
QINCO2: VECTOR COMPRESSION AND SEARCH
WITH IMPROVED IMPLICIT NEURAL CODEBOOKS

Théophane Vallaeys, Matthew Muckley, Jakob Verbeek, Matthijs Douze
FAIR, Meta
{webalorn,mmuckey,jjverbeek,matthijs}@meta.com

ABSTRACT

Vector quantization is a fundamental technique for compression and large-scale
nearest neighbor search. For high-accuracy operating points, multi-codebook
quantization associates data vectors with one element from each of multiple code-
books. An example is residual quantization (RQ), which iteratively quantizes the
residual error of previous steps. Dependencies between the different parts of the
code are, however, ignored in RQ, which leads to suboptimal rate-distortion per-
formance. QINCO recently addressed this inefficiency by using a neural network
to determine the quantization codebook in RQ based on the vector reconstruction
from previous steps. In this paper we introduce QINCO2 which extends and im-
proves QINCO with (i) improved vector encoding using codeword pre-selection
and beam-search, (ii) a fast approximate decoder leveraging codeword pairs to
establish accurate short-lists for search, and (iii) an optimized training procedure
and network architecture. We conduct experiments on four datasets to evaluate
QINCO2 for vector compression and billion-scale nearest neighbor search. We
obtain outstanding results in both settings, improving the state-of-the-art recon-
struction MSE by 34% for 16-byte vector compression on BigANN, and search
accuracy by 24% with 8-byte encodings on Deep1M.

1 INTRODUCTION

Vector quantization is a fundamental technique, with widespread use cases from exploratory data
analysis and visualization, to self-supervised learning (Caron et al., 2018), image compression (Esser
et al., 2021; Careil et al., 2024) and large-scale nearest neighbor search (Jégou et al., 2010). To learn
a vector quantizer from data, the k-means algorithm (Bishop, 2006; MacQueen, 1967) is probably
the most ubiquitous. It associates each data vector with the nearest element in a learned codebook
of centroids in the sense of mean squared error (MSE).

In data compression the goal is to optimize the rate-distortion tradeoff (Shannon, 1948). With k-
means the quantization error can be reduced by using a larger number of centroids K, which nat-
urally increases the bitrate of ⌈log2 K⌉ to encode the index of the centroid assigned to a particular
data vector. In practice, as the number of parameters and computational cost of the k-means grows
linearly in the number of centroids, k-means is hard to scale beyond, say, 1M centroids. To enable
lower distortion operating points, multi-codebook quantization (MCQ) methods associate each data
vector with one element across each of M > 1 codebooks. Examples include Product Quantization
(PQ), which slices data vectors in several pieces and applies k-means to each of them, and residual
quantization (RQ), which iteratively applies k-means to the residual of previous quantization steps.

A fundamental limitation of both PQ and RQ is that the M codebooks are pre-determined and
independent of the vector to be quantized. This is suboptimal, as in general there are dependencies
between different parts of the code, and one part of a PQ or RQ code carries information about other
parts of the code. Such dependencies can be modeled using an entropy model, as e.g. explored by El-
Nouby et al. (2023) for image compression, but this only reduces the bitrate and does not directly
address the inherent inefficiency of the quantizer. Huijben et al. (2024) introduced QINCO, a neural
variant of RQ, that reduces this redundancy where each codebook is computed as a function of earlier
selected codes. QINCO is initialized from RQ codebooks and learns a neural network to update the
codewords for the current step as a function of the vector reconstruction from previous steps. This
leads to large improvements in MSE reconstruction and nearest neighbor search accuracy.

1

code code

= . . .

code

. . .

+ + . . . + +

partial

codeword

Figure 1: Overview of the QINCO2 archi-
tecture, as used during decoding. Top:
The codes (i1, . . . , iM) are mapped to code-
words (c1, . . . , cM) using look-up tables
C1, . . . , CM . These codes are sequentially
combined using a parameterized function fθm .
Bottom: The function fθm applied on a code-
word cm and the partial reconstruction x̂m−1

from the previous step, using a sequence of
residual MLPs.

In this paper we introduce QINCO2 which extends and improves upon QINCO in several ways.
(i) We improve the vector encoding using codeword pre-selection and beam-search: pre-selection
reduces the number of function evaluations to update RQ centroids which makes beam search more
affordable, significantly reducing the quantization error. (ii) We introduce a fast, look-up based, ap-
proximate decoder for the QINCO2 codes to establish shortlists for large-scale search: the decoder
works akin to RQ but uses a pair of QINCO2 codes in each step to account for their dependencies.
(iii) We optimize the training procedure and network architecture: this includes a configurable inter-
nal feature dimension of the network and an additional residual connection, improved initialization
and larger batch size. See Figure 1 for an illustration of the QINCO2 architecture.

We conduct extensive experiments on four different common vector compression datasets: Deep1B,
BigANN, FB-ssnpp, and Contriever. We evaluate QINCO2 for vector compression performance in
terms of reconstruction MSE and nearest neighbor accuracy on 1M sized databases. In addition,
we evaluate in experiments in a billion-scale vector search setting, in terms of the search-speed vs
accuracy trade-off. We obtain outstanding results with QINCO2 in both settings. For example,
compared to the recent state-of-the-art QINCO approach, we reduce reconstruction MSE by 34%
from 0.32 × 10−4 to 0.18 × 10−4 for 16-byte compression of vectors in the BigANN dataset, and
improved nearest neighbor accuracy by 24% from 36.3% to 45.1% for 8-byte compression of vectors
in the Deep1M dataset. Code is available at: https://github.com/facebookresearch/Qinco

2 BACKGROUND AND RELATED WORK

Multi-codebook quantization. This family of methods builds on multiple k-means sub-quantizers,
using different codebooks. With M sub-quantizers, the total code size becomes M⌈log2(K)⌉ bits.
Product Quantization (PQ) (Jégou et al., 2010) splits the vectors into M sub-vectors that are quan-
tized separately. As the sub-codes are estimated independently, finding the optimal encoding is
trivial. In Residual Quantization (RQ) (Liu et al., 2015) k-means quantizers are applied sequentially
such that each quantizer encodes the residual left from the previous step, and decoding sums the se-
lected M codewords. RQ encoding is greedy and therefore potentially suboptimal. It can, however,
be improved using beam search to explore several encodings in parallel. In Additive Quantization
(AQ) (Babenko & Lempitsky, 2014) the M sub-codes are estimated simultaneously for encoding,
while using the same sum-of-codewords decoding as RQ. LSQ (Martinez et al., 2018) is a state-of-
the-art AQ variant that relies on annealed optimization, where the encoding accuracy depends on the
number of optimization iterations. RVPQ (Niu et al., 2023) combines PQ with RQ by slicing the
vectors in a number of components, and applying RQ with a beam search on each of them.

Neural vector quantization. Vector quantization has been used in neural networks for different
purposes. For generative modeling, VQ-VAE (Oord et al., 2017; Razavi et al., 2019; Esser et al.,
2021) uses single-step vector quantization in the latent space of a variational autoencoder (Kingma
& Welling, 2014), and generates samples from an autoregressive sequence model fitted to the quan-
tization indices. RQ-VAE (Lee et al., 2022) relies instead on residual quantization to better approx-
imate the latents, while RAQ-VAE (Seo & Kang, 2024) enables rate-adaptive quantization within
VQ-VAE with a sequence-to-sequence model. In a similar spirit, El-Nouby et al. (2023) uses a
transformer-based entropy model to reduce the bitrate for image compression. Careil et al. (2024)
uses a quantized encoder, and couple it with a diffusion-based decoder for high-realism image com-

2

https://github.com/facebookresearch/Qinco

pression. Closer to our work, UNQ (Morozov & Babenko, 2019) considers vector compression
and jointly trains an encoder-decoder model with multiple codebooks in the latent space, using a
straight-through Gumbel-Softmax estimator for differentiation. DeepQ (Zhu et al., 2023) similarly
uses an encoder that maps the input vector to a set of independently sampled indices, but relies
on a REINFORCE gradient estimator, simply summing the selected codewords rather than using a
decoder network. In our work, we do not use an encoder-decoder pair to map the data to a latent
space for quantization. Instead, we directly quantize the data in the data space, thereby avoiding any
data loss incurred by the encoder-decoder, and using a residual neural quantizer to encode the data.
QINCO (Huijben et al., 2024) is an improved residual quantizer that uses neural networks to adjust
the quantization codebooks for each data vector, based on the reconstruction obtained in previous
steps. In our work, we build upon QINCO and improve its performance by optimizing the network
architecture and training procedure, introduce fast codeword selection in encoding to make beam
search more affordable.

Large-scale nearest neighbor search. Vector quantization is a fundamental component of approx-
imate search methods. Rather than using exhaustive search, a promising subset of the database is
determined using a coarse quantization. An inverted file index (IVF) is used to store which part of the
data is present in each cluster (Jégou et al., 2010), and efficient algorithms such as HNSW (Malkov
& Yashunin, 2018) determine which clusters should be accessed given a query. Finally, the query is
matched with the (quantized) data in the identified clusters. As decoding with QINCO is expensive,
Huijben et al. (2024) proposed an additional step based on an efficient approximate additive decoder,
to reduce the amount of data that needs to be passed through the neural decoder. We improve upon
this approach by introducing an additive decoder that leverages the dependencies of pairs of code-
words to boost the shortlist accuracy, allowing to reduce their size and improve efficiency. Amara
et al. (2022) considered multi-layer neural network decoders to improve the accuracy of additive
linear decoders, but keep the codes themselves fixed. Our pairwise decoder similarly provides an
alternative decoder for given codes, but in our case we seek a less accurate but faster decoder.

3 IMPLICIT NEURAL CODEBOOKS

3.1 NOTATION AND BACKGROUND

Multi-codebook quantization. We start by introducing notations describing the general framework
of multi-codebook quantization. We denote the vectors that we aim to quantize as x ∈ Rd, which
follow an unknown distribution, accessed only via data sampled from it. The quantization process is
characterized by a set of M codebooks C1, . . . , CM with K elements each and parameterized by θ,
where Cm = {cm1 , . . . , cmK}, and by a decoding function F (c1, . . . , cM). Its error is measured by a
loss function, for which we consider the ℓ2 MSE loss defined by L(x, q) = ∥x− q∥22. We define a
general quantization procedure as

Q : x 7→ argmin
c1∈C1,...,cM∈CM

L(x, F (c1, . . . , cM)). (1)

During training, the objective is to find parameters θ minimizing the expected reconstruction loss:
Ex [L(x,Q(x)]. The quantized vectors can then be stored with indices using M⌈log2 K⌉ bits.

Residual Quantization (RQ) (Chen et al., 2010) defines F⊕(c
1, . . . , cM) =

∑M
m=1 c

m, and couples
this decoder with an approximate but efficient sequential encoding procedure QRQ where:

x̂0 = 0, x̂m = F⊕(c
1, . . . , cm), (2)

cm = argmin
c∈Cm

L(x, F⊕(c
1, . . . , cm−1, c)), (3)

in which x̂m is the partial reconstruction until stage m, and rm = x− x̂m−1 is the residual at step
m. The codeword cm is selected to best approximate the residual as cm = argminc∈Cm L(rm, c).

Quantization with implicit neural codebooks. QINCO (Huijben et al., 2024) builds on RQ by
redefining the decoding function F without changing the quantization process QRQ. The key insight
is that in RQ the distribution of the residuals rm depends on c1, . . . , cm−1, yet all residuals are
quantized using the same codebook Cm. In theory, one could improve this by using a codebook
hierarchy Cm(c1, . . . , cm−1) that depend on previously selected codewords, but this leads to an

3

 candidates

 candidates

reconstruction
candidates

Keep
reconstructions

Keep candidates
for each beam

Figure 2: Overview of the en-
coding process of QINCO2. At
a given step m, the B beam
search hypotheses are each com-
bined with A pre-selected candi-
dates, for which codebook ele-
ments are computed with fθm , and
the best B hypotheses are retained
for the next encoding step.

exponential number codebooks, which is unfeasible in practice. Instead, QINCO parameterizes F
using a neural network as

FQI(c
1, . . . , cM) =

∑
m

fθm(cm|xm−1), (4)

where the fθm are modeled by the same neural network, but with separate weights θm for each step.
By choosing an appropriate residual architecture for the network, and initializing from RQ code-
books, the reconstruction error can be guaranteed to be no worse than that of the RQ initialization.

3.2 IMPROVED IMPLICIT NEURAL CODEBOOKS: ENCODING

We identify the encoding efficiency as the major bottleneck to deploy QINCO. We propose (i) a
mechanism to speed it up, and (ii) the use of beam search to make it more accurate. We then (iii)
adjust the architecture and training procedure to further improve quantization accuracy and training
speed. We use QINCO2 to refer to models benefiting from all these improvements.

Pre-selection. The RQ quantization process QRQ applied to QINCO can be expressed as a sequence
of M steps, where each one consists in finding

cm = argmin
c∈Cm

L(rm, fθm(c|x̂m−1)). (5)

This process requires K evaluations of the neural network fθm , the complexity of which therefore
scales linearly with the codebook size K. To reduce the computational cost, we propose a two-step
encoding. First, we select a set Am of A candidates using an efficient function gϕm . This function
relies on a distinct codebook C̃m = {c̃m1 , . . . , c̃mK}. We then compute fθm over this restricted set,
yielding the following quantization procedure which replaces Eq. (5) and we refer to as QQI-A:

Am = TopA argmin
1⩽k⩽K

L(rm, gϕm(c̃mk |x̂m−1)), (6)

cm = argmin
k∈Am

L(rm, fθm(cmk |x̂m−1)). (7)

In our experiments, g uses the same architecture as f with a much smaller depth Ls and hidden
dimension dh = 128. In particular, with Ls = 0 we instead define g(c|x) = c, which yields
Am = TopA argmin1⩽k⩽K L(rm, c̃mk). This setting is significantly more efficient than Ls ⩾ 1.

Beam search. In RQ, instead of maintaining a single partial reconstruction across encoding steps,
beam search (Babenko & Lempitsky, 2014) maintains a set of B partial encodings. At quantization
step m, each partial encoding is combined with each of the K codebook elements, creating K × B
new partial encodings, and the best B ones are selected for the next step. Thus, one step of beam
search here requires K ×B evaluations of f , increasing compute by a factor B w.r.t. greedy search.
Candidate pre-selection reduces this number to A×B, defining encoding process QQI-B, at the cost
of adding K × B evaluations of g and of the loss function L, whereas the greedy search QINCo
baseline does K evaluations of f . Therefore, depending on the setting of A,B, we can benefit from
the improved search accuracy of beam search at a controlled cost. See Figure 2 for an illustration.

4

Using training
data only

Database
+ training data

D
at

ab
as

e
en

co
di

ng

VQ
()

QINCo2
encoding

La
rg

e-
sc

al
e

se
ar

ch

Create AQ and
combined RQ

tables

Input :
query

IVF AQ Pairwise additive
decoding

QINCo2 decoding

Faiss search Shortlist sizes are an illustration for a specific configuration

Figure 3: Overview of our large-
scale search pipeline. We com-
bine the compression accuracy of
QINCO2 with efficient look-up
methods to build and filter short-
lists of candidates. Top part shows
the encoding of the database and
the creation of a fast searchable in-
dex. Bottom part shows the re-
trieval process for a given query q.

Architecture. The function fθ in QINCO2 (see Figure 1) is similar to that of QINCO. The main
differences are (i) the network backbone has dimension de, independent from vector dimension d
(we add linear projections between Rd and Rde at the extremities of the network); and (ii) we add a
connection from the input to the output to preserve accuracy when de < d. This architecture uses
O(M(Ldedh + dde)) FLOPs for decoding, and O(ABM(Ldedh + dde) +BKd) for encoding.

Training. Compared to QINCO, we improve the initialization of the network and codebooks
weights, the dataset normalization, the optimizer and the learning rate scheduler, and increase the
batch size. We also stabilize the training by adding gradient clipping, and reduce the number of dead
codewords by resetting unused ones similar to Zheng & Vedaldi (2023). Additionally, we notice that
large volumes of training data are usually available for unsupervised task such as compression. Hui-
jben et al. (2024) showed that more training data is beneficial to the accuracy of QINCO. Motivated
by this observation, we train our models on the full training set of each benchmark (up to 100s of
millions of vectors, see Table 1). Details of the training procedure can be found in App. A.2.

3.3 LARGE-SCALE NEAREST NEIGHBOR SEARCH

For approximate search, we build an index structure over a database of vectors D = {xn : n ∈
JNK}, where JNK = {1, 2, . . . , N}. Given a query q, we search for its nearest neighbor in the ℓ2
sense in D. In practice, exhaustive search in large databases is costly, and search is performed over
a quantized version of the database. Overall search pipeline is shown in Figure 3.

Creating shortlists with IVF and AQ. Quantization reduces storage requirements, and can be
leveraged to reduce the computational requirements for approximate nearest-neighbor search with
QINCO2 by efficiently creating “shortlists” of the most promising database vectors. Following
Huijben et al. (2024), we use IVF (Jégou et al., 2010) to group the database vectors into KIVF buckets
(Ui)i∈JKIVFK before quantizing the database with QINCO2, as shown in the “database encoding”
(top) row of Figure 3. This is equivalent to encoding x as (I0, I1, . . . , IM), with the additional
index I0 ∈ JKIVFK indexing the IVF bucket, and I1, . . . , IM ∈ JKK. The reconstruction is x̂ =
F (C0(I0), . . . , CM (IM)). For simplicity, we exclude the IVF codeword I0 from the beam search.

Given a query, IVF forms SIVF ⊂ D from the contents of the Nprobe ≪ KIVF nearest buckets to the
query. The size |SIVF| of this subset ranges from a few thousands to a few millions. This is too large
to rank with QINCO2 efficiently, so we re-interpret the indices (I1, . . . , IM) as additive quantizer
codes from which approximate distances can be computed efficiently (Huijben et al., 2024). The AQ
codebooks are estimated by solving a least-squares system on vectors and their corresponding codes
from QINCO2 (Amara et al., 2022). This yields a second shortlist SAQ ⊂ SIVF. Only the vectors in
SAQ are then decoded using IVF-QINCO2, and ranked by their distance to the query to provide the
final search result. This is represented by the “Faiss search” and “QINCO2 decoding” blocks in the
bottom row of Figure 3.

Pairwise additive decoding. Although fast, AQ decoders trained on QINCO2 codes have a much
lower search accuracy than full QINCO2 decoding. This is because the AQ decoder can only sum
up independent AQ codebook entries, ignoring the dependency structure between the code elements.

We notice that AQ codebooks can be trained from any sequence of codes, including combined codes
and repeated codes. We consider building a decoder based on pairs of codes. To this end we use the
mapping Ii,j = (Ii−1)×K+Ij , with Ii, Ij ∈ JKK and Iij ∈ JK2K. Combining codes in this way

5

makes the codebooks larger (K2 instead of K) so they are slower to train, but also more expressive.
Note that this decoder is guaranteed to be at least as good as the unitary decoder, since the codebook
entries from two unitary codebooks can be combined into a pairwise decoding codebook.

The most straightforward way to take advantage of joint codebooks is to map a sequence of unitary
codes (I1, I2, . . . , IM) to a sequence of pairwise codes (I1,2, I3,4, . . . , IM−1,M) of length M/2.
Associated codebooks C ′

1, . . . , C
′
M/2 are creating by solving a least-squares problem using these

fixed codes. However, combining the M original codes into M/2 does not exploit all the degrees of
freedom that the scheme offers. We search for a more general subset of size M ′ of all M(M − 1)/2
possible pairs. Inspired from RQ, given a sequence of codes (I1, I2, . . . , IM) for x ∈ Rd and a
number M ′ of target codebooks, we recursively minimize the residuals left from previous steps by
searching which pairs of codes (i, j) to combine and their combined codebook C ′:

(im, jm, C ′
m) = argmin

i,j,C′
Ex

[
L(rm, C ′[Ii,j(x)])

]
, (8)

x̂0 = 0, x̂m = x̂m−1 + C ′
m[Ii

m,jm(x)], rm = x− x̂m−1 (9)

where the expectation over x is taken w.r.t. the empirical distribution of the training data. In this ap-
proach, some input codes can be used several times, or not at all. Note that, as in RQ, the codebooks
C ′

m are determined sequentially.

Integration of pairwise additive decoding with IVF. When using a pairwise additive decoder for
QINCO2 without IVF, we observe that the first, and therefore most informative, code pairs are of
the form (1, i) or (i, i + 1), and then progressively include codes (2, i), then (3, i), etc. The IVF
codebook of size KIVF, however, is too large to combine with other codes in our efficient pairwise
decoder, since the combined codebook would be of size K ×KIVF ≫ K2. Therefore, we quantize
the IVF codewords using RQ into M̃ new codebooks C̃1, . . . , C̃M̃ each of size K, generating the
new codes Ĩ1(x), . . . , ĨM̃ (x). We choose M̃ large enough to obtain near zero error, as the cost of
increasing M̃ is negligible for decoding. As we only quantize the IVF codewords, we do not need
to store these codes for each x, but only a mapping from I0 to Ĩ1, . . . , Ĩn, which has a size that does
not depend on the database size. We then train the efficient automatic re-ranking using the codes
Ii(x) and Ĩi(x) together. This pairwise additive decoding ranker is then used at search time to find
a second smaller shortlist Spairs during the search, see Figure 3. See App. B for an example.

4 EXPERIMENTAL VALIDATION

4.1 EXPERIMENTAL SETUP

Datasets and metrics. Following Huijben et al. (2024), we evaluate QINCO2 against previous

Table 1: The datasets used in our experiments.
Dataset Dim. Train vecs. Data type

Deep1B
(Babenko & Lempitsky, 2016) 96 358M CNN image emb.

BigANN
(Jégou et al., 2011) 128 100M SIFT descriptors

Facebook SimSearchNet++
(FB-ssnpp)
(Simhadri et al., 2021)

256 10M SSCD image emb.

Contriever
(Huijben et al., 2024) 768 20M Contriever text emb.

baselines on the four datasets described in Ta-
ble 1, spanning across various modalities, di-
mensions and train set sizes. We use the
full training split during training, and use the
database split to report the compression per-
formance (MSE) on 1M vectors, and nearest-
neighbor recall percentages at rank 1 (R@1)
among 1M database vectors with 10k query
vectors. We report recall at ranks 10 (R@10)
and 100 (R@100) in Table S4 in the supplementary material; these metrics follow the same trends
as those observed for R@1. Additionally, for Deep1B and BigANN, we use the 1B database for
similarly search to evaluate IVF-QINCO2.

Table 2: QINCO2 model architectures.
res. blocks

(L)
emd. dim.

(de)
hid. dim.

(dh)

QINCO2-S 2 128 256
QINCO2-M 4 384 384
QINCO2-L 16 384 384

Architecture details. Unless specified other-
wise, we use the model architectures listed in
Table 2. We use QINCO2-L for all the vector
compression experiments (Section 4.2), as we
want to see the impact of large models against
the best results of other methods. The smaller
models are used for search experiments, where

6

Table 3: Comparison to state of the art methods for compression (MSE) and retrieval (R@1).
Ablation of model improvements w.r.t. QINCO are in italics, and the best results are in bold.

BigANN1M Deep1M Contriever1M FB-ssnpp1M Train time

MSE R@1 MSE R@1 MSE R@1 MSE R@1 BigANN
(×104) (×104)

8
by

te
s

OPQ 2.95 21.9 0.26 15.9 1.87 8.0 9.52 2.5 —
RQ 2.49 27.9 0.20 21.4 1.82 10.2 9.20 2.7 —
LSQ 1.91 31.9 0.17 24.6 1.65 13.1 8.87 3.3 —
UNQ (Morozov & Babenko, 2019) 1.51 34.6 0.16 26.7 — — — — —
QINCO (Huijben et al., 2024) 1.12 45.2 0.12 36.3 1.40 20.7 8.67 3.6 —

QINCO (reproduction) 1.13 45.3 0.12 35.6 1.40 20.6 8.66 3.8 127:38
+ improved training 1.14 45.4 0.12 35.9 1.39 20.7 8.63 3.8 14:53
+ improved architecture 1.09 45.9 0.12 36.7 1.38 21.2 8.63 4.0 21:42
+ candidates pre-selection 1.10 45.5 0.12 36.7 1.38 20.6 8.64 3.9 8:23
+ beam-search 0.85 50.6 0.10 43.9 1.34 22.7 8.18 4.4 57:39
+ evaluate with larger beam (QINCO2) 0.82 52.3 0.09 45.1 1.34 23.1 8.14 4.5 —

16
by

te
s

OPQ 1.79 40.5 0.14 34.9 1.71 18.3 7.25 5.0 —
RQ 1.30 49.0 0.10 43.0 1.65 20.2 7.01 5.4 —
LSQ 0.98 51.1 0.09 42.3 1.35 25.6 6.63 6.2 —
UNQ (Morozov & Babenko, 2019) 0.57 59.3 0.07 47.9 — — — — —
QINCO (Huijben et al., 2024) 0.32 71.9 0.05 59.8 1.10 31.1 6.58 6.4 —

QINCO (reproduction) 0.33 72.4 0.05 59.7 1.13 29.9 6.56 6.6 284:53
+ improved training 0.33 72.4 0.05 59.5 1.09 31.4 6.54 6.8 37:50
+ improved architecture 0.31 72.8 0.05 60.7 1.08 30.5 6.54 6.5 48:15
+ candidates pre-selection 0.30 71.9 0.05 61.1 1.08 31.1 6.55 6.8 18:57
+ beam-search 0.20 78.2 0.03 67.4 1.03 33.6 6.04 7.9 130:47
+ evaluate with larger beam (QINCO2) 0.19 79.3 0.03 67.1 1.02 34.0 5.98 7.5 —

time efficiency matters as well. We set A=16, B=32 during training, and A=32, B=64 during
evaluation for all models. When candidate pre-selection is used without beam search (B = 1), we
use A = 32 during training. We fix the codebook size to K = 256, which results in a single byte
encoding per step. Following prior work, see e.g. (Huijben et al., 2024; Morozov & Babenko, 2019),
we consider 8-byte and 16-byte vector encodings in most of our experiments. We also experiment
with 32-byte encoding for large-scale search.

Baselines. We compare QINCO2 against the results of OPQ (Ge et al., 2013), RQ (Chen et al.,
2010), LSQ (Martinez et al., 2018), using the results reported by Huijben et al. (2024) which were
obtained using the implementations in the Faiss library (Douze et al., 2024). We also compare
against the neural quantization baselines QINCO (Huijben et al., 2024) and UNQ (Morozov &
Babenko, 2019), citing the results reported in the original papers. As we build upon QINCO, we
also report scores of our reproduction of this quantizer.

4.2 VECTOR COMPRESSION

Main results. In Tab. 3 we evaluate how QINCO2 improves over QINCO, by gradually introducing
the changes to our reproduction of QINCO, and also compare to other state-of-the-art results. We
report the MSE and R@1 metrics, as well as the training time for the BigANN1M models. Given
the same training procedure, the training time is roughly proportional to the encoding time.

In general, our reproduction of QINCO closely follows the results reported by Huijben et al. (2024).
When using our improved training recipe (+improved training), we observe a more than seven-
fold reduction in training time w.r.t. QINCO (reproduction), while obtaining similar MSE. When
adding our improved architecture (+improved architecture), we observed improved MSE and R@1
values across all datasets at both 8-byte and 16-byte compression (except for R@1 at 16 bytes on
Contriever), at the cost of increased training time (but still remaining much faster than the QINCO
reproduction). Adding candidate pre-selection (A = 32, B = 1) leads to a small degradation in
MSE and R@1 in some cases, but makes training more than 2.5 times faster. Enabling beam search
(A = 16, B = 32) leads to a substantial improvement in MSE and R@1. Although this has a
substantial impact on the training time, training remains more than two times faster compared to
QINCO (reproduction). Finally, we use a larger beam size for vector encoding at evaluation (A=
32, B=64) than the one used for training (A=16, B=32). While not impacting the training time,
the larger beam consistently improves the MSE across datasets and bitrates.

7

102 103 104

Encoding time per vector (s, log-scale)

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

M
SE

 (B
ig

AN
N1

M
)

Ls = 0
Ls = 1
Ls = 2
Ls = 4
A=8, B=16

101 102 103 104

Encoding time per vector (s, log-scale)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

M
SE

 (B
ig

AN
N1

M
)

L=1 | Decoding time per vector: 0.08 s
L=2 | Decoding time per vector: 0.09 s
L=4 | Decoding time per vector: 0.12 s
L=8 | Decoding time per vector: 0.18 s
L=16 | Decoding time per vector: 0.27 s

Figure 4: Pareto fronts of quantization error on the BigANN1M dataset using 8 bytes codes.
Left: Models with L = 8 blocks, and each curve using a different number of blocks Ls for pre-
selection. Each curve covers models that differ in the number of pre-selected codewords A and beam
size B. Models are trained using A = 8 and B ∈ {2, . . . , 32}, and evaluated with A ∈ {8, . . . , 64},
and B ∈ {2, . . . , 128}. Stars show models using A=8, B=16 for evaluation. All models have the
same decoding speed. Right: models with different number of residual blocks L. For models on one
curve, the decoding time is fixed, and the encoding time is varied by changing A and B.

Overall, we obtain results that substantially improve over earlier state-of-the-art results, reducing
both the MSE and R@1 metric on all four datasets. For example, compared to UNQ (Morozov
& Babenko, 2019) on the Deep1M dataset, we reduce the MSE more than two-fold from 0.07 to
0.03 for 16-byte codes, and improve the R@1 from 26.7% to 45.1% for 8-byte codes. Compared to
QINCO on the BigANN dataset, we reduce MSE from 0.32 to 0.19 for 16-byte codes, and improve
nearest-neighbor search accuracy from 45.2% to 52.3% and for 8-byte codes.

Analysis of codeword pre-selection. Figure 4 (left) shows the impact of the candidate pre-selection
model depth Ls on the MSE as a function of the encoding time, for fixed decoding time. For a given
number of pre-selected candidates A and beam size B, a deeper pre-slection model (higher Ls)
reduces the MSE at the expense of increased encoding time. However, when varying A,B settings,
the models with Ls = 0 blocks —which just perform pre-selection based on a learned codebook—
are Pareto-optimal for all settings with encoding times under 1 ms, thanks to the faster pre-selection
of candidates. We therefore use this setting of Ls = 0 in all other experiments, relying on encoding
parameters A,B to set speed-accuracy tradeoffs.

Trade-offs between encoding and decoding time. In Figure 4 (right) we consider the MSE quanti-
zation error induced by models with different decoding speeds. For each model, we vary the encod-
ing speed using different A,B settings. The quantization error can be reduced with models that are
deeper (higher decoding time), and using more exhaustive search for encoding (more pre-selected
codewords and larger beam). However, for a given MSE the decoding time can be significantly
reduced when compensated by higher encoding time. For example, an MSE of 1.0 can be obtained
by a model with L=16 residual blocks —decoding 0.27µs, encoding 20µs— or by a L=1 model
which decodes 3× faster at but encodes 50× slower —decoding 0.08µs, encoding 1 ms. These
results show that QINCo2 allows trading compute between encoding and decoding, motivating the
use of smaller models for large-scale retrieval experiments, where decoding time is crucial.

Architecture sweep. To obtain insight into the most effective hyperparameters settings, we present
the results of a joint sweep over the number of residual blocks (L), the embedding and hidden
dimensions (de, dh) and the encoding parameters (A,B) in Figure 5, both for training and evaluation,
using 8-bytes codes on BigANN. We also include several operating points of QINCO for reference.
First, we notice that for a given MSE level, QINCO2 reduces the encoding time by about one order
of magnitude compared to QINCO. Additionally, our QINCO2-S model used with A = B = 8
yields substantial improvements both in MSE and speed compared to all QINCO variants. For the
operating points on the Pareto front, we notice a certain degree of correlation between the encoding
speed (marker shape) and decoding speed (marker color) of the points on the Pareto front, with
both increasing while MSE is improved. Note that this is in line with the Pareto front observed in
Figure 4 (right). The most expensive encoding settings are mostly used in combination with the
heaviest networks, yielding the best MSE results. When traversing the front left-to-right, at first
shallow models are more optimal (with depth L=1 or 2), and MSE is improved by expanding the
encoding search. Then, the Pareto front enters a phase where L = 4 models are optimal and the

8

101 102 103 104

Encoding time (s, log-scale)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

M
SE

 (B
ig

AN
N1

M
)

L=
2 e

=h=
12

8 B
=4 A

=2

L=
2 e

=h=
12

8 B
=4 A

=4

L=
2 e

=h=
12

8 B
=4 A

=8

L=
2 e

=h=
12

8 B
=8 A

=4

L=
1 e

=12
8 h

=25
6 B

=8 A
=8

L=
2 e

=h=
12

8 B
=8 A

=8

L=
2 e

=12
8 h

=25
6 B

=8 A
=8

QINCO2-S
(A=8 B=8)

L=
2 e

=h=
25

6 B
=8 A

=8

L=
4 e

=12
8 h

=25
6 B

=8 A
=8

L=
4 e

=h=
25

6 B
=8 A

=8

L=
4 e

=25
6 h

=38
4 B

=8 A
=8

QINCo (L=2)

L=
4 e

=h=
38

4 B
=8 A

=8

QINCO2-M
(A=8 B=8)

L=
6 e

=25
6 h

=38
4 B

=8 A
=8

L=
8 e

=25
6 h

=38
4 B

=8 A
=8

QINCo (L=4)

L=
4 e

=25
6 h

=38
4 B

=32
 A=8

L=
4 e

=h=
38

4 B
=32

 A=8

QINCO2-M
(A=8 B=32)

L=
8 e

=25
6 h

=38
4 B

=8 A
=16

L=
4 e

=25
6 h

=38
4 B

=32
 A=16

QINCO2-L
(A=8 B=8)

L=
8 e

=h=
25

6 B
=16

 A=16

QINCo (L=16)

L=
12

 e=
h=

38
4 B

=16
 A=8

L=
16

 e=
h=

38
4 B

=16
 A=8

L=
8 e

=25
6 h

=10
24

 B=32
 A=8

L=
16

 e=
h=

38
4 B

=16
 A=16

QINCO2-L
(A=8 B=32)

L=
8 e

=25
6 h

=10
24

 B=32
 A=16

L=
8 e

=38
4 h

=10
24

 B=32
 A=16

L=
12

 e=
h=

51
2 B

=32
 A=16

L=
16

 e=
25

6 h
=10

24
 B=32

 A=16

L=
8 e

=25
6 h

=10
24

 B=64
 A=16

L=
8 e

=38
4 h

=10
24

 B=64
 A=16

L=
16

 e=
38

4 h
=51

2 B
=64

 A=16

L=
16

 e=
h=

38
4 B

=64
 A=32

QINCO2-L
(A=32 B=64)

L=
16

 e=
38

4 h
=51

2 B
=64

 A=32

L=
16

 e=
38

4 h
=10

24
 B=64

 A=32

L=
24

 e=
38

4 h
=10

24
 B=64

 A=32

Operating points (pareto Front)
A×B=8
A×B=16
A×B=32
A×B=64
A×B=128
A×B=256
A×B=512
A×B=1024
A×B=2048
0.18 s < Decoding time 0.3 s
0.3 s < Decoding time 0.4 s
0.4 s < Decoding time 0.6 s
0.6 s < Decoding time 1.0 s
1.0 s < Decoding time 1.5 s
1.5 s < Decoding time 2.0 s
2.0 s < Decoding time 3.0 s
3.0 s < Decoding time 4.0 s
4.0 s < Decoding time 6.0 s
6.0 s < Decoding time 8.0 s
QINCo models

Figure 5: Pareto-optimal front of QINCO2 operating points for MSE and encoding time.
Evaluation on 10M vectors, varying the models parameters A, B, L, de and dh when encoding using
M = 8 bytes on BigANN1M. Models are trained with different A,B ∈ {16, 32}, and evaluated
with a range of values up to A = 64 and B = 32. Marker shape is set according to the product of the
encoding parameters A × B, and color according to the decoding time, determined by the network
depth (L) and width (de, dh). Results for QINCO are shown as yellow stars for comparison.

BigANN1M Deep1M

R@1 nshort=10 R@1 nshort=10

8
by

te
s

QINCO2-S (no shortlist) 47.9 — 38.1 —
AQ 12.3 31.5 10.2 26.0
RQ 12.1 31.3 10.2 25.6
RQ, w/ M

2 = 4 consecutive code-pairs 17.8 39.8 16.4 32.0
RQ, w/ 2M = 16 optimized code-pairs 28.2 46.2 24.0 36.6

16
by

te
s QINCO2-S (no shortlist) 73.2 — 63.1 —

AQ 16.6 45.2 16.4 42.4
RQ 16.0 44.4 15.5 41.7
RQ, w/ M

2 = 8 consecutive code-pairs 21.5 54.7 20.6 49.5
RQ w/ 2M = 32 optimized code-pairs 35.0 66.9 33.4 58.6

Table 4: Search results using
QINCO2 decoder and approx-
imate decoders for QINCO2
codes. For each combination of
dataset and bitrate, we report the
retrieval accuracy over 1M vec-
tors, as well as the accuracy of
QINCO2-S over a shortlist of 10
elements generated by the method.

search span increases from A×B = 16 to 512. Finally, the lowest MSE and highest encoding times
are obtained with depths ranging from 8 to 24, with search spans ultimately reaching A×B = 2, 048.

4.3 LARGE-SCALE VECTOR SEARCH

Approximate decoders. In Table 4 we consider a preliminary experiment comparing a small
QINCO2 model with fast lookup-based decoders trained on fixed QINCO2 codes, including AQ,
RQ and our pairwise additive decoders. The AQ decoder is learned by solving a single large least-
squares problem, while the other ones are learned by solving up to 2M successive smaller least-
squares problems. We consider the direct recall of these decoders, as well as the recall when using
them to establish a shortlist of ten elements which is then re-ranked with QINCO2. We observe that
the RQ decoder yields only a small degradation w.r.t. the AQ which is more expensive to train. When
comparing R@1, both of these methods perform much worse though than the QINCO2 decoder, los-
ing more than 73% of its search accuracy. However, accuracy is more than doubled when using a
pairwise additive decoder with 2M pairs. When used to form a shortlist of ten elements, single-code
approximate methods still lag behind QINCO2 (12 points of R@1 for 8-bytes codes, more than 20
points for 16-bytes). But decoding using optimized code-pairs reduces the gap considerably (at most
1.7 points for 8-bytes and 6.3 points for 16-bytes), with minimal computational overhead: ten calls
to FQI, compared to a million when using the QINCO2 decoder without shortlists.

Large-scale search efficiency. In Figure 6 we plot the search accuracy as a function of speed,
reported as queries per second on a single CPU, when searching over 1B database vectors from
BigANN using 8, 16 and 32 byte representations. In Figure S2 in the supplementary material we

9

10 20 30 40
R@1

101

102

103

104

105

QP
S

(3
2

th
re

ad
s)

BigANN1B 8 bytes

IVF-PQ
IVF-RQ
IVF-QINCo (L=2)
IVF-QINCo (L=4)
QINCo2-S
QINCo2-M

20 30 40 50 60 70
R@1

BigANN1B 16 bytes

40 50 60 70 80
R@1

BigANN1B 32 bytes

Figure 6: Retrieval accuracy/efficiency trade-off on the Bigann1B dataset in terms of queries per
second (QPS) and recall (R@1) when combining PQ, RQ, QINCO, and QINCO2 with IVF.

provide similar results when using the Deep1B dataset. We compare to PQ and RQ (with beam
size B = 20) baselines, using their implementation in the Faiss library, as well as QINCO models
with L = 2 and L = 4 residual blocks, as used in the experiments of Huijben et al. (2024). For
QINCO2 we consider two models: QINCO2-S has a depth and width similar to the QINCO (L = 2)
model, striking a good balance between speed and accuracy for most settings, whereas QINCO2-M
is slightly larger than the second QINCO model, reaching the highest overall retrieval accuracy. We
plot Pareto fronts for all compared methods by changing the hyperparameters of the IVF search: the
number of IVF buckets that are accessed, the shortlist size(s), and the efSearch parameter that is
used in the HNSW algorithm to find the IVF centroids closest to the query.

We find that at the highest search speeds, the PQ and RQ baselines yield the best results, but also that
their accuracy quickly saturates at low recall values when more compute is used. With QINCO2, we
are able to attain significantly higher recall values: adding more than 20 recall points for each bitrate
in the high-compute regime. The search speed at which QINCO2 starts to yield more accurate
results than the PQ and RQ baselines is generally situated in the range 1,000 to 10,000 queries per
second. Compared to the two QINCO models, our QINCO2-S consistently yields higher search
accuracy across the full range of search speeds. Among our two QINCO2 models, QINCO2-M is
generally slower than QINCO2-S, but attains the highest accuracy in the high-compute regime.

5 CONCLUSION

We presented QINCO2, a neural residual quantizer in which codebooks are obtained as the output
of a neural network conditioned on the vector reconstruction from previous steps. Our approach
improves over QINCO in several ways. First, the training procedure and network architecture are
optimized, which leads to similar results but reduces training time roughly by a factor six. Second,
we introduce a candidate pre-selection approach to determine a subset of the codewords for which
we evaluate the QINCO2 network, further reducing encoding and training time roughly by a factor
three. Third, given the accelerations, we use beam search for encoding and find it can greatly reduce
the quantization error. Finally, for application of QINCO2 to billion-scale nearest neighbor search,
we introduce pairwise look-up based decoders to obtain a fast approximate decoding of the QINCO2
codes, that are much more accurate than the AQ decoder used in QINCO. We conduct experiments
on four different datasets, and evaluate performance in terms of MSE reconstruction and the search
speed-accuracy trade-off, using different bitrates for both tasks. On both tasks and all datasets,
QINCO2 consistently improves over QINCO and other baselines. In particular, we reduce MSE by
34% for 16-byte compression of BigANN, and push the maximum accuracy for billion-scale nearest
neighbor search of the RQ baseline from under 40% to over 70% using 16-byte codes for BigANN.
Beyond our contributions to implicit neural quantization, we believe it is interesting to explore the
potential of our pairwise lookup-based additive decoder for other quantizers in future work.

10

REFERENCES

Kenza Amara, Matthijs Douze, Alexandre Sablayrolles, and Hervé Jégou. Nearest neighbor search
with compact codes: A decoder perspective. In ICMR, 2022.

Artem Babenko and Victor Lempitsky. Additive quantization for extreme vector compression. In
CVPR, 2014.

Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets of deep descrip-
tors. In CVPR, 2016.

C. Bishop. Pattern recognition and machine learning. Springer, 2006.

Marlène Careil, Matthew J. Muckley, Jakob Verbeek, and Stéphane Lathuilière. Towards image
compression with perfect realism at ultra-low bitrates. In ICLR, 2024.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsu-
pervised learning of visual features. In ECCV, 2018.

Yongjian Chen, Tao Guan, and Cheng Wang. Approximate nearest neighbor search by residual
vector quantization. Sensors, 10(12):11259–11273, 2010.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The Faiss library. arXiv
preprint, 2401.08281, 2024.

Alaaeldin El-Nouby, Matthew J. Muckley, Karen Ullrich, Ivan Laptev, Jakob Verbeek, and Hervé
Jégou. Image compression with product quantized masked image modeling. Transactions on
Machine Learning Research, 2023.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In CVPR, 2021.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for approximate
nearest neighbor search. In CVPR, 2013.

Iris A. M. Huijben, Matthijs Douze, Matthew J. Muckley, Ruud J. G. van Sloun, and Jakob Verbeek.
Residual quantization with implicit neural codebooks. In ICML, 2024.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1):117–128, 2010.

Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. Searching in one billion
vectors: Re-rank with source coding. In ICASSP, 2011.

D. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In CVPR, June 2022.

Shicong Liu, Hongtao Lu, and Junru Shao. Improved residual vector quantization for high-
dimensional approximate nearest neighbor search. arXiv preprint, 1509.05195, 2015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

James MacQueen. Some methods for classification and analysis of multivariate observations. In
Berkeley symposium on mathematical statistics and probability, 1967.

Yu A. Malkov and Dmitry A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(4):824–836, 2018.

Julieta Martinez, Shobhit Zakhmi, Holger H. Hoos, and James J. Little. LSQ++: Lower running
time and higher recall in multi-codebook quantization. In ECCV, 2018.

11

Stanislav Morozov and Artem Babenko. Unsupervised neural quantization for compressed-domain
similarity search. In ICCV, 2019.

Lushuai Niu, Zhi Xu, Longyang Zhao, Daojing He, Jianqiu Ji, Xiaoli Yuan, and Mian Xue. Resid-
ual vector product quantization for approximate nearest neighbor search. Expert Systems with
Applications, 232, 2023.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In NeurIPS, 2017.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
VQ-VAE-2. In NeurIPS, 2019.

Jiwan Seo and Joonhyuk Kang. RAQ-VAE: Rate-adaptive vector-quantized variational autoencoder.
arXiv preprint, 2405.14222, 2024.

C. E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27(3):379–423, 1948.

Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze, Artem Babenko,
Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Krishnaswamny, Gopal Srinivasa,
et al. Results of the NeurIPS’21 challenge on billion-scale approximate nearest neighbor search.
In NeurIPS Competitions and Demonstrations Track, 2021.

Chuanxia Zheng and Andrea Vedaldi. Online clustered codebook. In ICCV, 2023.

Xiaosu Zhu, Jingkuan Song, Lianli Gao, Xiaoyan Gu, and Heng Tao Shen. Revisiting multi-
codebook quantization. IEEE Transactions on Image Processing, 32:2399–2412, 2023.

A IMPLEMENTATION DETAILS

A.1 QINCO2 ARCHITECTURE

The architecture of the neural network fθ, illustrated in Figure 1, is formally described by Eqs. (10)
to (13). This network is parameterized by a number of blocks L, and dimensions de and dh. At step
m, a codeword c ∈ Rd is projected into an embedding space of dimension de (Eq. (10)). Is it then
conditioned on the previous reconstruction x̂m−1 by concatenating both variables (Eq. (11)), adding
a residual connection after the projection. The output is then computed by a sequence of 2-layers
residual MLPs (Eq. (12)). A residual connection is added at the end (Eq. (13)) to ensure stability.

In the following equations we denote by Ld2

d1
a linear layer from dimension d1 to d2, and Pd2

d1
a

projection from d1 to d2 which is equal to Ld2

d1
if d1 ̸= d2, and to the identity function otherwise.

These layers are implicitly parameterized by θ. We then express fθ(cm|x̂m) as follows:

cemb = Pde
d (cm), (10)

v0 = cemb + Lde
d+de

(
Concat[cemb; x̂

m−1]
)

(11)

vi = vi−1 + Lde
dh
(ReLU(Ldh

de
(vi−1))) (12)

fθ(x̂
m, cm) = cm + Pdde

(vL) (13)

The Lde
d+de

layer (Eq. (11)) uses a bias term, all the others don’t.

The number of parameters we use for our models listed in Table 2 increase the number of trainable
parameters of up to a factor of 4.5 compared to QINCO. We include a comparison of the number of
parameters between RQ, QINCO and QINCO2 in Table S1. As shown in Table 3, the increase in
model parameters contributes to an improvement in MSE (see line improved architecture).

12

Table S1: Number of parameters of RQ, QINCO and QINCO2 models on BigANN1M.
Model RQ QINCO (L=2) QINCO (L=4) QINCO (L=16) QINCO2-S QINCO2-M QINCO2-L

Parameters 0.26M 1.4M 2.3M 7.8M 1.6M 10.8M 35.6M

A.2 TRAINING QINCO2

We follow the same optimization approach as QINCO (Huijben et al., 2024). Using the loss function
L(x, q) = ∥x − q∥22, training QINCo2 amounts to finding the optimal parameters θ, C1, . . . , CM

for the quantization process Eq. (1). This defines the following optimization problem:

argmin
θ,c1∈C1,...,cM∈CM

Ex

[
argmin

c1∈C1,...,cM∈CM

L
(
x, Fθ

(
c1, . . . , cM

))]
, (14)

where Fθ is a sequence of M QINCO2 models, as defined by Eq. (4). We follow the optimization
approach from Huijben et al. (2024) to solve Eq. (14) by alternating between solving the external
and inner problems. For each batch, we first solve the inner problem by using our quantization
process QQI-B (instead of QRQ for QINCO ; see Section 3.2). We then use a gradient-based method
(AdamW, instead of Adam for QINCO, see below) to optimize parameters θ and C1, . . . , CM .

Compared to QINCO, we change the training procedure in the following ways:

• Like QINCO we loop over 10M samples per epoch, but with a different segment of 10M
vectors at each epoch to cover the full dataset. We set aside the same 10k vectors as QINCO
for validation.

• We reduce the number of epochs to 70, while QINCO can train for hundred of epochs,
relying on its scheduler for stopping.

• We normalize each dataset with a mean of 0 for each feature, and a standard deviation of 1
across all features, instead of normalizing to [0; 1].

• We initialize the QINCO2 codebooks using noisy RQ codebooks. We train these code-
books for only 10 k-means iterations, for each of the M codebook. We then add a Gaussian
noise with standard deviation, σ = s× 0.025 where s is the per-feature standard deviation
computed over the RQ codebooks.

• We initialize all the weights of the network using Kaiming uniform initialization, and ini-
tialize to zero all biases and weights of the down-projections Lde

dh
within the residual blocks.

• We use the AdamW optimizer (Loshchilov & Hutter, 2019) with default settings, except
for a weight decay of 0.1 (instead of using Adam).

• We use a gradient clipping set to 0.1, and decrease it to 0.01 on unstable experiments.

• We use a maximum learning rate of 0.0008, and decrease it to 0.0001 on unstable experi-
ments (compared to 0.001 for the base learning rate of QINCO).

• We use a cosine scheduler, with a minimum learning rate of 10−3 times the maximum
learning rate (instead of reducing the learning rate on plateaus only).

• We increase the batch size to 1,024 on each of the 8 GPUs, for an effective batch size of
8,192 (compared to an effective batch size of 1024 for QINCO).

• At the end of each epoch, we reset every codeword that has not been used at all. We reset
a codeword from the codebook m using a uniform distribution with the same mean and
standard deviation as the residuals quantized by step m, i.e. µ and σ from the distribution
x−x̂m−1. This is similar to the approach of Zheng & Vedaldi (2023) to re-initialize “dead”
codewords.

Each of our choices increased the final results in early experiments, except for the reduced number
of epochs, which we set to favor training speed. We show the effect of the revised training procedure
in our experiments in the following section.

13

Table S2: Encoding and decoding complexity per vector in FLOPS in “big-O” notation, and in-
dicative timings on BigANN1M using 32 CPU cores (in µs) with parameters: D=128; QINCO:
L=2, M=8, h=256; UNQ: h′=1024; b=256; RQ: beam size B=5; QINCO2-S: A=8, B=32,
de = 128, dh = 256. In practice, at search time for OPQ and RQ rather than decoding we per-
form distance computations in the compressed domain, which takes M FLOPS (0.16 ns).

Encoding Decoding

FLOPS time FLOPS time

OPQ d2 + Kd 1.5 d(d + 1) 1.0
RQ KMdB 8.3 Md 1.3
UNQ h′(d + h′ + Mb + MK) 18.8 h′(b + h′ + d + M) 13.0
QINCO KMd(d + Lh) 823.4 Md(d + Lh) 8.3
QINCO2-S ABMde(d + Ldh) + BKd 2910.7 Mde(d + Ldh) 6.2

To train efficiently, we encode each batch without maintaining activations for gradient computation,
and then perform another forward-backward pass through fθ using the codes selected by the encod-
ing process. This is much faster as in this manner, the forward-backward pass is only executed for a
single codeword per vector per step, rather than for all codebook elements.

A.3 LARGE-SCALE SEARCH WITH FAISS

To implement IVF search with the AQ and RQ baselines we use the Faiss li-
brary (Douze et al., 2024).1 The index factory names used for our experiments are
IVF1048576_HNSW32,RQ<BB>x8_Nqint8, where <BB> is replaced by 8, 16 or 32,
depending on the number of bytes used per vector. It indicates the use of KIV F = 220 centroids,
indexed with a HNSW graph-based index (32 links per node), followed by RQ filtering using <BB>
bytes. This structure is used to perform the IVF-RQ search, where the codebooks are computed
by Faiss directly. For IVF-QINCO2, we compute the IVF centroids and AQ codebooks and codes
on GPU before filling this structure with them, as the RQ and AQ decoding function are the same.
During evaluation of large-scale search with IVF-QINCO2, we use this structure to retrieve the
SAQ shortlist, which is re-ranked using pytorch implementations of pairwise additive decoding, and
then QINCO2.

B ADDITIONAL RESULTS

Encoding and decoding complexity. In Table S2 we compare QINCO2 to QINCO, UNQ, RQ and
PQ in terms of complexity (FLOPS) and timings obtained on CPU. As our method QINCO2 has a
variable encoding time depending on runtime parameters, we select values such that A×B = K =
256 for fair comparison with QINCO.

Bitrate reduction. In Figure S1, we show how QINCO2 contributes to reducing the bitrate at a
given reconstruction error compared to previous methods. Relative improvements in bitrate increase
for lower MSE and higher number of quantization steps. For 8-bytes codes from previous methods,
QINCO2 achieves similar error using at least 29% fewer bytes, but for 16-bytes codes, it achieves
at least 54% reduction in bitrate.

1Acessed from https://github.com/facebookresearch/faiss.

14

https://github.com/facebookresearch/faiss

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Code length in bytes

1

2

3

4

M
SE

 (B
ig

AN
N1

M
)

43
%

31
%

49
%

39
%

71
%

46
%

QINCo2-L (16 steps)
OPQ
RQ
UNQ

Figure S1: MSE of QINCO2 and previous methods at different bitrates. Dotted lines show the
bitrate reduction of QINCO2 compared to previous methods at a fixed MSE.

20 25 30 35 40
R@1

101

102

103

104

105

QP
S

(3
2

th
re

ad
s)

Deep1B 8 bytes

IVF-PQ
IVF-RQ
IVF-QINCo (L=2)
IVF-QINCo (L=4)
QINCo2-S
QINCo2-M

35 40 45 50 55 60
R@1

Deep1B 16 bytes

60 65 70 75 80
R@1

Deep1B 32 bytes

Figure S2: Search accuracy/efficiency trade-off on the Deep1B dataset in terms of queries per
second (QPS) and recall (R@1) for PQ, RQ, QINCO and QINCO2 combined with IVF.

Large-scale search. In Figure S2 we report large-scale search performance on the Deep1B dataset.
Overall we find the same trends as those observed for BigANN in Figure 6 in the main paper. In
particular QINCO2-S strictly dominates QINCO for all operating points, and QINCO2 is able to
attain significantly higher recall levels than the PQ, RQ and QINCO baselines.

Dynamic rates. In Figure S3 we compare QINCO2 models trained for different numbers of steps
M , from 4 up to 16. We evaluate the MSE of these models after m = 1, . . . , 16 steps. We find that
for a given m the MSE of all models trained for M ≥ m are nearly identical. This is in line with
the findings of Huijben et al. (2024), and makes that QINCO2 trained with large M can be used as
a multi-rate codec as its performance is (near) optimal for usage with smaller codes.

Changing beam size at evaluation. Besides the model size, QINCO2 introduces two hyperparam-
eters to control the accuracy: the number of pre-selected candidate codewords A and the beam size

15

2 4 6 8 10 12 14 16
Quantization step m

0

2

4

6

8

M
SE

 (B
ig

AN
N1

M
)

train_M=4
train_M=8
train_M=12
train_M=16

Figure S3: MSE for QINCO2 after quantization step m, for models trained with different M values.
All models use L = 8, de = 384, dh = 384, A = 16 and B = 32.

Table S3: Pairs generated by our pairwise additive decoder on Deep1M for 8-bytes quantization,
with corresponding MSE at each step. i indicates a QINCo code (Ii), ĩ indicates a code extracted
from the IVF centroid (Ĩi)

Step AQ + IVF 1 2 3 4 5 6 7 8
Pair - (1, 2) (3, 4) (5, 6) (7, 8) (1, 1̃) (2, 1̃) (3, 1̃) (4, 1̃)
MSE 3.78 3.20 2.77 2.56 2.43 2.33 2.23 2.17 2.13

Step - 9 10 11 12 13 14 15 16
Pair - (5, 1̃) (6, 1̃) (7, 1̃) (1, 2̃) (2, 2̃) (8, 2̃) (3, 2̃) (1, 3̃)
MSE - 2.10 2.08 2.06 2.04 2.03 2.02 2.01 2.01

B. The number of evaluations of the QINCO2 network is equal to the product A × B, and the
encoding time during and after training is roughly proportional to this quantity. Note, however, that
these parameters can be set differently during training, and when using the model for encoding once
the model has been fully trained.

In Figure S4 we report the impact on MSE of changing A at evaluation time when using the same
model trained with different A, when using a fixed beam size of B = 16. The results show that
regardless of the A used for training, the MSE saturates around A = 24 at evaluation, ensuring that
A = 32 will yield close-to-optimal results for encoding. In order to obtain the best performance,
A = 16 for training is a good choice: smaller values leads to worse MSE, while A = 32 does not
lead to a noticeable improvement.

In Figure S5 we similarly consider the effect of changing the beam size B during evaluation for
models trained with different beam sizes. In this case, we observe that most models lead to similar
MSE values for a given value of B for evaluation. Only the model trained with B = 2 leads to
significantly worse results when using large beams for evaluation, and similarly the model trained
with B = 32 yields worse results than others when using relatively small beams for evaluation
(B ≤ 16). Overall, models keep improving the MSE when increasing the beam even up to size
B = 64 for evaluation. Therefore, it seems a good strategy to train models with B = 8, and use
larger B for evaluation when more accuracy is required.

Pairwise additive decoding with IVF example. We show in Table S3 an example of code-pairs
generated by our pairwise decoder (Section 3.3) on the Deep1M dataset using 8-bytes quantization.
We additionally show the MSE of the reconstructed codebooks at each step of this decoder, starting
from the reconstruction yielded by the IVF and AQ steps.

Retrieval accuracy with relaxed settings. We show in Table S4 both the exact retrieval accuracy
(R@1), and the relaxed accuracies R@10 and R@100 where a request is correctly answered if the
nearest neighbour is within the 10 or 100 first elements returned by the method. We note that the the
ranking between methods stays the same for each metric, but the accuracy gaps are reduced as the
metrics get less restrictive.

Latency. In Figure 6 and Figure S2, we show the speed of queries as the number of queries per sec-
ond, with batched requests. In some settings, it might be more interesting to look as latency instead

16

2 4 6 8 12 16 20 24 28 32 40 48 56 64
Candidates at evaluation time (A)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

M
SE

 (B
ig

AN
N1

M
)

B=16 A=2
B=16 A=4
B=16 A=8
B=16 A=16
B=16 A=32

Figure S4: MSE of QINCO2-L models (with L = 8 and B = 16), trained with five different
number of candidates A, when changing A at inference time.

2 4 6 8 12 16 20 24 28 32 40 48 56 64
Beam size at evaluation time (B)

0.85

0.90

0.95

1.00

1.05

1.10

M
SE

 (B
ig

AN
N1

M
)

B=2 A=16
B=4 A=16
B=8 A=16
B=16 A=16
B=32 A=16

Figure S5: MSE of QINCO2-L models (with L = 8 and A = 16), trained with five different beam
sizes B, when changing B at inference time.

17

Table S4: Comparison to state of the art methods for retrieval (R@1, R@10 and R@100). The best
results are in bold.

BigANN1M Deep1M Contriever1M FB-ssnpp1M

R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100
8

by
te

s
OPQ 21.3 64.3 95.6 15.1 51.1 87.9 8.5 24.3 50.4 2.5 5.0 11.2
RQ 27.9 75.2 98.0 21.9 64.0 95.2 9.7 27.1 52.6 2.7 5.9 14.3
LSQ 30.6 78.7 98.9 24.5 68.8 96.7 13.1 34.9 62.5 3.5 8.0 18.2
UNQ 39.7 88.3 99.6 29.2 77.5 98.8 – – – – – –
QINCO 45.2 91.2 99.7 36.3 84.6 99.4 20.7 47.4 74.6 3.6 8.9 20.6
QINCO2-L 52.3 95.2 99.9 45.1 90.8 99.8 23.1 51.5 77.3 4.5 11.0 24.2

16
by

te
s

OPQ 41.3 89.3 99.9 34.7 81.6 98.8 18.1 18.1 65.8 5.2 12.2 27.5
RQ 49.1 94.9 100.0 42.7 90.5 99.9 19.7 43.8 68.6 5.1 12.9 30.2
LSQ 49.8 95.3 100.0 41.4 89.3 99.8 25.8 55.0 80.1 6.3 16.2 35.0
UNQ 64.3 98.8 100.0 51.5 95.8 100.0 – – – – – –
QINCO 71.9 99.6 100.0 59.8 98.0 100.0 31.1 62.0 85.9 6.4 16.8 35.5
QINCO2-L 79.3 99.9 100.0 67.1 99.2 100.0 34.0 66.5 89.4 7.5 19.6 40.7

of queries per second. To this end, we compute the latency of a single query for two operating points
on the 16-bytes and 32-bytes BigANN1B large-scale search curves for IVF-QINCO2 and IVF-RQ.
To ensure a fair comparison, we selected points close to both pareto-optimal fronts, where IVF-
QINCO2 and IVF-RQ have approximately the same QPS & R@1. We use a single CPU for timing.
On BigANN1B (16 bytes) at a point with R@1=37 and QPS=2700, RQ has a latency of 10.78ms,
and 9.10ms for QINCO2. On BigANN1B (32 bytes) at a point with R@1=62 and QPS=350, RQ
has a latency of 71.54ms, and 22.25ms for QINCO2. While RQ uses larger parameters for the faiss
query to achieve this accuracy, QINCo2 uses a less accurate faiss search combined with a precise
re-ranking. The smaller latency for QINCo2 might indicate that the faiss search benefits more from
batched queries, and that QINCo2 can bring substantial improvements to speed with a small number
of queries.

18

	Introduction
	Background and related work
	Implicit neural codebooks
	Notation and background
	Improved implicit neural codebooks: encoding
	Large-scale nearest neighbor search

	Experimental validation
	Experimental setup
	Vector compression
	Large-scale vector search

	Conclusion
	Implementation details
	QINCo2 architecture
	Training QINCo2
	Large-scale search with Faiss

	Additional results

