balance between spatial and temporal features, while
the integration of language models enriched action recognition
with semantic context. The rise of video foundation models, com-
bining image, video, and language data, has expanded the scope of
action recognition to include broader video processing tasks, such
as anomaly detection and video captioning. Ultimately, the evolu-
tion of action recognition has transformed it into a core element
of general video processing, offering insights for future challenges
and opportunities in video analysis and beyond.
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