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Abstract

Random walk neural networks (RWNNs) have emerged as a promising approach
for graph representation learning, leveraging recent advances in sequence models
to process random walks. However, under realistic sampling constraints, RWNNs
often fail to capture global structure even in small graphs due to incomplete
node and edge coverage, limiting their expressivity. To address this, we propose
random search neural networks (RSNNs), which operate on random searches, each
of which guarantees full node coverage. Theoretically, we demonstrate that in
sparse graphs, only O(log |V |) searches are needed to achieve full edge coverage,
substantially reducing sampling complexity compared to the O(|V |) walks required
by RWNNs (assuming walk lengths scale with graph size). Furthermore, when
paired with universal sequence models, RSNNs are universal approximators. We
lastly show RSNNs are probabilistically invariant to graph isomorphisms, ensuring
their expectation is an isomorphism-invariant graph function. Empirically, RSNNs
consistently outperform RWNNs on molecular and protein benchmarks, achieving
comparable or superior performance with up to 16× fewer sampled sequences. Our
work bridges theoretical and practical advances in random walk based approaches,
offering an efficient and expressive framework for learning on sparse graphs.

1 Introduction

Early work on random walk–based graph representations focused on using skip-gram objectives to
learn node embeddings from sampled walks [1, 2]. Building on these ideas and leveraging recent
advances in sequence modeling, random walk neural networks (RWNNs) have emerged as a powerful
paradigm for modern graph learning [3–8], overcoming the limitations of message-passing neural
networks (MPNNs) [9–11] and graph transformers [12–14] by representing graphs as collections of
random walks processed by sequence models. This advancement aligns with the broader research goal
of identifying effective and expressive methods for graph representation learning [15–17]. However,
despite their success, RWNNs encounter critical expressivity challenges under realistic conditions
due to incomplete node and edge coverage, limiting their capacity to capture structure even in small
graphs (Figure 1). In our analysis, we establish that, under partial coverage, RWNNs are strictly less
expressive than traditional MPNNs, highlighting the importance of complete coverage and bridging
the theoretical expressivity of the two paradigms.

To illustrate the limitations of RWNNs, consider the graph composed of connected six-cycles and side
chains shown in Figure 1. Capturing the full structure of this graph requires traversing every node and
edge. However, since the node and edge cover times for a random walk can scale as O(|V ||E|) [18],
RWNNs require either prohibitively long walks or an impractically large number of samples to
guarantee complete coverage. Under realistic sampling constraints where the walk’s number of steps
is significantly less than O(|V ||E|), random walks obtain only partial graph reconstruction: as shown
in Figure 1(a), subgraphs induced by short random walks can miss critical structural components,
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Figure 1: RWNN and RSNN coverage differences. Random walks miss critical structure under
realistic sampling constraints, wheras each individual search only misses single edges in cycles,
enabling complete reconstruction across logarithmic sampling in |V | on sparse graphs.

such as the side chains connected to the six-cycles. This incomplete coverage significantly hinders
RWNN expressivity. Current methods attempt to address this limitation through non-backtracking
walks [5, 6] and minimum-degree local rules (MDLR) [7], reducing node and edge cover time to
O(|V |2). Nonetheless, these approaches retain quadratic complexity with respect to graph size,
making comprehensive coverage costly and impractical for even small and medium graphs.

To overcome these challenges in small and medium sized graphs, we introduce random search neural
networks (RSNNs), which represent graphs as collections of random searches. Critical to our analysis
is the insight that subgraphs induced by searches are spanning trees as opposed to arbitrary subgraphs
induced by random walks. Each spanning tree inherently ensures full node coverage, reducing the task
to achieving edge coverage across the union of induced trees. Leveraging this insight, our analysis
demonstrates that RSNNs require only a logarithmic number of searches for complete edge coverage,
specifically in sparse graphs where such searches are computationally feasible. This is a substantial
improvement over the linear number of walks required by RWNNs, assuming walk lengths scale
with graph size. As shown in Figure 1(b), the union of just a few spanning trees enables complete
reconstruction of the graph, including nodes and edges missed by walk-induced subgraphs. When
equipped with maximally expressive sequence models, RSNNs achieve universal approximation
efficiently. Furthermore, we show that RSNNs are probabilistically invariant to graph isomorphisms,
ensuring their expectation is an isomorphism-invariant predictor. Empirically, we focus on sparse
molecular and protein graph classification datasets, domains in which RWNNs have shown significant
improvement over existing GNNs. Across both domains, we demonstrate that RSNNs consistently
outperform existing RWNN approaches. In summary, we make the following contributions:

• Characterizing RWNN Expressive Limitations. Our analysis characterizes the expressive
power of RWNNs, bridging the expressivity of RWNNs and MPNNs. We demonstrate that
RWNNs under partial node and edge coverage are strictly less expressive than MPNNs,
motivating the design of sampling strategies that guarantee full coverage.

• New Model: Random Search Neural Networks. We propose random search neural
networks (RSNNs), a new approach that operates on random searches, whose induced
subgraphs are spanning trees, substantially reducing the sample size required for complete
node and edge coverage in sparse graphs.

• Efficient Coverage, Universal Approximation, & Isomorphism Invariance. We demon-
strate that RSNNs can achieve universal approximation efficiently with logarithmic sampling
in sparse graphs. RSNNs are also probabilistically invariant to graph isomorphims, ensuring
their expectation is an isomorphism-invariant function on graphs.

• Extensive Empirical Analysis. Focusing on sparse molecular and protein graph bench-
marks, we demonstrate that RSNNs consistently outperform existing RWNNs.
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2 Background and Preliminaries

We establish notation for graphs and random walks and next review MPNNs and RWNNs, the primary
class of models under investigation. Importantly, we later bridge the expressivity of MPNNs and
RWNNs. We lastly review random walk cover times, highlighting how RWNNs require prohibitively
long walks or impractically large numbers of walks to guarantee full graph coverage.

2.1 Notation and Random Walks on Graphs

We define a graph G = (V,A,X), where V is the set of nodes, A ∈ {0, 1}|V |×|V | is the adjacency
matrix representing the set of edges E, and X ∈ R|V |×d is the node feature matrix. For each node
i ∈ V , we denote its feature vector as xi and its set of immediate (one-hop) neighbors as N (i). We
define the augmented neighborhood N̂ (i), obtained by adding a self-loop to node i.

A random walk of length ℓ on G produces a sequence of nodes W = (w0, . . . , wℓ) by first sampling
an initial node w0 ∈ V according to a uniform distribution P0, and then iteratively transitioning
to subsequent nodes by sampling neighbors according to a given random walk algorithm. We let
Wℓ(G) denote the set of all possible random walks of length ℓ on G, and let P (W(G), P0) represent
a probability distribution over these walks. Lastly, we define Pm(W(G)) = {W1, . . . ,Wm} as a
realization of a set of m independently sampled random walks from P (W(G), P0).

2.2 Message-passing Neural Networks and GNN Expressivity

Standard GNNs adopt a message-passing approach, where each layer iteratively updates a node’s
representation by aggregating the features of its neighbors [19]. Formally, the initial message-passing
layer can be defined as the following propagation rule at the node level for all i ∈ V ,

fMPNN(G)i = fagg({xj | j ∈ N̂ (i)}),

where fagg is a permutation-invariant function. Because of this aggregation step, MPNNs in-
cur fundamental expressivity limitations and cannot distinguish certain classes of non-isomorphic
graphs [15, 20]. We compare the expressivity of GNNs by the pairs of graphs they can distinguish [21],
introducing the following notation. For two GNNs f1 and f2, we write

f2 ⪯ f1 ⇐⇒ ∀G,H : f1(G) = f1(H) =⇒ f2(G) = f2(H).

Thus, any pair indistinguishable by f1 is also indistinguishable by f2, so f1 is at least as expressive
as f2. The relation is strict, f2 ≺ f1, if f2 ⪯ f1 and there exist graphs G,H with f1(G) ̸= f1(H)
while f2(G) = f2(H). f1 and f2 are equally expressive, written f1 ≃ f2, if f2 ⪯ f1 and f1 ⪯ f2.
These relations coincide with notions of approximation power. For example, if f2 ≺ f1, every target
approximable by f2 is approximable by f1, and there exist targets approximable by f1 but not f2.

2.3 Random Walk Neural Networks

RWNNs are a novel class of neural network on graphs that leverage sequence models to process
random walks sampled from the graph. Typically, an RWNN is characterized by four key components:
(1) a random walk algorithm that generates node sequences, (2) a recording function that encodes the
walks into structured representations, (3) a reader neural network that processes these representations,
and (4) an aggregator that combines the representations or predictions from multiple walks.

For our analysis, we assume the following representative general version of RWNN [3–8]. Specifically,
we consider the random walk algorithm as uniform random walks of fixed length ℓ, denoted by
Pm(W(G)) := P (Wℓ(G),U(V )), where U(V ) denotes the uniform distribution over V . Given a
sampled walk W ∈ Pm(W(G)), we define the recording function femb : Wℓ(G) → Rℓ×d as follows:

femb[i] := hV (wi) + proj(hPE[i]), (1)

where hV : V → Rd is a node embedding function. Here, hPE[i] serves as an optional position
encoding that supplies extra structural context for each node in the walk (Appendix B); when such
encoding is employed, it is further processed by the learnable projection mapping proj : Rdpe → Rd.
Subsequently, we assume walk embeddings produced by femb are processed by a sequence model,
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denoted by fseq : Rℓ×d → Rℓ×d. Finally, embeddings from the sequence model are aggregated
by a permutation-invariant function. The choice for the function can be simple functions such
as taking the mean over random walk representations such as in Wang and Cho [3], Kim et al.
[7], or it can be more complex as in Tönshoff et al. [5], Chen et al. [6], which updates a node’s
representation as the aggregation of its representations across all walks using the aggregation function
fagg : Rm×ℓ×d → R|V |×d:

fagg[wi] :=
1

Ni(Pm(W(G)))

∑

W∈Pm(W(G))

∑

wi∈W

fseq(femb(Pm(W(G))))[i], (2)

where Ni(Pm(W(G))) represents the number of occurrences of node i in the union of walks in
Pm(W(G)). The RWNN layer is defined as the composition f l

RWNN = f l
agg ◦ f l

seq, while the overall
architecture fRWNN is defined as the stacking of RWNN layers. In the node classification setting, the
final node representation fagg[i] produced by the last RWNN layer is directly utilized for predictions.
In graph classification, an additional global pooling function aggregates these node representations
into a single representation for the graph.

2.4 Random Walk Cover Times

RWNN expressivity depends on how much of the graph its random walks visit (Section 3). Here, we
review results on random walk node cover times, CV (G), the expected number of steps a walk takes
to visit all nodes. For a connected graph G = (V,E), the cover time of a general uniform random
walk satisfies CV (G) = O(|V ||E|) [22]; in particular, for sparse graphs (|E| = Θ(|V |)) this gives
CV (G) = O(|V |2). Minimum-degree local rule (MDLR) walks further achieve CV (G) = O(|V |2)
on all graphs, which is optimal among first-order walks [7, 23]. Non-backtracking walks can also
empirically reduce cover times on graphs [5, 6]. Even with these improvements, guaranteeing full
node and edge coverage by random walks can require prohibitively long walks or impractically
large numbers of walks. We therefore replace walks entirely with searches (Section 4), significantly
improving on the number of samples required for full coverage in comparison to random walks.

3 Expressive Power of Random Walk Neural Networks

In this section, we characterize the expressive power of RWNNs. Our main result establishes
that without additional positional or structural encodings, RWNNs with access to the complete
multiset of random walks whose lengths scale up to the cover time are exactly as expressive as
MPNNs. In practice, however, such assumptions are unrealistic: guaranteeing full node and edge
coverage requires walk lengths on the order of the cover time, rendering full coverage computationally
infeasible. We then show that in the partial-coverage regime, RWNNs are strictly less expressive than
MPNNs. This limitation motivates our random search neural network (RSNN), which achieves full
coverage and thus maximal expressivity at significantly lower sampling cost.

3.1 The Role of Coverage: RWNNs vs. MPNNs

We first analyze the ideal setting in which the RWNN has access to complete walk sets up to the
cover time. In this regime, RWNN expressive power matches that of MPNNs.
Theorem 3.1 (RWNN-MPNN Equivalence Under Full Coverage (FC)). Let G be a graph. Let
fFC
RWNN denote an RWNN with injective fseq and fagg with no additional positional encodings,

applied to the complete multiset of walks W≤ℓ(G) with lengths up to ℓ = CE(G), the edge cover
time of G. Let fMPNN be an MPNN with injective fagg. Then, for all graphs G,H ,

fMPNN(G) = fMPNN(H) ⇐⇒ fFC
RWNN(G) = fFC

RWNN(H).

Hence, fFC
RWNN ≃ fMPNN (i.e., fFC

RWNN and fMPNN are equal in expressive power).

Although Theorem 3.1 shows that full-coverage RWNNs and MPNNs are equal in expressivity,
RWNNs under full coverage can be more effective empirically. RWNNs leverage expressive sequence
models capable of capturing long-range dependencies when given full graph structure in complete
sequences. MPNNs instead rely on iterative neighborhood aggregation and are limited in depth
by oversmoothing [24] and oversquashing [25], which in practice reduce their expressivity and
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capabilities to capture long-range signals. This contrasts our theoretical setup where we assume
MPNNs have unlimited depth, allowing them to match full-coverage RWNN expressivity.

Constructing complete walk sets with lengths up to the cover time, however, is typically computation-
ally infeasible. RWNNs can thus fall short of MPNNs under realistic budgets despite their inherent
advantages. Indeed, as an immediate consequence of Theorem 3.1, when RWNNs operate under
partial coverage, their expressive power is strictly less than that of MPNNs.
Corollary 3.2 (RWNNs Under Partial Coverage (PC)). Let fPC

RWNN denote an RWNN of the same
architectural class as in Theorem 3.1 but applied to a multiset of random walks that attains only
partial node/edge coverage of the input graph. Then, for all graphs G,H ,

fMPNN(G) = fMPNN(H) =⇒ fPC
RWNN(G) = fPC

RWNN(H),

and there exist non-isomorphic graphs G ̸∼= H such that
fMPNN(G) ̸= fMPNN(H) while fPC

RWNN(G) = fPC
RWNN(H).

Hence, fPC
RWNN ≺ fMPNN (partial-coverage RWNNs are strictly less expressive than MPNNs).

Corollary 3.2 reveals a fundamental limitation of RWNNs: under partial coverage, their expressive
power falls below that of classical message passing. Thus, to attain maximal theoretical expressivity,
it is essential to design sampling strategies that efficiently guarantee complete coverage. In order
to realize the advantages of RWNNs while obtaining maximal expressivity, we introduce RSNNs
(Section 4), which replace walks with searches to guarantee full node coverage by construction and
achieve full edge coverage with a small number of searches on sparse graphs.

Insights of the analysis. In proving Theorem 3.1, we introduce a walk-based color refinement, Walk
Weisfeiler–Lehman (WWL; Definition A.3), which updates each node using the multiset of walks
that visit it. We demonstrate that WWL upper bounds RWNN expressivity (Lemma A.5). Next, we
establish that WWL operates on the same object as classical WL: unfolding trees (Definition A.6).
We lastly leverage this insight to establish that WWL and WL have equal distinguishing power
(Theorem A.9). In essence, this construction aligns the Weisfeiler–Lehman hierarchy with RWNNs,
unifying the expressive power of two seemingly distinct model classes: RWNNs, which process
random walks with sequence models, and MPNNs, which process multisets of node neighborhoods
with graph convolution. Formal definitions and details are in Appendix A.

4 Random Search Neural Networks (RSNNs)

Motivated by our analysis of RWNNs, we propose a new sampling strategy that efficiently achieves
the necessary conditions for maximal expressivity: full node and edge coverage. Since random
walks require either prohibitively long walks or an impractically large number of walks to guarantee
full coverage, we introduce random search neural networks (RSNNs), which represent graphs as
collections of random searches. Notably, a single search guarantees full node coverage, and under the
sparse graph assumption, only O(log(|V |)) searches are needed to capture all edges. This significantly
reduces the sampling complexity compared to the O(|V |) requirement for traditional RWNNs,
assuming walk lengths scale on the order of O(|V |). When paired with a maximally expressive
sequence model, RSNNs emerge as universal approximators on graphs. Moreover, we provably
show RSNNs are probabilistically invariant to graph isomorphisms. Hence, the predictor obtained by
averaging over searches is an isomorphism-invariant graph function. While the computational cost of
a full search can be significantly larger than a short random walk, we focus on sparse graphs where
search is computationally feasible, addressing the limitations of RWNNs in these classes of graphs.

4.1 Search via Random DFS

RSNNs leverage a random depth-first search (DFS) procedure to obtain sequences from an input
graph G. We utilize a DFS rather than a breadth-first search in order to better preserve continuity in
the sequence. We denote by SDFS(G) the set of all possible DFS searches over G. RSNN generates
a random search S by sampling a DFS from the uniform distribution U(SDFS(G)) and collects
m independent searches to form the set Pm(SDFS(G)) = {S1, . . . , Sm}. Once these searches are
obtained, RSNNs leverage all the advances of RWNNs but with new benefits. We apply the recording
function (Equation (1)) to each search, including positional encodings from Tönshoff et al. [5] to
distinguish between disconnected nodes and true connections in the sequence. Search embeddings are
then processed with a sequence model and the node aggregation function (Equation (2)) (Figure 2).
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Figure 2: Overview of an RSNN layer. Starting from an input graph, m random depth-first searches
are extracted and encoded via femb. Additional positional encodings indicate discontinuities in the
sequence (e.g., -·- in search 1). These sequences are processed by a sequence model fseq, and
final node representations are aggregated across sequences using fagg. We highlight in blue the flow
of a selected node representation (shown as ) as it is tracked through each stage of the RSNN layer.

4.2 From Efficient Graph Coverage to Universal Approximation in RSNNs

In this section, we establish the theoretical foundations of RSNNs by demonstrating how our random
search strategy efficiently obtains full graph coverage. Central to our analysis is the observation that
the subgraphs induced by DFS sequences are spanning trees. Leveraging this insight, we prove the
following key lemma showing that for sparse graphs with bounded degree, a logarithmic number of
random searches is sufficient to guarantee full node and edge coverage with high probability.
Lemma 4.1 (Logarithmic Sampling Yields Full Edge Coverage). Let G = (V,E) be a con-
nected graph with |E| ≤ C|V | for some constant C and a bounded maximum degree dmax. Let
S1, S2, . . . , Sm be m independent random searches sampled from G, and let T1, T2, . . . , Tm be their
corresponding induced spanning trees. Then, for small δ ≪ 1, if

m ≥
ln

(
C|V |
δ

)

ln
(

dmax

dmax−1

) , (3)

the union of T1, T2, . . . , Tm contains every edge in E with probability at least 1− δ.

In contrast to RWNNs, which require m = O(|V |) random walks of length ℓ = O(|V |), RSNNs
achieve complete coverage with m = O(log(|V |)) searches of length ℓ = O(|V |). With full node and
edge coverage, RSNNs are able to capture all the information necessary to represent any function on
graphs. Intuitively, this means that under our sampling strategy, RSNNs are universal approximators:
they can approximate any graph function arbitrarily well, provided they are paired with a universal
sequence model such as transformers or LSTMs [26, 27].
Theorem 4.2 (Universal Approximation by RSNNs on Sparse Graphs with Bounded Degree). Let
ϵ > 0 and let f : G → Rd be any continuous graph-level function, where G is the space of sparse
graphs with |E| = O(|V |) and maximum degree at most dmax. Assume m satisfies Equation (3), so
that full coverage is achieved with probability at least 1− δ. Then, with probability at least 1− δ
there exists an RSNN configuration such that

∥fRSNN(G)− f(G)∥ < ϵ for all G ∈ G, (4)

4.3 From Expressivity to Invariance: Isomorphism Invariance of RSNNs

Having established the expressive capabilities of RSNNs, we now turn to invariance. For graphs, the
target symmetry is isomorphism invariance: for all G ∼= H , an isomorphism-invariant graph function
satisfies f(G) = f(H). Graph functions that capture the symmetry enjoy learning and generalization
benefits. Because RSNNs are randomized functions, we adopt the notion of probabilistic invariance [7,
28]: for all G ∼= H , the random outputs satisfy f(G)

d
= f(H). Intuitively, a randomized graph

function is probabilistically invariant to graph isomorphisms if its distribution is unchanged under
any graph isomorphism. We demonstrate that the randomized DFS procedure used by RSNNs is
probabilistically invariant; consequently, the RSNN predictor fRSNN is invariant in distribution, and
its expectation Φ(G) := E[fRSNN(G)] is an isomorphism-invariant function on graphs.
Theorem 4.3 (Probabilistic Isomorphism-Invariance of RSNN). A randomized search procedure on
a graph G produces a sequence SG = (sG0 , . . . , s

G
|V (G)|) of visited vertices. We say the procedure is
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probabilistically invariant to graph isomorphisms if for all graph isomorphisms π,
(
π(sG0 ), . . . , π(s

G
|V (G)|)

) d
= (sH0 , . . . , sH|V (H)|) for all G

π∼= H.

The randomized DFS procedure used in RSNNs satisfies the above definition. Hence, RSNNs satisfy
probabilistic invariance: for all G ∼= H , fRSNN(G)

d
= fRSNN(H), and the averaged predictor

Φ(G) := E
[
fRSNN(G)

]
is an invariant function on graphs: Φ(G) = Φ(H) for all G ∼= H .

Learning the invariance. In addition to being invariant in expectation, we show that RSNNs can
learn the optimal invariant predictor throughout training even under limited sampling budgets, where
the expectation is only approximated (e.g., m = 1 sampled search for each forward pass in the
parameter update). At inference, the invariant predictor can then be computed exactly or estimated
by the Monte Carlo estimator. Our result follows Murphy et al. [29, 30]. For RSNN parameters W,
define the model output on a graph G and a sampled search set S ∼ SDFS(G) as fRSNN(G,S;W).
Corollary 4.4 (SGD converges to the invariant objective). Let ℓ(·, y) be differentiable and define

L(W) = E(G,y)∼D ES∼SDFS(G)

[
ℓ
(
fRSNN(G,S;W), y

)]
.

At each step t, sample a mini-batch Bt = {(G(i)
t , y

(i)
t )}Bi=1 i.i.d. from D and, for each i, draw a

single S
(i)
t ∼ SDFS(G

(i)
t ) independently of Wt; update

Wt+1 = Wt − ηt
1

B

B∑

i=1

∇W ℓ
(
fRSNN(G

(i)
t , S

(i)
t ;Wt), y

(i)
t

)
.

Then E
[

1
B

∑B
i=1 ∇Wℓ

(
fRSNN(G

(i)
t , S

(i)
t ;Wt), y

(i)
t

)]
= ∇WL(Wt), i.e., the mini-batch gradient

is an unbiased estimator of ∇L(Wt). Under standard SGD conditions, Wt converges almost surely
to an optimizer W⋆ of the invariant objective.

Inference. Given a fixed point W⋆ and a new test graph G′, the invariant prediction is
ES [fRSNN(G

′, S;W⋆)], which can be exactly computed or approximated with the estimator
1
m

∑m
j=1 fRSNN(G

′, Sj ;W
⋆) where S1, . . . , Sm

i.i.d.∼ SDFS(G
′).

4.4 Runtime Complexity

We compare the sampling costs of RSNNs and RWNNs. In our approach, each random search
corresponds to a DFS traversal. Assuming a sparse graph, a single DFS has a worst-case cost of
O(|V |), and obtaining m searches requires O(m|V |) time, efficient and computationally feasible
in small to medium-sized graphs. In contrast, RWNNs generate m random walks of length ℓ, with
total sampling cost O(mℓ). When ℓ ≪ |V |, random walk sampling can be faster than random search
extraction. However, as we have shown, short walks fail to capture global structure, leading to
reduced expressivity. Thus, while RSNN sampling is more expensive when ℓ is small, its increased
coverage and performance can justify its cost, especially in graphs where full structure is critical.

5 Experiments & Results

Through empirical evaluation we aim to answer the following research questions, extending our
theory by testing RSNNs on datasets with factors not explicitly addressed in the theoretical analysis
(e.g., class imbalance, rich node features), and testing RSNNs against models beyond our theory such
as canonical approaches (e.g., SMILES, Fingerprints) used commonly in molecular analysis.

• RQ1 (Discriminative performance): How does RSNN discriminative performance com-
pare to standard baselines and RWNNs across sparse graph benchmark tasks?

• RQ2 (Node and edge coverage): Do RSNNs achieve higher node and edge coverage than
RWNNs as the number of sampled searches m increases, and does this increased coverage
translate into improved task performance?

• RQ3 (Generalization to dense graphs): How do RSNNs perform on dense graphs, where
attaining full edge coverage is computationally expensive?
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5.1 Experimental Setup

Datasets. We focus our analysis on molecular and protein benchmarks, domains where RWNNs
have demonstrated strong empirical performance and where efficient coverage, long-range dependen-
cies, and high expressivity are essential [5, 7, 31]. Importantly, RSNNs are not intended as a solution
across all domains, but as a principled alternative for sparse graphs requiring representations that
capture global structure. Specifically, we evaluate on four small-scale molecular graph classification
datasets from MoleculeNet [32]: CLINTOX, SIDER, TOX21, and BBBP. These benchmarks
span diverse molecular tasks such as toxicity and adverse reaction prediction, with graph sizes
ranging from tens to hundreds nodes. We also include four protein graph classification datasets from
ProteinShake [33]: EC Subclass, EC Mechanism, SC Class, and SC Family. Protein graphs are sig-
nificantly larger and denser than molecules, ranging up to thousands of nodes, making it more difficult
to capture global structure. To assess scalability, we evaluate on large-scale molecular benchmarks
with hundreds of thousands of graphs from Open Graph Benchmark [34]: PCBA-1030, PCBA-1458,
and PCBA-4467. Lastly, to test generalization to dense graphs, we evaluate on NeuroGraph-task, a
dense brain graph benchmark, where the task is to predict one of seven mental states (e.g., emotion
processing, language). We provide descriptive statistics for all datasets in Tables 1 and 2.

Baselines. First, we compare to standard molecular learning baselines: (1) SMILES, a sequence
model applied to canonical SMILES [35]; (2) GCN [36] and (3) GIN [15], message-passing GNNs;
and (4) GT [12], a graph transformer model. In addition, we compare to (5) Fingerprint, a multi-
layer perceptron trained on hand-crafted chemical descriptors known to be effective in molecular
tasks [37]. Importantly, SMILES and Fingerprint are not applicable in protein graphs. Second, we
consider four RWNN variants as baselines for comparison: (6) RWNN-base, which employs uniform
random walks of length ℓ with mean aggregation over walk representations [4]; (7) RWNN-anon,
which augments the base model with a node anonymization strategy from Wang and Cho [3]; (8)
RWNN-mdlr, which uses minimum-degree local rule walks from [7], anonymization, and mean
aggregation; (9) CRAWL [5], which applies non-backtracking walks with node-level aggregation.
We consider three sequence models for fseq: (a) GRU [38], (b) LSTM[26], and (c) transformer [27].

Training and Evaluation. To ensure fair comparisons, all RWNNs and RSNN are configured with
the same number of samples m, and RWNN walk lengths are set to ℓ = |V |, the number of nodes per
graph, so that asymptotic runtimes are equivalent across methods. On molecular benchmarks, we
sample a new set of m walks for each forward pass during training, and on protein benchmarks, we
precompute the set of m walks before training. Following each dataset’s protocol, performance is
computed as AUC or accuracy. We report median (min, max) performance over five random splits
(60/20/20), which is more robust than mean and standard deviation for small sample sizes. All models
are trained on a machine equipped with 8× NVIDIA GeForce GTX 1080 Ti GPUs; if a model does
not converge within 24 hours, we omit it from evaluation. All remaining details are in Appendix D1.

5.2 RQ1 & RQ2: Discriminative Performance and Coverage

First, RSNNs significantly outperform standard baselines across all benchmarks, demonstrating their
effectiveness for molecular and protein learning (Table 1). Notably, at m = 16, RSNNs match or
exceed the performance of Fingerprint models, which do not rely on learned representations and
instead use features designed by domain experts. For all RWNNs and RSNN, we present results using
GRU, which performs best empirically, and include additional results for LSTMs and transformers in
the Appendix C, where we observe similar trends. Compared to existing RWNNs, RSNNs exhibit
greater expressivity at low sampling budgets; with a single search (m = 1), RSNN significantly
outperforms all RWNN variants at the same budget. Moreover, across all molecular benchmarks,
RSNNs at m = 1 match or exceed the best-performing RWNNs at m = 16, highlighting their sample
efficiency. While performance differences narrow at m = 16 on molecular benchmarks, RSNNs
retain a substantial lead on larger protein graphs, underscoring their expressivity in structurally
complex settings. On large-scale molecular benchmarks, training both RWNNs and RSNNs with
m > 1 becomes computationally infeasible, exceeding the 24-hour time budget. At m = 1, however,
RSNNs maintain strong performance and substantially outperform RWNNs (Table 2), demonstrating
RSNNs’ robustness under sampling constraints when computation is limited.

1Code can be found at:
https://github.com/MLD3/RandomSearchNNs
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Table 1: Median (min, max) of performance across test splits on molecular and protein benchmarks.
We highlight in blue the best model for each value of m. We use "—" to indicate when a method is
not applicable (Fingerprint/SMILES) or when training exceeds 24 hours (GT). RSNNs consistently
outperform all RWNN variants at m = 1. While RWNNs approach RSNN performance on molecular
benchmarks at m = 16, RSNNs outperform RWNNs across all m on protein benchmarks.

Small Scale Molecular Benchmarks (AUC ↑) Protein Benchmarks (ACC ↑)
CLINTOX SIDER BBBP TOX21 SC CL SC FAM EC SUB EC MEC

# Graphs 1.5K 1.5K 2K 8K 10K 10K 15K 15K
Avg. |V | 26.1 33.6 23.9 18.6 217.5 217.5 304.9 306.4
Avg. |E| 28.0 35.4 26.0 16.9 593.8 593.8 843.4 846.9
# Classes 2 2 2 2 5 1000 24 31

Fingerprint 66.5 (52.3, 74.9) 70.4 (66.6, 74.5) 86.2 (83.4, 92.5) 79.1 (75.1, 81.0) — — — —
SMILES 62.5 (45.7, 68.6) 61.5 (57.6, 66.4) 71.9 (65.5, 75.3) 71.3 (66.4, 73.8) — — — —

NA GT (full) 57.1 (46.5, 73.5) 64.3 (57.9, 69.0) 75.8 (62.6, 84.0) 67.8 (64.8, 73.9) — — — —
GCN 62.4 (56.9, 74.7) 64.2 (62.4, 70.3) 73.9 (68.9, 81.4) 67.5 (63.1, 71.9) 63.4 (62.8, 64.9) 3.9 (1.1, 5.3) 31.2 (28.0, 33.1) 52.8 (51.9, 53.1)
GIN 59.7 (54.1, 72.4) 66.5 (64.0, 69.9) 75.3 (49.4, 85.3) 66.9 (64.6, 73.4) 68.0 (67.9, 69.2) 10.4 (8.7, 11.7) 37.2 (33.5, 38.3) 57.4 (56.1, 59.5)

RWNN-base 71.0 (54.9, 79.5) 62.5 (55.9, 67.3) 74.1 (56.7, 82.8) 71.5 (68.8, 76.3) 44.5 (42.9, 45.4) 2.2 (1.6, 2.8) 26.7 (24.8, 27.9) 47.3 (46.1, 48.4)
RWNN-anon 68.2 (52.5, 87.2) 64.1 (57.0, 67.3) 74.8 (69.0, 82.6) 71.2 (69.3, 75.0) 45.4 (41.5, 45.9) 4.6 (4.2, 5.8) 26.9 (26.0, 28.7) 47.1 (45.6, 48.2)

m = 1 RWNN-mdlr 70.7 (60.4, 76.1) 59.8 (57.0, 65.9) 76.1 (72.1, 81.6) 70.8 (66.6, 75.3) 43.3 (42.9, 45.1) 4.5 (3.7, 4.7) 26.7 (26.5, 27.2) 47.2 (46.0, 48.2)
CRAWL 70.0 (64.6, 73.6) 64.2 (56.1, 67.2) 77.6 (68.8, 81.5) 71.7 (66.4, 75.3) 53.0 (50.7, 53.4) 5.2 (3.4, 5.8) 28.7 (27.6, 29.6) 47.0 (46.2, 47.6)
RSNN (ours) 88.1 (84.9, 91.5) 66.2 (63.0, 72.4) 87.5 (80.3, 89.9) 79.8 (77.2, 83.4) 62.2 (60.0, 65.6) 13.9 (10.6, 14.9) 36.8 (36.5, 38.3) 49.8 (48.2, 50.8)

RWNN-base 83.6 (76.5, 86.7) 64.4 (59.9, 71.9) 84.2 (77.2, 87.0) 76.3 (71.9, 80.9) 53.0 (52.5, 54.1) 3.7 (3.3, 5.4) 32.7 (32.1, 34.5) 48.1 (47.1, 48.8)
RWNN-anon 84.7 (80.3, 89.5) 65.6 (61.5, 68.8) 82.0 (77.1, 85.4) 77.2 (73.5, 79.2) 52.7 (51.7, 53.1) 6.4 (5.2, 7.5) 32.9 (31.2, 34.2) 47.9 (46.5, 50.3)

m = 4 RWNN-mdlr 82.9 (77.9, 90.4) 65.5 (60.4, 72.4) 81.9 (79.2, 88.0) 76.9 (72.6, 80.2) 51.5 (50.2, 52.5) 6.2 (5.4, 7.8) 32.4 (30.6, 33.6) 48.2 (47.3, 49.3)
CRAWL 83.0 (76.6, 91.5) 65.2 (59.5, 71.3) 84.5 (80.7, 87.0) 77.6 (75.6, 81.2) 67.0 (66.6, 67.9) 10.8 (9.5, 11.4) 38.2 (37.0, 39.9) 50.7 (49.9, 51.7)
RSNN (ours) 89.1 (80.9, 91.7) 67.0 (61.3, 71.1) 88.0 (80.3, 90.5) 80.3 (77.3, 84.2) 71.7 (70.5, 73.8) 15.5 (14.4, 19.2) 43.9 (41.7, 44.3) 54.8 (51.7, 55.8)

RWNN-base 85.0 (82.6, 88.7) 65.2 (62.8, 70.2) 84.1 (81.0, 91.1) 78.3 (72.1, 81.3) 57.0 (55.5, 58.5) 6.1 (4.3, 6.9) 35.5 (34.8, 36.9) 49.7 (48.2, 52.0)
RWNN-anon 86.6 (81.8, 92.7) 67.8 (60.3, 70.7) 83.9 (78.2, 85.3) 78.9 (76.1, 82.0) 55.0 (53.5, 58.4) 9.3 (8.6, 10.0) 36.2 (35.8, 37.0) 49.3 (48.8, 50.3)

m = 8 RWNN-mdlr 83.9 (78.0, 87.5) 64.9 (61.8, 69.1) 84.9 (81.5, 86.7) 77.6 (75.0, 79.0) 54.9 (52.1, 56.9) 9.2 (8.4, 10.7) 35.5 (34.5, 36.7) 49.6 (48.3, 51.8)
CRAWL 86.5 (83.6, 91.4) 66.1 (62.1, 69.9) 86.0 (82.8, 89.6) 79.1 (76.7, 82.1) 72.7 (71.7, 73.3) 14.1 (10.2, 17.6) 43.7 (43.0, 45.4) 54.7 (51.6, 55.0)
RSNN (ours) 88.3 (80.1, 91.3) 67.6 (63.3, 69.2) 88.6 (83.6, 90.3) 82.2 (77.3, 85.3) 74.4 (74.1, 75.4) 16.0 (14.5, 19.2) 46.3 (46.0, 49.4) 57.1 (56.5, 57.7)

RWNN-base 87.8 (82.6, 91.1) 67.2 (64.6, 71.4) 86.0 (83.7, 88.1) 80.0 (75.6, 81.8) 59.0 (58.4, 60.2) 10.9 (9.6, 11.4) 37.2 (36.1, 39.3) 51.7 (51.4, 53.0)
RWNN-anon 85.9 (81.7, 91.8) 66.5 (61.1, 69.3) 85.8 (80.1, 88.1) 79.2 (75.9, 82.2) 60.1 (58.3, 61.5) 10.2 (8.1, 12.4) 39.3 (38.5, 40.6) 51.7 (50.4, 53.2)

m = 16 RWNN-mdlr 85.9 (81.5, 89.9) 65.7 (63.5, 70.1) 85.4 (80.8, 90.5) 79.1 (77.7, 83.0) 59.5 (56.7, 61.0) 11.2 (9.4, 11.7) 39.1 (38.4, 40.2) 51.3 (49.9, 51.9)
CRAWL 89.1 (80.5, 91.1) 65.3 (61.4, 70.8) 87.0 (81.7, 90.3) 80.9 (77.4, 82.6) 76.2 (73.6, 77.4) 15.5 (13.6, 16.0) 48.7 (46.1, 49.3) 57.4 (56.8, 58.6)
RSNN (ours) 88.5 (82.0, 93.7) 67.1 (65.0, 74.0) 89.4 (83.0, 91.7) 82.2 (78.0, 84.1) 77.0 (75.0, 77.2) 19.0 (15.3, 20.1) 50.0 (49.5, 52.0) 59.5 (57.1, 60.0)

Table 2: Median (min, max) AUC on large scale molec-
ular benchmarks. We highlight in blue the best model.
RSNNs outperform all RWNNs across all tasks.

Large Scale Molecular Benchmarks (AUC ↑)
PCBA-1030 PCBA-1458 PCBA-4467

# Graphs 160K 195K 240K
Avg. |V | 24.3 25.1 25.3
Avg. |E| 26.2 27.1 27.2

RWNN-mdlr 63.5 (62.3, 64.3) 76.2 (75.4, 76.7) 75.4 (75.4, 76.0)
m = 1 CRAWL 64.2 (62.5, 64.5) 77.0 (76.8, 77.2) 75.6 (75.2, 75.7)

RSNN 78.8 (78.1, 79.3) 87.0 (86.7, 87.4) 85.2 (84.3, 85.3)

We compare how node/edge coverage and per-
formance varies with the number of walks or
searches for RSNNs and CRAWL, the strongest
RWNN baseline (Figure 3). Across all bench-
marks, we observe a strong correlation between
coverage and model performance. On molecu-
lar graphs, RSNNs achieve full node and high
edge coverage with a single search (m = 1), re-
sulting in strong initial performance. This aligns
with our theoretical analysis: each RSNN search
guarantees node coverage by construction, and
only a few searches are needed to achieve full edge coverage in sparse graphs. In contrast, CRAWL
begins with low node and edge coverage and only reaches RSNN-level performance at m = 16, once
coverage converges, highlighting RWNN limitations under small sampling budgets. On larger protein
graphs, both coverage and performance improve more gradually, but RSNNs retain a consistent
performance advantage across all m, underscoring the benefit of efficient coverage in larger graphs.

5.3 RQ3: Generalization to Dense Graphs

Table 3: Median (min, max) of accuracy on dense
NeuroGraph benchmark. We highlight in blue the best
model. RSNNs outperform CRAWL across m = 4, 16.

NeuroGraph-task
# Graphs 7500
Avg. |V | 1000
Avg. |E| 7029
Max degree 153

m = 1 m = 4 m = 16

CRAWL 63.4 (59.4, 64.5) 77.5, (74.4, 78.9) 68.3 (30.1, 87.9)
RSNN 58.9 (57.1, 61.5) 80.4 (78.8, 82.6) 86.5 (76.5, 88.9)

To assess generalization beyond the sparse
regime, we evaluate on a NeuroGraph bench-
mark of dense brain graphs. These graphs are
substantially denser than molecules and pro-
teins, making full edge coverage expensive for
both walks and searches. We compare RSNN
against CRAWL. RSNN outperforms CRAWL
at m = 4, 16, indicating that RSNNs can lever-
age structure even when full coverage is expen-
sive and that their performance advantage re-
mains on dense graphs.
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(a) BBBP Molecular Graph (b) Structural Family Protein Graph (c) Enzyme Subclass Protein Graph

Figure 3: Coverage vs. performance across benchmarks. RSNNs achieve higher coverage and
performance at low sample sizes, while CRAWL only approaches RSNN coverage and performance
at m = 16, highlighting a strong correlation between coverage and performance.

6 Discussion and Conclusion

We present the first theoretical analysis of RWNNs under realistic sampling constraints, showing
that their expressivity is fundamentally limited without full node and edge coverage, even in small
graphs. We prove that under partial coverage, RWNNs are strictly less expressive than traditional
MPNNs. To address this, we introduce RSNNs, which use random depth-first search to guarantee
full node coverage and edge coverage with only a logarithmic number of samples in sparse graphs.
When paired with expressive sequence models, we show that RSNNs are universal approximators.
Furthermore, RSNNs are also probabilistically invariant to graph isomorphisms. Empirically, RSNNs
consistently outperform RWNNs on both molecular and protein benchmarks, requiring up to 16×
fewer samples to achieve comparable performance.

Our work builds on recent work in RWNNs that combines random walks with expressive sequence
models [3–8]. These works explore various walk strategies, including uniform walks [3, 4], non-
backtracking walks [5, 6], minimum-degree local rule walks [7], and learnable walks [8], and propose
architectural improvements to enhance expressivity and performance. We critically examine the
expressivity of RWNNs under realistic sampling constraints, relaxing prior assumptions that walks
are as long as cover times. Based on our analysis, we propose to replace random walks entirely with
random searches, leading to RSNNs, a more sample-efficient and expressive alternative.

Our work is not without limitations. In particular, RSNNs are tailored to sparse, medium-sized
graphs. How to scale RSNN to large, densely connected graphs remains an open question. In such
settings, full-depth searches may become prohibitively expensive, and edge coverage may scale less
efficiently. A promising direction is to explore truncated searches that capture key structural signal
while reducing computation. This raises new questions about how coverage and expressivity behave
under partial searches, particularly in dense regimes where full coverage is infeasible.

Despite the focused scope, our results are promising: RSNNs match or exceed RWNN performance
with significantly fewer samples and maintain a clear advantage across benchmarks. These findings
underscore the value of replacing random walk sampling with search-based sampling in graph
learning. More broadly, this work highlights the importance of moving beyond local neighborhoods
toward sampling strategies that capture global structure. By leveraging efficient coverage through
random searches, RSNNs offer a principled, expressive, and sample-efficient framework for learning
on sparse graphs, laying the foundation for future exploration in other settings.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, they are properly reflected.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss limitations of the work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Yes, all theoretical results are clearly stated and we place all the mathematical
proofs in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental results are described in the main paper and the Appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, all data are publicly available and code is available at:
https://github.com/MLD3/RandomSearchNNs
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]

Justification: We leave all training and test details in the main paper and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All error bars are explained in Section 5

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, all details are in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms in every respect to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is a general graph representation learning framework with no
positive/negative societal impacts beyond any general machine learning framework for
graphs (message-passing graph neural networks, graph transformers, random walk neural
networks).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No new data or models are released with a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all assets are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All assets are properly documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or research with human subjects was used.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: All data used in this work are publicly available datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs do not impact the core methodology of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Mathematical Proofs

A.1 Random Walk Neural Network Expressive Power

We begin with the 1–Weisfeiler–Lehman (WL) color refinement, which iteratively updates each
node’s color by hashing its current color together with the multiset of its neighbors’ colors (Sec-
tion A.1.1). WL is known to upper-bound MPNN expressivity [15, 39]. We then introduce Walk
Weisfeiler–Lehman (WWL), a walk-based refinement that updates a node from the multiset of colored
walks of length ≤ ℓ that terminates at it (Section A.1.2). We establish monotonicity of WWL in the
number of refinement rounds t, the maximum walk length ℓ, and the initialization π(0) (i.e., richer
initial features yield finer partitions). We further show that WWL upper-bounds the expressive power
of RWNNs (without positional/ID signals). Finally, using unfolding trees, which simultaneously
captures the nodes visible to t rounds of message passing and encodes all root-terminating walks
of length ≤ t, we prove the main expressivity results that unify MPNNs and RWNNs: equivalence
under full coverage and strict separation under partial coverage (Section A.1.3). We provide a more
detailed review of existing WL variants and their relation to WWL in Appendix E.

A.1.1 Weisfeiler–Lehman (WL)

We begin with the 1-dimensional Weisfeiler–Lehman (WL) color-refinement procedure, which upper-
bounds the expressive power of message-passing GNNs and, as we will show later, also upper-bounds
RWNN expressive power. Intuitively, WL iteratively refines node labels by hashing each node’s
current label together with the multiset of its neighbors’ labels.

Definition A.1 (1-WL color refinement). Let G = (V,E) be an unlabeled graph and let N (u) denote
the neighbors of u ∈ V . Initialize a coloring π

(0)
WL : V → Σ with a constant value (e.g., π(0)

WL(u) = 1
for all u). For t ≥ 0, update

π
(t+1)
WL (u) = Hash

(
π
(t)
WL(u),

{{
π
(t)
WL(v) : v ∈ N (u)

}})
∀u ∈ V,

where Hash is injective and maps pairs of the form (current color, neighbor colors) to Σ. The process
stabilizes at the first t⋆ for which π

(t⋆)
WL = π

(t⋆+1)
WL ; we denote the stable coloring by π

(∞)
WL .

To compare two graphs G and H , run 1-WL on each. If the stable color multisets differ (e.g., some
color has a different node count), the graphs are certified non-isomorphic. If the stable colorings agree,
the test is inconclusive (the graphs may still be non-isomorphic). For the remainder of the analysis,
we write α ⪯ β for node-level colorings α, β : V → Σ to mean that β refines α: if β(u) = β(v)
then α(u) = α(v). These notions coincide with graph-level distinguishability: applying an injective
readout on multiset colors α and β for α ⪯ β yields graph-level functions fα and fβ such that
fα ⪯ fβ . Thus, distinguishability at the node-level translates to distinguishability at the graph-level.

WL has been used to quantify the expressive power of MPNNs. For any standard message-passing
NN, its expressive power is no greater than that of WL. Moreover, if its aggregation function is
injective on the multisets of node neighbors, its expressive power matches that of WL.

Lemma A.2 (MPNN vs. 1-WL Expressivity [15, 39]). Let fMPNN be a MPNN with a permutation-
invariant readout, and let πWL denote the 1-WL coloring. Then

fMPNN ⪯ πWL.

Moreover, if the multiset aggregator fagg used by fMPNN is injective, then

fMPNN ≃ πWL.

A.1.2 Walk Weisfeiler–Lehman (WWL)

Building on WL, we now align Weisfeiler–Lehman to random walk models by defining a node-level
WWL scheme that refines a node’s label from the multiset of colored walks incident to it.

Definition A.3 (WWL at length ℓ). Let G = (V,E) be a graph and ℓ ∈ N. For L ≥ 1, let

WL = {W = (w0, . . . , wL) ∈ V L+1 : (wi−1, wi) ∈ E ∀i ∈ [L] }
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be the set of length-L walks, and write W≤ℓ =
⋃ℓ

ℓ=1 WL, the union of all walks of length ≤ ℓ. For a
node u ∈ V , define its terminating-walk neighborhood

W≤ℓ(u) = {W = (w0, . . . , wL) ∈ W≤ℓ : wℓ = u }.

Given an initial coloring π(0) : V → Σ (e.g., uniform or from node features), define for any walk
col

(t)

WWLℓ(W ) =
(
π
(t)

WWLℓ(w0), . . . , π
(t)

WWLℓ(wL)
)
, the colored walk obtained by applying π

(t)

WWLℓ

to each node in the walk. The WWLℓ update is, for all u ∈ V ,

π
(t+1)

WWLℓ(u) = Hash
(
π
(t)

WWLℓ(u),
{{
col

(t)

WWLℓ(W ) : W ∈ W≤ℓ(u)
}})

.

Lemma A.4 (Monotonicity in t, ℓ, and π0). Fix ℓ ≤ ℓ′, t ≤ t′, and initial colorings π0 ⪯ π′
0. Then

(time) π
(t)

WWLℓ(π0)
⪯ π

(t′)

WWLℓ(π0)
, (5)

(length) π
(t)

WWLℓ(π0)
⪯ π

(t)

WWLℓ′ (π0)
, (6)

(initialization) π
(t)

WWLℓ(π0)
⪯ π

(t)

WWLℓ(π′
0)
. (7)

Consequently, combining each result yields π(t)

WWLℓ(π0)
⪯ π

(t′)

WWLℓ′ (π′
0)

for t ≤ t′, ℓ ≤ ℓ′, π0 ⪯ π′
0.

Proof. Monotonicity in t. At each step, π(t+1)

WWLℓ(u) = Hash
(
π
(t)

WWLℓ(u), ·
)

includes the current
color as an input. By injectivity of Hash, if two nodes receive the same new color then they had the
same current color. Thus π(t)

WWLℓ ⪯ π
(t+1)

WWLℓ , and induction gives the stated inequality for t ≤ t′.

Monotonicity in ℓ. Let ℓ ≤ ℓ′. For each node u, the multiset of colored terminating walks of lengths
≤ ℓ is obtained from the corresponding multiset for lengths ≤ ℓ′ by the projection that discards all
walks of length > ℓ. Therefore, if two nodes are equal under WWLℓ′ , they are equal under WWLℓ

as well. Injectivity of Hash yields π(t)

WWLℓ ⪯ π
(t)

WWLℓ′ .

Monotonicity in the initialization π0. Assume π0 ⪯ π′
0. Then there exists a color-forgetting map ρ

with π0 = ρ ◦ π′
0. Apply ρ pointwise to every color in each colored walk: for any terminating walk

W = (w0, . . . , wL),

(π0(w0), . . . , π0(wL)) =
(
ρ(π′

0(w0)), . . . , ρ(π
′
0(wL))

)
.

Hence the multiset of π0-colored walks at any node is the image, under this deterministic transforma-
tion, of the multiset of π′

0-colored walks. Consequently, equality of the π′
0-based walk multisets im-

plies equality of the π0-based walk multisets, and injectivity of Hash gives π(1)

WWLℓ(π0)
⪯ π

(1)

WWLℓ(π′
0)

.
The same argument iterates, since each WWL round recomputes colors from the previous round’s
coloring via the same construction, yielding π

(t)

WWLℓ(π0)
⪯ π

(t)

WWLℓ(π′
0)

for all t.

The following lemma is an analogue to expressive results on MPNNs and 1-WL. Intuitively, WWLℓ

upper bounds RWNN expressivity, and RWNNs can match WWLℓ if their aggregator is injective.

Lemma A.5 (RWNN vs. WWLℓ Expressivity). Let f ℓ
RWNN be a random walk neural network that,

for each node u, aggregates over the multiset of all terminating walks of lengths 1, . . . , ℓ ending at u,
via a permutation-invariant aggregator and a sequence encoder applied to each walk. Let πWWLℓ

denote the WWLℓ coloring.

1. (Upper bound) For any choice of encoders/aggregators,

f ℓ
RWNN ⪯ πWWLℓ .

That is, if two graphs are indistinguishable by WWLℓ, they are indistinguishable by f ℓ
RWNN.

2. (Tightness under injectivity) Suppose the sequence encoder fseq is injective on length-aware
color sequences and the nodewise multiset aggregator fagg is injective. Then

f ℓ
RWNN ≃ πWWLℓ .
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Proof. (Upper bound). We prove by induction on t that π
(t)

WWLℓ(u) = π
(t)

WWLℓ(v) implies
f ℓ,t
RWNN(u) = f ℓ,t

RWNN(v).

Base case t = 0. Both procedures start from the same initialization (e.g., uniform or fixed features),
so the claim holds trivially.

Inductive step. Assume the claim holds at depth t. Take u, v with π
(t+1)

WWLℓ(u) = π
(t+1)

WWLℓ(v). By
injectivity of the WWL hash, the entire inputs to the hash coincide, hence

{{
π
(t)

WWLℓ(W ) : W ∈ W≤ℓ(u)
}}

=
{{
π
(t)

WWLℓ(W
′) : W ′ ∈ W≤ℓ(v)

}}
,

where each π
(t)

WWLℓ(W ) is the length-aware color sequence along the walk W . Thus there is a
bijection between terminating walks at u and v that preserves these sequences. By the induction
hypothesis, matched nodes with equal WWL color at round t have equal RWNN representations at
depth t. Therefore, for each matched walk pair, the inputs to the per-walk sequence encoder fseq
agree elementwise, so per-walk encodings match; applying the same permutation-invariant multiset
aggregator fagg yields f ℓ,t+1

RWNN(u) = f ℓ,t+1
RWNN(v). This completes the induction and the upper bound.

(Equivalence under injectivity). Assume fseq is injective on length-aware sequences and fagg is
injective on multisets. Let u, v satisfy π

(t+1)

WWLℓ(u) ̸= π
(t+1)

WWLℓ(v). By injectivity of the WWL hash,

either their current colors at round t differ, or their multisets {{π(t)

WWLℓ(W ) : W ∈ W≤ℓ(·)}} differ.
In the first case, including (an injective transform of) the current node state in the RWNN update
separates u and v. In the second case, there is no bijection between the two multisets of colored
sequences; since fseq is injective on sequences and fagg is injective on multisets, the aggregated
RWNN representations must differ at round t+1. Combining with the upper bound, we conclude
f ℓ,t
RWNN ≃ π

(t)

WWLℓ for all t.

A.1.3 RWNN-MPNN Equivalence Under Full Coverage (Theorem 3.1, Corollary 3.2)

Unfolding Trees. We introduce the unfolding tree from Morris et al. [40], Kriege [41], which makes
explicit the bridge between Weisfeiler–Lehman (WL) refinement and random walks. For a node u in
G, the unfolding tree at depth ℓ enumerates, with multiplicities, all vertices seen by successive layers
of message passing around u. Equivalently, every leaf-to-root path in the unfolding tree corresponds
to a walk in G that terminates at u. Hence the unfolding tree simultaneously encodes (i) all messages
propagated in a message-passing view and (ii) all terminating walks of length ≤ ℓ at u. We will
leverage this structure to relate the expressive power of WL and WWL.
Definition A.6 (Unfolding tree [40, 41]). Let G = (V,E) be a graph, ℓ ∈ N, and u ∈ V . The
unfolding tree of depth ℓ rooted at u, denoted TG[ℓ, u], is the rooted tree defined recursively as
follows:

• TG[0, u] consists of a single root node labeled by u.

• For ℓ ≥ 1, TG[ℓ, u] has root labeled by u; for each neighbor v ∈ NG(u), attach as a child a
fresh copy of TG[ℓ− 1, v].

The first key fact ties WL colors to unfolding trees: WL’s ℓ-round color of a node is exactly the
isomorphism type of its depth-ℓ unfolding tree.
Lemma A.7 (WL ↔ unfolding tree [41]). Let G,H be graphs, u ∈ V (G), v ∈ V (H), and ℓ ≥ 1.
Then

π
(ℓ)
WL(u) = π

(ℓ)
WL(v) ⇐⇒ TG[ℓ, u] ∼= TH [ℓ, v],

Unfolding trees also capture terminating walks: every leaf-to-root path in TG[ℓ, u] reads off a unique
length-ℓ walk in G ending at u, and conversely. Let

W
(
TG[ℓ, u]

)
=

{{ (
x0, . . . , xℓ

)
: (x0, . . . , xℓ) is a leaf-to-root path in TG[ℓ, u]

}}

be the multiset of vertex-sequences read along leaf-to-root paths (ordered from leaf to root). Let
Wℓ(u) denote the multiset of all length-ℓ walks in G that terminate at u (with multiplicity). Then:
Lemma A.8 (Leaf-to-root paths ↔ terminating walks [41]). For any u ∈ V (G) and ℓ ≥ 1,

W
(
TG[ℓ, u]

)
= Wℓ(u).
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Theorem A.9. For any graphs G,H and any ℓ ≥ 1, WWLℓ test has exactly the same distinguishing
power as the classical 1-dimensional Weisfeiler–Lehman test. Formally,

π
(∞)

WWLℓ ≃ π
(∞)
WL .

Proof. π
(∞)
WL ⪯ π

(∞)

WWLℓ . For ℓ = 1, the set of terminating length-1 walks at a node u is exactly its
neighbor set N (u). Hence the WWL1 update coincides with the WL update, and for every round t

π
(t)

WWL1 = π
(t)
WL, in particular π

(∞)

WWL1 = π
(∞)
WL .

By Lemma A.4 (monotonicity in ℓ), π(t)

WWL1 ⪯ π
(t)

WWLℓ for all ℓ ≥ 1 and all t. Passing to the limit,

π
(∞)
WL = π

(∞)

WWL1 ⪯ π
(∞)

WWLℓ .

π
(∞)

WWLℓ ⪯ π
(∞)
WL . Initializing WWL with the WL limit, π(0) = π

(∞)
WL , it suffices to show that one

WWL update makes no further splits. Fix u ∈ V (G) and v ∈ V (H) with π
(∞)
WL (u) = π

(∞)
WL (v). By

Lemma A.7, there is a root-preserving isomorphism σ : TG[ℓ, u]
∼=−−→ TH [ℓ, v]. By Lemma A.8,

leaf-to-root paths in these depth-ℓ trees biject with the terminating walks of lengths 1, . . . , ℓ at u and
v, respectively; σ also preserves WL∞ colors at every node of two unfolding trees. To show this,
suppose for contradiction, that there exists x ∈ TG[ℓ, u] with π

(∞)
1-WL(x) ̸= π

(∞)
1-WL(σ(x)). Since 1-WL

stabilizes in finite time on the finite disjoint union G ⊎H , there exists a finite witness round k⋆ ∈ N
such that π(k⋆)

1-WL(x) ̸= π
(k⋆)
1-WL(σ(x)). Let d be the distance from x to the root u in TG[ℓ, u]. By the

1-WL update rule, a mismatch at a node at round k⋆ forces a mismatch at its parent at round k⋆+1
(the multiset of child colors differs), and inductively a mismatch at the root after d further rounds:

π
(k⋆+d)
1-WL (u) ̸= π

(k⋆+d)
1-WL (v).

This contradicts π(∞)
1-WL(u) = π

(∞)
1-WL(v). Hence σ must preserve 1-WL colors at every node. Conse-

quently, the leaf-to-root paths in TG[ℓ, u] and TH [ℓ, v] correspond bijectively under σ with identical
colored sequences. Thus, the corresponding multisets of WL∞-colored terminating-walk sequences at
u and v coincide. Together with π(0)(u) = π(0)(v), the entire inputs to the WWL hash agree at u and
v, so by injectivity of Hash we obtain π

(1)

WWLℓ(π
(∞)
WL )

(u) = π
(1)

WWLℓ(π
(∞)
WL )

(v). Hence π
(∞)
WL is a fixed

point of WWL. By Lemma A.4, WWL is monotone in t and π0; since uniform ⪯ π
(∞)
WL , it follows

that π(∞)

WWLℓ ⪯ π
(∞)
WL . Combined with π

(∞)
WL = π

(∞)

WWL1 ⪯ π
(∞)

WWLℓ , we conclude π
(∞)

WWLℓ ≃ π
(∞)
WL .

We now leverage the preceding results to prove the main expressivity statements.
Theorem A.10 (RWNN-MPNN equivalence under full coverage). Let G be a graph. Let fFC

RWNN
denote an RWNN with injective fseq and fagg with no additional positional encodings, applied to the
complete multiset of walks W≤ℓ(G) with lengths up to ℓ = CE(G), the edge cover time of G. Let
fMPNN be an MPNN with injective fagg. Then, for all graphs G,H ,

fMPNN(G) = fMPNN(H) ⇐⇒ fFC
RWNN(G) = fFC

RWNN(H).

Hence, fFC
RWNN ≃ fMPNN (i.e., fFC

RWNN and fMPNN are equal in expressive power).

Proof. By the standard 1-WL result for message passing (Theorem A.2), an MPNN with injective
aggregation satisfies fMPNN ≃ πWL. By the RWNN/WWL correspondence (Lemma A.5), a full-
coverage RWNN with injective fseq and fagg satisfies fFC

RWNN ≃ πWWLℓ . Finally, by the equivalence
πWWLℓ ≃ πWL (Theorem A.9), we conclude fFC

RWNN ≃ fMPNN.

Corollary A.11 (RWNNs under partial coverage). Let fPC
RWNN be an RWNN of the same architectural

class as in Theorem 3.1, but applied to a multiset of terminating walks that achieves only partial
node/edge coverage of the input. Then, for all graphs G,H ,

fMPNN(G) = fMPNN(H) =⇒ fPC
RWNN(G) = fPC

RWNN(H),
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and there exist non-isomorphic graphs G ̸∼= H such that

fMPNN(G) ̸= fMPNN(H) while fPC
RWNN(G) = fPC

RWNN(H).

Hence fPC
RWNN ≺ fMPNN.

Proof. Coverage monotonicity (a direct consequence of injectivity and permutation invariance of
the aggregator on multisets) implies that removing walks cannot increase distinguishing power,
i.e., fPC

RWNN ⪯ fFC
RWNN ≃ fMPNN, which yields the implication fMPNN(G) = fMPNN(H) ⇒

fPC
RWNN(G) = fPC

RWNN(H). For strictness, start from two isomorphic graphs and form G by adding
one isolated vertex and H by adding one pendant vertex (a new vertex attached to an existing node).
Then 1-WL (hence an MPNN) distinguishes G and H . However, if fPC

RWNN is applied to walk
multisets that exclude all walks visiting the added vertex in both graphs, the remaining covered walks
coincide, so fPC

RWNN(G) = fPC
RWNN(H). Thus fPC

RWNN ≺ fMPNN.

A.2 Random Search Neural Network Expressive Power (Lemma 4.1, Theorem 4.2)

We first establish a coverage lemma: for any edge e = {u, v} in a connected graph G with maximum
degree dmax, a randomized DFS (uniform start; i.i.d. tie-breaking) includes e in its spanning tree
with probability at least 1/dmax, i.e., Pr

[
e ∈ TDFS(G)

]
≥ 1/dmax. Building on this, we show that

sampling O
(
dmax log |E|

)
independent DFS trees suffices to achieve full edge coverage with high

probability; in bounded-degree sparse graphs (dmax = O(1) and |E| = Θ(|V |)), this reduces to
O(log |V |) searches. Equipped with such full coverage, standard universal components, and shared
anonymous integer tags, RSNNs are universal approximators on graphs in the specified family.

Lemma A.12 (Edge inclusion probability under random DFS). Consider the following random–DFS
procedure on a graph G: fix a uniform distribution over the root vertex; independently for each vertex
x, draw a uniformly random permutation πx of its neighbors; run depth-first search that, upon first
visiting x, explores neighbors in the order πx. Let TDFS be the resulting DFS spanning tree. For an
edge e = (u, v), define

Su(e) :=
{
w ∈ N (u) \ {v} : there exists a u→v path in G \ {e} whose first edge is (u,w)

}
,

and set τu(e) := |Su(e)|; define Sv(e) and τv(e) analogously. Then

Pr
[
e ∈ E(TDFS)

]
≥ min

{ 1

τu(e) + 1
,

1

τv(e) + 1

}
≥ 1

max{deg(u),deg(v)}
≥ 1

dmax
.

Proof. Let A be the event that u is discovered by DFS before v. On A, when u is first processed, v
is unvisited. The edge (u, v) will be taken as a tree edge iff, in the random neighbor order πu, the
vertex v appears before all neighbors Su(e) that can lead from u to v without using e. The positions
of the other neighbors of u are irrelevant: exploring any neighbor not on a path to v first cannot reach
v before DFS returns to u. Since πu is a uniform permutation, the probability of this sufficient event
is exactly 1/(τu(e) + 1). A symmetric argument on Ac (i.e., when v is discovered before u) gives
the bound 1/(τv(e) + 1). Unconditionally,

Pr
[
e ∈ T

]
= Pr(A) Pr

[
e ∈ T | A

]
+ Pr(Ac) Pr

[
e ∈ T | Ac] ≥ min

{ 1

τu(e) + 1
,

1

τv(e) + 1

}
.

where T is a random DFS tree. Finally, τu(e) ≤ deg(u) − 1 and τv(e) ≤ deg(v) − 1, hence
min{1/(τu + 1), 1/(τv + 1)} ≥ 1/max{deg(u),deg(v)} ≥ 1/dmax.

Lemma A.13 (Logarithmic Sampling Yields Full Edge Coverage). Let G = (V,E) be a connected,
unweighted graph with |E| ≤ C|V | for some constant C and a bounded maximum degree dmax. Let
S1, S2, . . . , Sm be m independent random searches sampled from G, and let T1, T2, . . . , Tm be their
corresponding induced spanning trees. Then, for small δ ≪ 1, if

m ≥
ln

(
C|V |
δ

)

ln
(

dmax

dmax−1

) (8)

the union of T1, T2, . . . , Tm contains every edge in E with probability at least 1− δ.
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Proof. By Lemma A.12 the probability that any edge e appears in any DFS is at least pe ≥ 1
dmax

.

Hence, the probability that a single DFS tree does not contain e is at most 1− pe ≤ 1− 1
dmax

. Since
the spanning trees T1, T2, . . . , Tm are sampled independently, the probability that e is missing from

all m trees is at most
(
1− 1

dmax

)m

. By the union bound over all |E| edges, the probability that there
exists at least one edge which is not covered by the union of the m trees is at most

|E|
(
1− 1

dmax

)m

≤ C|V |
(
1− 1

dmax

)m

.

We require this probability to be at most δ:

C|V |
(
1− 1

dmax

)m

≤ δ.

Taking the natural logarithm on both sides gives:

ln(C|V |) +m ln

(
1− 1

dmax

)
≤ ln(δ).

Since ln
(
1− 1

dmax

)
< 0, dividing by this term (and reversing the inequality) yields

m ≥
ln

(
C|V |
δ

)

ln
(

1
1− 1

dmax

) =
ln
(

C|V |
δ

)

ln
(

dmax

dmax−1

) .

Thus, with m chosen accordingly, the union of the m spanning trees contains every edge of G with
probability at least 1− δ.

Definition A.14 (Anonymous integer tags). Let G = (V,E,X) be a (connected) graph. Sample the
first search S(1) on G according to the RSNN search policy (e.g., a DFS with random tie–breaking).
Let (v(1), v(2), . . . , v(n)) be the vertices ordered by their first-visit time along S(1). Define the integer
tag assignment τ : V → [n] by

τ
(
v(i)

)
:= i for i = 1, . . . , n,

Use the same tag assignment τ for all searches in the RSNN search set on G. Because S(1) is sampled
in a manner equivariant to vertex relabellings (e.g., random start and random neighbour ordering in
DFS), the induced random tag assignment is permutation-invariant in distribution.
Theorem A.15 (Universal Approximation by RSNNs on Sparse Graphs with Bounded Degree). Let
ϵ > 0 and let f : G → Rd be any continuous graph-level function, where G is the space of sparse,
unweighted graphs with |E| = O(|V |) and maximum degree at most dmax. Assume fRSNN(G) uses
(i) a universal set encoder fagg, (ii) a universal sequence encoder fseq, and (iii) anonymous integer
tags. Assume m satisfies Lemma A.13, so that full coverage is achieved with probability at least 1− δ.
Then, with probability at least 1− δ there exists an RSNN configuration such that

∥fRSNN(G)− f(G)∥ < ϵ for all G ∈ G, (9)

Proof. Let SFC(G) be the set of search sets of size m on G. Define a target on search sets by

f̃(S) :=

{
F (G), S ∈ SFC(G),

0, otherwise.

This f̃ is well-defined (for any given input search set, there is a single unique output), and is
permutation-invariant in the multiset argument. Because the input space (bounded-length sequences
over a finite alphabet, aggregated into multisets of bounded size) is finite, the assumed universal
sequence encoder and universal set aggregator can uniformly approximate f̃ to error < ε across⋃

G∈G≤nmax
SFC(G). Therefore, with those parameters, for any G and any random S(G),

Pr
(∥∥fRSNN(S)− F (G)

∥∥ < ε
∣∣∣ S ∈ FullCov(G)

)
= 1,

and hence unconditionally Pr(∥fRSNN(S)− F (G)∥ < ε) ≥ 1− δ.
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A.3 Random Search Neural Network Invariance (Theorem 4.3, Corollary 4.4)

We next study invariance properties of RSNNs. Because RSNNs are randomized graph functions, we
adopt a probabilistic notion of isomorphism invariance: if two graphs are isomorphic, the distributions
of RSNN outputs coincide. As a consequence, the expected predictor Φ(G)=E[fRSNN(G)] is an
isomorphism-invariant graph function. Moreover, RSNNs learn this invariance via stochastic training:
sampling a fresh search per step yields an unbiased gradient of the invariant risk, and under standard
SGD conditions the parameters converge to a stationary point of the invariant objective. In practice,
this justifies sampling with a small number of searches (e.g., m=1) in limited budget regimes.
Theorem A.16 (Isomorphism-Invariance of RSNN). A randomized search procedure on a graph G
produces a sequence SG = (sG0 , . . . , s

G
|V (G)|) of visited vertices. We say the procedure is probabilis-

tically invariant to graph isomorphisms if,
(
π(sG0 ), . . . , π(s

G
|V (G)|)

) d
= (sH0 , . . . , sH|V (H)|) for all G

π∼= H.

The randomized DFS procedure used in RSNNs satisfies the above definition. Hence, RSNNs satisfy
probabilistic invariance: for all G ∼= H , fRSNN(G)

d
= fRSNN(H), and the averaged predictor

Φ(G) := E
[
fRSNN(G)

]
is an invariant function on graphs: Φ(G) = Φ(H) for all G ∼= H .

Proof. Write XDFS(G) = (s0, . . . , s|V |−1) for the vertex sequence produced by the randomized
DFS on G, and let H = π ·G for an isomorphism π : V (G)→V (H). The randomness comes from:
(i) the root s0 ∼ Unif(V (G)) and (ii) an independent random order of neighbors at each vertex.

We prove by induction on t that the next state has the same pushforward conditional law under any
isomorphism π:

π
(
XDFS(G)[t]

∣∣ x
) d
= XDFS(H)[t]

∣∣ πx, (10)

for every valid DFS prefix x = (s0, . . . , st−1) on G (and its image πx on H). Averaging over
prefixes then yields πXDFS(G)[t]

d
= XDFS(H)[t] for each t, and thus πXDFS(G)

d
= XDFS(H).

State, admissible set, and frontier. For a prefix x valid on G, let Vvis(G;x) = {s0, . . . , st−1}
be the visited set and let top(G;x) be the current DFS stack top (the vertex whose adjacency list is
being explored). Define the admissible neighbor set

A(G;x) := N
(
top(G;x)

)
\ Vvis(G;x).

If A(G;x) ̸= ∅, the rule “pick the unvisited neighbor at random” makes the next vertex st uniform on
A(G;x). If A(G;x) = ∅, the next move is the (deterministic) backtrack to the parent of top(G;x)
in the current DFS tree. Under an isomorphism π : G∼=H , relabeling preserves these invariants:

top(H;πx) = π
(
top(G;x)

)
, Vvis(H;πx) = π

(
Vvis(G;x)

)
, A(H;πx) = π

(
A(G;x)

)
.

Base case (t = 0). s0 ∼ Unif(V (G)) and πs0 ∼ Unif(V (H)), so

πXDFS(G)[0]
d
= XDFS(H)[0].

Induction step. Assume πXDFS(G)[: t]
d
= XDFS(H)[: t]. Fix any realization x of the prefix on G.

There are two cases.

(i) Expansion step: A(G;x) ̸= ∅. Conditioned on x, XDFS(G)[t] is uniform on A(G;x). Condi-
tioned on πx, XDFS(H)[t] is uniform on A(H;πx) = πA(G;x). Pushing the uniform measure on
A(G;x) forward by π yields the uniform measure on πA(G;x), hence

π
(
XDFS(G)[t]

∣∣ x
) d
= XDFS(H)[t]

∣∣ πx.

(ii) Backtrack step: A(G;x) = ∅. The next state is the parent of top(G;x) in the DFS tree
determined by x; thus it is deterministic given x. Relabeling preserves parent/child relations in the
explored DFS tree, so

π
(
XDFS(G)[t]

∣∣ x
)
= XDFS(H)[t]

∣∣ πx,
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In both cases, the conditional laws match after applying π. Taking expectations over the distributions
gives πXDFS(G)[t]

d
= XDFS(H)[t] for each t, which completes the induction and yields

πXDFS(G)
d
= XDFS(H).

This proves probabilistic invariance of the randomized DFS. Since the RSNN output fRSNN is a
deterministic function of the search sequence, it follows that fRSNN(G)

d
= fRSNN(H), and the

averaged predictor Φ(G) = E[fRSNN(G)] is an invariant graph function.

Corollary A.17 (Stochastic training converges to the invariant objective). Let ℓ(·, y) be a differen-
tiable loss. Consider the expected risk

L(W) = E(G,y)∼D ES∼SDFS(G)

[
ℓ
(
fRSNN(G,S;W), y

)]
.

At each SGD step t, sample (Gt, yt) ∼ D and one search draw St ∼ SDFS(Gt), and update

Wt+1 = Wt − ηt ∇W ℓ
(
fRSNN(Gt, St;Wt), yt

)
.

Then E
[
∇Wℓ(fRSNN(Gt, St;Wt), yt)

]
= ∇WL(Wt), i.e., the single-sample gradient is an unbi-

ased estimator of the invariant objective’s gradient. Under standard SGD conditions, Wt converges
almost surely to the optimal W⋆ of the invariant objective.

Proof sketch. This follows directly from the proof of Proposition A.1 in Murphy et al. [29], re-
placing permutations by RSNN searches: since the search randomness S ∼SDFS(G) is sampled
independently of W and ℓ is differentiable with integrable gradient, we can exchange ∇W and
the expectations to get ∇WL(W) = E(G,y)∼DES∼SDFS(G)

[
∇Wℓ(fRSNN(G,S;W), y)

]
, so the

single-sample stochastic gradient is unbiased; standard Robbins–Monro/Polyak supermartingale
arguments then yield a.s. convergence of SGD to a stationary point (and to W⋆ under convexity).
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B Additional Model Details: Positional Encodings and Sampling Algorithms

In this section, we provide additional details on the positional encoding scheme and sampling
algorithms used in both RSNN and RWNN models. These components are essential not only for
implementation but also for theoretical expressivity. We also present detailed descriptions of the
sampling procedures for both random walks and random searches. For RWNNs, we outline the walk
generation algorithm, including initialization, neighbor selection, and PE encoding. For RSNNs, we
describe the random depth-first search (DFS) strategy, including how spanning trees are constructed
and how node visitation is handled. These implementation-level details clarify the runtime differences
analyzed in Appendix C.2 and support the reproducibility of our reported results.

B.1 Positional Encodings

Identity and Adjacency Encodings. Tönshoff et al. [5] and Chen et al. [6] augment each walk with
two binary feature matrices that inject explicit structural context. For a walk W = (w0, . . . , wℓ) on
graph G, the identity encoding id s

W ∈ {0, 1}(ℓ+1)×s marks node repetitions within a sliding window
of size s: for indices 0 ≤ i ≤ ℓ and 0 ≤ j ≤ s− 1 we set

id s
W [i, j] = 1 iff i− j ≥ 1 and wi = w i−j ,

and 0 otherwise. Thus column j signals whether the current node re-appeared exactly j steps earlier,
explicitly encoding cycles of length j+1. Second, the adjacency encoding adj sW ∈ {0, 1}(ℓ+1)×(s−1)

records edges among already-visited nodes that the walk does not traverse. We define

adj sW [i, j] = 1 iff i− j ≥ 1 and (wi, w i−j) ∈ E(G),

and 0 otherwise. Here, E(·) denotes the edge set of the input. Consequently, for every pair of nodes
that appears within the window, the encoding reveals whether they are adjacent in the underlying
graph. The two blocks are concatenated to form a positional-encoding matrix hPE = [ id s

W ∥ adj sW ] ∈
R(ℓ+1)×dpe with dpe = 2s− 1. Appending hPE to the raw node embeddings ensures that, once full
node- and edge-coverage is achieved, the sequence model receives enough information to reconstruct
the entire subgraph induced by the walk.

Anonymous Encodings. As an alternative to the identity–adjacency scheme, anonymous encodings
have been proposed to capture graph structure by Wang and Cho [3] and Kim et al. [7]. For a walk
W we create an integer vector ωanon(W ) ∈ {1, . . . , ℓ+ 1}ℓ+1 defined recursively:

ωanon(W )[t] =

{
1 + max

{
ωanon(W )[0:t− 1]

}
, if wt /∈ {w0, . . . , wt−1},

ωanon(W )[s], if s < t is the first index with ws = wt.

In words, the first time a node appears in the walk it is assigned the next unused label 1, 2, 3, . . .;
every subsequent visit to that same node reuses the original label. Hence ωanon is invariant to the
specific node IDs yet records the order in which unique vertices are discovered, providing topological
context without relying on absolute labels.

Role in Expressivity. These positional encodings play a critical role in the expressive power of
both RWNNs and RSNNs. They serve as the main mechanism by which the walk or search encodes
structural information from the underlying graph. In particular, the identity and anonymous encodings,
when combined with walks that achieve full edge coverage, allow for exact reconstruction of the input
graph, assuming a sufficiently large window size s. Meanwhile, the adjacency encoding enables full
reconstruction even with only node coverage, as it records structural edges not explicitly traversed in
the sequence. In our RSNN implementation, we omit identity encodings since each node appears
exactly once in a search; instead, we rely solely on adjacency encodings. These are especially
important for preserving expressivity in RSNNs: depth-first searches introduce disconnections in the
sequence, where jumps between non-adjacent nodes may obscure structure. Consider for example
nodes wi and wi+1 traversed adjacent to one another in a search sequence, but disconnected in the
graph. With an appropriate window size, the adjacency encoding first signals the disconnection setting
adjsW [i + 1, 1] = 0, then identifies the connecting edge when it appeared in the sequence setting
adjsW [i+ 1, j] = 1 for (wi, wi−j) ∈ E(G). This ensures that, once full edge coverage is achieved
across searches, the sequence model receives all structural information necessary to reconstruct the
graph. Thus, positional encodings are central to the theoretical guarantees of RSNN expressivity.
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Algorithm 1: Uniform Random Walk with Positional Encodings
Input: Graph G = (V,E), walk length l, window size s
Output: Random walk W = (w0, . . . , wl), encodings ids

W , adjsW
Sample initial node w0 ∼ U(V )
Initialize W ← [w0]
for i← 1 to l do

LetN (wi−1) be the neighbors of wi−1

Sample wi ∼ U(N (wi−1))
Append wi to W
for j ← 1 to s do

if i− j ≥ 0 then
ids

W [i, j]← 1[wi = wi−j ] // Identity encoding
adjsW [i, j]← 1[(wi, wi−j) ∈ E] // Adjacency encoding

return W , ids
W , adjsW

Algorithm 2: Random Depth-First Search with Adjacency Encodings
Input: Graph G = (V,E), window size s
Output: Search sequence W = (w0, . . . , wℓ), adjacency encoding adjsW
Sample initial node w0 ∼ U(V )
Initialize stack S ← [w0], visited set V ← {w0}, walk W ← [ ]

Initialize adjsW ← 0|V |×(s−1)

while S is not empty do
Pop u← S
Append u to W
for j ← 1 to s− 1 do

if |W | > j then
adjsW [|W | − 1, j]← 1[(u,W [|W | − 1− j]) ∈ E] // Adjacency encoding

LetN (u) be unvisited neighbors of u in random order
foreach v ∈ N (u) do

Push v onto S
Add v to V

return W , adjsW

B.2 Sampling Algorithms

Random Walk Sampling. We adopt a standard uniform random walk procedure to extract se-
quences from a graph (Algorithm 1). The algorithm begins by uniformly sampling a starting node
from the vertex set. At each step, it selects the next node uniformly at random from the current node’s
neighbors. As the walk progresses, we maintain a sliding window of fixed size s to compute identity
and adjacency encodings for each step. The algorithm takes as input the graph G, walk length l, and
window size s, and returns both the walk and the corresponding structural encodings.

Random Search Sampling. We implement random searches in RSNNs using a randomized depth-
first search (DFS) traversal (Algorithm 2). The algorithm begins by sampling a starting node uniformly
at random from the vertex set. From there, we perform a standard DFS, visiting each neighbor in
a random order to introduce stochasticity. As nodes are visited, they are recorded sequentially in
the walk W , and only the adjacency-based positional encoding adjsW is computed using a sliding
window of size s. Since DFS visits each node exactly once, identity encodings are unnecessary. The
resulting walk and adjacency encoding together define the structural input for RSNNs.

30



C Extended Results

We present two additional experiments to complement our main findings. First, we conduct an
ablation study evaluating the impact of the sequence model architecture on performance by comparing
CRAWL, the best performing RWNN, and RSNNs equipped with GRUs, LSTMs, and Transformers
on molecular benchmarks. This experiment helps assess whether the RSNN framework is sensitive to
the choice of sequence model. Second, we report runtime comparisons between RSNNs and RWNNs
to evaluate computational efficiency. Specifically, we compare training times across varying sample
sizes to understand how the two approaches scale under realistic computational budgets.

C.1 Sequence Model Ablations

We evaluate the impact of sequence model architecture by comparing RSNNs and CRAWL equipped
with GRUs, LSTMs, and Transformers (Table 1). Across all configurations, the trends from the main
paper hold: RSNNs consistently outperform RWNNs at low sample sizes (m = 1), regardless of
sequence model. Notably, RSNNs with m = 1 often match or exceed the performance of RWNNs
with m = 16, reaffirming the sample efficiency advantages of random search. When m = 16 on the
BACE dataset, CRAWL-LSTM and CRAWL-GRU slightly outperform their RSNN counterparts,
however in the remaining comparisons RSNN always outperforms CRAWL across all m. Overall,
GRUs and LSTMs perform comparably within both RSNN and RWNN variants, indicating that RSNN
improvements are robust to the choice of sequence model, provided it has adequate recurrence-based
inductive bias. In contrast, Transformers underperform relative to GRUs and LSTMs across most
benchmarks and sample sizes. One possible explanation is that Transformers lack the hard-coded
recurrence structure present in GRUs and LSTMs, relying instead on global attention mechanisms

Table 4: Median (min, max) of model AUC across test splits on molecular benchmarks. We report
results for each model equipped with one of three sequence models: (1) GRU, (2) LSTM, or (3)
Transformer (TRSF), as indicated by the suffix. The best model for each value of m is highlighted in
blue. Trends from the main paper hold across architectures: RSNNs consistently outperform RWNNs
at low sample sizes, with GRUs and LSTMs yielding similar performance, while Transformers
underperform across most settings.

MoleculeNet Molecular Benchmarks (AUC ↑)
CLINTOX SIDER BACE BBBP TOX21 TOXCAST

# Graphs 1.5K 1.5K 1.5K 2K 8K 9K
Avg. |V | 26.1 33.6 34.1 23.9 18.6 18.8
Avg. |E| 55.5 70.7 73.7 51.6 38.6 38.5
# Classes 2 2 2 2 2 2

CRAWL-TRSF 59.8 (48.1, 71.8) 60.3 (57.2, 68.4) 67.6 (65.2, 73.3) 74.6 (66.1, 79.4) 70.4 (65.3, 74.5) 70.8 (65.4, 75.3)
CRAWL-LSTM 66.7 (40.4, 80.2) 61.4 (57.4, 63.8) 66.2 (60.7, 71.4) 74.4 (68.4, 80.4) 72.2 (67.6, 76.0) 71.5 (67.7, 75.4)
CRAWL-GRU 70.0 (64.6, 73.6) 64.2 (56.1, 67.2) 62.5 (59.2, 70.8) 77.6 (68.8, 81.5) 71.7 (66.4, 75.3) 72.8 (67.7, 76.7)

m = 1 RSNN-TRSF 82.9 (59.8, 87.9) 65.6 (63.1, 71.9) 78.0 (71.3, 81.5) 85.6 (77.6, 89.8) 77.7 (73.8, 78.9) 74.2 (70.8, 78.8)
RSNN-LSTM 87.2 (82.6, 89.4) 66.8 (61.7, 72.2) 78.2 (74.3, 84.3) 87.1 (83.9, 89.5) 79.5 (77.2, 83.7) 75.6 (72.9, 80.6)
RSNN-GRU 88.1 (84.9, 91.5) 66.2 (63.0, 72.4) 79.7 (75.9, 83.6) 87.5 (80.3, 89.9) 79.8 (77.2, 83.4) 74.6 (72.3, 79.7)

CRAWL-TRSF 69.4 (49.0, 79.0) 64.7 (61.1, 69.5) 73.7 (68.4, 75.4) 82.6 (77.5, 87.7) 74.5 (71.6, 78.6) 71.3 (69.1, 80.0)
CRAWL-LSTM 80.4 (72.3, 83.8) 66.3 (63.2, 68.8) 72.7 (67.5, 78.5) 84.0 (78.5, 88.6) 77.5 (75.3, 79.9) 74.6 (71.1, 79.9)
CRAWL-GRU 83.0 (76.6, 91.5) 65.2 (59.5, 71.3) 75.7 (71.0, 79.0) 84.5 (80.7, 87.0) 77.6 (75.6, 81.2) 74.4 (69.2, 77.9)

m = 4 RSNN-TRSF 84.2 (63.4, 87.0) 67.1 (64.6, 70.8) 79.8 (69.4, 82.5) 85.6 (79.9, 90.7) 78.0 (74.2, 83.0) 76.6 (71.5, 81.2)
RSNN-LSTM 88.7 (81.2, 90.8) 67.5 (64.1, 70.1) 80.9 (75.3, 84.4) 88.9 (82.7, 91.6) 81.4 (76.3, 83.3) 76.6 (73.8, 81.3)
RSNN-GRU 89.1 (80.9, 91.7) 67.0 (61.3, 71.1) 80.4 (76.5, 84.0) 88.0 (80.3, 90.5) 80.3 (77.3, 84.2) 76.1 (72.2, 79.0)

CRAWL-TRSF 68.3 (53.1, 88.1) 65.9 (62.6, 71.4) 75.4 (66.6, 80.7) 85.4 (79.2, 89.6) 76.4 (71.8, 78.2) 75.2 (72.0, 78.7)
CRAWL-LSTM 87.2 (78.3, 89.4) 67.1 (63.6, 70.7) 79.2 (76.8, 83.2) 86.8 (79.5, 91.6) 78.9 (76.0, 81.7) 73.5 (68.9, 77.3)
CRAWL-GRU 86.5 (83.6, 91.4) 66.1 (62.1, 69.9) 80.3 (71.0, 82.5) 86.0 (82.8, 89.6) 79.1 (76.7, 82.1) 75.5 (72.0, 78.6)

m = 8 RSNN-TRSF 82.7 (51.8, 89.9) 66.8 (62.5, 72.0) 80.2 (73.3, 82.4) 86.4 (79.8, 90.7) 76.8 (75.4, 81.5) 75.2 (71.5, 81.4)
RSNN-LSTM 88.4 (82.2, 90.6) 67.2 (64.3, 74.6) 80.7 (74.8, 87.1) 88.1 (82.6, 91.4) 81.1 (77.7, 85.2) 75.9 (72.3, 82.2)
RSNN-GRU 88.3 (80.1, 91.3) 67.6 (63.3, 69.2) 80.0 (76.1, 85.1) 88.6 (83.6, 90.3) 82.2 (77.3, 85.3) 75.7 (73.0, 78.9)

CRAWL-TRSF 69.6 (47.6, 86.9) 65.1 (63.1, 70.1) 78.8 (73.5, 79.7) 85.2 (79.5, 89.3) 77.7 (75.8, 81.9) 74.8 (72.1, 80.0)
CRAWL-LSTM 87.8 (80.1, 89.5) 65.7 (63.4, 69.0) 79.5 (74.4, 86.0) 87.1 (79.7, 93.9) 79.2 (77.9, 82.3) 76.2 (70.4, 79.0)
CRAWL-GRU 89.1 (80.5, 91.1) 65.3 (61.4, 70.8) 80.7 (76.1, 84.5) 87.0 (81.7, 90.3) 80.9 (77.4, 82.6) 76.2 (72.7, 77.9)

m = 16 RSNN-TRSF 84.4 (78.5, 91.7) 66.6 (63.6, 73.6) 81.0 (73.1, 82.8) 86.0 (78.7, 90.7) 77.6 (74.5, 82.1) 76.4 (72.3, 79.2)
RSNN-LSTM 88.3 (81.9, 92.2) 67.3 (64.8, 71.9) 80.5 (79.0, 84.3) 88.5 (83.8, 91.2) 82.0 (78.8, 83.5) 75.5 (72.9, 80.0)
RSNN-GRU 88.5 (82.0, 93.7) 67.1 (65.0, 74.0) 79.8 (76.8, 84.9) 89.4 (83.0, 91.7) 82.2 (78.0, 84.1) 76.5 (73.4, 79.3)
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that may require more data to model sequential dependencies effectively, especially in low-sample
regimes. These results suggest that recurrent sequence models are better suited for graph-based walk
or search processing under constrained sampling budgets.

(a) SIDER (b) BBBP (c) TOXCAST

Figure 4: Training runtime (in seconds) of RSNN and CRAWL over 25 epochs on SIDER, BBBP,
TOXCAST as a function of the number of samples m. Error bars represent standard deviation across
5 runs. At low sample counts, RSNNs exhibit comparable runtime to RWNNs; as m increases,
RSNNs become faster despite longer sequence lengths. We hypothesize this is due to random walks
repeatedly visiting high-degree nodes, incurring more computation per step, whereas DFS-based
searches visit each node exactly once.

C.2 Runtime Comparisons

Experimental Setup. To ensure a fair comparison between RSNNs and CRAWL, we fix all model
components except for the sampling strategy. Both models use a GRU sequence model with hidden
dimension 64 and are composed of 2 layers. We set the positional encoding window size to 8 and
batch size to 64. For each graph, the random walk length is set to l = |V |, equal to the number of
nodes, so that the number of sequence steps is identical between random walks and searches. As a
result, RSNNs and CRAWL have equivalent asymptotic runtimes per sample. We measure training
runtime over 25 epochs on three molecular benchmarks, SIDER, BBBP, and TOXCAST, across
varying sample sizes m ∈ {1, 4, 8, 16}. For each forward pass, a fresh set of m walks or searches is
sampled per graph. All experiments are run on a single NVIDIA GeForce GTX 1080 Ti GPU, with
sampling parallelized across 4 CPU workers to reflect practical deployment conditions.

Results. Empirically we observe that RSNN searches are never more expensive than CRAWL
walks for any tested number of walks m, and that for larger m the RSNN implementation can even
become faster (Figure 4). Although, each routine shares the same asymptotic cost, O(|V |) on our
sparse graphs, they differ by constant factors that affect runtime comparisons in practice:

• Random Walks Revisit Nodes with Larger Degrees. A DFS visits each vertex exactly
once, while a random walk visits nodes randomly, potentially revisiting many vertices with
higher degrees. Consequently, searches and random walks visit different sets of nodes. This
affects runtime since operations per node depend on their degrees (e.g., shuffling neighbors,
random choices on neighbors, identity/adjacency checks), incurring more computation
per-step and increasing runtimes for random walks.

• Per–step work. The DFS runs one for s loop that updates a single adjacency-encoding
tensor. The RWNN walk performs an identical for s loop, but each iteration evaluates two
conditions (identity & adjacency encoding) and writes to two tensors, effectively doubling
the cost of that inner loop per step.

• Neighbor handling. DFS shuffles the neighbor list once per new vertex, whereas random
walks rebuilds a Python list and calls random.choice at every step, and if non-backtracking
is enabled, creates an additional filtered list. These repeated list allocations and Python-level
random picks inflate wall time.

Together, these constant-factor differences explain why the asymptotically identical O(|V |) algo-
rithms show distinct wall-time profiles: RSNN remains competitive for all m, while CRAWL exhibit
longer runtimes at larger m.
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D Experimental Details and Code

Training and Hyperparameter Selection. All models are trained by minimizing the binary cross-
entropy loss on molecular benchmarks and the negative log-likelihood loss on protein benchmarks.
Training is performed for a maximum of 200 epochs with early stopping patience set to 25 epochs
based on validation performance. The best-performing model on the validation set is selected for
evaluation on the test set. We perform a grid search over the following hyperparameters for all RWNN
and RSNN models:

• Number of layers: {1, 2, 3}
• Learning rate: {0.05, 0.01, 0.005, 0.001}
• Batch size: {32, 64, 128}
• Hidden dimension: {32, 64, 128}
• Global pooling: {mean, sum, max}
• Sequence model: {GRU, LSTM, Transformer}
• Number of samples m: {1, 4, 8, 16}

We fix the window size s = 8 for both CRAWL and RSNN models. All models are optimized using
the Adam optimizer [42].

E Extended Discussion

Background on WL and its Variants. The Weisfeiler–Lehman (WL) hierarchy has become
a standard lens for characterizing graph model expressivity. Xu et al. [15] first established the
equivalence between 1-dimensional WL and MPNNs, while Morris et al. [39], Azizian and Lelarge
[21] generalized this perspective to higher-order GNNs via higher-order WL variants. Beyond
MPNNs, recent work has aligned graph transformers with WL, clarifying their expressivity within
the same hierarchy [43, 44]. In parallel, random walk kernels and path GNNs have been connected to
WL as sequence-based representations [41, 45].

Our Walk Weisfeiler–Lehman (WWL) refinement builds directly on this line: we introduce a walk-
based color refinement and show that, under full coverage, its distinguishing power coincides with
1-WL. In doing so, we place RWNNs firmly within the WL-centered expressivity landscape alongside
MPNNs, graph transformers, and path-based GNNs, advancing a unified view of diverse graph
learning architectures through the WL hierarchy.
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