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Abstract
The inverse reinforcement learning approach to
imitation learning is a double-edged sword. On
the one hand, it can enable learning from a smaller
number of expert demonstrations with more ro-
bustness to error compounding than behavioral
cloning approaches. On the other hand, it requires
that the learner repeatedly solve a computation-
ally expensive reinforcement learning (RL) prob-
lem. Often, much of this computation is wasted
searching over policies very dissimilar to the ex-
pert’s. In this work, we propose using hybrid
RL – training on a mixture of online and expert
data – to curtail unnecessary exploration. Intu-
itively, the expert data focuses the learner on good
states during training, which reduces the amount
of exploration required to compute a strong pol-
icy. Notably, such an approach doesn’t need the
ability to reset the learner to arbitrary states in
the environment, a requirement of prior work in
efficient inverse RL. More formally, we derive a
reduction from inverse RL to expert-competitive
RL (rather than globally optimal RL) that allows
us to dramatically reduce interaction during the
inner policy search loop while maintaining the
benefits of the IRL approach. This allows us to
derive both model-free and model-based hybrid
inverse RL algorithms with strong policy perfor-
mance guarantees. Empirically, we find that our
approaches are significantly more sample efficient
than standard inverse RL and several other base-
lines on a suite of continuous control tasks.

1. Introduction
Broadly speaking, we can break down the approaches to
imitation learning (IL) into offline algorithms (e.g. behav-
ioral cloning, (Pomerleau, 1988)) and interactive algorithms
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Figure 1: Standard inverse reinforcement algorithms (left)
require repeatedly solving a reinforcement learning problem
in their inner loop. Thus, the learner is potentially forced
to explore the entire state space to find any reward. We
introduce hybrid inverse reinforcement learning, where the
learner trains on a mixture of its own and the expert’s data
during the policy search inner loop. This reduces the explo-
ration burden on the learner by providing positive examples.
We provide model-free and model-based algorithms that
are both significantly more sample efficient than standard
inverse RL approaches on continuous control tasks.

(e.g. inverse reinforcement learning (Ziebart et al., 2008a),
DAgger (Ross et al., 2011)). Offline approaches to imita-
tion aren’t robust to the covariate shift between the expert’s
state distribution and the learner’s induced state distribu-
tion; therefore, they suffer from compounding errors which
results in poor test-time performance (Ross et al., 2011;
Swamy et al., 2021; Wang et al., 2021). Instead, interactive
algorithms allow the the learner to observe the consequences
of their actions and therefore learn to recover from their own
mistakes. This is the fundamental reason why interactive
approaches like inverse reinforcement learning (IRL) con-
tinue to provide state-of-the-art performance for challenging
tasks like autonomous driving (Bronstein et al., 2022; Igl
et al., 2022; Vinitsky et al., 2022) and underlie large-scale
services like Google Maps (Barnes et al., 2023).

However, inverse reinforcement learning reduces the prob-
lem of imitation to repeatedly solving a reinforcement learn-
ing problem, and thus the agent has to potentially pay the
exponential interaction complexity of reinforcement learn-
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ing (Kakade, 2003). When performed in the real world,
this interaction can be both unsafe and time-consuming; in
simulation, it incurs great computational expense. This fact
motivates our key question: how can we reduce the amount
of interaction performed in inverse reinforcement learning?

At its core, the reason reinforcement learning is interaction-
inefficient is because of global exploration: in the worst
case, the learner needs to reach all possible states to fig-
ure out what decisions are optimal over the horizon. This
means that in IRL, the learner often spends the majority of
interactions trying out policies that are quite dissimilar to
the expert’s in the hope of finding a bit of reward. This is
rather odd, given our goal is just to imitate the expert. Put
differently, when optimizing a potential reward function, we
should only be competing against policies with similar visi-
tation distributions to the expert. We therefore narrow our
overarching question: how do we focus IRL policy search
on policies that are similar to the expert’s?

Recent work by Swamy et al. (2023) shows that one can
dramatically reduce the amount of exploration required by
resetting the learner to states from the expert demonstrations
during policy search. Despite this approach’s strong theoret-
ical guarantees, the ability to reset the learner to arbitrary
states has limited feasibility in the real world. Thus, we fo-
cus on how we can curtail unnecessary exploration without
assuming generative model access to the environment.

We provide a general reduction that allows one to use any
RL algorithm that merely guarantees returning a policy that
competes with the expert (rather than competing with the
optimal policy) for policy search in IRL. This generalizes
the argument of Swamy et al. (2023), allowing us to leverage
efficient RL algorithms that don’t require resets for IRL.

Specifically, we propose to use hybrid reinforcement learn-
ing (Ross & Bagnell, 2012; Song et al., 2022; Zhou et al.,
2023) to speed up the policy search component of inverse
reinforcement learning. In hybrid RL, one trains a policy to
do well on both the offline data and the distribution of data it
induces (e.g. by using data from both buffers when fitting a
Q-function). Rather than competing against an arbitrary pol-
icy (as we do in online RL which therefore leads to having
to pay for extensive exploration), this procedure asks only
the learner to compete against policies covered by the offline
dataset. Hybrid RL gives similar theoretical guarantees as
offline RL without requiring explicit pessimism (which can
be brittle in practice and intractable in theory) and retains
a higher degree of robustness to covariate shift. Given our
goal is to compete with the expert, we propose to simply use
the expert demonstrations as the offline dataset for hybrid
RL. Our key insight is that we can use hybrid RL as the
policy search procedure in IRL to curtail exploration.

More explicitly, the contributions of our work are three-fold:

1. We provide a reduction from inverse RL to expert-
competitive RL. We prove that as long as our policy search
procedure guarantees to output a sequence of policies that
competes with the expert on average over a sequence of cho-
sen rewards, we are able to compute a policy that competes
with the expert on the ground truth reward. Notably, our
reduction generalizes the underlying argument of Swamy
et al. (2023) to methods that don’t require the ability to reset
the learner to arbitrary states in the environment.

2. We derive two hybrid inverse RL algorithms: model-
free HyPE and model-based HyPER. HyPE uses the HyQ
algorithm of Song et al. (2022) in its inner loop while
HyPER uses the LAMPS algorithm of Vemula et al. (2023)
as its policy search procedure. We provide performance
guarantees for both algorithms and discuss their pros and
cons relative to other fast inverse RL algorithms.

3. We demonstrate that on a suite of continuous control
tasks, HyPE and HyPER are significantly more sample
efficient than standard approaches. In addition to out-
performing GAIL-like approaches (Ho & Ermon, 2016)
and behavioral cloning, we also find that we are able to
consistently out-perform the FILTER algorithm of (Swamy
et al., 2023) and IQLearn (Garg et al., 2021).

2. Related Work
Hybrid Reinforcement Learning. Hybrid RL — using
data that covers a strong policy to speed up reinforcement
learning — comes in several variants. One variant is to reset
the learner to states from the offline distribution (Bagnell
et al., 2003; Ross & Bagnell, 2014). Another is hybrid
training: using a combination of on-policy data from the
learner and the offline distribution when fitting the critic
(Song et al., 2022; Zhou et al., 2023) or the model (Ross
& Bagnell, 2012; Vemula et al., 2023) used in the policy
update. While the former variant comes with stronger guar-
antees as far as interaction complexity, the latter is more
applicable to a wider variety of problems due to weaker re-
set requirements (Hester et al., 2018a; Ball et al., 2023; Luo
et al., 2023). We lift the insights from two hybrid training
algorithms — the HyQ algorithm of Song et al. (2022) and
the LAMPS algorithm of (Vemula et al., 2023) — to the
space of imitation learning.

Sample-Efficient Inverse Reinforcement Learning. Var-
ious lines of work have attempted to address the sample-
inefficiency of the RL inner loop of inverse RL. One line
removes the inner loop entirely by using the difference of Q
functions across timesteps as an implicit reward (Dvijotham
& Todorov, 2010; Garg et al., 2021). However, since Q
functions depend on the dynamics of the environment, it is
unclear if such methods will produce consistent estimates of
the expert’s policy if data was collected across agents with
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Algorithm 1 (Dual) IRL ( Ziebart et al. (2008b))
Input: Demos. DE , Policy class Π, Reward class Fr

Output: Trained policy π
Initialize π1 ∈ Π
for t in 1 . . . T do
// Use any no-regret algo to pick f

ft ← ft−1 +∇f (J(πE , f)− J(πt, f))
πt+1 ← RL(r = ft,Π = Π)

end for
Return mixture of π1:T .

slightly different dynamics (e.g. cars with different wheel
frictions). On the other hand, reward-based methods like
ours have repeatedly demonstrated robustness to this issue
(Silver et al., 2010; Ratliff et al., 2009; Kolter et al., 2008;
Ng et al., 2006; Zucker et al., 2011; Ziebart et al., 2008c).

Another line of work attempts to use resets to the expert’s
state distribution to curtail the exploration the learner per-
forms during the inner loop (Swamy et al., 2023). This
approach comes with strong guarantees for interaction ef-
ficiency but requires generative model access to the envi-
ronment. Our approach operates under weaker reset as-
sumptions but can only provide weaker guarantees. More
explicitly, we lift the reset flavor of hybrid RL to imitation,
while we lift hybrid training. We provide a more in-depth
comparison efficient IRL methods in Section 3.5.

Hybrid Training for Inverse Reinforcement Learning.
Perhaps the most similar approaches to our model-free
HyPE algorithm are the SQIL approach of Reddy et al.
(2019) and the AdRIL approach of Swamy et al. (2021).
Both approaches use data from both the learner and the ex-
pert during policy updates by sampling from two separate
replay buffers. However, neither of these works rigorously
addresses the effect of using off-policy data in the policy op-
timization subroutine of inverse RL. We provide a general
reduction that specifies the properties required for doing
so while preserving performance guarantees. In concur-
rent work, Kolev et al. (2024) combine hybrid training with
pessimism for more interaction-efficient model-based IRL,
using a model ensemble disagreement auxiliary cost in their
practical RL procedure. In contrast, we focus on the bene-
fits hybrid training + expert resets provides for model-based
IRL. This allows us to elide intractable pessimism in theory
and ensemble-based approximations in practice.

3. Hybrid Inverse RL

3.1. A Game-Theoretic Perspective on Inverse RL

We consider a finite-horizon Markov Decision Process
(MDP) (Puterman, 2014) parameterized by ⟨S,A, T , r,H⟩
where S, A are the state and action spaces, T : S × A →

∆(S) is the transition operator, r : S × A → [−1, 1] is
the reward function, and H is the horizon. In the inverse
RL setup, we see trajectories generated by an expert pol-
icy πE : S → ∆(A), but do not know the reward func-
tion. Our goal is to find a policy that, no matter what re-
ward function we are evaluated under, performs as well as
the expert. We cast this problem as a zero-sum game be-
tween a policy player and an adversary that tries to pick
out differences between expert and learner policies (Syed
& Schapire, 2007; Swamy et al., 2021). More formally,
we optimize over policies π : S → ∆(A) ∈ Π and re-
ward functions f : S × A → [−1, 1] ∈ Fr. We use
ξ = (s1, a1, r1, . . . , sH , aH , rH) to denote the trajectory
generated by some policy. For theoretical simplicity, we
assume that our strategy spaces (Π and Fr) are convex
and compact, that Fr is closed under negation, and that
r ∈ Fr, πE ∈ Π. Using J(π, r̂) = Eξ∼π[

∑H
h=1 r̂(sh, ah)]

to denote the value of policy π under reward function r̂, we
can express our objective as

min
π∈Π

max
f∈Fr

J(πE , f)− J(π, f). (1)

Perhaps the most common strategy for solving this game
is to use a no-regret strategy for reward selection against
a best-response strategy for policy selection (Ziebart et al.,
2008b; Swamy et al., 2021), which we outline in Algorithm
1. Explicitly, in the dual flavor of IRL, one performs a best-
response via RL at each inner iteration by computing the
optimal policy for the adversarially chosen reward function.

Consider the learner operating in a tree-structured MDP and
let Fr be the class of reward functions that are 0 everywhere
except for a single leaf node. Then, to find any reward,
the learner needs to explore the entire tree at each iteration,
an amount of interaction that scales exponentially with the
task horizon. This construction is more than a pathological
example: Fig. 2 shows that even for primal approaches (e.g.
GAIL) that don’t optimize the reward to completion in their
inner loop (and instead perform a small no-regret update –
i.e. a gradient step), we observe empirical evidence of the
adversary being able to consistently pick out differences
between the expert and the learner, and drive up the value
difference J(πE , fi)− J(π, fi). Even as the learner slowly
improves upon the current reward, the adversary repeatedly
shifts the reward function, thus driving up interactions and
introducing instability. Effectively, any adversarial IRL al-
gorithm (whether primal, dual or a mixture) ends up solving
a potentially hard global exploration problem at least once.

Indeed, one may need to explore the entire state space for
the optimal policy when given an arbitrary reward function.
However, in inverse RL we explicitly choose reward func-
tions that rate the expert higher than the history of learner
policies. Thus, the fact that the standard recipe for both
primal and dual IRL completely ignore the expert demon-
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Figure 2: Difference in rewards between the learner policy
πi and expert policy πE under the discriminator function fi
for the first 100k environment interactions in primal IRL.

strations during policy optimization seems suboptimal. This
begs the question: how can we give the learner examples
of expert behavior during policy optimization to reduce the
amount of exploration required to find good states? We now
discuss the core principle that underlies multiple ways to do
so while preserving performance guarantees.

3.2. Expert-Relative Regret Oracles in Inverse RL

At heart, the game-theoretic approach to inverse reinforce-
ment learning relies on the following intuition: we must
have found a policy with performance close to the expert’s
if there is no reward function that can tell the difference
between the learner’s current policy and the expert’s. We
often operationalize this principle by repeatedly picking re-
ward functions that score the expert higher than the learner
and then computing the optimal policy under this reward.
Critically, however, there is no reason for the expert to be
the optimal policy under a proposed reward function – it
merely needs to score higher than the learner. We provide a
simple example of this point in Fig. 3.

Thus, when computing a best response to this reward func-
tion (i.e. the optimal policy), the learner often needs to try
out a variety of policies that visit states quite different to
those the expert visits. This has two negative consequences:
first, it may necessitate a large amount of interaction per it-
eration. Second, because the optimal policy can vary wildly
across iterations, it can introduce instability into the train-
ing process. Both concerns still apply even for primal ap-
proaches like GAIL (Ho & Ermon, 2016) that take a small
no-regret step at each iteration.1 If we pause and take a

1To see why the former point applies, observe that even if we
were to restrict the adversary to only picking the ground truth r, a
primal approach would eventually involve computing the optimal
policy, which requires extensive exploration in the worst case.

f1

0

0 0

+1 0 0 +1

π1 = argmaxπ∈Π J(π, f1)

f2

0

0 0

+1 0 +1 0

π2 = argmaxπ∈Π J(π, f2)

Figure 3: Consider a binary tree MDP. Define Π to be
the set of all deterministic policies (paths through the tree),
and Fr the class of rewards that always assign +1 to the
bottom-left node and an additional +1 to any one of the
three other leaf nodes. The expert (the green path) always
takes the leftmost path. Note that the expert is not optimal
under any f ∈ Fr. In the first image, the learner (the orange
path) has computed the best response to f1 (the labels on
the nodes). To penalize the learner, f2 shifts the reward to a
neighboring leaf node. As a result, π2 must search through
the entire tree to compute the best-response. Beyond the
repeated exploration required to compute a best-response,
the best responses are different across iterations, which leads
to instability in policy training.

step back, this is somewhat odd: given our goal is merely to
compete with the expert under a variety of potential reward
functions, trying to move towards the optimal policy under
an adversarially chosen metric seems needlessly expensive.
Instead, one might hope that as long as the learner can con-
sistently compete with the expert under whatever metric the
adversary chooses, we should be able to guarantee that we
compete with the expert under the ground-truth reward.

We can formalize our preceding intuition via the notion of
an Expert-Relative Regret Oracle (ERROr).

Definition 3.1 (ERROr{Regπ(T )}). A policy-selection al-
gorithm Aπ satisfies the Regπ(T ) expert-relative regret guar-
antee if given any sequence of reward functions f1:T , it
produces a sequence of policies πt+1 = Aπ(f1:t) such that

T∑
t=1

J(πE , ft)− J(πt, ft) ≤ Regπ(T ). (2)

Critically, this definition does not require us to compute or
even compete against the optimal policy for each ft. 2

We also define a no-regret reward-selection algorithm.

2Note that this is a weaker requirement than the per-iteration
guarantee the proofs of Swamy et al. (2023) require. While this
distinction may seem unimportant prima facie, the model-based
hybrid RL algorithms we build only guarantee competing with the
expert on average (Ross & Bagnell, 2012; Vemula et al., 2023).
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Definition 3.2. Define ℓt(f) =
1
H (J(πt, f) − J(πE , f)).

Af is a no-regret reward selection algorithm if when given
a sequence of loss functions ℓ1:t induced by a sequence of
policies π1:t, it produces iterates ft+1 = Af (ℓ1:t) such that

T∑
t=1

ℓt(ft)− min
f⋆∈Fr

T∑
t=1

ℓt(f
⋆) ≤ Regf (T ), (3)

with limT→∞
Regf (T )

T = 0.

Due to the linearity of ℓt, standard online no-regret algo-
rithms like gradient descent satisfy this above condition
(Zinkevich, 2003). We now provide a simple proof that the
combination of the above two oracles allows us to efficiently
compute a policy with similar performance to the expert’s.

Theorem 3.3. Assume access to an Aπ and Af that satisfy
Definitions 3.1 and 3.2 respectively. Set πt+1 = Aπ(f1:t)
and ft+1 = Af (ℓ1:t). Then, π̄ (the mixture of π1:T ) satisfies

J(πE , r)− J(π̄, r) ≤ Regπ(T )

T
+

Regf (T )

T
H. (4)

Proof.

J(πE , r)− J(π̄, r) =
1

T

T∑
t=1

J(πE , r)− J(πt, r)

≤ max
f⋆∈Fr

1

T

T∑
t=1

J(πE , f
⋆)− J(πt, f

⋆)

≤ 1

T

T∑
t=1

J(πE , ft)− J(πt, ft)

+
Regf (T )

T
H

≤ Regπ(T )

T
+

Regf (T )

T
H.

As T →∞, the second term in the above bound goes to 0
due to the no-regret property of Af . Thus, in the limit, we
only pay for our average policy optimization error relative
to the expert. More explicitly, the above result implies that
rather than the per-iteration best response we require in dual
IRL algorithms like MaxEnt IRL (Ziebart et al., 2008b),

πt = argmax
π∈Π

J(π, ft), (5)

or the no-regret property required to prove guarantees for
primal IRL algorithms like GAIL (Ho & Ermon, 2016),

lim
T→∞

max
π⋆∈Π

1

T

T∑
t=1

J(πt, ft)− J(π⋆, ft) = 0, (6)

we instead merely need to compete with the expert on aver-
age to ensure that we learn a policy with strong performance.

Our above discussion begs the question of whether there are
efficient algorithms that satisfy the ERROr property. Two
algorithms that do are the PSDP algorithm of Bagnell et al.
(2003) and the NRPI algorithm of Ross & Bagnell (2014).
Swamy et al. (2023) essentially use this property in the
proofs of their MMDP and NRMM algorithms. Unfortu-
nately, both PSDP and NRPI require the ability to reset the
learner to arbitrary states in the environment, which means
MMDP and NRMM do as well. Thus we ask the question:
are there algorithms that satisfy the ERROr property with-
out requiring generative model access to the environment?
As we detail in the following sections, hybrid RL algorithms
answer this question in the affirmative, boding well for their
application to the imitation learning setting.

3.3. HyPE: Model-Free Hybrid Inverse RL

We now consider how to construct a model-free hybrid IRL
algorithm. We begin by considering the forward problem.
Many model-free hybrid RL algorithms follow the rough
structure we outline in Algorithm 3: use a mixture of on-
policy data from the learner and off-policy data from the
expert to fit a Q function that we then use for a policy
update. For example, the HyQ algorithm of Song et al.
(2022) runs Fitted Q Iteration for the critic update and then
returns the greedy policy from that critic update for the actor
update. The HNPG / HAC algorithms of Zhou et al. (2023)
performs a similar critic update before using the Natural
Policy Gradient algorithm of Kakade (2001) / soft policy
iteration algorithm of Ziebart et al. (2008b) as the actor
update. In practice, it is common to just run an off-policy RL
algorithms like Soft Actor Critic (Haarnoja et al., 2018) with
expert data in the replay buffer (Ball et al., 2023). For the
purposes of analysis however, we assume the learner picks
policies by running HyQ with the expert demonstrations
DE as the offline dataset and −ft as the reward function.
As argued by Song et al. (2022), under certain assumptions
(e.g. Bellman Completeness of FQ and an MDP with low
Bilinear Rank (Du et al., 2021)), running HyQ for M steps
guarantees that the average of the M policies π̄t satisfies

J(πE , ft)− J(π̄t, ft) ≤ H2O

(
1√
M

)
. (7)

Observe that if we were to use HyQ to select each πt,
we would satisfy the ERRoR property with Regπ(T ) ≤
TH2O

(
1√
M

)
. Critically, we do not need the ability to

reset the learner to arbitrary states in the environment to run
hybrid training algorithms like HyQ, allowing us to curtail
exploration without generative model access. We refer to
this approach as HyPE: Hybrid Policy Emulation and out-
line it in Algorithm 2. Running HyPE with HyQ as hybrid
RL oracle results in the following performance bound.
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Algorithm 2 Hybrid Policy Emulation (HyPE)
Input: Expert demonstrations DE , Policy class Π, Re-
ward class Fr, Critic class FQ, Learning rate η.
Output: Trained policy π
Initialize f1 ∈ Fr, π1 ∈ Π, Q1 ∈ FQ

for t in 1 . . . T do
// No-regret step over rewards
ft+1 ← ft + η∇f (J(πt, f)− J(πE , f))
// Update policy via hybrid RL
πt+1, Qt+1 ← HyRL(πt, Qt, ft+1,DE , . . . )

end for
Return best of π1:T on validation data.

Algorithm 3 Hybrid RL (HyRL)
Input: Expert demonstrations DE , Policy class Π, Critic
class FQ, Batch size B, Inner steps N , Current policy πt,
Current critic Qt, Current cost ft.
Output: Trained policy π
Initialize π1 = πt, Q1 = Qt,Dmix = {}
for i in 1 . . . N do
// Collect on-policy data
Di ← {ξ1:B ∼ πi}
Dmix ← Dmix ∪ Di ∪ {ξ1:B ∼ DE}
// Perform hybrid updates
Qi+1 ← critic_update(Qi, πi,−ft,Dmix,FQ)
πi+1 ← actor_update(πi, Qi+1,−ft,Dmix,Π)

end for
Return Best of π1:N , Q1:N on validation data.

Corollary 3.4 (HyPE Performance Bound). Consider run-
ning HyPE (Algorithm 2) with M iterations of HyQ as the
hybrid RL subroutine. Then, we have the following:

J(πE , r)− J(π̄, r) ≤ H2O

(
1√
M

)
+

Regf (T )

T
H. (8)

Proof. This follows directly from Theorem 3.3 and the fact
that Regπ(T ) ≤ TH2O

(
1√
M

)
, which follows from the

fact that the per-iteration sub-optimality with respect to the
expert is upper bounded by H2O

(
1√
M

)
.

Intuitively, this bound tells us that with sufficient inner loop
(M ) and outer loop (T ) iterations, we can guarantee that
we will find a policy with similar performance to that of the
expert under the ground-truth reward function. More pre-
cisely, it tells us that we need to perform O(H2) inner loop
steps to avoid compounding errors, assuming realizability
of the expert policy. Critically, unlike FILTER, HyPE does
not require generative model access to the environment. 3

3An open question for future work is the robustness of the
hybrid approach to compounding errors when the expert policy
isn’t realizable; existing interactive algorithms like MaxEntIRL

Algorithm 4 Hybrid Policy Emulation w/ Resets (HyPER)
Input: Expert demos. DE , Policy class Π, Reward class
Fr, Batch size B, Model class FM , Learning rate η.
Output: Trained policy π
Initialize f1 ∈ Fr, π1 ∈ Π,M1 ∈ FM

for t in 1 . . . T do
// No-regret step over rewards
ft+1 ← ft + η∇f (J(πt, f)− J(πE , f))
// No-regret hybrid step over models
Dt ← {ξ1:B ∼ πt}, Dmix ← Dt ∪ {ξ1:B ∼ DE}
Mt+1 ←Mt − η∇MEDmix [− log(M(s′ | s, a))]
// Update policy via MBRL w/ resets
πt+1 ← argmaxπ∈Π Eh∼Unif[1,H]

sh∼DE [h]

[V π (sh | −ft,Mt)]

end for
Return best of π1:T on validation data.

3.4. HyPER: Model-Based Hybrid Inverse RL

We now consider how best to design a model-based hybrid
IRL algorithm, again first considering the forward problem.
A common recipe for hybrid model-based RL is to (1) fit a
model on a mixture of learner and expert data, (2) compute
the optimal policy in this model, and (3) go back to Step
(1) (Ross & Bagnell, 2012). While Step (2) doesn’t require
any real-world interaction, it can still involve an amount
of computation in the model that scales with exp(H). To
deal with this concern, Vemula et al. (2023) suggest running
the No Regret Policy Iteration (NRPI) algorithm of Ross &
Bagnell (2014) inside the model, which comes with strong
poly(H) interaction complexity guarantees. Practically, this
looks like model-based RL but with resets to states from the
expert’s state distribution – as we’ve fit this model ourselves,
we clearly have generative model access to it to reset.

HyPER (Hybrid Policy Emulation with Resets) lift this idea
to the space of imitation learning as outlined in Algorithm 4.
In each iteration, HyPER picks both an adversarial reward
function and a model, and updates the policy using model-
based RL with resets. HyPER can be thought of as running
the LAMPS algorithm of Vemula et al. (2023) with adver-
sarially chosen rewards, or, equivalently, as running the
FILTER algorithm of Swamy et al. (2023) inside a model
fit in a hybrid fashion. We now prove that the LAMPS algo-
rithm of Vemula et al. (2023) satisfies the ERROr property.

Lemma 3.5. Given any sequence of reward functions f1:T ,
LAMPS picks a sequence of policies π1:T that satisfies

1

T

T∑
t

(J(πE , ft)− J(πt, ft)) ≤ (ϵ̄π + 2
√
ϵ̄M )H2

(Ziebart et al., 2008b; Swamy et al., 2021) and DAgger (Ross et al.,
2011) are known to be robust to such mis-specification, and we
conjecture the same for the hybrid approach espoused here.
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where ϵ̄π and ϵ̄M are the average regret of the policy and
model selection subroutines. [Proof]

As was the case for HyPE, LAMPS satisfying the ERRoR
property directly implies a performance bound for HyPER.

Corollary 3.6 (HyPER Performance Bound). Consider run-
ning HyPER (Algorithm 4) for T iterations. Then, we have
the following performance guarantee for average policy π̄:

J(πE , r)−J(π̄, r) ≤ (ϵ̄π+2
√
ϵ̄M )H2+

Regf (T )

T
H (9)

Proof. Follows directly from Theorem 3.3 and Lemma 3.5.

Observe that this algorithm allows us to gain the computa-
tional efficiency benefits of expert resets without needing
generative model access to the environment like FILTER.
Compared to HyPE, we have to pay O(H2) in terms of our
model learning error. However, this comes with the benefit
of only needing to perform policy evaluation rather than
policy search in the real world. Thus, we would expect that
for problems where we can accurately model the dynamics,
HyPER would be more interaction efficient than HyPE.

3.5. Efficient IRL Battle Royale

How does one choose from different flavors of efficient IRL
algorithms? The best choice depends on the degree of envi-
ronment access, type of demonstrations, and whether there
are multiple tasks to be performed in a single environment.

If we assume generative model access to the environment,
then FILTER (Swamy et al., 2023) seems like the best ap-
proach to employ. It comes with strong poly(H) guarantees
on interaction complexity and can also handle scenarios
where the demonstrations do not have action labels. How-
ever, for many real-world applications such as household
robotics, resets to arbitrary states are unrealistic.

If we assume we can model the environment well, then
HyPER mitigates the need for expensive, potentially unsafe
exploration in the real world. A learned model also allows
for resetting, thus providing strong computational efficiency
guarantees similar to FILTER. HyPER is particularly useful
in multi-task settings where tasks may differ in terms of
reward but share common dynamics, e.g. a home robot
solving multiple tasks that all share a common physical
setup like a kitchen, as explored in Kim et al. (2023).

HyPE requires neither of these assumptions, rendering it
the most broadly applicable of the efficient IRL algorithms.
However, its interaction efficiency guarantees are strongly
tied to the underlying hybrid RL algorithm. For example, to
argue that HyQ is more efficient than off-the-shelf fitted Q
iteration, one needs strong assumptions like Bellman Com-
pleteness of FQ and low Bellman Rank (Song et al., 2022).

Thus, one needs to be base their selection of policy search
procedure on the precise characteristics of the problem they
are attempting to solve to be assured of efficiency.

We note that HyPE / HyPER are complimentary to FIL-
TER and can be applied in combination to further boost
performance, as demonstrated in our antmaze experiments.

Outside of these, there are other techniques to boost effi-
ciency in IRL. A simple approach is to KL-regularize the
learner to a behavior cloning policy (Tiapkin et al., 2023),
which has proven empirically successful in a variety of prob-
lems. However, there are settings where KL regularization
leads to undesirable behavior, for example, averaging across
differing behavioral modes in the demonstrations. On prob-
lems where it is beneficial however, BC regularization can
be combined with any of the strategies for improved sample
efficiency. Other approaches involve bypassing the need
for a reward model altogether and instead using the differ-
ence of Q values to implicitly represent rewards (Dvijotham
& Todorov, 2010; Garg et al., 2021) Unfortunately, since
Q values depends on the dynamics of the environment, if
the dynamics were to change across demonstrations, such
approaches may fail to recover consistent estimates of the
expert’s policy. However, for certain problems where the
dynamics are always the same (e.g. language modeling),
such approaches can perform well (Cundy & Ermon, 2023).

4. Experiments
In this section, we aim to answer the following questions:

1. Are HyPE and HyPER more sample efficient than
prior IRL methods? Since HyPE and HyPER see
expert data during their updates, we expect them to
converge to expert performance with fewer environ-
ment interactions than a standard IRL approaches.

2. Do HyPE and HyPER handle environments with
hard exploration challenges better than prior
IRL methods? We conduct experiments on
antmaze-large, where the learner must control a
four-legged agent to navigate to a goal within a maze.

3. Are there cases where a model-based approach pro-
vides performance or efficiency gains? In HyPER,
environment interaction is used only for policy evalua-
tion rather than policy search. Thus, we expect HyPER
to be even more sample efficient than HyPE.

We implement HyPE by updating the policy and critic net-
works in Soft Actor Critic (Haarnoja et al., 2018) with ex-
pert and learner samples. We implement HyPER by running
model-based policy optimization (Janner et al., 2019) and
resetting to expert states in the learned model. No reward
information is provided in either case, so we also train a
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Figure 4: We see HyPER and HyPE achieve the highest reward on the MuJoCo locomotion benchmark. Further, the
performance gap increases with the difficulty of the environment (i.e. how far right a plot is in the above figure). We run all
model-free algorithms for 1 million environment steps. Due to the higher interaction efficiency of model-based approaches,
we only run HyPER for 150k environment steps, after which the last reward is extended horizontally across. We compute
standard error across 5 seeds for HyPER, and across 10 seeds for all other algorithms.

discriminator network. We compare against five baselines:
BC (behavioral cloning, Pomerleau (1988)), IQLearn (Garg
et al., 2021), MM (a baseline moment-matching algorithm
that uses an integral probability metric instead of Jensen-
Shannon divergence as suggested by Swamy et al. (2022)),
BC-Reg (MM with an added Mean-Square Error Loss on
the actor update), and FILTER (IRL with resets to expert
states, Swamy et al. (2023)). Appendix B includes addi-
tional implementation details and hyperparameters. We
release the code we used for all of our experiments at
https://github.com/jren03/garage.

MuJoCo Experiments. On the MuJoCo locomotion bench-
mark environments (Brockman et al., 2016), all learners
are provided with 64 demonstration trajectories 4 from an
RL expert to mitigate finite sample concerns. Given sim-
ple behavior cloning can match expert performance under
these conditions (Swamy et al., 2021), we harden the prob-
lem, noise is injected into the environment in the following
manner: with probability ptremble, a random action is ex-
ecuted instead of the one chosen by the policy. As seen
in Figure 4, HyPE and HyPER converge much quicker to
expert performance compared to baselines, and the gap in-
creases as environments get more difficult (further right in
the figure). While our algorithms have the same worst-case
performance bound as FILTER, HyPE and HyPER show to
be empirically more sample efficient. We hypothesize this
is because HyPE and HyPER use expert states and actions,
while FILTER only uses expert states. We find these results
to be particularly exciting, as HyPE and HyPER algorithms
show competitive performance and sample efficiency with-
out needing expert resets. Finally, IQLearn fails to match
BC performance on some environments, and shows signs
of unstable training on others. We suspect this is due to the
need to model environment stochasticity implicitly.

4We perform an ablation of all methods considered in the lim-
ited demonstration regime in Appendix D.2.
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Figure 5: Results on D4RL antmaze-large environ-
ment. All interactive baselines achieve 0 reward. While
HyPE outperforms prior interactive methods, it does require
resets in the environment to beat BC. HyPER is able to sur-
pass BC without needing to reset to expert states and match
BC performance with roughly 1/10th the amount of envi-
ronment interaction that HyPE + Resets requires. Standard
errors are reported across 5 seeds for all algorithms.

D4RL Experiments. Our next set of experiments con-
sider the D4RL (Fu et al., 2020) antmaze-large envi-
ronments, which is challenging for interactive algorithms
that don’t use any reward information. We use the standard
D4RL dataset and use TD3+BC (Fu et al., 2018) as our
policy optimizer. We use a PSDP-inspired reset strategy for
HyPER, where if T is total training steps and H the task
horizon, then for each iteration t we reset to the set of expert
states falling within a sliding window of size κ ∈ [0, 1]:[

H ·
(
1− t

T

)
, H ·min

(
1, 1− t

T
+ κ

)]
. (10)

In Figure 5, we see that all baseline interactive algorithms
(including FILTER 5) achieve zero reward. This underscores
the important of leveraging expert actions for these environ-

5This does not conflict with the results of Swamy et al. (2023).
While they do not explicitly mention it in their paper, they use
hybrid training for their strongest results on these environments.
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ments. While HyPE gets off the ground, it fails to match BC
performance. If we combine HyPE with resets in the real
environment, we find that we are able to improve past BC
performance. However, HyPER not only matches the per-
formance of HyPE + Resets with less online interaction, it
does so without needing to do resets in the real environment.
Instead, we perform expert resets within our learned world
model. To our knowledge, this is the highest performance
achieved by an inverse reinforcement learning algorithm on
antmaze, including those that require generative model ac-
cess to the environment. Thus, we believe that HyPER may
have interesting applications to real-world robotics tasks.

5. Conclusion
Despite the many benefits interactive approaches to imita-
tion learning like inverse RL provide, they suffer from a
high level of interaction complexity due to their reduction
to repeated RL. In response, we derive a new paradigm
of efficient IRL algorithms via a novel reduction to expert-
competitive RL. We then instantiate this reduction with hy-
brid, deriving both model-based and model-free algorithms,
and show that we can dramatically reduce the amount of
interaction required to compute a strong policy by utilizing
expert demonstrations during policy search. By preserving
the benefits of interaction in imitation while reducing un-
necessary exploration, we believe that we have provided
the proper algorithmic foundations to take advantage of re-
cent developments in hybrid RL and model-based RL on
problems of interest in domains like robotics.
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A. Proofs
A.1. Miscellaneous Lemmas

We begin by proving several lemmas that will be helpful in the following proofs.

Lemma A.1 (Policy Evaluation Lemma, (Xie & Jiang, 2020)). For any policy π and state-action function Q, we have that

Es0∼ρ[Ea∼π(s0)[Q(s, a)]]− J(π) = Eξ∼π

[
H∑
h

(Q− T π
r Q)(sh, ah)

]
, (11)

where T π
r is the Bellman operator under π and r.

Proof. Xie & Jiang (2020) consider the infinite horizon, discounted setting while we consider the finite horizon, un-
discounted setting so we require a slightly different proof.

Es0∼ρ[Ea∼π(s0)[Q(s, a)]]− J(π) = Es0∼ρ[Ea∼π(s0)[Q(s, a)]]− Eξ∼π

[
H∑

h=0

r(sh, ah)

]

= Es0∼ρ[Ea∼π(s0)[Q(s, a)]]− Eξ∼π

[
H∑

h=0

r(sh, ah)

]

+

(
Eξ∼π

[
H∑

h=1

Q(sh, ah)−Q(sh, ah)

])

= Eξ∼π

[
H∑

h=0

Q(sh, ah)− (r(sh, ah) +Q(sh+1, ah+1))

]

= Eξ∼π

[
H∑

h=0

(Q− T π
r Q)(sh, ah)

]
,

where we define Q(sH+1, aH+1) = 0.

Lemma A.2 (Performance Difference via Advantage in Model (PDAM, (Vemula et al., 2023))). Given two policies πE , π
and a model M̂ , we have that

JM⋆(πE , r)− JM⋆(π, r) = Eξ∼πE ,M⋆

[
H∑
h

Ea∼πE(sh)[Q̂r(sh, a)]− Ea∼π(sh)[Q̂r(sh, a)]

]

+ Eξ∼πE ,M⋆

[
H∑
h

E s⋆h+1∼M⋆

a∼π(s⋆h+1)

[Q̂r(s
⋆
h+1, a)]− E ŝh+1∼M̂

a∼π(ŝh+1)

[Q̂r(ŝh+1, a)]

]

+ Eξ∼π,M⋆

[
H∑
h

E ŝh+1∼M̂
a∼π(ŝh+1)

[Q̂r(ŝh+1, a)]− E s⋆h+1∼M⋆

a∼π(s⋆h+1)

[Q̂r(s
⋆
h+1, a)]

]
.

Proof. We significantly simply the proof of (Vemula et al., 2023). We first break up the performance difference into a sum
of three terms.

JM⋆(πE , r)− JM⋆(π, r) =
(
JM⋆(πE , r)− Es0∼ρ[Ea∼πE(s0)[Q̂r(s0, a)]]

)
(T1)

−
(
JM⋆(π, r)− Es0∼ρ[Ea∼π(s0)[Q̂r(s0, a)]]

)
(T2)

+
(
Es0∼ρ[Ea∼πE(s0)[Q̂r(s0, a)]]− Es0∼ρ[Ea∼π(s0)[Q̂r(s0, a)]]

)
(T3)
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We consider each term separately. First, by Lemma A.1, we have that

(T1) = Eξ∼πE ,M⋆

[
H∑

h=0

(T E
r Q̂r − Q̂r)(sh, ah)

]

= Eξ∼πE ,M⋆

[
H∑

h=0

(����r(sh, ah) + Es⋆h+1∼M⋆(sh,ah)

a∼πE(s⋆h+1)

[Q̂r(s
⋆
h+1, a)])− (����r(sh, ah) + Eŝh+1∼M̂(sh,ah)

a∼πE(ŝh+1)

[Q̂r(ŝh+1, a)])

]

= Eξ∼πE ,M⋆

[
H∑

h=0

(
Es⋆h+1∼M⋆(sh,ah)

a∼πE(s⋆h+1)

[Q̂r(s
⋆
h+1, a)]− Es⋆h+1∼M⋆(sh,ah)

a∼π(s⋆h+1)

[Q̂r(s
⋆
h+1, a)]

)

−
H∑

h=0

(
Eŝh+1∼M̂(sh,ah)

a∼πE(ŝh+1)

[Q̂r(ŝh+1, a)]− Es⋆h+1∼M⋆(sh,ah)

a∼π(s⋆h+1)

[Q̂r(s
⋆
h+1, a)]

)]
.

Adding in (T3) to this expression gives us

(T1) + (T3) = Eξ∼πE ,M⋆

[
H∑

h=0

(
Ea∼πE(sh)[Q̂r(s

⋆
h+1, a)]− Ea∼π(sh)[Q̂r(s

⋆
h+1, a)]

)
+

H∑
h=0

(
Es⋆h+1∼M⋆(sh,ah)

a∼π(s⋆h+1)

[Q̂r(s
⋆
h+1, a)]− Eŝh+1∼M̂(sh,ah)

a∼πE(ŝh+1)

[Q̂r(ŝh+1, a)]

)]
.

Next, again by Lemma A.1, we have

(T2) = Eξ∼π,M⋆

[
H∑

h=0

(Q̂r − T π
r Q̂r)(sh, ah)

]

= Eξ∼π,M⋆

[
H∑

h=0

(����r(sh, ah) + Eŝh+1∼M̂(sh,ah)
a∼π(ŝh+1)

[Q̂r(ŝh+1, a)])− (����r(sh, ah) + Es⋆h+1∼M⋆(sh,ah)

a∼π(s⋆h+1)

[Q̂r(s
⋆
h+1, a)])

]

= Eξ∼π,M⋆

[
H∑

h=0

(Eŝh+1∼M̂(sh,ah)
a∼π(ŝh+1)

[Q̂r(ŝh+1, a)])− (Es⋆h+1∼M⋆(sh,ah)

a∼π(s⋆h+1)

[Q̂r(s
⋆
h+1, a)])

]
.

Adding together the preceding results gives the desired bound.

A direct corollary of this lemma via applying Hölder’s inequality to the last two terms is as follows.

Corollary A.3. Define π̃ as the trajectory-level average of π and πE . Then, we have that

JM⋆(πE , r)− JM⋆(π, r) ≤ Eξ∼πE ,M⋆

[
H∑
h

Ea∼πE(sh)[Q̂r(sh, a)]− Ea∼π(sh)[Q̂r(sh, a)]

]
+ 2H2Es,a∼dπ̃

[
DTV(M

⋆(s, a), M̂(s, a))
]
,

where DTV denotes the total variation distance between two distributions.

A.2. Proof of Lemma 3.5

Proof. We define two losses, one for each player:

ℓt+1(M) = Es,a∼π̃i

[
DKL(M

⋆(s, a)||M̂(s, a))
]

(12)
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ℓt+1(π) =
1

H2

(
Eξ∼πE ,M⋆

[
H∑
h

Ea∼π(sh)

[
Qπt

Mt+1,ft+1
(sh, a)

]])
(13)

Observe that minimizing the first involves an online convex optimization oracle overM, and the second an online cost-
sensitive classification oracle over Π. Also observe that, when summed, the policy and model losses bound the PDAM. To
satisfy the ERRoR property, we need to be able to upper bound

1

H

T∑
t

JM⋆(πE , ft)− JM⋆(πt, ft). (14)

Applying Corollary A.3 to the tth term in the summation, we get

JM⋆(πE , ft)− JM⋆(πi, ft) ≤ Eξ∼πE ,M⋆

[
H∑
h

Ea∼πE(sh)[Q̂ft(sh, a)]− Ea∼π(sh)[Q̂ft(sh, a)]

]
+ 2H2Es,a∼dπ̃t−1

[DTV(M
⋆(s, a),Mt(s, a))] .

Recall that running NRPI for K iterations guarantees that ℓt(πE) − ℓt(πt) ≤ ϵ̄Kπ , where πt is the best of the K policy
iterates generated (or their average). This directly implies that

JM⋆(πE , ft)− JM⋆(πt, ft) ≤ ϵ̄Kπ H2 + 2H2Es,a∼dπ̃t−1
[DTV(M

⋆(s, a),Mt(s, a))] .

Via the definition of the regret of our M strategy, we have that

min
M∈FM

1

T

T∑
t

ℓt(Mt)− ℓt(M) ≤ ϵ̄M ⇒
1

T

T∑
t

ℓt(Mt) ≤ ϵ̄M + min
M∈FM

1

T

T∑
t

ℓt(M). (15)

Clearly, ℓi(M⋆) = 0 and recall that M⋆ ∈M. Combining these facts with the non-negativity of the KL Divergence, we
have that minM∈M

1
N

∑N
i ℓi(M) = 0. We can now apply Pinkser’s and Jensen’s inequalities to simplify the remaining

terms:

1

T

T∑
t=1

Es,a∼dπ̃t−1
[DKL(M

⋆(s, a),Mt(s, a))] ≤ ϵ̄M

⇒ 1

T

T∑
t=1

Es,a∼dπ̃t−1

[
DTV(M

⋆(s, a),Mt(s, a))
2
]
≤ ϵ̄M

⇒ 2H2

T

T∑
t=1

Es,a∼dπ̃t−1
[DTV(M

⋆(s, a),Mt(s, a))] ≤ 2H2√ϵ̄M .

Collecting terms gives us the desired bound.
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B. Implementation Details
We use Optimistic Adam (Daskalakis et al., 2017) for all policy and discriminator optimization, and gradient penalties (Gul-
rajani et al., 2017) to stabilize our discriminator training for all algorithms. Our policies, value functions, and discriminators
are all 2-layer ReLu networks with a hidden size of 256. We sample 4 trajectories to use in the discriminator update at the
end of each outer-loop iteration, and a batch size of 4096. In all 4 IRL variants (HyPE, HyPER, FILTER, MM), we re-label
the data with the current reward function during policy improvement, rather than keeping the labels that were set when the
data was added to the replay buffer, which we empirically observe to increase performance. This is different from standard
IRL implementations and might be of independent interest.

B.1. MuJoCo Tasks

We detail below the specific implementations used for all MuJoCo experiments (Ant, Hopper, Humanoid, Walker). To
clearly highlight the differences between our algorithms and the baselines, we enumerate separate sections for each.

Discriminator. For our discriminator, we start with a learning rate of 8e− 4 and decay it linearly over outer-loop iterations.
For all model-free MuJoCo experiments, we update the discriminator every 10,000 actor steps. For model-based MuJoCo
experiments, we update the discriminator every 2,000 actor steps for Hopper, and every 10,000 actor steps for Ant, Humanoid,
and Walker.

Baselines. For IQLearn (Garg et al., 2021), we take the exact hyperparameters released in the original repository, but increase
the expert memory size to be the same size as all other algorithms. For MuJoCo tasks, this is set to be 64,000 transition tuples.
For MM and FILTER baselines, we follow the exact hyperparameters in Swamy et al. (2023) with a small modification
of updating the discriminator every 10,000 actor steps instead of the 5,000 in the original repository. Finally, we train all
behavioral cloning baselines for 300k steps for Ant, Hopper, and Humanoid, and 500k steps for Walker2d. For BC-Reg, we
add the MSELoss to the usual SAC actor update, weighted by λ. We do a sweep over λ = {0.5, 1.0, 2.5, 5.0, 7.5, 10.0} and
take the λ that gives the highest average performance. We report these values in Table 1 for the four MuJoCo environments
used.

ENVIRONMENT λ

ANT-V3 1.0
HUMANOID-V3 0.5
HOPPER-V3 1.0
WALKER2D-V3 0.5

Table 1: Final λ values for BC-Reg baseline.

HyPE. For HyPE, we use the Soft Actor Critic (Haarnoja et al., 2018) implementation provided by Raffin et al. (2019) with
the hyperparameters in Table 2.

PARAMETER VALUE

BUFFER SIZE 1E6
BATCH SIZE 256
γ 0.98
τ 0.02
TRAINING FREQ. 64
GRADIENT STEPS 64
LEARNING RATE LIN. SCHED. 7.3E-4
POLICY ARCHITECTURE 256 X 2
STATE-DEPENDENT EXPLORATION TRUE
TRAINING TIMESTEPS 1E6

Table 2: Hyperparameters for HyPE using SAC.

HyPER. For HyPER, we use the implementation from Pineda et al. (2021) with modifications on the actor update according
to Vemula et al. (2023), and turn on the entropy bonus. The model is provided the same demonstration dataset of 64,000
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transition tuples as model-free experiments. We use an ensemble of discriminators equal to the model ensemble size, and
take the minimum value of the ensemble each forward pass. Further, we find that clipping the discriminator output, adding
the same weight decay to the model and actor networks, and using an exponential moving average of the actor weights
during inference helps stabilize performance for some environments. We list the specific hyperparameters used for each
environment in Tables 3 to 6.

B.2. D4RL Tasks

For the two antmaze-lage tasks, we use the data provided by Fu et al. (2020) as out expert demonstrations. We append
goal information to the observation for all algorithms following the example in Swamy et al. (2023). For our policy optimizer
in every algorithm other than IQLearn, we build upon the TD3+BC implementation of Fujimoto & Gu (2021) with the
default hyperparameters.

Discriminator. For our discriminator, we start with a learning rate of 8e− 3 and decay it linearly over outer-loop iterations.
For all model-free Antmaze experiments, we update the discriminator every 5,000 actor steps. For all model-based Antmaze
experiments, we update the discriminator every 2,000 actor steps.

Baselines. For behavioral cloning, we run the TD3+BC optimizer for 500k steps while zeroing out the component of the
actor update that depends on rewards. We use α = 1.0 for FILTER. We provide all baselines with the same data provided to
HyPE and HyPER consisting of the entire D4RL dataset for both antmaze-large environments. MM and FILTER are
pretrained with 10,000 steps of behavioral cloning on the expert dataset.

HyPE. Both HyPE and HyPE+Resets use the same TD3+BC optimizer and hyperparameters for the actor as MM and
FILTER, and is pretrained with 10,000 steps of behavioral cloning. HyPE+Resets uses α = 1.0 to always reset to expert
states.

HyPER. To stabilize performance for HyPER, we pretrain the model on the offline dataset. In addition to the hyperparameters
from previous algorithms, we use the exponential moving average of the actor weights and add a CosineAnnealing decay on
both the actor and critic. Within the learned model, we perform n-step updates backwards in time as inspired by Bagnell
et al. (2003) and Hester et al. (2018b) by resetting to a sliding window of expert states within the learned model. Specifically,
if T is the total number of training steps and H the horizon of the environment, then for each iteration t we reset to the set of
expert states falling within a sliding window of size κ ∈ [0, 1]:[

H ·
(
1− i

T

)
, H ·min

(
1, 1− i

T
+ κ

)]
.

We set κ = 0.05 in practice. Additional details and visualizations can be found in Appendix C. Finally, we provide the
model-based hyperparameters for both antmaze-large environments in Table 7.
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C. Antmaze Model Pretraining
We visualize below the impact of offline dataset size when pretraining the model for antmaze-large. In the leftmost
graph of Figure 6, we plot the start and goal distributions for antmaze-large-play in orange and red respectively. In
the following three plots, we show the state visitation frequency taking various proportions from the offline data. Notably,
with fewer samples, there are regions of the maze with extremely low data coverage, such as the bottom left corner. A model
trained on 10k or 25k samples may therefore learn inaccurate dynamics in those regions, leading to unreliable transition
dynamics and thus unreliable policy in those regions. Thus by taking 80k samples to pretrain the model and decreasing
model update frequency, we ensure that the learner is able to receive sufficiently accurate transition tuples in training.

10k Samples 25k Samples

11

36

78

144

310

731

1582

26839

Sa
m

pl
e 

D
en

si
ty

80k Samples

Figure 6: The leftmost plot shows the start and goal distributions of the antmaze-large-play environment. In the
subsequent three plots, we show the state visitation frequency across the maze with varying number of samples from the
offline dataset. We find a sufficiently large enough sample is necessary to ensure accurate transition tuples in training.
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D. Additional Ablations
D.1. Classical Adversarial Imitation Learning Methods

Our inverse RL baseline MM can be thought of as a significantly improved variant of the classical methods such as GAIL (Ho
& Ermon, 2016). More explicitly, we implement the four changes to GAIL suggested by (Swamy et al., 2022) which, when
combined, lead to a significant improvement over off-the-shelf implementations of GAIL. Explicitly, these are 1) using a
Wasserstein GAN loss rather than the original GAN loss, 2) using SAC instead of PPO, 3) using gradient penalties in the loss
function, and 4) using the Optimistic Adam Optimizer. We would like to point readers to Appendix C of Swamy et al. (2022)
for ablations on each of these components. To ablate the joint benefits of these modifications, we compare our MM baseline
to GAIL (as implemented in https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, a popular implementation with more
than 3.5k Github stars) on the Humanoid environment, and report the average performance over 10 seeds. Figure 7 shows
that while GAIL achieves some improvement over 1 million environment interactions, it massively under performs MM,
reaffirming the fact that MM is a very strong baseline for standard IRL in and of itself.

Figure 7: Comparison of our MM baseline against GAIL (Ho & Ermon, 2016), reporting the average and standard error over
10 seeds. While GAIL make gradual improvement over 1 million environment interactions, it is far from the performance of
MM.

D.2. Low Data Regime

We present in Figure 8 an ablation of the performance of various algorithms in the low-data regime. Specifically, we take
just 5 trajectories to train each algorithm, as opposed to the 64 used in the main experiments. We observe that HyPE still
has the quickest convergence over other model-free IRL baselines, even in the low-data regime. HyPER performs rather
poorly in the low-data regime, which we hypothesize is due to the difficulty of learning an accurate model from such limited
data. However, given a world model can be learned from other data sources which might be more plentiful in practice (e.g.
suboptimal demonstrations, multi-task demonstrations, and even robot play data), we believe there are multiple remedies to
this issue in practice.
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Figure 8: Mean and standard error of various algorithms when provided only 5 expert demonstrations over 10 seeds. HyPE
still outperforms existing baselines. HyPER suffers a performance drop, which is expected as low amounts of expert data
may not be sufficient for fitting a good model. We believe there are various ways to improve model fitting in practice in the
presence of few expert demonstrations, such as multi-task or robot play data.

PARAMETER VALUE

EXPERT DATASET SIZE 64000
EXPLORATION SAMPLE SIZE 64000
MODEL ENSEMBLE SIZE 7
MODEL ENSEMBLE ELITE NUMBER 5
MODEL LEARNING RATE 3E-4
MODEL WEIGHT DECAY 5E-5
MODEL BATCH SIZE 256
MODEL TRAIN FREQUENCY 125
MODEL HIDDEN DIMS SIZE 400
MODEL CLIP OUTPUT TRUE
DISCRIMINATOR CLIP OUTPUT TRUE
DISCRIMINATOR WEIGHT DECAY TRUE
DISCRIMINATOR ENSEMBLE SIZE 7
SCHEDULE MODEL LR FALSE
SCHEDULE POLICY LR FALSE
EMA POLICY WEIGHTS FALSE
NUMBER POLICY UPDATES PER STEP 30
POLICY UPDATES EVERY STEPS 1
ROLLOUT STEP IN LEARNED MODEL 400
ROLLOUT LENGTH 1 → 25
POLICY TYPE STOCHASTIC GAUSSIAN POLICY

Table 3: Hyperparameters for Ant-v3.
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PARAMETER VALUE

EXPERT DATASET SIZE 64000
EXPLORATION SAMPLE SIZE 64000
MODEL ENSEMBLE SIZE 7
MODEL ENSEMBLE ELITE NUMBER 5
MODEL LEARNING RATE 3E-4
MODEL WEIGHT DECAY 5E-5
MODEL BATCH SIZE 256
MODEL TRAIN FREQUENCY 125
MODEL HIDDEN DIMS SIZE 400
MODEL CLIP OUTPUT FALSE
DISCRIMINATOR CLIP OUTPUT FALSE
DISCRIMINATOR WEIGHT DECAY FALSE
DISCRIMINATOR ENSEMBLE SIZE 7
SCHEDULE MODEL LR FALSE
SCHEDULE POLICY LR FALSE
EMA POLICY WEIGHTS FALSE
NUMBER POLICY UPDATES PER STEP 30
POLICY UPDATES EVERY STEPS 1
ROLLOUT STEP IN LEARNED MODEL 400
ROLLOUT LENGTH 1 → 25
POLICY TYPE STOCHASTIC GAUSSIAN POLICY

Table 4: Hyperparameters for Hopper-v3.

PARAMETER VALUE

EXPERT DATASET SIZE 64000
EXPLORATION SAMPLE SIZE 64000
MODEL ENSEMBLE SIZE 7
MODEL ENSEMBLE ELITE NUMBER 5
MODEL LEARNING RATE 3E-4
MODEL WEIGHT DECAY 5E-5
MODEL BATCH SIZE 256
MODEL TRAIN FREQUENCY 125
MODEL HIDDEN DIMS SIZE 400
MODEL CLIP OUTPUT FALSE
DISCRIMINATOR CLIP OUTPUT FALSE
DISCRIMINATOR WEIGHT DECAY FALSE
DISCRIMINATOR ENSEMBLE SIZE 7
SCHEDULE MODEL LR FALSE
SCHEDULE POLICY LR TRUE
EMA POLICY WEIGHTS TRUE
NUMBER POLICY UPDATES PER STEP 20
POLICY UPDATES EVERY STEPS 2
ROLLOUT STEP IN LEARNED MODEL 400
ROLLOUT LENGTH 1 → 25
POLICY TYPE STOCHASTIC GAUSSIAN POLICY

Table 5: Hyperparameters for Humanoid-v3.
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PARAMETER VALUE

EXPERT DATASET SIZE 64000
EXPLORATION SAMPLE SIZE 1000
MODEL ENSEMBLE SIZE 7
MODEL ENSEMBLE ELITE NUMBER 5
MODEL LEARNING RATE 3E-4
MODEL WEIGHT DECAY 5E-5
MODEL BATCH SIZE 256
MODEL TRAIN FREQUENCY 125
MODEL HIDDEN DIMS SIZE 200
MODEL CLIP OUTPUT TRUE
DISCRIMINATOR CLIP OUTPUT TRUE
DISCRIMINATOR WEIGHT DECAY TRUE
DISCRIMINATOR ENSEMBLE SIZE 7
SCHEDULE MODEL LR TRUE
SCHEDULE POLICY LR TRUE
EMA POLICY WEIGHTS TRUE
NUMBER POLICY UPDATES PER STEP 20
POLICY UPDATES EVERY STEPS 2
ROLLOUT STEP IN LEARNED MODEL 400
ROLLOUT LENGTH 1 → 25
POLICY TYPE STOCHASTIC GAUSSIAN POLICY

Table 6: Hyperparameters for Walker-v3.

PARAMETER VALUE

EXPERT DATASET SIZE 999000
EXPLORATION SAMPLE SIZE 10000
MODEL ENSEMBLE SIZE 7
MODEL ENSEMBLE ELITE NUMBER 5
MODEL LEARNING RATE 3E-4
MODEL WEIGHT DECAY 5E-5
MODEL BATCH SIZE 256
MODEL TRAIN FREQUENCY 1000
MODEL HIDDEN DIMS SIZE 200
MODEL CLIP OUTPUT FALSE
DISCRIMINATOR CLIP OUTPUT FALSE
DISCRIMINATOR WEIGHT DECAY FALSE
DISCRIMINATOR ENSEMBLE SIZE 1
SCHEDULE MODEL LR TRUE
SCHEDULE POLICY LR TRUE
EMA POLICY WEIGHTS TRUE
NUMBER POLICY UPDATES PER STEP 20
POLICY UPDATES EVERY STEPS 1
ROLLOUT STEP IN LEARNED MODEL 400
ROLLOUT LENGTH 1 → 25
POLICY TYPE STOCHASTIC GAUSSIAN POLICY

Table 7: Hyperparameters for antmaze-large.

21


	Introduction
	Related Work
	Hybrid Inverse RL
	A Game-Theoretic Perspective on Inverse RL
	Expert-Relative Regret Oracles in Inverse RL
	HyPE: Model-Free Hybrid Inverse RL
	HyPER: Model-Based Hybrid Inverse RL
	Efficient IRL Battle Royale

	Experiments
	Conclusion
	Proofs
	Miscellaneous Lemmas
	Proof of Lemma 3.5

	Implementation Details
	MuJoCo Tasks
	D4RL Tasks

	Antmaze Model Pretraining
	Additional Ablations
	Classical Adversarial Imitation Learning Methods
	Low Data Regime


