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ABSTRACT

Because it is difficult to precisely specify complex objectives, reinforcement learn-
ing policies are often optimized using flawed proxy rewards that seem to capture
the true objective. However, optimizing proxy rewards frequently leads to reward
hacking: the optimized reward function ceases to be a good proxy and the resulting
policy performs poorly with respect to the unspecified true reward. Principled
solutions to reward hacking have been impeded by the lack of a good definition
for the problem. We introduce a definition of reward hacking based on correlation
between proxy and true rewards for states and actions seen by a “base policy” that
breaks down under optimization. We show that this definition captures reward
hacking behavior across several realistic settings, including in reinforcement learn-
ing from human feedback (RLHF). We then show theoretically that regularization
to the base policy can effectively prevent reward hacking. Our theory suggests
regularizing χ2 divergence between the policies’ occupancy measures, rather than
the current practice in RLHF of using a KL penalty between action distributions.
We intuitively show why this type of regularization is better, and demonstrate that
it outperforms alternatives at mitigating reward hacking in practice across four
realistic settings, including RLHF.

1 INTRODUCTION

A major challenge for the designers of goal-oriented AI systems is specifying a reward function that
robustly captures their goals and values. Manually designing reward functions is difficult due to the
ambiguities and complexity underlying real-world scenarios (Ibarz et al., 2018). An alternative is to
learn reward functions from human data (Sadigh et al., 2017; Jeon et al., 2020), but these often fail to
generalize outside the distribution of behavior seen during training (McKinney et al., 2023; Tien et al.,
2023). Thus, a learned or hand-specified reward function is often just a proxy for the true reward
underlying the system designer’s intent. Misalignment between the two objectives can lead to reward
hacking: a learned policy performs well according to the proxy reward function, but not according
to the true reward function (Russell et al., 2010; Amodei et al., 2016; Pan et al., 2022; Skalse et al.,
2022). A reward hacking policy’s behavior is often undesirable and can be especially catastrophic
when deployed in safety-critical scenarios, such as autonomous driving (Krakovna et al., 2019; Turner
et al., 2019; Knox et al., 2022). Unfortunately, reward hacking is a common phenomenon (Krakovna,
2018) and has harmful effects in the real world (Lum & Isaac, 2016; Corbett-Davies et al., 2017;
Obermeyer et al., 2019; Milli et al., 2021; Franchi et al., 2023; Kleinberg et al., 2023).

The ideal solution to prevent reward hacking would be to perfectly align the specified proxy and
unknown true reward; however, in many domains, this is impossible to achieve. For example,
imagine trying to design a reward function for a self-driving car. It would have to capture the speed
at which the car reached the destination, comfort of the passenger, all applicable laws, and other
factors, many of which are difficult to robustly measure; furthermore, these factors would have to
be carefully weighted against each other (Knox et al., 2022). In practice, reward hacking can occur
even with significant reward engineering efforts. For example, hand-designed reward functions for
recommender systems have led to adverse outcomes in terms of user experience (Stray et al., 2022).

Since proxy reward functions for complex tasks are nearly always misspecified in practice, what
can be done to avoid reward hacking? There is a lack of principled solutions for preventing reward
hacking, stemming from a more fundamental problem: defining reward hacking in a formal sense

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: We present a new characterization of
reward hacking and a method for preventing it.
We define a proxy reward function as one that
correlates with an unknown true reward function
for state-action pairs sampled from some base
policy. However, optimizing the proxy alone
can lead to a breakdown in the correlation and
worse true reward than the base policy. We show
theoretically and empirically that optimizing the
proxy with χ2 occupancy measure regularization
to the base policy can allow outperforming the
base policy under the unknown true reward. Proxy reward R̃(s, a)
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that captures realistic cases. In particular, it is difficult to characterize what makes a proxy reward
function “good”. For example, Skalse et al. (2022) define a notion of “unhackability” but find that it
can only hold if the proxy is a multiple of the true reward, which is obviously unrealistic.

We argue that proxies are chosen because they seem to capture the true objective under some base
distribution of behavior. To formalize this, we define a proxy reward as one that correlates with the
true reward function under the distribution of states and actions visited by a base policy. Then, we
define a hackable proxy as one that induces a decrease in true reward compared to the base policy
when optimized (Figure 1). We show that these definitions capture a number of intuitive cases of
reward hacking in realistic environments, including traffic control, blood glucose regulation, and
reinforcement learning from human feedback (RLHF) (Figure 2).

Furthermore, our definition leads to a method for avoiding reward hacking during policy optimization
by regularizing the optimized policy to be similar to the base policy. Specifically, we find that
optimizing the proxy reward minus a regularization term provides a provable lower bound on
improvement in true reward. The amount of regularization needed depends on the correlation between
the proxy and true rewards; as the correlation becomes stronger, it is possible to use less regularization.

Regularizing policy optimization to a base policy is already used in practice during RLHF via a
KL divergence penalty (Stiennon et al., 2020; Bai et al., 2022), and Theorem 5.1 provides some
theoretical justification for why this works. However, while the regularization in RLHF penalizes the
KL divergence between the optimized and base policies’ action distributions, our result suggests that
it is better to penalize the chi-squared (χ2) divergence between the policies’ occupancy measures. A
policy’s occupancy measure (OM) is the distribution of states or state-action pairs seen by the policy
when it interacts with its environment. Unlike action distribution (AD)-based metrics, occupancy
measures take into account the states that the agent reaches, not just the actions it takes. We compare
OM vs. AD regularization and χ2 vs. KL divergence, presenting intuitive reasons why χ2 OM
divergence may be a better regularization target in Figures 3 and 4.

Based on our theoretical results, we empirically investigate using the benefits of using χ2 occupancy
measure regularization to prevent reward hacking. We implement OM-based regularization in practice
using a discriminator network that approximates the OM divergence between policies. We then
optimize policies with hackable proxy reward functions in multiple reward hacking benchmark
environments (Pan et al., 2022) using OM and AD regularization with χ2 and KL divergence. The
results of our experiments demonstrate that training with occupancy measure regularization leads
to better performance under the unseen true reward function in all of the environments, validating
our theoretical results. In contrast, we find that it is difficult to tune AD regularization in some
environments to both prevent reward hacking and allow meaningful improvement over the base policy.
Furthermore, regularization with χ2 divergence leads to more stable results across regularization
coefficients and often achieves higher true reward.

Our main contributions can be summarized as follows:

1. We provide a new formal definition of reward hacking and show that it captures a number of
realistic case studies.

2. Using our definition, we establish that optimizing a proxy reward with χ2 occupancy measure
regularization leads to a provable improvement in the unknown true reward function.

3. We implement χ2 OM regularization in practice and demonstrate that it outperforms the
current standard for preventing reward hacking via regularization.
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2 RELATED WORK

While there have been separate lines of work investigating reward hacking and exploring the use of
occupancy measure divergences for other applications, to the best of our knowledge, we are the first
to specifically study applying occupancy measure regularization to the problem of reward hacking.

Reward hacking. Some prior works establish theoretical models of reward hacking as a special
case of Goodhart’s Law (Goodhart, 1984; Leike et al., 2018; Manheim & Garrabrant, 2019; Krakovna,
2019; Skalse et al., 2022; Ngo et al., 2023). Krakovna (2018) provide a list of many examples of
reward hacking. Pan et al. (2022) categorize types of reward misspecification and relate optimization
power to reward hacking.

Safe reinforcement learning. In the context of reward hacking, regularizing policies to be similar
to an offline policy based on their action distribution KL divergence was proposed by Stiennon et al.
(2020) and has since been widely employed in the context of optimizing LLMs using RLHF (Ouyang
et al., 2022; Bai et al., 2022; Glaese et al., 2022). KL regularization for RLHF has been further studied
by Vieillard et al. (2021), Gao et al. (2022), and Korbak et al. (2022). Nika et al. (2024) propose a
type of occupancy measure regularization in RLHF but it is limited to deterministic MDPs, while
we study general stochastic MDPs. Some alternative approaches to avoid reward hacking include
quantilizers (Taylor, 2016), “mild” optimization (Taylor et al., 2020), and impact regularization
(Turner et al., 2020). While constrained RL can prevent the misbehavior of agents that optimize
flawed reward functions (Dalal et al., 2018; Chow et al., 2019; Zhang et al., 2020; Roy et al., 2022),
it simply shifts the difficulty of designing a reward function to specifying a set of constraints and
weights. Robust RL usually considers a misspecified transition model, but some work has explored
misspecified reward functions (Derman et al., 2021; Gadot et al., 2024). Other proposals to address
the reward specification problem attempt to infer the true reward function based on the given proxy
reward function, environment context, and/or feedback from humans (Hadfield-Menell et al., 2017;
Reddy et al., 2020; Lee et al., 2021). Gleave et al. (2021) have previously studied quantifying the
similarity of reward functions.

Applications of occupancy measure regularization. Occupancy measure regularization and
optimization have been used for a variety of purposes. GAIL (Ho & Ermon, 2016) is an algorithm
for robust imitation learning that aims to match the imitator’s occupancy measure to that of the
demonstrator. Kang et al. (2018) combines GAIL with a reward function to efficiently explore using
human data. Another line of work aims to find a policy with the highest-entropy occupancy measure
for the purpose of exploring the state space (Hazan et al., 2019; Lee et al., 2020; Nedergaard &
Cook, 2023). Various types of distributional regularization are used in model-based RL since learned
models may not generalize out-of-distribution (Yang et al., 2022).

Offline reinforcement learning. Prior work in offline RL may appear to be particularly related
to our work. Many offline RL algorithms use occupancy measure or action distribution-based
regularization to ensure that the learned policy remains within the training data distribution (Fujimoto
et al., 2019; Lee et al., 2022; Mandal et al., 2023; He, 2023; Cheng et al., 2022; Rashidinejad et al.,
2023; Xie et al., 2023). However, the settings are fundamentally different: while offline RL is limited
by a lack of coverage in the training data, the difficulty in our setting is that the reward function is
misspecified. While it might be possible to avoid reward hacking by using offline RL algorithms, we
leave this to future work and focus on regularization-based approaches in the online RL setting.

3 PRELIMINARIES

To study reward hacking, we consider the setting of an infinite-horizon Markov decision process
(MDP). An agent takes actions a ∈ A to transition between states s ∈ S over a series of timesteps
t = 0, 1, 2, . . .. We assume that S and A are finite for simplicity but our results can easily generalize
to infinite state or action spaces. The first state s0 is sampled from an initial distribution µ0(s), and
when an agent takes action at in st at time t, the next state st+1 is reached at timestep t + 1 with
transition probability p(st+1 | st, at). The agent aims to optimize a reward function R : S ×A → R,
and rewards are accumulated over time with discount factor γ ∈ [0, 1). A policy π maps each state
s to a distribution over actions to take at that state π(a | s). We define the (normalized) return of a
policy π under a reward function R as

J(π,R) = (1− γ)Eπ [
∑∞

t=0 γ
tR(st, at)] (1)
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Figure 2: We show that reward hacking in four realistic environments and an illustrative gridworld is captured by
our definition. The top row shows the distribution of proxy and true reward values for state-action pairs sampled
from a natural base policy for each environment; in all environments, the proxy and true rewards are correlated.
However, if the proxy is optimized via reinforcement learning, the correlation breaks down and the true reward
is lower than the base policy, which we define as reward hacking (middle row). Our theoretical results show that
RL with occupancy measure regularization to the base policy can prevent reward hacking and enable an increase
in true reward (bottom row).

where Eπ refers to the expectation under the distribution of states and actions induced by running the
policy π in the environment.

We define the state-action occupancy measure µπ of a policy π as the expected discounted number of
times the agent will be in a particular state and take a specific action:

µπ(s, a) = (1− γ)Eπ [
∑∞

t=0 γ
t
1{st = s ∧ at = a}] . (2)

Intuitively, the occupancy measure represents the distribution of states and actions visited by the
policy over time. Furthermore, combining (1) and (2), it is easy to show that the return of a policy
can be re-written as the expected reward for states and actions sampled from the occupancy measure:

J(π,R) =
∑

s,a∈S×A µπ(s, a)R(s, a) = Eµπ [R(s, a)]. (3)

The standard approach to solving an MDP is to find a policy π that maximizes its return J(π,R).
However, as we discussed in the introduction, an AI system designer might optimize π using a learned
or hand-specified proxy reward function R̃ which is different from the true reward function R. In
order to better understand and mitigate reward hacking, it would be helpful to have a good definition
of the problem. Intuitively, reward hacking is when optimizing the proxy reward J(π, R̃) of a policy
π ultimately leads to low true reward J(π,R). However, this intuition is more difficult to formalize
than it might seem.

Desiderata for a definition of reward hacking. To understand why defining reward hacking is
difficult, consider the case study of RLHF. In this case, optimizing a learned reward function over
LLM outputs eventually leads to the LLM producing nonsensical responses. This clearly satisfies
our informal definition of “optimizing the proxy makes the true reward go down.” However, what
if we were to optimize R̃(s, a) = −R(s, a)? In this case, optimizing R̃ also makes the true reward
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go down, but arguably this is not reward hacking because R̃ was not a good “proxy” in the first
place. Thus, a good definition of reward hacking should distinguish between “reasonable” proxies
and reward functions that are clearly unrelated (or opposite) to the true reward function.

In the RLHF example, optimizing until the LLM produces nonsensical outputs seems like bad enough
behavior that we would say the proxy has been “hacked.” However, what if optimizing the proxy
produced mediocre but not obviously bad outputs? Even if optimizing the proxy does not lead to
near-optimal true reward, we would not always say that reward hacking has occurred. Thus, a good
definition of reward hacking should also choose a threshold for true reward: below the threshold,
reward hacking is occurring, and above the threshold it is not.

Prior definitions of reward hacking. Because of these difficulties, prior work has struggled to
define reward hacking. With regard to our first desideratum, defining reasonable proxies, Skalse et al.
(2022) introduce a notion of an “unhackable” proxy reward but find that a proxy is only unhackable
if it is equivalent to the true reward up to scaling; this is clearly too restrictive of a definition. The
robust MDP literature has considered proxy rewards that differ from the true reward by at most some
constant, e.g., |R(s, a) − R̃(s, a)| ≤ c for all s, a (Derman et al., 2021). However, we find that in
many realistic cases of reward hacking, there may be some states where a proxy differs from the true
reward by an arbitrarily large amount, and so these definitions are generally not applicable. With
regard to the second desideratum, defining a threshold of true reward, there is little existing literature.

4 DEFINING REWARD HACKING

Despite the difficulties in formalizing reward hacking, we argue that both of our desiderata for a
definition can be met by defining reward hacking with respect to a base policy. We show how this
allows for both a precise definition of proxy rewards and a natural threshold for when reward hacking
is occurring.

Characterizing proxy rewards. To find a realistic definition of a good proxy reward, consider the
process by which system designers create proxies. If they are hand-specified, we argue that designers
usually imagine a distribution of behavior and design a reward that captures the objective under that
distribution. For example, we study a traffic control simulator (Lopez et al., 2018; Vinitsky et al.,
2018; Wu et al., 2022; Pan et al., 2022) where a small number of autonomous cars help to regulate
traffic among a larger population of human drivers. In this case, a designer might choose the average
speed of all vehicles as a proxy for improving traffic flow; this is a reasonable proxy because under
the distribution of typical human driving behavior, higher speeds are associated with better traffic.

We can formalize this intuition by requiring that the proxy and true rewards be correlated over states
and actions sampled from a base policy:

Definition 4.1 (Correlated proxy reward). An r-correlated proxy reward R̃ with respect to a base
policy πbase is one that has a correlation of r > 0 with the true reward for state-action pairs sampled
from the base policy:

Eµπbase

[(
R̃(s,a)−J(πbase,R̃)

σR̃

)(
R(s,a)−J(πbase,R)

σR

)]
= r,

where σ2
R̃
= Eµπbase

[(
R̃(s, a)− J(πbase, R̃)

)2]
and σ2

R = Eµπbase

[(
R(s, a)− J(πbase, R)

)2]
are the variances of proxy and true rewards under the base policy.

This definition intuitively captures cases like the traffic environment, where we define the true reward
function as the negative total commute time for all vehicles. Letting πbase be an autonomous vehicle
policy based on a common model of human driving behavior, we plot the distribution of true and
proxy rewards in the top-left corner of Figure 2 and find that they are correlated: higher average
speed tends to occur with lower commute times, and vice versa. This validates that average speed is a
correlated proxy reward according to Definition 4.1.

Definition 4.1 also avoids too strongly constraining proxy rewards, unlike past formalisms. The
proxy and true reward functions can diverge arbitrarily at some state-action pairs, as long as those
state-action pairs have low or zero occupancy measure under the base policy.

Finally, Definition 4.1 captures learned proxy rewards in addition to hand-specified ones. Reward
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learning begins with collecting annotations—for example, preference comparisons (as in RLHF)
or scalar feedback—for states and actions collected from a rollout policy—for example, the SFT
model in RLHF. Then, a reward function is estimated via supervised learning over this dataset with
an appropriate loss function. If the estimated reward function generalizes well in-distribution, then
we should expect the true and learned rewards to be well correlated under states and actions sampled
from the rollout policy, satisfying Definition 4.1 (see Lemma A.8).

Choosing a threshold for reward hacking. As discussed in Section 3, the other difficulty in
defining reward hacking is specifying a threshold of true reward below which performance is poor
enough to be considered hacking. If we are already characterizing proxy rewards with respect to a
base policy, then it makes sense to also use this base policy as a baseline for evaluating a policy that
optimizes the proxy. If optimizing the proxy leads to worse true reward than the base policy achieves,
then the system designer may as well simply use the base policy.

Definition 4.2 (Hackable proxy reward). Suppose a R̃ is an r-correlated proxy with respect to πbase

(Definition 4.1). Then we say reward hacking occurs when a policy π optimized for R̃ has lower
true reward than the base policy πbase, i.e., when J(π,R) < J(πbase, R). If an optimal policy for R̃
exhibits reward hacking, then we say that the proxy reward R̃ is hackable:

J(π,R) < J(πbase, R) for some π ∈ argmax
π

J(π, R̃).

For example, in the traffic control environment, optimizing for the proxy of average speed leads to
the autonomous vehicles blocking a highway on-ramp. This decreases the speed of the cars on the
ramp to zero, but allows cars on the highway to move at high speeds, overall increasing the proxy
reward. However, the true reward becomes extremely low, since commute times for the cars on the
on-ramp are aribitrarily long. This constitutes reward hacking under Definition 4.2 since the true
reward of the proxy-optimized policy is lower than that achieved by typical human driving.

Verifying our definition experimentally. To test whether Definition 4.2 accurately captures
intuitive cases of reward hacking, we consider four realistic enviroments and an illustrative gridworld.
We consider the aforementioned traffic simulator and two other environments originally studied
by Pan et al. (2022) as examples of reward hacking. SimGlucose (Man et al., 2014) is based on
an FDA-approved simulator of Type 1 Diabetes patients in which a policy monitors glucose levels
and administers insulin; the true reward captures patient health while the proxy reward prioritizes
reducing the monetary cost of insulin. PandemicSimulator (Kompella et al., 2020) uses a specialized
SEIR model to simulate the COVID-19 pandemic among a population; the policy controls the level of
lockdown restrictions placed on the population by observing the results of testing. The proxy reward
omits the political cost of certain decisions.

We also study RLHF, in which LLMs are optimized based on a reward function learned from human
preferences. Following Gao et al. (2022) and Coste et al. (2024), we use a large (more robust)
reward model as the true reward function and a smaller (less robust) one as the proxy. Finally, as an
interpretable and illustrative example, we include the tomato-watering gridworld from Leike et al.
(2017). In this environment, a robot that waters tomatoes receives true reward depending on how
many plants are watered; however, the proxy additionally rewards the robot for standing in a sprinkler
where it appears all the tomatoes are watered. Besides the gridworld, all of our environments reflect
complex, realistic tasks with large or infinite state state spaces. To test our definition of reward
hacking, for each of the five environments we construct a natural base policy. See Appendix C for
more details about the environments and base policies.

The top row of Figure 2 shows the distribution of true and proxy reward values for state-action pairs
sampled from these base policies in each environment. We find that in all cases, the proxy rewards
correlate with the true reward, satisfying our definition of a correlated proxy. The middle row of
Figure 2 shows the result of optimizing for the proxies: for each environment, we plot the distribution
of true and proxy reward values for state-action pairs reached by a policy optimized on the proxy
reward via RL. In all cases, we see that the true reward drops significantly compared to the base
policy. Thus, these intuitive cases of reward hacking are captured by Definition 4.2.
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Figure 3: Unlike RLHF, which regularizes action distri-
bution (AD) divergence to prevent reward hacking, our
results suggest regularizing using occupancy measure
(OM) divergence. These plots of the glucose monitoring
environment show the typical ADs and OMs of two poli-
cies. π is close to πbase in AD; it is more likely to give
slightly less insulin because the proxy reward penalizes
monetary cost. However, this leads to a vastly differ-
ent OM, with typical glucose levels for π far outside the
healthy range (dotted lines). Thus, regularizing ADs to
be close to πbase is not enough to prevent reward hacking;
instead, divergence between the OMs better captures the
reward hacking behavior.
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5 MITIGATING REWARD HACKING WITH OCCUPANCY MEASURE
REGULARIZATION

We now discuss how our new definition of reward hacking can lead to better methods for preventing
it. Ideally, we would like to be able to optimize a proxy reward function and have it translate into an
improvement in true reward over the base policy. To understand how this might be possible, consider
again the traffic environment. The reward hacking policy exhibits behavior which is very unlikely
under the base policy: human drivers hardly ever stop on on-ramps and refuse to move. That is,
optimizing the proxy reward leads to out-of-distribution states and actions where the correlation that
made the proxy good in the first place breaks down. Visually, this can be seen in the second row of
Figure 2: the reward hacking policy usually finds state-action pairs with high proxy reward and low
true reward that were very unlikely to be reached by the base policy.

Thus, to prevent reward hacking, one solution could be to optimize the proxy reward while avoiding
states that are unlikely under the base policy. The following theorem formalizes this idea.

Theorem 5.1. Suppose that R̃ is an r-correlated-proxy for the true reward function R, and let
σR̃ and σR be defined as in Definition 4.1. Then for any policy π such that µπ ≪ µπbase (i.e.,
µπbase(s, a) = 0 ⇒ µπ(s, a) = 0), we have

J(π,R)− J(πbase, R)

σR
≥ 1

r

(
J(π, R̃)− J(πbase, R̃)

σR̃

−
√
(1− r2)χ2 (µπ∥µπbase)

)
, (4)

where χ2 (µπ∥µπbase) = Eµπ

[
µπ(s,a)

µπbase (s,a)
− 1
]

is the χ2 divergence between µπ and µπbase .

See Appendix A for the proof. Equation (10) gives a lower bound on how much the policy π improves
over the base policy πbase on the true reward, normalized by the standard deviation of the true reward
under the base policy. This is exactly we would like to maximize, but we can’t optimize the unknown
true reward directly, so it makes sense to instead optimize the right hand side of (10). The right-hand
side (RHS) consists of two terms. The first is the normalized improvement of the policy π’s proxy
reward over the base policy; optimizing this term alone often leads to reward hacking. However, the
second term penalizes the divergence of π’s occupancy measure from that of πbase. By incentivizing
π to achieve high proxy reward but also stay close to the base policy, π can achieve high true reward.

Scaling the RHS of (10) and removing terms that are constant in π suggests using the following
regularized policy optimization objective to avoid reward hacking:

maximize J(π, R̃)− λ
√
χ2 (µπ∥µπbase) where λ = σR̃

√
1− r2. (5)

The amount of regularization needed to improve on the base policy depends on the strength of
correlation r. The higher the correlation, the lower the regularization strength

√
1− r2. Given the

prefactor of 1
r on the RHS of (10), it may appear that a lower correlation leads to a larger gain in true

reward. However, Lemma A.2 shows that in fact, the lower bound decreases as a function of r.

While Theorem 5.1 does not guarantee that the true reward can be increased by optimizing (5), it does
at least allow us to provably avoid reward hacking. In Theorem A.3 in the appendix, we show that it
is difficult to guarantee an improvement in true reward in general. However, if the lower bound on
the RHS of (10) can be increased above zero—which can be tested empirically—then we know that
the true reward has also increased. In our experiments in Section 6, we show that in many realistic
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log (µπ(s, a)/µπbase(s, a))

0

20

Prompt: Explain why whales migrate.
Whales migrate for various
reasons, including the
ability to avoid potential
conflicts in their
populations, to forage...

Whales migrate for a variety
of reasons. They migrate to
access food, as well as for
security and mating
opportunities...

Whales migrate to and from
the ocean because it is the
most efficient and pleasant
way to travel...

χ2 divergence
KL divergence

Figure 4: Our theory also suggests preventing reward hacking by regularizing with χ2 divergence instead of KL
divergence like prior work. This plot illustrates how χ2 regularization is more effective at preventing reward hack-
ing in RLHF. Both divergences can be written as the expectation of a function g

(
log

(
µπ(s, a)/µπbase(s, a)

))
which penalizes state-action pairs more the further the log-ratio is from zero. The g(·) associated with KL
divergence only increases slowly for large log-ratios, so policies trained with KL divergence may produce
nonsensical text. In contrast, the g(·) for χ2 divergence increases exponentially, better constraining the LLM to
produce text similar to the SFT policy.

environments it is possible to increase the true reward by optimizing (5).

Comparison to KL regularization in RLHF. Regularization to a base policy is already widely
used to prevent reward hacking in RLHF (Stiennon et al., 2020; Bai et al., 2022). Specifically, a KL
penalty is applied between the distributions of responses generated by the optimized policy and the
SFT policy. In our setting, we can write this as

maximize J(π, R̃)− λ(1− γ)Eπ

[∑∞
t=0 γ

tDKL
(
π(· | st) ∥ µπbase(· | st)

)]
. (6)

That is, in RLHF, the expected KL divergence between the action distributions of π and πbase is
penalized. Action distribution divergence is easy to calculate and optimize, and training LLMs
with (6) seems to work well in practice. However, unlike our objective in (5), (6) lacks theoretical
guarantees, and it is unclear if it works in other environments.

Our regularized objective in (5) differs in two main ways from the KL regularization used in RLHF.
First, our results suggest optimizing the occupancy measure (OM) divergence between policies,
whereas RLHF uses the action distribution (AD) divergence. Second, Theorem 5.1 applies to χ2

divergence, while RLHF uses KL divergence. In the remainder of this section, we explore intuitively
why OM divergence is preferable to AD divergence, and why χ2 divergence is better than KL
divergence. Then, in Section 6, we empirically explore applying different types of regularization to
prevent reward hacking in five environments.

Occupancy measure vs. action distribution regularization. While AD regularization works
well for RLHF, this may be because RLHF is essentially a contextual bandit problem, meaning
that γ = 0; in this case, OM and AD divergence are equivalent (see Appendix A.3). However, in
other cases, AD divergence may not suffice to prevent reward hacking behavior. This is because,
in longer-horizon environments, a small change in action distribution at a single state can lead to
a much higher probability of reaching undesirable states. Figure 3 shows an example of this in
the glucose monitoring environment: policies that are close in action distribution regularization
produce vastly different patient glucose levels. Occupancy measure regularization avoids this issue
by directly preventing the distribution of glucose levels from differing too much from the base
policy. In Theorem A.5 in the appendix, we show that in general it is impossible to lower bound the
improvement in true reward using almost any form of AD regularization, in contrast to our results on
OM regularization.

χ2 vs. KL divergence. Compared to KL divergence, χ2 divergence may be better for preventing
reward hacking because it more strongly penalizes out-of-distribution state-action pairs. To illustrate
this, we can write both divergences as expectations over functions of the log-ratio of the occupancy
measures, which we denote d(s, a):

DKL(µπ ∥ µπbase) = Eµπ

[
d(s, a) + e−d(s,a)

]
χ2(µπ ∥ µπbase) = Eµπ

[
ed(s,a) + e−d(s,a)

]
where d(s, a) = log

(
µπ(s, a)/µπbase(s, a)

)
. (7)
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Environment
Traffic Pandemic Glucose RLHF AI safety

Method control mitigation monitoring gridworld
(×103) (×103)

Action dist. χ2 -1.29 ± 0.10 -12.29 ± 0.05 -74.8 ± 11.8 16.94 ± 0.07 6.24 ± 0.09
State occupancy χ2 -2.18 ± 0.38 -10.68 ± 0.15 -54.7 ± 1.0 — 9.07 ± 0.06
State-action occupancy χ2 -1.15 ± 0.05 -11.17 ± 0.17 -47.6 ± 0.6 — 9.17 ± 0.11
Action dist. KL -1.33 ± 0.05 -12.20 ± 0.06 -73.4 ± 8.3 16.81 ± 0.27 6.33 ± 0.11
State occupancy KL -1.34 ± 22.6 -10.24 ± 0.54 -58.4 ± 3.4 — 7.07 ± 0.11
State-action occupancy KL -1.25 ± 0.06 -11.73 ± 0.19 -48.9 ± 0.5 — 6.86 ± 0.17

πbase -2.28 ± 0.00 -12.26 ± 0.00 -72.6 ± 0.0 16.37 ± 0.00 5.86 ± 0.00
No regularization -57.38 ± 3.53 -29.57 ± 6.86 -599.0 ± 1.6 9.16 ± 0.80 2.35 ± 0.14
Training with true reward -0.93 ± 0.11 -2.65 ± 0.83 -43.4 ± 0.8 — 8.54 ± 0.12

Table 1: We compare using various types of regularization to prevent reward hacking in the five environments
form Figure 2. The median true reward and standard deviation across 5 random seeds is shown for the best
regularization coefficient for each type of regularization. The bottom rows show results for the baselines: the
base policy πbase, a policy trained on the proxy reward without regularization (exhibiting reward hacking),
and a policy trained on the true reward function (impossible in practice, but included as an upper bound on
performance). We find that occupancy measure regularization consistently improves on action distribution
regularization, and that χ2 divergence often outperforms KL divergence.

As d(s, a) increases, the optimized policy is visiting state-action pairs that are less likely under the
base policy. However, KL divergence only penalizes increases in d(s, a) linearly, while χ2 penalizes
them exponentially, resulting in stronger regularization even with a lower coefficient. Figure 4 plots
the functions in (7) and shows how in practice χ2 divergence better prevents reward hacking in RLHF.

6 EXPERIMENTS

We now show that our theoretical results—which suggest χ2 occupancy measure regularization can
prevent reward hacking—lead to empirical success in realistic environments.

Practical occupancy measure regularization. Occupancy measure regularization is more difficult
to implement in practice compared to action distribution regularization. While AD regularization
can be added as a loss term to deep RL algorithms like proximal policy optimization (PPO), OM
divergences cannot be calculated in closed form. Instead, we follow several previous works (e.g., Ho
& Ermon 2016; Kang et al. 2018) and use a discriminator network to approximate OM divergences.
Specifically, in Appendix B, we show the objective in (5) can be optimized via policy gradient with
an adjusted reward function that depends on a discriminator d̂ϕ:

R′(s, a) = R̃(s, a)− λ√
χ̂2

ed̂ϕ(s,a) where χ̂2 = Eµπ

[
ed̂ϕ(st,at) − 1

]
and ϕ = argmin

ϕ′
Eµπ

[
log(1 + e−d̂ϕ′ (s,a))

]
+ Eµπbase

[
log(1 + ed̂ϕ′ (s,a))

]
. (8)

That is, optimizing a discriminator network d̂ϕ to minimize the given loss can be used to estimate
and optimize χ2 OM divergence. We alternately train d̂ϕ via gradient descent on (8) and the policy
π via PPO based on the adjusted reward. We call this algorithm Occupancy-Regularized Policy
Optimization (ORPO). See Appendix B for a full derivation of the approximations used in ORPO
and Algorithm 1 for a formal description. We use a similar strategy for regularizing based on OM KL
divergence; see the appendix for details.

Experimental setup. In each of the five environments shown in Figure 2, we train policies with four
types of regularization towards the base policy: AD KL, AD χ2, OM KL, and OM χ2. In Appendix
A.5, we show that Theorem 5.1 also holds for state-only occupancy measures if the environment’s
reward function does not depend on the action; thus, we experiment with regularizing based on both
state-action and state-only OM divergence. For each environment and type of regularization, we
test a number of regularization coefficients λ. Theorem 5.1 suggests setting λ = σR̃

√
1− r2 for an

r-correlated proxy, so for χ2 regularization we test a range of values λ = c σR̃ from c = 1 to 10−2

(10−4 for RLHF). Since it is less clear theoretically how to set the coefficient λ for KL regularization,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

10
−210

0

−2.5

−2.0

−1.5

−1.0
χ
2

di
ve

rg
en

ce
×10

3

Traffic control

10
−110

1

−2.5

−2.0

−1.5

−1.0

K
L

di
ve

rg
en

ce

10
−210

0

−14

−12

−10

Pandemic
mitigation

10
−210

0

−14

−12

−10
10

−210
0

−15

−10

−5

×10
4

Glucose monitoring

10
−210

0

λ/σR̃

−15

−10

−5

10
−4

10
−210

0

16

17

RLHF

10
−4

10
−210

0

16

17

10
−210

0

0

5

10

AI safety
gridworld

10
−110

1

0

5

10

Tr
ue

re
w

ar
d
J
(π

,R
)

State-action OM State OM AD Base policy

Figure 5: The true reward achieved by policies regularized with varying amounts of action distribution or
occupancy measure regularization using χ2 and KL divergence. The x-axis is the regularization coefficient λ
normalized by the standard deviation of proxy rewards under the base policy. Dots indicate the median reward
and the shaded area is the range over random seeds. For RLHF, AD and OM regularization are equivalent, which
is why OM regularization results are not shown for that column.

we experiment with a wider range of values.

We train each combination of {χ2 divergence, KL divergence} × {AD, state OM, state-action OM}
× {λ1, λ2, . . . } with five random seeds and measure the resulting policies’ expected returns under
the true reward. As a baseline, we train a policy without any regularization, which leads to reward
hacking in all environments. We also train a policy directly on the true reward function as an upper
limit for performance. In RLHF, we only consider AD regularization since it is equivalent to OM
regularization for LLM chatbots (see Appendix A.3). We do not train a policy on the true reward for
RLHF as we found it could be hacked with enough optimization pressure. See Appendix D for all
hyperparameter and experiment details.

Results. The results of our experiments are shown in Table 1 and Figure 5. Table 1 shows
the median true reward with the best coefficient for each type of regularization. We find that OM
regularization consistently outperforms AD regularization across the four non-RLHF environments.
In two environments (glucose monitoring and pandemic mitigation), AD regularization fails to
improve on the base policy’s true reward at all. Furthermore, χ2 regularization tends to perform
similarly to or better than KL regularization across all environments. In RLHF in particular, χ2

regularization leads to a larger improvement over the base policy compared to the industry-standard
KL penalty, and is more stable across seeds as well.

In Figure 5, we show the true reward achieved when training with each type of regularization
across a range of λ values. In addition to performing best with an optimal coefficient, χ2 and
OM regularization seem to also perform well over a larger range of coefficients compared to AD
regularization. In Appendix E, we present the full results of our experiments and ablations of ORPO.

7 CONCLUSION

We have introduced a new definition for reward hacking based on correlation between a proxy reward
function and the unknown true reward that breaks down when optimizing the proxy. Furthermore,
we leveraged this definition to show theoretically and empirically that χ2 occupancy measure
regularization can effectively prevent reward hacking. Our results have implications for settings,
like RLHF, where RL is used to optimize complex, hard-to-specify objectives. We suggest that the
heuristic KL penalty used currently should be replaced by a more principled form of regularization.
While OM and AD regularization are equivalent for today’s formulation of RLHF as a contextual
bandit, they will no longer remain so as LLM-based agents are optimized over multi-turn conversations
or with tool use (Wang et al., 2023; Abdulhai et al., 2023; Shani et al., 2024). Thus, our results
provide a principled path to continuing to ensure the safety of increasingly powerful AI systems.
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Appendix

A PROOFS AND ADDITIONAL THEORETICAL RESULTS

A.1 PROOF OF THEOREM 5.1

Theorem 5.1. Suppose that R̃ is an r-correlated-proxy for the true reward function R, and let
σR̃ and σR be defined as in Definition 4.1. Then for any policy π such that µπ ≪ µπbase (i.e.,
µπbase(s, a) = 0 ⇒ µπ(s, a) = 0), we have

J(π,R)− J(πbase, R)

σR
≥ 1

r

(
J(π, R̃)− J(πbase, R̃)

σR̃

−
√
(1− r2)χ2 (µπ∥µπbase)

)
, (4)

where χ2 (µπ∥µπbase) = Eµπ

[
µπ(s,a)

µπbase (s,a)
− 1
]

is the χ2 divergence between µπ and µπbase .

Proof. For simplicity of exposition, define

Z(s, a) =
R(s, a)− J(πbase, R)

σR
and Z̃(s, a) =

R̃(s, a)− J(πbase, R̃)

σR̃

.

Using (3), we can rewrite (10) as

Eµπ

[
Z̃(s, a)− r Z(s, a)

]
≤
√
(1− r2)χ2 (µπ∥µπbase).

Then, the left hand side can be rewritten as

Eµπ

[
Z̃(s, a)− r Z(s, a)

]
= Eµπ

[
Z̃(s, a)− r Z(s, a)

]
− Eµπbase

[
Z̃(s, a)− r Z(s, a)

]
+ Eµπbase

[
Z̃(s, a)− r Z(s, a)

]
= Eµπ

[
Z̃(s, a)− r Z(s, a)

]
− Eµπbase

[
Z̃(s, a)− r Z(s, a)

]
,

since by definition Eµπbase
[Z̃(s, a)] = Eµπbase

[Z(s, a)] = 0. Applying the Cauchy-Schwartz inequality
to this difference gives

Eµπ

[
Z̃(s, a)− r Z(s, a)

]
− Eµπbase

[
Z̃(s, a)− r Z(s, a)

]
=

∑
(s,a)∈S×A

[
Z̃(s, a)− r Z(s, a)

] [
µπ(s, a)− µπbase(s, a)

]

=
∑

(s,a)∈S×A

[√
µπbase(s, a)

(
Z̃(s, a)− r Z(s, a)

)][µπ(s, a)− µπbase(s, a)√
µπbase(s, a)

]

≤

√√√√√
 ∑

(s,a)∈S×A

µπbase(s, a)
[
Z̃(s, a)− r Z(s, a)

]2 ∑
(s,a)∈S×A

(µπ(s, a)− µπbase(s, a))
2

µπbase(s, a)


=

√
Eµπbase

[(
Z̃(s, a)− r Z(s, a)

)2]
χ2 (µπ∥µπbase). (9)
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The expectation can be calculated as

Eµπbase

[(
Z̃(s, a)− r Z(s, a)

)2]
= Varµπbase

(
Z̃(s, a)− r Z(s, a)

)
= Varµπbase

(
Z̃(s, a)

)
+ r2 Varµπbase

(Z(s, a))− 2r Covµπbase

(
Z̃(s, a), Z(s, a)

)
= 1− r2,

using the fact that both reward functions have unit variance under the base policy and that their
correlation is r. Plugging this into (9) gives the desired result.

A.1.1 NEAR-OPTIMAL BASE POLICIES

While Theorem 5.1 shows that optimizing the proxy reward with regularization can improve on the
base policy’s reward, it does not guarantee that the learned policy will be near-optimal. However, a
simple corollary shows that if the base policy is near-optimal, then the learned policy will also be
near-optimal.

Corollary A.1. Suppose that R̃ is an r-correlated-proxy for the true reward function R, and let
σR̃ and σR be defined as in Definition 4.1. Furthermore, suppose that the base policy πbase is
near-optimal:

J(πbase, R) ≥ max
π∗

J(π∗, R)− ϵσR,

for some ϵ > 0.

Then for any policy π such that µπ ≪ µπbase , we have

maxπ∗ J(π∗, R)− J(π,R)

σR
≤ ϵ− 1

r

(
J(π, R̃)− J(πbase, R̃)

σR̃

−
√
(1− r2)χ2 (µπ∥µπbase)

)
.

(10)

This result bounds the suboptimality gap—how close the learned policy is to optimal—in terms of
the suboptimality gap of the base policy and the increase in the regularized proxy reward. The proof
is straightforward and follows from Theorem 5.1.

A.1.2 UNDERSTANDING THE LOWER BOUND IN THEOREM 5.1

Denote by

L(π) =
1

r

(
J(π, R̃)− J(πbase, R̃)

σR̃

−
√
(1− r2)χ2 (µπ∥µπbase)

)
(11)

the lower bound on increase in the true reward which is the RHS of (10). One surprising observation
is that this lower bound seems to be increasing as the proxy becomes less correlated with the true
reward. This would suggest that a less correlated proxy leads to better optimization of the true reward.
However, as the following lemma shows, L(π) is actually decreasing in r.

Lemma A.2. Under the same conditions as Theorem 5.1, the lower bound L(π) satisfies

L(π) ≤ 1−
√
1− r2

r

√
χ2 (µπ∥µπbase). (12)

This shows that the lower bound can be at most a factor of 1−
√
1−r2

r times the divergence between
the learned and base policies’ occupancy measures. This factor is increasing in r and asymptotes to
r/2 as r → 0.
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Proof. Using the same notation as the proof of Theorem 5.1, we can rewrite the lower bound as

L(π) =
1

r

(
Eπ

[
Z̃(s, a)

]
−
√
(1− r2)χ2 (µπ∥µπbase)

)
.

Following a similar argument to that in the proof of Theorem 5.1, we can write

Eπ

[
Z̃(s, a)

]
= Eπ

[
Z̃(s, a)

]
− Eπbase

[
Z̃(s, a)

]
=

∑
(s,a)∈S×A

[√
µπbase(s, a)Z̃(s, a)

] [µπ(s, a)− µπbase(s, a)√
µπbase(s, a)

]

≤

√√√√√
 ∑

(s,a)∈S×A

µπbase(s, a)Z̃(s, a)2

 ∑
(s,a)∈S×A

(µπ(s, a)− µπbase(s, a))
2

µπbase(s, a)


=

√
Eµπbase

[
Z̃(s, a)2

]
χ2 (µπ∥µπbase)

=
√
χ2 (µπ∥µπbase).

Combining this with the definition of L(π) gives

L(π) ≤ 1

r

(√
χ2 (µπ∥µπbase)−

√
(1− r2)χ2 (µπ∥µπbase)

)
=

1−
√
1− r2

r

√
χ2 (µπ∥µπbase),

which completes the proof.

A.1.3 IS THE LOWER BOUND OPTIMIZABLE?

While Theorem 5.1 shows that the increase in true reward over the base policy can be lower-bounded
by the the proxy reward minus a regularization term, it is not clear if it is actually possible to increase
the lower bound L(π) as defined in (11). For example, if the base policy is already optimal with
respect to the proxy reward, then clearly L(π) ≤ 0. As another example, suppose it possible to
improve πbase with respect to both the true and proxy rewards, but only by visiting a state-action pair
never visited by πbase. In this case, it is also impossible to improve the lower bound in Theorem 5.1
while obeying the requirement that µπ ≪ µπbase .

We prove two results relating to whether L(π) can be increased above zero. Lemma A.3 shows
that in general it is difficult to show when the lower bound can be optimized—there are general
counterexamples where it cannot be positive. However, Lemma A.4 shows that there are MDPs with
r-correlated proxies for any r where the lower bound can be positive.

Furthermore, as we show in our experiments, in many realistic environments it does appear that the
lower bound is optimizable. Furthermore, Theorem 5.1 still allows for safe optimization of the proxy
reward: even if the it not possible to increase the lower bound above zero, optimizing L(π) will at
least prevent reward hacking.

Lemma A.3. Fix any r ∈ (0, 1). Then there is an MDP with a true reward function R, a proxy
reward R̃, and a base policy πbase such that R̃ is an r-correlated proxy that can be improved upon in
both true and proxy reward by a policy π∗:

J(π∗, R) > J(πbase, R)

J(π∗, R̃) > J(πbase, R̃)

µπ∗ ≪ µπbase .
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However, for any policy π such that µπ ≪ µπbase ,

L(π) =
1

r

(
J(π, R̃)− J(πbase, R̃)

σR̃

−
√

(1− r2)χ2 (µπ∥µπbase)

)
≤ 0.

That is, Lemma A.3 shows that there is an MDP where there exists a policy π∗ that improves on the
base policy in both true reward and proxy reward, but it is still not possible to increase the lower
bound L(π) above zero. This suggests that it is difficult to specify general conditions under which
L(π) can exceed zero. Thus, we rely on the empirical evidence from our experiments to show that
the lower bound is often optimizable.

Proof. We consider MDPs with discount γ = 0, such that the transition probabilities are not relevant;
only the initial state distribution µ0 and the reward functions specify the MDP. We split the analysis
into two cases depending on whether r ≤ 1/2 or r ≥ 1/2.

Case 1: r ≤ 1/2. We define an MDP with two states s1, s2 and two actions a1, a2, with initial state
distribution and rewards as follows:

µ0(s1) =
1

1 + r
R(s1, a1) =

√
r

1− r
R̃(s1, a1) =

√
r

1− r

R(s1, a2) = −
√

1− r

r
R̃(s1, a2) = 0

µ0(s2) =
r

1 + r
R(s2, ·) = 0 R̃(s2, ·) = −

√
1− r

r

Furthermore, we define πbase(a1 | s1) = 1− r and πbase(a2 | s1) = r, and πbase(a1 | s2) = 1. Based
on this, simple algebra shows the following facts:

µπbase(s1, a1) =
1− r

1 + r
µπbase(s1, a2) =

r

1 + r

J(πbase, R) = J(πbase, R̃) = 0 σR = σR̃ =

√
1

1 + r

Eµπbase

[
R(s, a)R̃(s, a)

]
=

r

1 + r
.

Based on this, it is clear that R̃ is an r-correlated proxy. Furthermore, letting π∗(a1 | s1) = 1 and
π∗(a1 | s2) = 1, we have

J(π∗, R) =
1

1 + r

√
r

1− r
> 0 = J(πbase, R)

J(π∗, R̃) =
r

1 + r

√
r

1− r
> 0 = J(πbase, R̃)

µπ∗ ≪ µπbase ,

satisfying the conditions in the lemma.

Now, consider any policy π such that µπ ≪ µπbase . We can calculate the lower bound L(π) (ignoring
the prefactor of 1

r ) as

J(π, R̃)
√
1 + r −

√
(1− r2)χ2 (µπ∥µπbase). (13)

Since µπ ≪ µπbase , π(a1 | s2) = 1, so it can only differ from πbase in state s1. Let δ = π(a1 |
s1)− πbase(a1 | s1). Then, we can write the first term of (13) as

J(π, R̃)
√
1 + r = δ

1

1 + r

√
r

1− r

√
1 + r = δ

√
r

1− r2
.
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Note that the χ2 divergence between distributions µ and ν can be alternatively written as

χ2(µ∥ν) =
∑
s,a

(µ(s, a)− ν(s, a))2

ν(s, a)
.

Therefore, the χ2 divergence between µπ and µπbase can be lower bounded as

χ2 (µπ∥µπbase) ≥
(µπ(s1, a1)− µπbase(s1, a1))

2

µπbase(s1, a1)
=

(
1−r+δ
1+r − 1−r

1+r

)2
1−r
1+r

=
δ2

1− r2
.

This leads to the bound on (13):

rL(π) ≤ δ

√
r

1− r2
−
√
(1− r2)

δ2

1− r2
= δ

√
r

1− r2
− |δ|.

Clearly if δ ≤ 0 this is non-positive, and if δ > 0 it is also non-positive since
√
r/(1− r2) < 1 as

long as r ≤ 1/2. Thus, the lower bound cannot be increased above zero in this case.

Case 2: r ≥ 1/2. In this case, we define an MDP with three states s1, s2, s3 and two actions a1, a2,
with initial state distribution and rewards as follows:

µ0(s1) =
2r2 − 2r + 1

r2 − r + 1
R(s1, a1) =

√
1− r

r
R̃(s1, a1) =

√
1− r

r

R(s1, a2) = −
√

r

1− r
R̃(s1, a2) = 0

µ0(s2) =
(1− r)2

r2 − r + 1
R(s2, ·) = 0 R̃(s2, ·) = −

√
r

1− r

µ0(s3) =
(1− r)(2r − 1)

r2 − r + 1
R(s3, ·) = −

√
r

1− r
R̃(s3, ·) = −

√
r

1− r

We define the base policy πbase as follows:

πbase(a1 | s1) =
r2

2r2 − 2r + 1
πbase(a2 | s1) =

(1− r)2

2r2 − 2r + 1

πbase(a1 | s2) = 1 πbase(a1 | s3) = 1.

As above, we can show the following facts:

µπbase(s1, a1) =
r2

r2 − r + 1
µπbase(s1, a2) =

(1− r)2

r2 − r + 1

J(πbase, R) = J(πbase, R̃) = 0 σR = σR̃ =

√
r

r2 − r + 1

Eµπbase

[
R(s, a)R̃(s, a)

]
=

r2

r2 − r + 1
.

Again, this shows that R̃ is an r-correlated proxy. Letting π∗(a1 | s1) = π∗(a1 | s2) = π∗(a1 |
s3) = 1, we have

J(π∗, R) =
1− r

r2 − r + 1

√
1− r

r
> 0 = J(πbase, R)

J(π∗, R̃) =
(1− r)2

r2 − r + 1

√
1− r

r
> 0 = J(πbase, R̃)

µπ∗ ≪ µπbase ,
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satisfying the conditions in the lemma.

Now, consider any policy π such that µπ ≪ µπbase . We can calculate the lower bound L(π) (again
ignoring the prefactor of 1

r ) as

J(π, R̃)

√
r2 − r + 1

r
−
√
(1− r2)χ2 (µπ∥µπbase). (14)

As in the previous case, let δ = π(a1 | s1)− πbase(a1 | s1). Then, we can write the first term of (14)
as

J(π, R̃)

√
r2 − r + 1

r
= δ

2r2 − 2r + 1

r2 − r + 1

√
1− r

r

√
r2 − r + 1

r
= δ

2r2 − 2r + 1

r

√
1− r

r2 − r + 1
.

The χ2 divergence between µπ and µπbase can be lower bounded as

χ2 (µπ∥µπbase) ≥
(µπ(s1, a1)− µπbase(s1, a1))

2

µπbase(s1, a1)
=

(
2r2−2r+1
r2−r+1 δ

)2
r2

r2−r+1

= δ2
(
2r2 − 2r + 1

r

)2
1

r2 − r + 1
.

This leads to the bound on (14):

rL(π) ≤ δ
2r2 − 2r + 1

r

√
1− r

r2 − r + 1
−

√
(1− r2)δ2

(
2r2 − 2r + 1

r

)2
1

r2 − r + 1

=
2r2 − 2r + 1

r
√
r2 − r + 1

(
δ
√
1− r − |δ|

√
1− r2

)
.

The prefactor is positive, and as in the previous case, if δ ≤ 0 then the bound in non-positive. If
δ > 0, then the bound is also non-positive since

√
1− r <

√
1− r2 for any r ∈ (0, 1). Thus, the

lower bound cannot be increased above zero in this case either, completing the proof.

Lemma A.4. Fix any r ∈ (0, 1). Then there is an MDP with a true reward function R, a proxy
reward R̃, and a base policy πbase such that R̃ is an r-correlated proxy and:

1. There is a policy π∗ such that L(π∗) > 0.

2. Any optimal policy with respect to L(·) is also an optimal policy with respect to the true
reward function:

argmax
π

L(π) ⊆ argmax
π

J(π,R).

Lemma A.4 shows that no matter how low the correlation coefficient r is between the true and proxy
rewards, there is at least some MDP where the lower bound L(π) can be positive. Furthermore, in this
MDP, maximizing L(π) actually leads to an optimal policy with respect to the true reward function.

Proof. As in the proof of Lemma A.3, we construct an MDP with discount factor γ = 0 that has
three states and two actions. The initial state distribution and reward functions are given by

µ0(s1) =
1− r

4
µ0(s2) =

3 + r

8
µ0(s3) =

3 + r

8

R(s1, a1) = R̃(s1, a1) =

√
2
1 + r

1− r
R(s2, ·) =

√
2
1− r

3 + r
R(s3, ·) = −

√
2
1− r

3 + r

R(s1, a2) = R(s1, a2) = −
√
2
1− r

1 + r
R̃(s2, ·) = −

√
2
1− r

3 + r
R̃(s3, ·) =

√
2
1− r

3 + r
.

We define the base policy πbase as follows:

πbase(a1 | s1) = πbase(a2 | s1) = 1/2 πbase(a1 | s2) = 1 πbase(a1 | s3) = 1.
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We can show the following facts:

J(πbase, R) = J(πbase, R̃)

=
1− r

8

√
2
1 + r

1− r
− 1− r

8

√
2
1 + r

1− r
+

3 + r

8

√
2
1− r

3 + r
− 3 + r

8

√
2
1− r

3 + r

= 0

σ2
R = σ2

R̃
=

1− r

8
2
1 + r

1− r
+

1− r

8
2
1 + r

1− r
+

3 + r

8
2
1− r

3 + r
+

3 + r

8
2
1− r

3 + r
= 1

Eµπbase

[
R(s, a)R̃(s, a)

]
=

1− r

8
2
1 + r

1− r
+

1− r

8
2
1 + r

1− r
− 3 + r

8
2
1− r

3 + r
− 3 + r

8
2
1− r

3 + r
= r.

Thus, R̃ is an r-correlated proxy.

Since the rewards for both actions are identical at s2 and s3, a policy can only differ meaningfully
from πbase at s1. Define

π∆(a1 | s1) =
1

2
+∆ π∆(a1 | s2) = π∆(a1 | s3) = 1.

as any such policy where ∆ ∈ [−1/2, 1/2]. Then, we can calculate the lower bound L(π∆) as

L(π∆) =
1

r

(
J(π∆, R̃)−

√
(1− r2)χ2 (µπ∆∥µπbase)

)
=

1

r

(
2∆

(
1− r

8

)√
2
1 + r

1− r
−
√
(1− r2)

1

2
(1− r)∆2

)

=
1

r

(
∆

√
(1 + r)(1− r)

2
− |∆|

√
(1− r)2(1 + r)

2

)

=
1

r

√
(1 + r)(1− r)

2

(
∆−

√
1− r|∆|

)
.

Since
√
1− r < 1, clearly this is maximized at ∆ = 1/2, where

L(π∆) =
1

r

√
(1 + r)(1− r)

2

(
1

2
−

√
1− r

1

2

)
> 0.

Furthermore, π1/2 is an optimal policy with respect to the true reward function, since R(s1, a1) >
R(s1, a2) and π1/2(a1 | s1) = 1. Thus, letting π∗ = π1/2 completes the proof.

A.2 FAILURE OF ACTION DISTRIBUTION REGULARIZATION

As discussed in the main text, the OM regularization method we propose differs from the AD-based
regularization found in previous work on RLHF. The following theorem shows that almost any form
of policy optimization with action distribution regularization cannot guarantee an improvement in
true reward over the base policy.

Theorem A.5. Fix r ∈ (0, 1). Consider a policy optimization objective regularized by any f -
divergence between the action distributions of the learned policy and the base policy:

maximize L′(π) = J(π, R̃)− J(πbase, R̃)− g

(
(1− γ)Eπ

[ ∞∑
t=0

γtDf

(
π(· | st) ∥ πbase(· | st)

)])
,

where f : [0,∞) → R is a convex, continuous function with f(1) = 0, g : [0,∞) → [0,∞) is a
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strictly increasing function with g(0) = 0, and Df is the f -divergence:

Df (P ∥ Q) = Ex∼Q

[
f

(
P (x)

Q(x)

)]
.

Then there is an MDP, reward functions R, R̃, and base policy πbase such that R̃ is an r-correlated
proxy for R, but there is a policy π̃ such that

L′(π̃) > 0 but J(π̃, R) < J(πbase, R).

Theorem A.5 concerns a general form of policy optimization with action distribution regularization;
it considers any f -divergence between action distributions and any way of scaling the f -divergence
using the function g. For instnce, g could incorporate linear scaling of the divergence as in the
KL regularization used in previous work, square-root scaling as we use with χ2 divergence in
Theorem 5.1, or any other scaling. The theorem shows that no matter how the regularization is
formulated, it cannot guarantee improvement in true reward over the base policy; there is a policy
that increases the regularized objective but decreases the true reward.

Proof. Define the inverse g−1 : [0,∞) → [0,∞] as

g−1(x) = sup {y ∈ [0,∞) | g(y) ≤ x} .

Since f is continuous and f(1) = 0, there must be a radius ρ > 0 such that

|u− 1| ≤ ρ ⇒ f(u) <
2g−1

(
1−r
8

)
1− r

.

We construct an MDP with discount factor

γ =

max
{
1− 2g−1( 1−r

8 )

(1−r)f(2) ,
1

1+ρ ,
1
2

}
f(2) > 0

max
{

1
1+ρ ,

1
2

}
otherwise.

There are four states and two actions. The initial state distribution and transition probabilities are

µ0(s1) =
1 + r

4
p(s1 | s1, a1) = 1 p(s1 | s1, a2) = 1

µ0(s2) =
1 + r

4
p(s2 | s2, a1) = 1 p(s2 | s2, a2) = 1

µ0(s3) =
(1− r)(1 + γ)

4
p(s3 | s3, a1) = 1 p(s4 | s3, a2) = 1

µ0(s4) =
(1− r)(1− γ)

4
p(s4 | s4, a1) = 1 p(s4 | s4, a2) = 1.

The reward functions only depend on the state and are given by

R(s1, ·) = 1 R̃(s1, ·) = 1

R(s2, ·) = −1 R̃(s2, ·) = −1

R(s3, ·) = 1 R̃(s3, ·) = −1

R(s4, ·) = −1 R̃(s4, ·) = 1.

In graphical form, the MDP is as follows:
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s1
R = 1
R̃ = 1

s2
R = −1
R̃ = −1

s3
R = 1
R̃ = −1

s4
R = −1
R̃ = 1

µ0 = 1+r
4

µ0 = 1+r
4

µ0 = (1−r)(1+γ)
4 µ0 = (1−r)(1−γ)

4

a1, a2 a1, a2

a1

a2

a1, a2

We consider the base policy defined by

πbase(a1 | s1) = 1 πbase(a2 | s1) = 0

πbase(a1 | s2) = 1 πbase(a2 | s2) = 0

πbase(a1 | s3) = γ πbase(a2 | s3) = 1− γ

πbase(a1 | s4) = 1 πbase(a2 | s4) = 0.

To compute the occupancy measure of the base policy, we first can see that clearly,

µπbase(s1, a1) = µπbase(s2, a1) =
1 + r

4
.

For s3, the agent stays in the state until it takes action a2, so we have

µπbase(s3) = (1− γ)µ0(s3)
[
1 + γ2 + γ4 + · · ·

]
= (1− γ)

(1− r)(1 + γ)

4

1

1− γ2

=
1− r

4
.

This also implies that µπbase(s4) =
1−r
4 since the occupancy measure sums to one. Thus, we can

compute

J(πbase, R) = 0 J(πbase, R̃) = 0

σR = 1 σR̃ = 1

Eµπbase
[R(s, a)R̃(s, a)] = r.

This confirms that R̃ is an r-correlated proxy for R.

Now, we define π̃ as

πbase(a1 | s1) = 1 πbase(a2 | s1) = 0

πbase(a1 | s2) = 1 πbase(a2 | s2) = 0

πbase(a1 | s3) = 2γ − 1 πbase(a2 | s3) = 2(1− γ)

πbase(a1 | s4) = 1 πbase(a2 | s4) = 0.

Note that since γ ≥ 1/2 by definition, the policy is well-defined. As for πbase, the occupancy measure
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of π̃ at s1 and s2 is 1+r
4 . For s3, we have

µπ̃(s3) = (1− γ)µ0(s3)
[
1 + γ(2γ − 1) + γ2(2γ − 1)2 + · · ·

]
= (1− γ)

(1− r)(1 + γ)

4

1

1− γ(2γ − 1)

=
(1− r)(1 + γ)

4(1 + 2γ)
.

For s4,

µπ̃(s4) = 1− µπ̃(s1)− µπ̃(s2)− µπ̃(s3)

=
1− r

2
− (1− r)(1 + γ)

4(1 + 2γ)

=
(1− r)(1 + 3γ)

4(1 + 2γ)
.

Based on this, we can compute the true reward of π̃:

J(π̃, R) = Eµπ̃
[R(s, a)]

=
1 + r

4
− 1 + r

4
+

(1− r)(1 + γ)

4(1 + 2γ)
− (1− r)(1 + 3γ)

4(1 + 2γ)

= − γ(1− r)

2(1 + 2γ)

≤ 0 = J(πbase, R).

This verifies the claim that J(π̃, R) < J(πbase, R).

To show the second claim, we can compute the regularized objective L′(π̃). Starting with the proxy
reward term, we have

J(π̃, R̃) =
1 + r

4
− 1 + r

4
− (1− r)(1 + γ)

4(1 + 2γ)
+

(1− r)(1 + 3γ)

4(1 + 2γ)

=
γ(1− r)

2(1 + 2γ)

≥ 1− r

8
. (15)

Next, we compute the regularization term, which can be written as

g

(
(1− γ)Eπ̃

[ ∞∑
t=0

γtDf

(
π̃(· | st) ∥ πbase(· | st)

)])
= g

(
µ(s3)Df

(
π̃(· | s3) ∥ πbase(· | s3)

))
since πbase and π̃ only differ in state s3. We can rewrite the above as

= g

(
(1− r)(1 + γ)

4(1 + 2γ)

[
πbase(a1 | s3)f

(
π̃(a1 | s3)

πbase(a1 | s3)

)
+ πbase(a2 | s3)f

(
π̃(a2 | s3)

πbase(a2 | s3)

)])
= g

(
(1− r)(1 + γ)

4(1 + 2γ)

[
γf

(
2− 1

γ

)
+ (1− γ)f (2)

])
. (16)
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Note that since γ ≥ 1
1+ρ , we have

1

γ
≤ 1 + ρ

2− 1

γ
≥ 1− ρ

f

(
2− 1

γ

)
<

2g−1
(
1−r
8

)
1− r

.

Plugging this back into (16) along with the fact that (1− γ)f(2) ≤ 2g−1( 1−r
8 )

(1−r) , we get

< g

(
(1− r)(1 + γ)

4(1 + 2γ)

[
γ
2g−1

(
1−r
8

)
1− r

+
2g−1( 1−r

8 )

1− r

])

≤ g

(
1− r

4
×

4g−1
(
1−r
8

)
1− r

)

≤ 1− r

8
.

Combining this with (15), we have

L′(π) = J(π, R̃)− J(πbase, R̃)− g

(
(1− γ)Eπ

[ ∞∑
t=0

γtDf

(
π(· | st) ∥ πbase(· | st)

)])

>
1− r

8
− 0− 1− r

8
= 0,

which completes the proof.

A.3 ACTION DISTRIBUTION AND OCCUPANCY MEASURE DIVERGENCES IN LLMS

As noted in the main text, in the current paradigm of using RLHF to train LLMs, we can show that
action distribution divergence between two policies is equivalent to occupancy measure divergence.
In particular, RLHF for LLMs is usually modeled as a contextual bandit.

In our setting, a contextual bandit can be defined as an MDP with γ = 0; then, the return of the policy
π under a reward function R is given by

J(π,R) = Es∼µ0(·),a∼π(·|s)[R(s, a)].

That is, a single state is sampled from the initial state distribution µ0, and then a single action is
sampled from the policy π conditioned on that state. RLHF for LLMs follows this setting as a prompt
is sampled from a dataset, the LLM generates a response, and the reward is calculated based on the
prompt and response.

In this setting, it is simple to show that the action distribution and occupancy measure divergences
are equivalent.

Lemma A.6. Let Df (P ∥ Q) = Ex∼Q

[
f
(
P (x)/Q(x)

)]
be the f -divergence between two distribu-

tions P and Q. Then, for any two policies π, π′ in a contextual bandit, we have

Df (µπ ∥ µπ′) = Es∼µ0(·)

[
Df

(
π(· | s) ∥ π′(· | s)

)]
.

Lemma A.6 applies to any f -divergence, including the KL and χ2 divergences we study in this paper.
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Proof. We have

Df (µπ ∥ µπ′) = Es∼µ0(·),a∼π′(·|s)

[
f

(
µπ(s, a)

µπ′(a | s)

)]
= Es∼µ0(·)

[
Ea∼π′(·|s)

[
f

(
µ0(s)π(a | s)
µ0(s)π′(a | s)

)]]
= Es∼µ0(·) [Df (π ∥ π′)] ,

which completes the proof.

A.3.1 AUTOREGRESSIVE ENVIRONMENTS

While most RLHF implementations use the contextual bandit formulation above for the purposes of
KL regularization, one can also model training an LLM as a sequential problem where each token
generated is a separate action. This formulation is no longer a contextual bandit, but we can show
that the action distribution and occupancy measure KL divergences are still equivalent!

Lemma A.7. Suppose that an environment satisfies the following conditions:

• It is deterministic: µ0(s0) = 1 for exactly one state s0, and for all st, at ∈ S × A,
p(st+1 | st, at) = 1 for exactly one state st+1.

• Exactly one sequence of actions leads to each state: if following a0, . . . , at−1 leads to s,
then no other sequence of actions (of any length) can also lead to s.

Then, for any policies π, π′, the action distribution and occupancy measure KL divergences between
them are equal (removing the (1− γ) prefactor on the action distribution divergence):

DKL(µπ ∥ µπ′) = Eπ

[ ∞∑
t=0

γtDKL(π(· | st) ∥ π′(· | st))

]
.

Lemma A.7 applies to LLMs since one can treat the “state” of the environment after t timesteps as
all the tokens generated so far w0w1 . . . wt−1, and the actions as the next token wt, which is then
appended to the state:

at ∼ π(at | st) = π(wt | w0w1 . . . wt−1).

p(st+1 | st, at) = 1{st+1 = w0w1 . . . wt−1wt} where st = w0w1 . . . wt−1 and at = wt.

Thus, regardless of the formalism used to train an LLM via RLHF, the action distribution and
occupancy measure KL are equivalent. However, the conditions of Lemma A.7 are unlikely to be
met by many other MDPs. Many MDPs are stochastic, violating the first assumption. Even among
deterministic MDPs, it is very uncommon that only a single action sequence can lead to each state.

Proof. Given the assumptions about the environment, we can rewrite the log-occupancy measure of
a state-action pair in terms of the sum of log action probabilties over the unique sequence of actions
leading to that state. Suppose a0, . . . , at−1 is the unique action sequence leading to s and that this
action sequence visits states s0, . . . , st−1, s. Then

logµπ(s, a) = log

(
(1− γ)Eπ

[ ∞∑
t=0

γt
1{st = s ∧ at = a}

])
= log

(
(1− γ)γtPπ(st = s ∧ at = a)

)
= log

(
(1− γ)γt

t∏
i=0

π(ai | si)

)

= log(1− γ) + t log γ +

t∑
i=0

log π(ai | si).
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Using this, we can rewrite the occupancy measure KL divergence as

DKL(µπ ∥ µπ′) =
∑

(s,a)∈S×A

µπ(s, a) log

(
µπ(s, a)

µπ′(s, a)

)

= (1− γ)

∞∑
t=0

γt
∑

a0,...,at∈At+1

Pπ(a0 ∧ · · · ∧ at)

t∑
i=0

(
log π(ai | si)− log π′(ai | si)

)

= (1− γ)

∞∑
t=0

γt
∑

a0,...,at∈At+1

 t∏
j=0

π(ai | si)

 t∑
i=0

(
log π(ai | si)− log π′(ai | si)

)
,

(17)

where si is the state reached by taking a0, . . . , ai−1.

We will now show inductively that

∑
a0,...,at∈At+1

 t∏
j=0

π(aj | sj)

 t∑
i=0

(
log π(ai | si)− log π′(ai | si)

)

=

t∑
i=0

∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si)). (18)

Consider first if t = 0. Then∑
a0∈A

π(a0 | s0)
(
log π(a0 | s0)− log π′(a0 | s0)

)
= DKL(π(· | s0) ∥ π′(· | s0))
= Pπ(s0)DKL(π(· | s0) ∥ π′(· | s0)).
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Now suppose (18) holds for t− 1. Then for t we have

∑
a0,...,at∈At+1

 t∏
j=0

π(aj | sj)

 t∑
i=0

(
log π(ai | si)− log π′(ai | si)

)

=
∑

a0,...,at−1∈At

t−1∏
j=0

π(aj | sj)

 ∑
at∈A

π(at | st)

[
log π(at | st)− log π′(at | st)

+

t−1∑
i=0

(
log π(ai | si)− log π′(ai | si)

)]

=
∑

a0,...,at−1∈At

t−1∏
j=0

π(aj | sj)

[DKL(π(· | st) ∥ π′(· | st))

+
∑
at∈A

π(at | st)
t−1∑
i=0

(
log π(ai | si)− log π′(ai | si)

)]

=
∑

a0,...,at−1∈At

t−1∏
j=0

π(aj | sj)

[DKL(π(· | st) ∥ π′(· | st))

+

t−1∑
i=0

(
log π(ai | si)− log π′(ai | si)

)]
=
∑
st∈S

Pπ(st)DKL(π(· | st) ∥ π′(· | st))

+
∑

a0,...,at−1∈At

t−1∏
j=0

π(aj | sj)

 t−1∑
i=0

(
log π(ai | si)− log π′(ai | si)

)
(i)
=
∑
st∈S

Pπ(st)DKL(π(· | st) ∥ π′(· | st)) +
t−1∑
i=0

∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si))

=

t∑
i=0

∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si)),

where (i) is from the inductive hypothesis.
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Now, plugging (18) into (17) gives

DKL(µπ ∥ µπ′)

= (1− γ)

∞∑
t=0

γt
t∑

i=0

∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si))

= (1− γ)

∞∑
i=0

∞∑
t=i

γt
∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si))

= (1− γ)

∞∑
i=0

∑
si∈S

Pπ(si)DKL(π(· | si) ∥ π′(· | si))
∞∑
t=i

γt

= (1− γ)Eπ

[ ∞∑
i=0

DKL(π(· | si) ∥ π′(· | si))
∞∑
t=i

γt

]

= (1− γ)Eπ

[
γi

1− γ

∞∑
i=0

DKL(π(· | si) ∥ π′(· | si))

]

= Eπ

[
γi

∞∑
i=0

DKL(π(· | si) ∥ π′(· | si))

]
,

which is the desired result.

A.4 LEARNED REWARD FUNCTIONS ARE r-CORRELATED

Proxy reward functions are often learned from data like ratings or preference comparisons, including
in the case of RLHF. Here, we show that a learned reward function with low mean-squared error—a
common objective in supervised learning—is r-correlated with the true reward function.

Lemma A.8. Let R be the true reward function and R̃ be a learned reward function. Suppose that
Eµπbase

[
(R(s, a)− R̃(s, a))2

]
≤ ϵσ2

R. Then, the learned reward function is an r-correlated proxy
with r ≥ 1− ϵ.

The assumption in Lemma A.8 is that the mean-squared error over the occupancy measure of the
base policy is small. This can be achieved, for example, by learning R̃ via least-squares regression
over a training dataset of state-action pairs sampled from the base policy. Many results in learning
theory show that this results in a small mean-squared error over the distribution the training data was
sampled from, i.e., exactly the assumption in Lemma A.8 (Koltchinskii, 2006).

Proof. Throughout the proof, all expectations, variances, and covariances are with respect to µπbase .
We can rewrite the assumption using the bias-variance decomposition as

E
[
(R(s, a)− R̃(s, a))2

]
= Var

[
R(s, a)− R̃(s, a)

]
+
(
E [R(s, a)]− E

[
R̃(s, a)

])2
= Var [R(s, a)] + Var

[
R̃(s, a)

]
− 2Cov

[
R(s, a), R̃(s, a)

]
+
(
E [R(s, a)]− E

[
R̃(s, a)

])2
= σ2

R + σ2
R̃
− 2Cov

[
R(s, a), R̃(s, a)

]
+
(
E [R(s, a)]− E

[
R̃(s, a)

])2
≤ ϵσ2

R.

Note that
(
E [R(s, a)]− E

[
R̃(s, a)

])2
> 0, so we can rewrite the inequality as

2Cov
[
R(s, a), R̃(s, a)

]
≥ (1− ϵ)σ2

R + σ2
R̃
≥ (1− ϵ)

(
σ2
R + σ2

R̃

)
.
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Dividing both sides by 2σRσR̃ gives

Cov
[
R(s, a), R̃(s, a)

]
σRσR̃

≥ 1− ϵ

2

σ2
R + σ2

R̃

σRσR̃

.

By the AM-GM inequality,
σ2
R+σ2

R̃

2 ≥ σRσR̃, so

Cov
[
R(s, a), R̃(s, a)

]
σRσR̃

≥ 1− ϵ,

which is the desired result.

A.5 STATE-ONLY OCCUPANCY MEASURES

We can also consider state-only occupancy measures, defined as

µπ(s) = (1− γ)Eπ

[ ∞∑
t=0

γt
1{st = s}

]
.

In many environments, the reward functions only depend on the state, i.e., R(s, a) = R(s) and
R̃(s, a) = R̃(s). In this case, Theorem 5.1 holds for state-only occupancy measures as well. The
proof is identical to the proof of Theorem 5.1, but replacing expectations and sums over state-action
pairs with expectations over states.

B DERIVATION OF OCCUPANCY-REGULARIZED POLICY OPTIMIZATION

In this appendix section, we show how to derive the approximations used for Occupancy-Regularized
Policy Optimization (ORPO). As a reminder, we would like to optimize

J(πθ, R̃)− λ
√
χ2 (µπθ

∥µπbase).

We can rewrite its gradient as

∇θ

(
J(πθ, R̃)− λ

√
χ2 (µπθ

∥µπbase)
)

= ∇θJ(πθ, R̃)− λ∇θχ
2 (µπθ

∥µπbase)

2
√
χ2 (µπθ

∥µπbase)

= ∇θ

(∑
s,a

µπθ
(s, a)R̃(s, a)

)
− λ

2
√
χ2 (µπθ

∥µπbase)
∇θ

(∑
s,a

µπθ
(s, a)2

µπbase(s, a)
− 1

)

=
∑
s,a

[
∇θµπθ

(s, a)R̃(s, a)− λ

2
√
χ2 (µπθ

∥µπbase)
∇θ

(
µπθ

(s, a)2

µπbase(s, a)
− 1

)]

=
∑
s,a

[
∇θµπθ

(s, a)R̃(s, a)− λ

2
√
χ2 (µπθ

∥µπbase)

2µπθ
(s, a)

µπbase(s, a)
∇θµπθ

(s, a)

]

=
∑
s,a

(
∇θµπθ

(s, a)
)(

R̃(s, a)− λ√
χ2(µπθ

∥µπbase)

µπθ
(s, a)

µπbase(s, a)

)
.

As described in the main text, policy gradient algorithms can approximate this type of gradient by
using an augmented reward function

R′(s, a) = R̃(s, a)− λ√
χ2(µπθ

∥µπbase)

µπθ
(s, a)

µπbase(s, a)
. (19)
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However, two terms in (19) cannot be computed directly: the current χ2 divergence between occu-
pancy measures, and the ratio of the occupancy measures µπθ

(s, a)/µπbase(s, a). We first show how
to approximate the latter using a discriminator network d̂ϕ(s, a), trained to optimize

ϕ = argmin
ϕ

Eµπθ

[
log(1 + e−d̂ϕ(s,a))

]
+ Eµπbase

[
log(1 + ed̂ϕ(s,a))

]
. (20)

It is well-known that exactly optimizing the loss function in (20) gives

d̂ϕ(s, a) = log
µπθ

(s, a)

µπbase(s, a)
. (21)

Furthermore, the OM χ2 divergence is given by

χ2 (µπθ
∥µπbase) = Eµπθ

[
µπθ

(s, a)

µπbase(s, a)
− 1

]
= Eµπθ

[
ed̂ϕ(s,a) − 1

]
=: χ̂2. (22)

Combining (21) and (22) shows that the augmented reward in (19) can be rewritten as

R′(s, a) = R̃(s, a)− λ√
χ̂2

ed̂ϕ(s,a).

Putting all the steps together, the following algorithm formalizes ORPO:

Algorithm 1 Occupancy-Regularized Policy Optimization (ORPO).

1: for iteration i = 1, . . . , I do
2: Collect a set of n trajectories Dπ from πθ.
3: Collect a set of n trajectories Dπbase from πbase.
4: Optimize ϕ via SGD to minimize

EDπ

[
log(1 + e−d̂ϕ(s,a))

]
+ EDπbase

[
log(1 + ed̂ϕ(s,a))

]
5: Calculate χ̂2 = EDπ

[
ed̂ϕ(s,a) − 1

]
.

6: Transform Dπ to D′
π by replacing the rewards with R′(s, a) = R̃(s, a)− λ√

χ̂2

(
ed̂ϕ(s,a) − 1

)
.

7: Optimize θ via SGD to minimize the proximal policy optimization (PPO) loss LPPO (D′
π).

8: end for

A similar approach can also be used to optimize the proxy reward regularized by KL divergence

J(πθ, R̃)− λDKL (µπθ
∥µπbase) ,

by changing the augmented reward in Line 6 of Algorithm 1 to

R′(s, a) = R̃(s, a)− λ d̂ϕ(s, a).

How accurate is the discriminator-based approximation?. To determine whether using the
discriminator results in an accurate approximation of χ2 and KL OM divergences, we plot the output
of the discriminator in the glucose environment versus the theoretically correct value in Figure 6.
The results suggest that the discriminator accurately approximates the log ratio of the occupancy
measures, which in turn allows for accurate approximations of the OM divergences.
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Figure 6: The top plot shows the state occupancy measures of the base policy πbase and a policy π optimized
with ORPO in the glucose environment. The bottom plot shows the exact log ratio of the occupancy measures
logµπ(s)/µπbase(s) versus the discriminator output d̂ϕ(s), which attempts to approximate it. We find the
discriminator output to be a good approximation of the log ratio.

C ENVIRONMENT DETAILS

Here, we discuss the details of the five reward-hacking environments we study.

C.1 TRAFFIC CONTROL

The traffic control environment, based on the Flow simulator (Wu et al., 2022), simulates a group
of human-controlled and RL-controlled vehicles on an on-ramp attempting to merge into traffic on
a highway. The true reward prioritizes a small mean commute time, while the proxy reward is the
average velocity of all cars. When reward hacking, the RL controlled vehicle on the on-ramp stops
indefinitely and lets cars continue forward at high speeds on the highway, which maximizes the proxy
reward but increases the commute times of cars on the on-ramp infinitely. As the base policy for
the traffic environment we used the Intelligent Driver Model (IDM), a standard approximation of
human driving behavior (Treiber et al., 2000). In practice, base policies are often learned via imitation
learning, so to simulate this we generate data from the IDM controller and train a behavioral cloning
(BC) policy using the generated data.

Here, the green cars are controlled by the human driver model IDM controller, and the blue cars are
controlled by RL:

This particular frame showcases reward hacking behavior. The blue RL-controlled vehicle has
stopped completely on the on-ramp, blocking cars behind it. This increases the average velocity of
all vehicles in the simulation, as the cars on the straightway are able to continue speeding along the
road without having to wait for merging cars. However, the true reward (negative average commute
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time) decreases endlessly as the cars on the on-ramp wait.

C.2 GLUCOSE MONITORING

The SimGlucose blood glucose monitoring environment is an extension of the FDA-approved glucose
monitoring simulator proposed by Man et al. (2014) for Type 1 Diabetes patients (Fox et al., 2020):

The RL agent (bottom) controls the insulin administered to a simulated patient in order to maintain
healthy glucose levels. The true reward is a standard measure of health risk for the patient, but the
proxy reward prioritizes the monetary cost of insulin. As the safe baseline policy, we train a BC
policy based on data generated by a PID controller with parameters tuned by the original designers of
the simulator (Steil, 2013).

In Figure 2, we adapt a diagram from Pauley et al. (2022) to represent this environment.

C.3 PANDEMIC MITIGATION

PandemicSimulator (Kompella et al., 2020) simulates a population’s infection dynamics using a
COVID-specific SEIR model:

The RL agent chooses the level of lockdown restrictions placed on the population by observing
the results of testing. The proxy reward function omits the political cost associated with certain
decisions. Our base policy is trained via BC on a combination of hand-specified and real-world
strategies employed by governments during the pandemic, which were also used by Kompella et al.
(2020) as baselines.

C.4 RLHF

We base our RLHF environment on the work of Coste et al. (2024), who study overoptimization
of LLM-based reward models. The proxy reward model we use is fine-tuned from Pythia-70M
(Biderman et al., 2023) on the AlpacaFarm (Dubois et al., 2023) preference dataset. As a true reward
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model, we use the Llama 3 Tulu V2 8B RM from AI2 (Ivison et al., 2024). As a base policy, we use
Coste et al.’s SFT policy, which was fine-tuned from Pythia-1.4B on the AlpacaFarm SFT data. We
evaluate policies’ true and proxy rewards on responses sampled for a held out set of prompts.

C.5 TOMATO-WATERING GRIDWORLD

The tomato environment contains a sprinkler state where the agent perceives all tomatoes as being
watered and thus receives high proxy reward but no true reward. We train a base policy using the true
reward function, and then add a 10% chance of taking a random action to ensure there is room to
improve upon it.

The gray squares in the environment represent walls, and the white squares represent open spaces
where the agent can travel:

The sprinkler state is down a narrow hallway, and on the other end a tomato is down another narrow
hallway.

D EXPERIMENT DETAILS

D.1 NON-LLM EXPERIMENTS

We implement ORPO using RLLib (Liang et al., 2018) and PyTorch (Paszke et al., 2019).

Network architectures For the pandemic, traffic, and tomato-watering environments, we use policy
networks based on fully-connected networks with 2 layers of 128 units, 4 layers of 512 units, and
4 units of 512 units, respectively. The policy model for the glucose environment is a basic LSTM
network with 3 layers of 64 units each. We made this choice since the observation of the environment
contains continuous historical information about the patient’s blood glucose levels and previously
administered insulin.

The discriminator model for all four non-LLM environments is a fully connected network with 2
layers of 256 units each. We found that the discriminator architecture did not need to be tuned to
each environment.

Policy initialization Initializing using an imitation learning policy has been shown to effectively
speed up the learning process (Laidlaw et al., 2023; Uchendu et al., 2023) and is used in practice
for RLHF (Stiennon et al., 2020), so we initialize our policies using the specified πbase for the more
realistic traffic, glucose, and pandemic environments.
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Hyperparameters Some hyperparameters for the traffic environment were tuned by Pan et al.
(2022). We primarily tuned the hyperparameters listed below in order to ensure that the proxy reward
would be properly optimized and reward hacking would occur without regularization. This enables to
see if the various regularization methods actually succeed at preventing reward hacking.

Hyperparameter Tomato Traffic Glucose Pandemic
Training iterations 500 250 500 260
Batch size 3000 40000 100000 3860
SGD minibatch size 128 16384 1024 64
SGD epochs per iteration 8 5 4 5
Optimizer Adam Adam Adam Adam
Learning rate 1e-3 5e-5 1e-4 0.0003
Gradient clipping 0.1 None 10 10
Discount rate (γ) 0.99 0.99 0.99 0.99
GAE coefficient (λ) 0.98 0.97 0.98 0.95
Entropy coefficient (start) 0.01 0.01 0.01 0.1
Entropy coefficient (end) 0.01 0.01 0.01 0.01
Entropy schedule horizon 0 0 0 500000
KL target 0.001 0.02 1e-3 0.01
Value function loss clipping 10 10,000 100 20
Value function loss coefficient 0.1 0.5 0.0001 0.5
Share value function layers F T T T

Table 2: PPO/ORPO hyperparameters.

Hyperparameter Tomato Traffic Glucose Pandemic
Discriminator reward clipping 1000 10 1e10 0.1
Regularization coefficient (λ) Varied Varied Varied Varied
σR̃ 0.05 0.0002 0.05 0.08

Table 3: ORPO-specific hyperparameters.

ORPO details We found that a couple of tricks were useful to ensure that ORPO remained stable.
First, we clip the discriminator term added to the reward functions to a range [−δ, δ], since sometimes
it can blow up and cause numerical issues. Second, when estimating χ̂2, we use a trimmed mean
(trimmed by 1% in each tail) to reduce the effect that outliers have on the estimate. These are both
particularly important for χ2 divergence, where the output of the discriminator is exponentiated for
both the reward discriminator term and for estimating χ̂2.

D.2 RLHF EXPERIMENTS

We train LLMs via the RLHF implementation used by Coste et al. (2024), which is based on
OpenAssistant and trlX (Havrilla et al., 2023). To implement χ2 or KL regularization, we directly
add a loss term to the PPO loss:

χ2 divergence: λ

(
πθ(a | s)
πbase(a | s)

+
πbase(a | s)
πθ(a | s)

− 2

)
KL divergence: λ

(
log

πθ(a | s)
πbase(a | s)

+
πbase(a | s)
πθ(a | s)

− 1

)

where s is the prompt and a is the sampled response. Intuitively, both loss terms have a unique
minimum when πθ(a | s) = πbase(a | s) and in expectation are equivalent to the correct divergence.
Schulman (2020) suggests that these are particularly low-variance estimates, and we find that they
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work well in practice.

E ADDITIONAL EXPERIMENTS AND RESULTS

In this appendix, we the full results from our main experiments as well as ablations of ORPO.

E.1 WIN RATES FOR RLHF

Besides calculating the true reward for RLHF models with the Llama 3 Tulu V2 8B RM, we also
calculate the win rates for the best coefficient of KL and χ2 regularization. We use AlpacaEval (?)
with GPT4o-mini to compute the win rate between the RLHF policy and the SFT policy. We find that
the median win rate for χ2 divergence is higher, and it is also more consistent across random seeds.
In contrast, using KL divergence leads to reward hacking for one seed and a lower median win rate.

Divergence Coefficient Median win rate Win rate range

χ2 0.0008 52.83 51.98 – 53.98
KL 0.025 51.50 11.93 – 53.75

Table 4: Win rates for RLHF-trained models using KL divergence vs. χ2 divergence. The median win rate and
range of win rates are reported across five seeds.

E.2 RESULTS FOR ALL REGULARIZATION COEFFICIENTS

Here, we present the results of training with AD and OM regularization using χ2 and KL divergence
across all regularization coefficients. Each table shows the median and the standard deviation of the
true rewards achieved by the learned policy across 5 random seeds.

χ2 divergence
Coefficient AD State OM State-action OM
0.000002 -60.79 ± 8.40 -61.04 ± 2.20 -59.11 ± 4.53
0.000004 -62.01 ± 8.58 -61.85 ± 2.22 -58.21 ± 5.52
0.00001 -60.43 ± 6.61 -59.82 ± 2.85 -54.35 ± 2.81
0.00002 -62.01 ± 4.54 -56.53 ± 10.66 -1.35 ± 30.28
0.00004 -50.84 ± 6.28 -42.24 ± 22.01 -1.15 ± 0.06
0.0001 -1.29 ± 0.12 -2.18 ± 0.42 -1.38 ± 0.29
0.0002 -1.70 ± 0.12 -2.46 ± 0.65 -1.85 ± 0.29

KL divergence
Coefficient AD State OM State-action OM
0.000001 -56.20 ± 4.02 -61.59 ± 2.72 -61.18 ± 2.87
0.0000025 -59.58 ± 4.84 -54.59 ± 3.16 -59.59 ± 2.36
0.000005 -57.24 ± 2.62 -59.03 ± 5.41 -61.24 ± 2.01
0.00001 -54.84 ± 3.15 -57.62 ± 3.13 -58.85 ± 2.73
0.000025 -55.10 ± 2.64 -59.32 ± 1.37 -56.86 ± 5.48
0.00005 -49.99 ± 4.04 -59.96 ± 1.65 -53.39 ± 23.77
0.0001 -45.72 ± 9.02 -1.34 ± 25.30 -1.25 ± 0.07
0.00025 -1.33 ± 0.05 -1.47 ± 0.20 -1.51 ± 0.10
0.0005 -1.52 ± 0.04 -1.76 ± 0.22 -1.99 ± 0.35
0.001 -1.73 ± 0.07 -1.76 ± 0.26 -2.30 ± 1.14
0.0025 -1.98 ± 0.07 -1.76 ± 0.51 -1.94 ± 0.30
0.005 -2.15 ± 0.05 -1.90 ± 0.83 -2.08 ± 0.61
0.01 -2.11 ± 0.05 -2.12 ± 1.00 -2.14 ± 0.56

Table 5: All traffic control results (×103).
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χ2 divergence
Coefficient AD State OM State-action OM
0.0008 -17.60 ± 1.78 -12.59 ± 1.63 -27.16 ± 12.83
0.0016 -36.16 ± 3.25 -11.25 ± 10.08 -11.17 ± 0.19
0.004 -34.16 ± 12.90 -10.88 ± 0.91 -11.65 ± 2.12
0.008 -12.45 ± 0.25 -10.99 ± 3.13 -12.02 ± 0.18
0.016 -12.31 ± 0.08 -10.68 ± 0.17 -12.18 ± 0.46
0.04 -12.29 ± 0.05 -10.78 ± 0.12 -12.34 ± 0.10
0.08 -12.39 ± 0.04 -10.73 ± 0.84 -12.20 ± 0.11

KL divergence
Coefficient AD State OM State-action OM
0.00006 -21.23 ± 9.74 -33.59 ± 9.89 -30.96 ± 22.42
0.00012 -30.39 ± 22.16 -41.96 ± 12.70 -19.67 ± 6.43
0.0003 -23.10 ± 5.63 -35.29 ± 10.32 -27.56 ± 7.50
0.0006 -21.85 ± 19.03 -34.56 ± 11.97 -22.40 ± 9.84
0.0012 -25.17 ± 10.24 -31.28 ± 7.83 -31.77 ± 6.01
0.003 -23.51 ± 6.91 -35.76 ± 10.53 -23.90 ± 12.81
0.006 -12.26 ± 11.82 -58.08 ± 46.98 -29.42 ± 25.37
0.012 -12.30 ± 9.27 -10.60 ± 0.87 -11.88 ± 0.81
0.03 -12.28 ± 0.14 -11.03 ± 6.86 -11.73 ± 0.21
0.06 -12.20 ± 0.07 -10.71 ± 0.18 -12.23 ± 14.25
0.12 -12.33 ± 0.04 -10.24 ± 0.61 -12.09 ± 0.38
0.3 -12.35 ± 0.04 -11.02 ± 0.57 -12.11 ± 0.25
0.6 -12.40 ± 0.04 -10.61 ± 0.36 -12.11 ± 0.28
1.2 -12.33 ± 0.03 -10.50 ± 0.26 -12.02 ± 0.28

Table 6: All pandemic mitigation results.
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χ2 divergence
Coefficient AD State OM State-action OM
0.0005 -580.7 ± 73.8 -484.2 ± 56.6 -164.0 ± 3.5
0.001 -94.2 ± 14.0 -263.9 ± 19.2 -127.0 ± 5.9
0.0025 -97.1 ± 8.2 -146.4 ± 18.1 -93.3 ± 9.3
0.005 -76.6 ± 10.5 -109.7 ± 10.3 -55.2 ± 0.7
0.01 -84.7 ± 8.5 -72.8 ± 8.8 -47.5 ± 0.6
0.025 -85.6 ± 7.9 -54.3 ± 1.3 -50.9 ± 2.3
0.05 -74.8 ± 13.1 -57.1 ± 3.5 -113.3 ± 32.8

KL divergence
Coefficient AD State OM State-action OM
0.00003 -598.4 ± 39.7 -604.1 ± 10.7 -583.8 ± 61.2
0.00006 -600.6 ± 12.4 -589.0 ± 260.9 -594.7 ± 3.3
0.00015 -592.3 ± 51.3 -607.9 ± 11.1 -577.1 ± 11.2
0.0003 -593.6 ± 6.0 -592.0 ± 29.3 -497.9 ± 11.2
0.0006 -590.0 ± 7.5 -593.1 ± 5.4 -364.3 ± 5.8
0.0015 -459.9 ± 114.1 -511.1 ± 21.1 -181.6 ± 7.5
0.003 -270.0 ± 39.7 -332.3 ± 41.0 -101.2 ± 5.0
0.006 -154.5 ± 5.5 -158.7 ± 28.8 -61.9 ± 5.2
0.015 -84.1 ± 6.8 -82.9 ± 5.6 -48.9 ± 0.5
0.03 -98.3 ± 8.4 -58.4 ± 3.8 -49.6 ± 1.2
0.06 -88.6 ± 12.8 -59.0 ± 7.2 -78.3 ± 10.2
0.15 -82.1 ± 11.6 -75.9 ± 4.6 -106.6 ± 19.6
0.3 -73.4 ± 9.2 -98.1 ± 16.1 -127.3 ± 24.7
0.6 -88.6 ± 5.6 -112.5 ± 16.6 -118.5 ± 10.7

Table 7: All glucose monitoring results (×103).

Coefficient AD χ2 AD KL
0.00008 9.20 ± 0.68 8.80 ± 2.24
0.00025 14.05 ± 3.27 9.48 ± 1.02
0.0008 16.94 ± 0.07 8.84 ± 0.42
0.0025 16.84 ± 0.08 14.22 ± 2.81
0.008 16.71 ± 0.11 12.73 ± 2.75
0.025 16.59 ± 0.11 16.81 ± 0.27
0.08 16.43 ± 0.07 16.52 ± 0.08
0.25 16.22 ± 0.10 16.33 ± 0.04
0.8 16.13 ± 0.10 16.25 ± 0.13

Table 8: All results for RLHF.
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χ2 divergence
Coefficient AD State OM State-action OM
0.0005 2.65 ± 0.67 0.64 ± 0.19 0.53 ± 0.29
0.001 3.87 ± 0.25 0.65 ± 4.63 0.60 ± 0.16
0.0025 6.24 ± 0.10 9.06 ± 0.17 9.04 ± 4.71
0.005 6.17 ± 0.03 9.06 ± 0.11 9.16 ± 0.09
0.01 6.16 ± 0.04 9.07 ± 0.07 9.17 ± 0.12
0.025 6.19 ± 0.04 8.64 ± 0.12 8.61 ± 0.18
0.05 6.14 ± 0.00 7.95 ± 0.05 7.99 ± 0.22

KL divergence
Coefficient AD State OM State-action OM
0.0008 2.52 ± 0.18 2.32 ± 0.86 2.31 ± 0.08
0.0016 2.98 ± 0.33 2.31 ± 0.07 1.11 ± 0.89
0.004 4.59 ± 0.19 2.23 ± 0.06 2.01 ± 0.23
0.008 6.10 ± 0.15 1.30 ± 0.19 1.25 ± 0.32
0.016 6.33 ± 0.13 0.82 ± 0.22 0.84 ± 0.21
0.04 6.26 ± 0.05 1.17 ± 2.92 1.81 ± 0.31
0.08 6.26 ± 0.04 7.62 ± 0.06 7.32 ± 0.28
0.16 6.21 ± 0.05 7.20 ± 0.12 7.12 ± 0.11
0.4 6.16 ± 0.03 6.89 ± 0.14 6.84 ± 0.19
0.8 6.19 ± 0.03 7.07 ± 0.12 6.86 ± 0.19
1.6 6.14 ± 0.04 6.90 ± 0.13 6.61 ± 0.31
4 6.13 ± 0.03 6.80 ± 0.16 6.79 ± 0.12
8 6.13 ± 0.01 6.81 ± 0.28 6.80 ± 0.06
16 6.13 ± 0.00 6.94 ± 0.10 6.83 ± 0.25

Table 9: All results for the tomato-watering gridworld.

E.3 ABLATIONS

Here, we present the results of two ablations of ORPO. For each of the non-RLHF environments, we
fix the optimal coefficient for state-action OM χ2 regularization and modify other hyperparameters.
We do not ablate the RLHF experiments because RLHF is a contextual bandit (Appendix A.3) and so
it isn’t actually necessary to run ORPO for RLHF. The results are shown in Table 10 below.

Order of training policy and discriminator networks. First, we experiment with modifying
ORPO to train the discriminator after the policy. In Algorithm 1, the discriminator d̂ϕ is optimized,
then the rewards are updated with the discriminator outputs, and then the policy is trained with
the updated rewards. An alternative is to wait to train the discriminator until after the policy
has been updated, i.e., put Line 4 after Line 7. We experimented with this and found that in in
most environments there is not too much difference between the two orders, although training the
discriminator first gives slightly better results. However, in the pandemic mitigation environment, we
found that it training the discriminator second gave results with much higher variance. This suggests
that it is best to train the discriminator before augmenting the rewards to train the policy.

Discriminator reward clipping. Second, we experiment with modifying the discriminator reward
clipping parameter δ of ORPO. We found that removing the clipping parameter entirely led to NaN
errors and training could not complete, so we do not report those results. However, to test sensitivity
to this parameter, we tried training with a clipping parameter 10× larger and 10× smaller in each
environment. We found that the results did not vary by much across different clipping parameters.
This suggests that ORPO is relatively robust to the hyperparameter, so it does not need to be tuned
precisely.
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Environment
Traffic Pandemic Glucose AI safety

Method control mitigation monitoring gridworld
(×103) (×103)

Default parameters -1.15 ± 0.06 -12.18 ± 0.46 -47.5 ± 0.6 9.17 ± 0.12
Train policy before discriminator -1.24 ± 0.07 -12.23 ± 2.71 -48.2 ± 0.7 8.97 ± 0.13
Discriminator reward clipping ×0.1 -1.18 ± 0.14 -12.22 ± 0.21 -47.7 ± 0.8 9.21 ± 0.18
Discriminator reward clipping ×10 -1.24 ± 0.03 -12.11 ± 0.29 -47.9 ± 0.7 9.20 ± 0.14

Table 10: Results of our ablations of ORPO. We report the median and standard deviation of the true reward
across five random seeds for the four non-RLHF environments. The top row shows the results of state-action
occupancy measure regularization with the optimal coefficient for χ2 divergence. The other rows show ablations
with the same coefficient. We find that ORPO is mostly robust to different hyperparameters but that it is probably
best to train the discriminator network before the policy network.
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