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Abstract

There has been a surge of interest in language model agents that can navigate
virtual environments such as the web or desktop. To navigate such environments,
agents benefit from information on the various elements (e.g., buttons, text, or
images) present. However, it remains unclear which element attributes have the
greatest impact on agent performance, especially in environments that only provide
a graphical representation (i.e., pixels). Here we find that the ordering in which ele-
ments are presented to the language model is surprisingly impactful—randomizing
element ordering in webpages compromises average agent performance to a degree
comparable to removing all visible text from webpages. While web agents benefit
from the semantic hierarchical ordering of elements available via the browser,
agents that parse elements directly from pixels do not have access to any such order-
ing. Here we endeavor to derive effective orderings and investigate the impact of
various element ordering methods in web and desktop environments. We find that
dimensionality reduction provides a viable ordering for pixel-only environments.
We train a UI element detection model to derive elements from pixels and apply our
findings to an agent benchmark—OmniACT—where we only have access to pixels.
Our method completes more than two times as many tasks on average relative to
the previous state-of-the-art.

1 Introduction

There has been growing interest in using language model (LM) agents to autonomously navigate
virtual environments. Autonomous web agents [33, 11, 32, 6, 7] have become a particularly popular
area of research. Typically, a web agent takes as input a task prompt from a user, observes a text
and visual representation of the environment, and then outputs one or more actions to execute the
task in the environment. Recently, research interest has expanded to include agents that can navigate
mobile [16, 28] and desktop [27, 10, 2] environments as well.

At a high level, a virtual environment consists of numerous elements—some are interactive (e.g.
buttons or widgets), while others are not (e.g. plain text). To allow for human navigation, these
elements are usually represented in the pixel space via a Graphical User Interface (GUI). In contrast,
agents often rely on distinct state representations to navigate virtual environments. The exact format
of a state representation varies between environments and approaches. In web environments, common
text representations include the HTML or accessibility tree [33, 13]. For visual representations, a
popular approach is to label UI elements with bounding boxes and numeric identifiers [13, 7], known
as Set-of-Mark [29]. In either case, the state representation is derived from the underlying Document
Object Model (DOM) [33, 13, 7]. However, many environments lack a descriptive DOM and only
provide pixel information, which we show is insufficient for existing agents (see Section 4.2). To
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Figure 1: We are motivated by the goal of enabling agents to act on environments where an underlying
DOM does not exist. Instead, the agent must determine its next action using only the environment’s
graphical representations. In Step 1, we first detect a list of unordered UI elements using an object
detection model and identify them with bounding boxes. In Step 2, we convert these UI elements to
their text representation. In Step 3, we order the elements via 2D-to-1D dimensionality reduction.
Due to the sequential nature of a language model, elements are always presented in a specific order
to the LM Agent. Finding an effective ordering is non-trivial, yet can significantly affect agent
performance. Elements that are visually close together are often functionally associated with each
other. t-SNE’s ability to retain local structure allows it to generate an effective ordering.

construct an effective state representation from only pixels, it is important to answer the following
basic questions about these representations: What aspects of a state representation are most important
to an agent? How can we derive these important aspects with only pixels?

In almost all implementations of the agent’s state representation, there exists a list of interactable or
non-interactable elements which the agent uses to determine the next action [13, 33, 7, 5, 28, 9, 10, 27].
Elements are characterized by various attributes such as visual appearance, text descriptions, or type
labels. Because the state representation is the input to an LM, this list of elements is always
presented in a specific ordering. For example, the default method to derive elements from a webpage
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Figure 2: Many software applications lack informative accessibility trees or DOMs. The accessibility
tree for a popular game development engine (Godot, left) contains only the exit, minimize, and full
screen buttons. For a presentation slide (Google Slides, right), no interactive elements (e.g. title
and subtitle boxes) are present in the DOM. Language model agents rely on this information to
navigate applications, and agent performance can accordingly be compromised in scenarios where it
is incomplete.

performs a pre-order traversal of the DOM tree [24]. We analyze various attributes of a popular state
representation for agents and find element ordering to be the single most impactful attribute to agent
performance. We find that the ordering of elements can dramatically affect the performance of an
agent, resulting in differences of up to 49% relative performance.

This can prove problematic as many environments lack obvious methods to both derive and order
elements. For example, many mobile and desktop applications (see Figure 2) do not properly expose
interactable elements [3, 18, 31]. In such environments, pixels may be the only source of information
available. Previous approaches to deriving interactable elements from pixels either leverage off-the-
shelf segmentation models [28, 10] or build custom models that target accessibility features [25]. In
our approach, we leverage common crawl [4] to train an object detection model [17] that detects
interactable UI elements specifically for agents. To the best of our knowledge, the elements detected
through these approaches are ordered arbitrarily (e.g. based on confidence scores); visually, the
ordering is effectively random. Our experiments indicate that a random ordering consistently results
in the lowest performance across multiple scenarios.

Here we propose and evaluate strategies for deriving effective element orderings in scenarios where
a hierarchical ordering based on the GUI design is not explicitly provided by the environment.
Across multiple agent benchmarks, we find that ordering elements via a 2D-to-1D dimensionality
reduction [22] reliably yields improvements to agent performance relative to other baselines. We
experiment on the VisualWebArena [13] and OmniACT [10] benchmarks and achieve new state-of-
the-art performance on OmniACT.

Out contributions are as follows.

• We conduct a thorough ablation of VisualWebArena’s state representation for agents by
including or removing each element attribute individually. Despite advancements in vision
language models, we find that a text representation is still necessary for web and desktop
agents. We find that element ordering is, perhaps surprisingly, more impactful than any
other attribute in the text representation.

• We demonstrate that ordering via dimensionality reduction consistently provides perfor-
mance improvements over random ordering. Additionally, we find that ordering via dimen-
sionality reduction performs better than a simple position-based ordering in most scenarios.

• We achieve a new state-of-the-art result on OmniACT, an agent benchmark that considers
the scenario of operating on pixels. Our approach more than doubles the expected average
task success rate compared to the previous state-of-the-art.
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2 Related Work

Agent Benchmarks. World-of-bits provided the first environment for evaluating web GUI naviga-
tion using an agent [19]. Over time, more realistic web [33, 13, 30], desktop [10, 27], and mobile [16]
agent benchmarks have been created. Kim et al. [11] provided one of the first LM agent approaches,
successfully navigating World-of-bits. However, existing agents are still unable to properly navigate
more realistic benchmarks, completing only 15% of web tasks [33] and 12% of desktop tasks.

Agents With Direct Access to Elements. Despite work on multimodal agents [13], existing
techniques in navigating web and desktop environments still rely heavily on ground-truth text
representations. Zhou et al. [33], Koh et al. [13] both utilize the accessibility tree and its elements
as their state representation. Koh et al. [13], He et al. [7] consider approaches where interactable
elements are also represented in an image via Set-of-Mark [29] bounding boxes and labels. Xie et al.
[27] provides an agent that navigates desktop applications by observing a filtered down version of the
accessibility tree. All of these approaches require access to either a webpage’s underlying DOM or
an accessibility tree to derive elements; however, our focus is on environments that only give access
to their graphical representations which is significantly more challenging.

Agents With Access to Only a Graphical Representation. There have been several approaches—
primarily focused on desktop and mobile environments—to directly navigating a GUI via its pixels.
Kapoor et al. [10] and Yan et al. [28] focus on navigating desktop and mobile applications respectively.
Both leverage an off-the-shelf-segmentation model—Segment Anything [12]—to find icons in the
image. These icons are then either represented in text [10] or labeled with Set-of-Mark [29] bounding
boxes and labels in the image [28]. We instead train an object detection model that detects interactable
UI elements directly. While previous UI element detection models are trained to detect accessibility
features [25], our model is trained specifically to detect interactable elements that would be useful to
an agent. All three of our approaches use Optical Character Recognition (OCR) modules such as
EasyOCR [1] to extract text from pixel information.

Agent Input Ablations. While most agent studies include some ablations, few focus on detailed
analysis of an agent’s input. To our knowledge, Huq et al. [8] is the only other study that directly
studies this. Their study focuses on broader components to an input prompt such as the selection of
few-shot examples used, while we focus on specific element attributes such as element ordering.

3 Problem Definition

We define the environment state E as a set of elements E = {e1, e2, . . . , en}, where each element ej
is a tuple ⟨ij , Cj , Aj , Sj⟩ defined by the following parameters:

• ij ∈ {0, 1} denotes the interactability of element ej . An element with ij = 1 is interactable,
while an element with ij = 0 is not.

• Cj = {⟨x1, y1⟩, ⟨x2, y2⟩} is the set of pixel coordinates that form the bounding box around
ej . ⟨x1, y1⟩ is the top left coordinate and ⟨x2, y2⟩ is the bottom right coordinate.

• Aj = {a1, a2, . . . , am} is the set of potential actions that can be taken on that element. For
example, the potential actions for a search bar might be {click, type}; a non-interactive
text element has the action set ∅.

• Sj represents the set of other environment-specific attributes for element ej . These at-
tributes can include image captions, type labels (e.g., Button, Text Field), or accessibility
information.

While certain environments may provide full access to this environment state, here we are focus on
environments where only the pixel information, P , is available. We then must predict elements from
the pixel information to construct a state representation for the agent. In other words, we must find
must find a function g : P → E
Elements can be represented in both visual and text modalities. For images, the most common
approach is to overlay bounding boxes with numeric identifiers around each interactable element
[13, 7, 28] in a manner inspired by Set-of-Mark Prompting [29]. In text, a common approach is to
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represent each element as a string containing its index, coordinates, and other attributes, such as "[1]
[x,y] [Description]". Because LMs operate on sequential data, elements must be given an ordering; in
most approaches, this is implicitly defined by the method used to identify the elements.

Ordering. The ordering is defined as a permutation σ of the indices {1, 2, . . . , n} where
{eσ(1), eσ(2), . . . , eσ(n)} represents a specific sequence of elements. An ordering function is a
function f : E → σ that takes the environment as an input and yields a specific ordering σ.

4 Which Aspects Of Agent State Representations Are Most Impactful?

Here we describe a series of ablation experiments designed to examine which aspects of an LM state
representation are most impactful to the performance of LM agents. In particular, we experiment
on the VisualWebArena (VWA) [13] benchmark and ablate attributes of the state representation of
the state-of-the-art agent (proposed in the same paper). We pick this representation in particular
due to both its strong performance on VWA, as well as its similarity to common practices seen in
other agent research [7] and open source projects [9, 5]. Our experiments in turn ablate the impact
of (1) multimodal (image and text) aspects of the state representation, and (2) individual element
attributes within the text component alone.

4.1 VisualWebArena

VisualWebArena focuses on multimodal tasks in the web and provides a self-hostable environment
for language agents to navigate [13]. Agents operating on VisualWebArena have full access to the
DOM. The current best approach [13] utilizes a multimodal representation where elements are parsed
in a pre-order traversal of the DOM tree [24]. Each element j has attributes Sj = {id, tag, text}
where id is a unique numeric identifier for interactable elements and ∅ otherwise, tag is the HTML
tag (e.g. BTN or IMG), and text is the alt text and captions for images and the HTML text otherwise.
In the text representation, an example of an element would be “[1] [IMG] [alt text, caption]”. In the
image representation, each element is labeled with bounding boxes and numeric labels.

The original agent in [13] only achieves 15% success rate across all tasks. Since our goal is not to
improve agent performance on VisualWebArena but rather to understand the importance of attributes
in the state representation, we examine a subset of tasks to reduce costs.0 Specifically, we explore
tasks marked as “easy” within tasks that the original agent completed successfully. Due to variance
associated with stochastic LM outputs, our reproduction of these originally-successful tasks yields a
success rate around 74.07%±5.56%. The exact list of tasks can be found in Appendix A.4. We reuse
the action space from the original agent which consists of executing high-level actions (e.g., click,
hover) on individual elements—see Appendix A.2 for more details.

4.2 Ablation Setup and Findings

The agent state representation we explore is multimodal and consists of image and text information.
The image consists of a screenshot of the webpage along with Set-of-Mark annotations, while the text
consists of a DOM-ordered list of elements with the attributes outlined above. Our ablation protocol
consists of removing individual attributes from the image or text representation and measuring task
success rate—we say an attribute has high “impact” if its removal leads to substantial reduction in task
success rate. To provide evidence that these findings may be robust across different LM backbones,
we explore both GPT-4V as used in the original agent, and Gemini 1.5 Pro. Some experiments were
not run on GPT-4V due to high associated costs, though we found ordering to be consistent between
these two LM backbones on all ablations where we ran both.

In Table 1, we report results ablating aspects of the multimodal representation. In Table 2, we report
the impact of ablating various attributes in the text representation specifically. Across all experiments,
we consider the pre-order traversal of the DOM tree as the ground truth element ordering, and define
the “removal” of ordering information as substituting an ordering σrand picked uniformly at random
from all possible permutations. We summarize a few key findings from both sets of ablations below.

0A full run of the state-of-the-art agent on VisualWebArena can cost up to $800 with GPT-4V.
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Table 1: Ablating the multimodal aspects of state representation in VisualWebArena. ✓ indicates
ground truth obtained from the HTML. x indicates removal of the attribute. We find that removing
the text representation can dramatically harm agent performance.

Observations Success Rate (↑)

Screenshot Set-of-Mark Text Representation Gemini 1.5 GPT-4V

✓ ✓ ✓ 64.20% 74.07%
x x ✓ 46.30% 38.89%
✓ x ✓ 50.00% -
✓ ✓ x 3.70% 38.89%

Text Representation is Still Necessary. While adding a visual representation clearly improves
performance, we find that it alone is insufficient even with Set-of-Mark labels. This contradicts
previous findings on agents for mobile applications which found that a screenshot with Set-of-Mark
labels achieves similar performance with or without text [28]. We speculate that this is due to the
substantial difference in viewport sizes between mobile and desktop environments. Specifically, the
average mobile device has a viewport size of 360x800 while the average desktop has a viewport
size of 1920x1080 [21]. Additionally, larger viewport sizes have been shown to improve agent
performance in desktop environments [27]. We speculate that this may be because current agents
almost never understand when to change the screen view (e.g. by scrolling).

Removing Ordering Information Harms Performance More Than Removing Any Other At-
tribute. Although most element attributes are important, we find that ordering is the single most
important attribute for agent performance. Random ordering results in a similar performance drop to
removing all HTML text descriptions.

Captions Impact Performance More Than Alt Text. Removing captions causes a greater decrease
to performance than removing alt text. From our experience, captions almost always provide more
information than alt text. In fact, captions frequently include the alt text directly in its description.

5 Experimental Setup

For the remainder of this paper, we leverage the insights gained from our state representation ablations
on VisualWebArena to tackle a more challenging task: enabling LM agents to act in environments
that only expose pixel information.

Table 2: Ablating attributes of the text component of the VisualWebArena state representation. All
results include the screenshot with Set-of-Mark bounding boxes and labels. TAG is the HTML tag.
CAPTIONS are image captions generated using BLIP-2-T5XL[14]. TEXTAlt, TEXTInteract, and
TEXTStatic are the alt text, text for interactable elements, and text for non-interactable elements
respectively. ORDER is element ordering. ✓ indicates ground truth obtained from the HTML. x
indicates removal of the attribute. x Element Ordering indicates a random shuffling of the elements. -
denotes experiments that were not run due to cost.

Element Attributes Success Rate (↑)

TAG CAPTIONS TEXTAlt TEXTInteract TEXTStatic ORDER Gemini 1.5 GPT4-V

✓ ✓ ✓ ✓ ✓ ✓ 64.03% 74.07%
x ✓ ✓ ✓ ✓ ✓ 61.11% 61.11%
✓ x ✓ ✓ ✓ ✓ 46.30% -
✓ ✓ x ✓ ✓ ✓ 68.15% 66.67%
✓ ✓ ✓ x ✓ ✓ 53.70% -
✓ ✓ ✓ ✓ x ✓ 57.40% -
✓ ✓ ✓ x x ✓ 35.18% -
✓ ✓ ✓ ✓ ✓ x 37.04% 44.44%
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Most applications are built on top of an underlying hierarchical representation. For example, a
webpage is modeled by the DOM which is hierarchical. When exposed, this hierarchy can be used
to determine a strong element ordering. However, the availability and quality of an underlying
hierarchical representation can vary greatly between environments. For example, Chen et al. [3]
found that 77% of mobile applications had missing labels and Ross et al. [18] found that 53% of
image buttons had missing labels and were incorrectly sized. Additionally, Ross et al. [18] found that
8% of applications lacked interactable element information altogether. In such scenarios, we may only
have access to the application’s pixel information. We continue to experiment with VisualWebArena
and also experiment with the OmniACT benchmark as a scenario where we only have access to
pixel information. Details on the LM agent backbones used in our experiments can be found in
Appendix A.3.

5.1 OmniACT

OmniACT provides both web and desktop environments for agents to benchmark on. OmniACT
contains 177 application screenshots overall and 2021 tasks in the test set. Agents are tasked with
generating pyautogui code that can navigate the application screenshot. We consider OmniACT as a
setting where only a pixel information is available.

To detect UI elements {e1, e2, . . . , en} when given only pixel information P we train an object
detection model [17] to detect interactable UI elements in the screenshot and use EasyOCR [1] to
extract visible text. In other words, the function g : P → E is defined by the trained object detection
model. We add visible text and captions to each interactable UI element. We gather a dataset by
finding 67,530 interactable elements over 1468 Common Crawl webpages. We selected our webpages
based on top websites from Similarweb [20]. Despite the domain shift from webpages to desktop
applications, we found that our object detection model worked reasonably well on the OmniACT
benchmark in the end-to-end agent setting. We publicly release this model along with our paper.
Training details can be found in the Appendix A.1.

OmniACT provides partial human annotations for each screenshot; multiple, but not all, interactable
UI elements are annotated with bounding boxes. The original intent of these bounding boxes is for
evaluation only. As a result, there are significantly less UI elements annotated compared to possible
UI elements in the application. We experiment with elements derived from these human annotated
bounding boxes to understand a) impacts to ordering performance in an easier setting and b) the
potential performance that can be gained by improving UI element detection.

5.2 Metrics

Our primary metric is task success rate which is the standard for agent evaluations [13, 33, 7].
VisualWebArena provides an evaluation framework for task success. Task success criteria include
achieving an expected final webpage state or receiving a desired response from the language agent.
OmniACT does not provide task success rate directly, instead introducing the sequence score and
action score metrics. Sequence score evaluates if the output contains the correct high level action (e.g.
click or type), but does not check if the action element or parameter (e.g. click [1] or type
[parameter]) are correct. Action score evaluates if the output contains both the correct high level
action and the correct element or parameter. Thus, for OmniACT we focus our evaluations on the
action score as it is more similar to task success rate.

5.3 Ordering Methods

In addition to random ordering, we experiment with two different ordering methods.

Random. We pick the ordering σrand uniformly at random from all possible permutations. This
provides a baseline performance.

Raster. Elements {e1, e2, . . . , en} are ordered in a left-to-right raster scan. We define a raster scan
as an ordering σraster where i < j iff ⌊yi

8 ⌋ < ⌊yj

8 ⌋ and xi < xj . We chose to discretize the scan to
prevent jumps in ordering from minor pixel variations. This method mimics the natural way English
speakers read text and images from left-to-right and top-to-bottom.
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t-SNE. We apply dimensionality reduction techniques to better capture the spatial relationships.
Using t-SNE [22], we reduce the dimensionality with the function g : ⟨x, y⟩ → z. The set of
values Z = {z1, z2, . . . , zm} is used to determine the ordering σtsne. We use the scikit-learn [15]
implementation of t-SNE and keep the default parameters.

Our intuition for choosing t-SNE stems from visually and qualitatively inspecting our agent trajecto-
ries. We observed that agents often use adjacently ordered elements as context clues to determine the
correct action. Furthermore, agents have difficulty reasoning about functionally associated elements
that are separated from each other in the ordering. t-SNE generates an effective ordering as elements
that are visually close together (i.e. nearby in 2D pixel space) are often functionally associated with
each other as well. When reducing dimensions, t-SNE retains local structure which increases the
odds that functionally associated elements are adjacent in the induced 1D ordering.

5.4 Action Space

We use the same high-level action space as
described in OmniACT. Unlike OmniACT,
we do not have the model directly output
pyautogui code. Instead, we use high
level actions that map to pyautogui code.
For example, for element e1 defined by
⟨1, {⟨50, 50⟩, ⟨100, 100⟩}, {click},∅⟩
the model would output click
[1] which would be converted to
pyautogui.click(75, 75). This
prevents the model from having to reason
about pixel coordinates directly. Each
element’s unique identifier reflects the
position of the element in the ordering.
The full action space is in Table 3.

Table 3: The set of possible actions in OmniACT.

Action Description

Click Perform a single click on an element.
Double Click Perform a double click on an element.
Right Click Perform a right click on an element.
Move/Hover Move the cursor over an element.
Drag Click and drag an element to a new position.
Scroll Scroll up or down the page.
Horizontal Scroll Scroll left or right on the page.
Press Press a key on the keyboard.
Keyboard Hotkey Use a keyboard shortcut or hotkey.
Write Type text using the keyboard.

6 Results

Our main findings on the impact of ordering are in Table 4. We utilize our various findings to improve
upon OmniACT; our experiments against their baseline are in Table 5.

6.1 Impact of Ordering

Ordering Consistently Impacts Performance. Ordering has a significant impact to performance
across all of our experiments. Random ordering decreases performance in VisualWebArena by 50%
and 42% relative performance for GPT-4v and Gemini-1.5 respectively. In all experiments, random
ordering decreases performance over a proper ordering method.

t-SNE Best For Larger Models And More Challenging Tasks. Navigating by using detected
elements is a harder task than navigating by using human annotated bounding boxes; not only are
there more elements—on average double the amount—there is the possibility that the correct element
is missing from the detected elements. We see that when elements are derived from the DOM and
our UI detection model, t-SNE ordering generally outperforms raster ordering. Additionally, more
powerful models see an increased benefit from t-SNE ordering with Gemini-1.5 and GPT-4v seeing
larger improvements than LLama3.

Raster Ordering Performs Best With Human Annotations. Raster ordering performs the best
with human annotated elements. Unfortunately, these annotations are fewer and partially guaranteed
to contain important information. Additionally, high quality human annotations are difficult to scale
across applications.

2We use the Groq API for our Llama3 models.
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Table 4: Performance of different ordering methods across various models and information scenarios.
The baseline approach for VisualWebArena is the same as their paper. Human annotations are
from OmniACT’s annotation files. The Faster-RCNN model is trained to detect interactable UI
elements from CommonCrawl webpages. VisualWebArena is evaluated on success rate. OmniACT
is evaluated on unweighted action score (i.e. each task is weighted equally). We use Llama3-70B
for VisualWebArena and Llama3-8B for OmniACT due to its large size2. GPT-4v is evaluated on
a 100 random tasks for OmniACT; the exact list is in Appendix A.4. Gemini-1.5 and GPT-4v are
multimodal while Llama3 is text only.

Experimental Settings Success Rate

Element Source Benchmark Ordering Method Gemini-1.5 (↑) GPT-4v (↑) Llama3 (↑)

Ground Truth (DOM) VWA Pre-order 64.03% 74.07% 27.79%
Random 37.04% 37.04% 20.37%
Raster 38.88% 53.70% 29.63%
t-SNE 44.44% 61.11% 24.07%

Human OmniACT Random 57.29% 61.52%∗ 28.67%
Annotations Raster 61.04% 65.88%∗ 33.65%

t-SNE 59.17% 62.11%∗ 31.99%

Detected OmniACT Random 39.59% 44.63%∗ 18.88%
(Faster-RCNN) Raster 45.21% 47.38%∗ 21.58%

t-SNE 47.16% 49.18%∗ 24.61%

6.2 State-of-the-Art Performance on OmniACT

We achieve a new state-of-the-art performance on Omniact. Due to cost, we look to our previous
experiments to pick the best combination of features for our approach. We observe that multimodal
representations are still helpful. We find that t-SNE ordering improves performance the best in
OmniACT when elements are detected by our model. Koh et al. [13] states that high level actions are
easier for a LM to reason with.

We analyze the differences between our best approach and OmniACT’s baseline. These are as follows.

• Element Source: OmniACT obtains elements by searching for icons with Segment Anything
[12] and text with EasyOCR. Unfortunately, there are no shared artifacts for their icon
detection system. We obtain UI elements through an object detection model and text with
EasyOCR [1].

• Ordering: It is unclear how elements are ordered in OmniACT. Considering how most
approaches don’t pay specific attention to ordering, we assume the ordering in OmniACT is
effectively random. We order our elements using our t-SNE ordering.

• Action Space: OmniACT directly outputs pyautogui code as their actions. We consider a
higher level action space that maps to pyautogui code.

• Intractability OmniACT lists out each element, but does not indicate which element is
interactable. We specify whether elements are interactable or not.

• Multimodal Representation: OmniACT evaluates their full test set using a text only
representation3. We experiment with a multimodal representation.

We apply our findings and achieve more than one-fold increase over the existing best action score.
Our results can be found in Table 5.

7 Future Work

Further Improvements to Ordering We provided two simple methods to apply ordering when
a default ordering is not given. However, both approaches still fall short when compared to the

3OmniACT evaluates the impact of adding a visual representation on smaller subset; however, this subset is
not shared and varies empirically from the full test set.
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Table 5: ✓ and x indicates whether the feature is available when building a representation for the
model. Ours indicates a high level actions such as click [1]. Code indicates that pyautogui code is
directly generated. bold is best and italics are second best. While sequence score only checks for the
correct high level action (e.g. click), action score checks for both the correct action and the correct
element or parameter (e.g. click [1]). Thus, action score is the most equivalent to task success
rate. * is as reported in Kapoor et al. [10]

Model State Actions Screenshot Action Score (↑) Sequence Score (↑)

GPT-4 OmniACT Code x 11.60* 32.75*
Gemini 1.5 Ours Code x 16.53 21.67
Gemini 1.5 Ours High Level x 22.29 29.42
Gemini 1.5 Ours High Level ✓ 22.86 28.91
Llama8b Ours High Level x 18.64 26.22
GPT-4v Ours High Level ✓ 23.34 30.47

hierarchical ordering derived from the DOM. We hope that future research can introduce more
sophisticated methods to find ordering with only pixel information.

Image Only Ordering We focused on the impact of element ordering in a text representation
(although element labels re-ordered accordingly in the visual representation as well). The impact
of element ordering may or may not generalize to an image only representation. Unfortunately, our
results indicated that a visual representation alone was insufficient for web and desktop environments
which prevents us from conducting this experiment. However, Yan et al. [28] found that a visual
representation in mobile environments was able to achieve comparable performance with and without
a text representation. In the future, we hope to experiment with various ordering methods on an
image only representation.

Expanded Scenarios and Benchmarks In this paper, we explored two benchmarks—
VisualWebArena and OmniACT—as web and desktop scenarios. In the future, we hope to explore
other benchmarks and settings with our approach. For example, Xie et al. [27] uses the OS level
accessibility tree for desktop agent navigation. We hope to compare our approach against theirs and
believe that combining both approaches may lead to further improvements. Additionally, mobile
environments often have only pixel-level information [3, 18]; we hope to apply our approach to a
mobile benchmark such as Rawles et al. [16].

8 Conclusion

We conducted thorough ablations to show that element ordering has a significant impact on the
performance of agents. We provided a method of ordering elements through dimensionality reduction
and showed that it performed best in realistic environments. We trained a UI element detection model
on Common Crawl data and publicly share the model. We demonstrated an end-to-end method which
allows a LM agent to act on environments that provide only pixel information. Using this method, we
were able to achieve a new state-of-the-art performance on OmniACT.
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A Appendix

A.1 Faster-RCNN Training Details

We trained our model using the detectron2 [26] implementation of faster-rcnn. We did not change
much from the default implementation and recognize that there are significant improvements that
could be made to the model.

Hyperparameter Value
Base Learning Rate 0.00025
Number of Classes 1
Iterations 200000
Optimizer SGD
Backbone Resnet-50 (ImageNet Pretrained)
ResNet Depth 50
Images per Batch 16
Objects per Image 128
Devices 8

Table 6: Key hyperparameters for the Faster-RCNN model.

We share the remaining hyperparmeters in a config file. We also share the model artifacts and dataset.

A.2 VisualWebArena Agent Action Space

We use the same action space as VisualWebArena for all VisualWebArena experiments.

We use the same action space as described
in VisualWebArena. VisualWebArena uses
high level actions that act directly on el-
ements rather than pixel coordinates. In-
teractable elements possess a unique id
identifier while non-interactable elements
do not. The id identifier reflects the posi-
tion of the element in the ordering. The full
action space is in Table 7.

Action Description

click [id] Click on element id.
hover [id] Hover on element id.
type [id] [text] Type text on element id.
press [key_comb] Press a key combination.
new_tab Open a new tab.
tab_focus [index] Focus on the i-th tab.
tab_close Close current tab.
goto [url] Open url.
go_back Click the back button.
go_forward Click the forward button.
scroll [up|down] Scroll up or down the page.
stop [answer] End the task with an optional output.

Table 7: The set of possible actions in VisualWebArena.

A.3 LM Agent Hyperparameters and Settings

We set our temperature, top-p, and input to-
ken limits based on existing works [33, 13,
10]. Prompts for all three backbones con-
tain few-shot examples and use chain-of-
thought prompting [23] as described in Koh
et al. [13]. In GPT-4v and Llama3 each ex-
ample is a different message; Gemini-1.5’s
context length allowed us to input all exam-
ples as a single prompt. We detail our LM
Agent hyperparameters in Table 8

Setting Language Model Backbone

GPT-4v Gemini-1.5 Llama3

Input Token Limit 3840 900000 3840
Temperature 1.0 1.0 1.0
Top-p 0.9 0.9 0.9
Table 8: Settings for different LM agent backbones.
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A.4 VisualWebArena and OmniACT Subset

We experimented with subsets of VisualWebArena and OmniACT to save on costs. We list them here
for reproducibility.

For all VisualWebArena experiments we used the following:

[13, 15, 50, 129, 164, 167, 0, 77, 86, 89, 98, 99, 100, 101, 105, 130, 131,
142, 143, 146, 150, 189, 16, 29, 37, 38, 39, 47, 49, 52, 53, 56, 60, 61, 62,
69, 73, 76, 77, 81, 148, 173, 193, 196, 201, 212, 216, 231, 273, 314, 315,
322, 445]

For GPT-4v ordering ablations on OmniACT we used the following:

[4, 58, 115, 147, 156, 162, 165, 178, 179, 194, 204, 218, 235, 240, 248,
297, 353, 374, 391, 392, 395, 404, 409, 419, 434, 462, 487, 492, 517, 533,
556, 573, 598, 658, 667, 673, 678, 719, 795, 827, 896, 910, 944, 961, 975,
1018, 1025, 1038, 1084, 1093, 1101, 1103, 1128, 1130, 1138, 1142, 1147,
1181, 1192, 1219, 1252, 1284, 1291, 1353, 1427, 1442, 1448, 1514, 1521,
1538, 1580, 1590, 1594, 1600, 1606, 1622, 1636, 1641, 1665, 1684, 1694,
1696, 1710, 1711, 1719, 1726, 1731, 1740, 1743, 1845, 1877, 1883, 1918,
1924, 1951, 1960, 1993, 1994, 1997, 2011]

A.5 Prompt

Listing 1: Language Model Prompt
You are an autonomous intelligent agent tasked with navigating desktop

and web applications. You will be given tasks that can be
accomplished by various actions that will be mapped to pyautogui
code.

Here ’s the information you ’ll have:
The user ’s objective: This is the task you ’re trying to complete.
The current desktop screenshot: This is a screenshot of the desktop or

webpage , with each interactable element assigned a unique
numerical id. Each bounding box and its respective id shares the
same color.

The observation , which lists the IDs of all interactable elements on
the current screenshot with their text content if any , in the
format [id] [tagType] [text content ]. tagType is the type of the
element. text content is the text content of the element. For
example , [1234] [BUTTON] [’Add to Cart ’] means that there is a
button with id 1234 and text content ’Add to Cart ’ on the current
web page. [] [StaticText] [text] means that the element is of some
text that is not interactable.

The actions you can perform fall into two categories:

Mouse Actions:
click [id]: This action clicks on an element with a specific id.
double_click [id]: This action double clicks on an element with a

specific id.
right_click [id]: This action right clicks on an element with a

specific id.
hover [id]: Hover over an element with id.

Keyboard Actions:
type [content ]: Use this to type content. Be sure to use other

commands to click before or press enter after if necessary.
press [key_comb ]: Simulates the pressing of a key combination on the

keyboard (e.g., enter).
hotkey [key1] [key2]: Simulates the pressing of a multiple key

combinations on the keyboard. For example , hotkey [Ctrl] [Alt] [
Delete] will press Ctrl+Alt+Delete.
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To be successful , it is very important to follow the following rules:
1. You should only issue actions that are valid given the current

observation. Everything is possible. You MUST issue actions.
2. You can issue a sequence of actions separated by newlines.
3. You should follow the examples from past messages to reason step by

step and then issue the next actions.
4. You should start every answer with "Let ’s think step -by -step"
5. Generate the actions in the correct format. Start with a "In

summary , the next actions I will perform are" phrase , followed by
the actions inside ‘‘‘. Each action should be split by a newline.
There should be no text inside ‘‘ except for the actions. For
example , "In summary , the actions I will perform are ‘‘‘click
[1234] type [sample text] press [enter]‘‘‘".

Here are a few examples:
Example 1:

{Example 1}

Example 2:

{Example 2}

Example 3:

{Example 3}

Those were the examples. Now make a prediction given the observation.

OBSERVATION:

{Observation}
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