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Abstract. This paper presents a robust, regulatory-compliant infrastructure spe-
cifically developed to address the validation and lifecycle management of artifi-
cial intelligence (AI) applications in healthcare. This infrastructure enables rig-
orous validation, seamless integration, and continuous monitoring of AI-driven 
healthcare solutions in alignment with established regulatory guidelines. By em-
phasizing transparency, reproducibility, and interoperability, the proposed infra-
structure facilitates trust and adoption among stakeholders. Key components in-
clude curated public and proprietary datasets, standardized validation workflows, 
structured Data Use Agreements (DUAs), comprehensive version control, de-
fined access rights, data sequestration protocols, traceability, audit trails, and 
anti-competitive safeguards within a multi-stakeholder consortium comprising 
data providers, data users, model providers, model users, and technology and ser-
vice providers. 
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1 Introduction 

The rapid integration of AI in healthcare has introduced notable opportunities alongside 
significant regulatory and patient safety challenges. Regulatory bodies worldwide em-
phasize the need for rigorous validation and lifecycle management to ensure AI systems 
are safe, effective, and equitable. Current practices often lack standardized and com-
prehensive frameworks, risking inconsistent outcomes and regulatory non-compliance 
(U.S. FDA, 2025; Shah & Halamka, 2023–2024). This paper introduces a structured 
and compliant infrastructure, supported by a diverse stakeholder consortium, to sys-
tematically validate, deploy, and continuously monitor healthcare AI solutions, ensur-
ing they meet or exceed regulatory standards. 

2 Background 

AI in healthcare must navigate stringent regulatory landscapes designed to protect pa-
tient safety and uphold efficacy. Regulatory agencies like the FDA mandate Good Ma-
chine Learning Practice (GMLP) to manage risks associated with AI systems (U.S. 
FDA, 2025). Despite these guidelines, healthcare organizations frequently encounter 
challenges such as limited access to validated datasets, inconsistent validation methods, 
and insufficient continuous monitoring practices (Maslej, 2025; Lin, 2025). These chal-
lenges hinder widespread adoption and integration of AI solutions. 
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3 Methodology 

The proposed infrastructure addresses these gaps through three core components: 

3.1 Dataset Integration 

We leverage both publicly available and proprietary datasets provided by healthcare 
organizations and third-party data aggregators. Structured and regulatory-compliant 
Data Use Agreements (DUAs) govern dataset integration. Data annotation processes 
utilize pre-annotated data provided by AI model providers, augmented and validated 
by board-certified physician experts, such as radiologists (Jimenez-Pastor et al., 2023; 
Ji et al., 2025). Dataset management includes comprehensive version control, rigorous 
data sequestration protocols distinguishing between training, testing, and validation da-
tasets, and defined access rights tailored to various user roles (e.g., data scientists vs. 
clinicians). Figure 2 illustrates detailed steps involved, including data acquisition, an-
notation, governance, versioning, and access control processes, emphasizing segrega-
tion and traceability throughout the dataset lifecycle. 

3.2 Validation Framework 

Our infrastructure provides standardized validation protocols aligned with regulatory 
guidelines, specifically Good Machine Learning Practice (GMLP). Validation methods 
encompass quantitative performance assessments, robustness testing across clinical 
scenarios, fairness and bias evaluation, and generalizability analysis (Pati et al., 2022). 
Structured workflows facilitate reproducible experiments, incorporating expert re-
views, controlled benchmarking, and automated reporting mechanisms. Figure 3 out-
lines a comprehensive validation process, highlighting systematic checkpoints and it-
erative validation cycles, ensuring consistency, transparency, and reproducibility 
(Bracci et al., 2024). 

3.3 Lifecycle Management 

Continuous monitoring ensures AI systems maintain effectiveness and compliance 
post-deployment. Real-time performance tracking is coupled with automated alerts for 
performance degradation or compliance deviations. Periodic revalidation protocols in-
clude retrospective analyses and scenario-based stress tests to ensure sustained reliabil-
ity and regulatory alignment over time. Comprehensive audit trails record all user ac-
tivities, ensuring full traceability and integrity of both models and datasets, particularly 
critical for updates following the Predetermined Change Control Plan (PCCP) (Beutel 
et al., 2022; Ma et al., 2024). Figure 4 depicts the lifecycle management protocol, 
clearly demonstrating processes for continuous monitoring, audit trails maintenance, 
and systematic revalidation activities. 
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4 Implementation 

The implementation of the infrastructure involves two main phases: 

4.1 Initial Phase 

• Establishing robust stakeholder partnerships within a multi-stakeholder consortium, 
including data providers, data users, model providers, model users, regulatory bod-
ies, and technology and service providers (Tizhoosh, 2025). 

• Designing subsidy models for under-resourced data providers to promote inclusive 
participation (Shah & Halamka, 2023–2024). 

• Defining clear, standardized, non-exclusive Data Use Agreements (DUAs) and anti-
competitive measures to ensure fair access and broad participation. 

4.2 Subsequent Phases 

• Expanding the dataset ecosystem by integrating additional high-quality public and 
proprietary datasets (Voss et al., 2015). 

• Comprehensive integration with stakeholders to facilitate widespread adoption (Bar-
reto et al., 2012; Christen, 2012). 

• Ongoing regulatory alignment through continuous engagement and iterative en-
hancements to validation and monitoring protocols (U.S. FDA, 2025). 

5 Results 

Preliminary implementation outcomes include: 

• Formation of an effective multi-stakeholder consortium comprising data providers, 
data users, model providers, model users, and technology and service providers 
(Tizhoosh, 2025). 

• Defined and agreed-upon standardized validation and lifecycle management pro-
cesses (Bracci et al., 2024). 

• Successful demonstration of initial infrastructure capabilities through pilot valida-
tion studies, indicating improvements in validation consistency and regulatory align-
ment (Samanta et al., 2022). 

6 Discussion 

The presented infrastructure significantly mitigates patient safety and regulatory com-
pliance risks by providing standardized, robust validation and monitoring practices. By 
addressing fundamental barriers such as dataset access, validation reproducibility, and 
continuous monitoring, this approach represents a scalable and sustainable model for 
healthcare AI adoption (Adnan et al., 2022). 
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Potential limitations include variability in dataset quality and availability, evolving 
regulatory standards requiring continuous adaptation, and resource-intensive validation 
processes. These challenges highlight the importance of ongoing refinement, automa-
tion of workflows, and further integration with emerging regulatory guidance (Qin et 
al., 2025). Comparisons with existing solutions underscore the comprehensive and sys-
tematic nature of our approach, emphasizing enhanced reproducibility, transparency, 
and interoperability (Koutsoubis et al., 2024). 

Future enhancements will focus on further automating validation workflows, ex-
panding dataset diversity through additional partnerships, and refining continuous mon-
itoring algorithms to proactively identify emerging performance trends and compliance 
needs (Guo et al., 2024). 

7 Diagrams 

Fig. 1. Infrastructure Overview  

Fig. 2. Dataset Integration Workflow - Illustrating detailed steps from data acquisition, 
version control, annotation governance, and access control 
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Fig. 3. Validation Process Flowchart - Showing systematic validation steps 

 
Fig. 4. Lifecycle Management Protocol 

8 Conclusion 

We propose a comprehensive, regulatory-compliant infrastructure that systematically 
addresses validation and lifecycle management challenges in healthcare AI. Supported 
by a robust multi-stakeholder consortium, this infrastructure facilitates widespread 
adoption, regulatory compliance, and improved patient safety, establishing a founda-
tional model for responsible and scalable AI deployment within healthcare settings. 
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Additionally, this infrastructure can serve as a coordinating and reconciling platform 
for emerging certification groups such as CHAI, Joint Commission, URAC, and 
NCQA. 

References 

1. Adnan, M., Kalra, S., Cresswell, J., Taylor, G., & Tizhoosh, H. (2022). Federated learning 
and differential privacy for medical image analysis. Scientific Reports, 12, Article 5539. 
https://doi.org/10.1038/s41598-022-05539-7 
 

2. Barreto, J., Veiga, L., & Ferreira, P. (2012). Hash challenges: Stretching the limits of com-
pare-by-hash in distributed data deduplication. Information Processing Letters, 112(10), 
380–385. https://doi.org/10.1016/j.ipl.2012 
 

3. Beutel, D. J., Topal, T., Mathur, A., et al. (2022). Flower: A friendly federated learning 
research framework. arXiv. https://doi.org/10.48550/arXiv.2007.14390 
 

4. Bracci, J., Capobianco, N., Shah, V., et al. (2024). Label extraction from PET/CT reports 
using large language models. European Journal of Nuclear Medicine and Molecular Imag-
ing, 51(Suppl 1), OP-420, 193. https://doi.org/10.1007/s00259-024-06838-z 
 

5. Christen, P. (2012). A survey of indexing techniques for scalable record linkage and dedu-
plication. IEEE Transactions on Knowledge and Data Engineering, 24(9), 1537–1555. 
https://doi.org/10.1109/TKDE.2011.127 
 

6. Guo, X., Shah, V., Pigg, D., et al. (2024). Generative uptake time correction for SUV har-
monization in whole-body PET. Journal of Nuclear Medicine, 65(Supplement 2), 241110–
241110. 
 

7. Jimenez-Pastor, A., et al. (2023). Automated prostate multi-regional segmentation in mag-
netic resonance using fully convolutional neural networks. European Radiology, 33(7), 
5087–5096. https://doi.org/10.1007/s00330-023-09410-9 
 

8. Ji, X., et al. (2025). Physical Color Calibration of Digital Pathology Scanners for Robust 
Artificial Intelligence–Assisted Cancer Diagnosis. Modern Pathology, 38(5), 100715. 
 

9. Koutsoubis, N., et al. (2024). Future-proofing medical imaging with privacy-preserving fed-
erated learning and uncertainty quantification: A review. arXiv preprint arXiv:2409.16340. 
https://arxiv.org/abs/2409.16340 
 

10. Lin, F. (2025). From promise to practice: Danaher gathers visionaries to discuss AI-driven 
R&D. GEN Edge. https://www.genengnews.com/gen-edge/from-promise-to-practice-dana-
her-gathers-visionaries-to-discuss-ai-driven-rd/ 
 

11. Ma, M., Li, T., & Peng, X. (2024). Beyond the federation: Topology-aware federated learn-
ing for generalization to unseen clients. 
 



7 

12. Maslej, N. (2025). AI Index 2025: State of AI in 10 charts. Stanford HAI. https://hai.stan-
ford.edu/news/ai-index-2025-state-of-ai-in-10-charts 
 

13. Pati, S., Baid, U., Edwards, B., et al. (2022). Federated learning enables big data for rare 
cancer boundary detection. Nature Communications, 13, 7346. 
https://doi.org/10.1038/s41467-022-33407-5 
 

14. Qin, Z., et al. (2025). MultiTEND: A Multilingual Benchmark for Natural Language to 
NoSQL Query Translation. 
 

15. Samanta, S., et al. (2022). Federated learning on 18F-FDG PET/CT uptake classification in 
lung cancer, lymphoma and head and neck cancer. Journal of Nuclear Medicine, 63(Supple-
ment 2), 2229. 
 

16. Shah, N., & Halamka, J. (2023–2024). AI model deployment in clinical settings: Stanford 
and Mayo Clinic case studies. Presented at AIMI 2024 and MCP 2023. 
 

17. Tizhoosh, H. R. (2025). Foundation models and information retrieval in digital pathology. 
In Artificial Intelligence in Pathology (pp. 211-232). Elsevier. 
 

18. U.S. Food and Drug Administration. (2025). Artificial intelligence/machine learning 
(AI/ML)-enabled device software functions: Lifecycle management and marketing. 
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/artificial-in-
telligence-enabled-device-software-functions-lifecycle-management-and-marketing 
 

19. Voss, E. A., et al. (2015). Feasibility and utility of applications of the “Common Data 
Model” to multiple, disparate observational health databases. Journal of the American Med-
ical Informatics Association, 22(3), 553–556. https://doi.org/10.1093/jamia/ocu023 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 


	1 Introduction
	2 Background
	3 Methodology
	3.1 Dataset Integration
	3.2 Validation Framework
	3.3 Lifecycle Management

	4 Implementation
	4.1 Initial Phase
	4.2 Subsequent Phases

	5 Results
	6 Discussion
	7 Diagrams
	8 Conclusion
	References

