
Graph Agnostic Causal Bayesian Optimization

Sumantrak Mukherjee1∗ Mengyan Zhang2∗ Seth Flaxman2 Sebastian Vollmer1,3
1Department of Data Science and its Applications, DFKI GmbH

2Department of Computer Science, University of Oxford
3Department of Computer Science, University of Kaiserslautern-Landau

Abstract

We study the problem of globally optimising a target variable of an unknown
causal graph on which a sequence of soft or hard interventions can be performed.
The problem of optimising the target variable associated with a causal graph is
formalised as Causal Bayesian Optimisation (CBO). We study the CBO problem
under the cumulative regret objective with unknown causal graphs for two settings,
namely structural causal models with hard interventions and function networks
with soft interventions. We propose Graph Agnostic Causal Bayesian Optimisation
(GACBO), an algorithm that actively discovers the causal structure that contributes
to achieving optimal rewards. GACBO seeks to balance exploiting the actions that
give the best rewards against exploring the causal structures and functions. To the
best of our knowledge, our work is the first to study causal Bayesian optimization
with cumulative regret objectives in scenarios where the graph is unknown or par-
tially known. We show our proposed algorithm outperforms baselines in simulated
experiments and real-world applications.

1 Introduction
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Figure 1: Graph Agnostic Causal Bayesian Opti-
misation (GACBO) workflow. Top: Select plausible
graphs based on data collected so far, Right: Per-
form Causal Bayesian Optimisation on plausible
graphs, Bottom: Select the action based on the
highest reward among all plausible graphs, Left:
Execute selected action, collect Data and repeat
steps.

Bayesian Optimization (BO) is a robust tech-
nique for optimizing black-box functions,
widely used in fields like drug discovery,
robotics, and automated machine learning
[Močkus, 1975, Garnett, 2023]. Traditional BO
methods [Srinivas et al., 2009, Garnett, 2023] of-
ten treat functions as black boxes, but real-world
data usually exhibits structural patterns. Causal
Bayesian Optimization (CBO) methods [Aglietti
et al., 2020, Sussex et al., 2022] leverage these
structures to improve sample efficiency. How-
ever, in many cases, causal graphs are either un-
known or incorrectly specified. We address this
by proposing a Graph Agnostic Causal Bayesian
Optimization (GACBO) method that works with
unknown or partially known causal graphs. Un-
like previous methods [Branchini et al., 2023,
Alabed and Yoneki, 2022b, Toth et al., 2022],
which focus on hard interventions and simple
regret, have a limited prior on graphs or target
causal reasoning but not BO, GACBO handles
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both soft and hard interventions and aims to
maximize cumulative rewards while learning the causal structure as needed. Our approach balances
exploitation (selecting actions with the highest potential outcomes) and exploration (uncertainty in
function space or causal structure learning). Figure 1 illustrates our proposed method. We begin
with a uniform prior over all possible acyclic graph structures, modeling surrogate functions for
each target node’s ancestors using Gaussian processes, with inputs being the node’s parents and
influencing actions. The Bayesian Score [Friedman and Nachman, 2013] models the probability of
these graphs. At each iteration, we retain functions and graphs within high-probability confidence
intervals, selecting interventions with a UCB-based acquisition function using the reparametrization
trick [Sussex et al., 2022]. Our contributions are as follows: 1) We are the first to study causal
Bayesian optimization with a cumulative objective in scenarios where the graph is unknown or
partially known. 2) We propose a novel algorithm, Graph Agnostic Causal Bayesian Optimization
(GACBO), that handles both soft and hard interventions and includes all possible graphs in the prior,
effectively sharing information across different experiments through a model-based approach. 3) We
introduce an Upper Confidence Bound-based acquisition function that integrates causal discovery
as a subtask, engaging in it only when distinguishing between graphs improves outcomes, thereby
balancing exploitation and exploration. 4) We demonstrate on synthetic and real-world causal graphs
that our algorithm performs competitively compared to existing baselines.

2 Problem Setup

Structural Causal Models An SCM [Pearl, 2009] is defined as a tuple ⟨g, Y,V ,fg,Ω⟩, where
g is a Directed Acyclic Graph (DAG) describing the relations between observed random variables
V = {Vi}m−1

i=0 , with each node i ∈ [m] belonging to a compact space Vi ⊂ R. Here, Y = Vm is
the reward variable, and fg = {fgi }mi=0 represents the unknown functions associated with g, with
independent noise terms Ω = {Ωi}mi=0 having zero mean and a known distribution. The parent nodes
of any node i in g are denoted by pag(i) ⊂ [m], and Zg

i = {Vj}j∈pag(i) represents the parents of
node i in g. Each node Vi ∈ V is generated by the function fgi : Zi,g → Vi, with the observed value
vi given by vi = fgi (z

g
i ) + ωi. These functions are evaluated in topological order from the root to

the leaf nodes according to g. In this setting, not all observable variables are intervenable [Lee and
Bareinboim, 2019]. Let I ⊂ {0, . . . ,m− 1} denote the indices of intervenable variables. The set of
observed variables V is decomposed into intervenable variables X = {Vj}j∈I and non-intervenable
variables C = {Vj}j /∈I , with the target variable Y = Vm assumed to be non-intervenable.

Interventions We use a soft intervention model for noisy function networks (NFNs) [Eberhardt
and Scheines, 2007], where controllable action variables a = {aj}nj=0 are added as nodes in g and
act as parents to nodes Vi, making them inputs to fgi . The subset ag

i ⊂ a affects Vi based on g, with
the action space Ag

i ⊂ R|ag
i | and total action space A. Since fgi : Zg

i ×Ag
i → Vi is unknown, the

agent cannot predict the effect of ag
i on Vi in advance. Observations are modelled as a special case

i.e., {aj = 0 ∀ aj ∈ ag
i }

Hard interventions are modelled as a subset of intervenable variables I ∈ P(I) being set to values
aI = {ai}i∈I independent of their parents using the do operator s.t. {do(xi = ai) ∀i ∈ I, ai ∈ Ai ⊂
R} and values are evaluated for all nodes i ∈ [m], based on the topological ordering of g

vi =

{
fgi (z

g
i ) + ωi if i /∈ I

ai if i ∈ I
(1)

Problem Statement and Performance Metric We address the problem of an agent interacting with
an SCM or NFN defined by ⟨g∗, Y,V ,fg∗ ,Ω⟩, where the graph g∗ and functions fg∗ are unknown
but fixed. At each round t, the agent selects soft intervention actions a:,t = {ag

i,t}mi=0, and for hard
interventions, it chooses the nodes It and the corresponding intervention values aIt . The agent then
collects data vt, with the subscript t indicating the time step of the intervention and data collection.
The objective is to design a sequence of actions {a:,t}Tt=0 or {It,aIt}Tt=0 that maximizes the average
expected reward for soft and hard interventions, respectively, which is equivalent to minimizing the
expected cumulative regret [Sussex et al., 2022, Lattimore and Szepesvári, 2020]:

RT =

T∑
t=1

[E[y|a∗]− E[y|a:,t]] ; RT =

T∑
t=1

[E[y|a∗]− E[y|do(xIt = aIt)]] . (2)
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Algorithm 1 Graph Agnostic Causal Bayesian Optimisation(Soft Interventions) (GACBO-S)

Input: Parameters {βt}t≥1, Ω, generic kernel function ki, prior over possible ψi,0 graph compo-
nents, prior means µi,0 = 0 ∀ i ∈ [m].
for t = 1 . . . T do

Construct confidence bounds for plausible functions Mt as in Eq. (4).
Construct plausible graphs Gt as in Eq. (5) using Algorithm 3.
Select a:,t ∈ argmaxa∈A maxg∈Gt maxηg(·) E[y|f̃g,a] as in Eq. (8).
Observe all nodes vt and update Dt = Dt−1 ∪ {vt,a:,t}.
Update posterior {{µg

i,t(·), σ
g
i,t(·)}mi=0}g∈G.

end for

3 Method

In this section, we propose the Graph Agnostic Causal Bayesian Optimisation (GACBO) and outline
the technical details we utilise to tackle the different sources of uncertainty: 1) Function Uncertainty:
For each node i in graph g with parent set zg

i , we model the functional relationship using Gaussian
Processes (GPs) as per standard Bayesian Optimization (BO) practices [Garnett, 2023]. Let µg

i,0 and
(σg

i,0)
2 denote the prior mean and variance of the function f ti,g for all i ∈ [m] and g ∈ G0. These are

updated at time step t based on previous data Dt = {(zg
i,1,a

g
i,1), . . . , (z

g
i,t−1,a

g
i,t−1)} with standard

GP update formula A.3. Kernel choices align with our regularity assumptions A.6. 2) Process
Uncertainty: We account for additive noise in data generation, assuming it to be either bounded or
sub-Gaussian, ensuring function domains remain compact. Sub-Gaussian noise ωi ∼ Ωi ∀i ∈ [m] is
incorporated into our GP variance terms ρ2i . 3) Causal Graph Structure Uncertainty: Assuming no
prior knowledge of the DAG structure, we treat all DAGS as equally likely. Using the Markov Property
of Bayesian Networks, we decompose the graph into components (parent sets of observable nodes)
and model their likelihood given data Dt, with a uniform prior over all possible parent sets. The
likelihood is computed using the Score [Friedman and Nachman, 2013], detailed in Section A.4.

Plausible Models At time step t, plausible models are defined as the set of surrogate models likely
to contain the true SCM, with confidence intervals ensuring a probability of at least 1 − δ. We
calculate the plausible functions for each node i using:

|f̃gi,t(z
g
i ,a

g
i )− Ei,t[zi,ai]| ≤ βi,t

√
Vi,t[zi,ai], (3)

Ei,t[zi,ai] = Eg∼p(g|Dt)[µ
g
i,t−1(z

g
i ,a

g
i )],

Vi,t[zi,ai] = Vg∼p(g|Dt)[µ
g
i,t−1(z

g
i ,a

g
i )] + Eg∼p(g|Dt)[(σ

g
i,t−1(z

g
i ,a

g
i ))

2].

Here, zi includes all observable nodes except Vi, and βi,t ensures confidence bounds, set as βi,t = βT .
Further details about βi,t are provided in A.6. At time t, all f̃gi within the confidence intervals defined
by the joint posterior p(g|Dt) and associated GP posteriors form the plausible functions Mt:

Mg
t = {f̃g = {f̃gi }

|V |
i=0 such that ∀ i : f̃gi ∈ Hki

, ∥f̃gi ∥ki
≤ Bi, and (3) holds for all a ∈ A}. (4)

The plausible graphs Gt are defined as:

Gt = {g | ∀i∃f̃gi ∈ Mg
t , g ∈ Gt−1}, (5)

with G0 = {g ∈ G}, where G denotes the space of all possible DAGs. For a graph to be plausible at
time t, there must be at least one associated function within the confidence interval for each node.

Algorithm We present two variants of the GACBO algorithm for soft 1 and hard interventions 2.
The causal subgraph discovery algorithm 3 is used in both variants of the algorithm to estimate the
graph posteriors and sample relevant graphs.

The maximum possible value varies across different graphs and function sets within the plausible
models at time t, each having its own optimal action. Our acquisition function identifies the graph
and function set that yield the highest target node value and returns the action that achieves it.

a:,t = argmax
a∈A

max
g∈Gt

max
f̃g∈Mg

t

E[y|f̃g,a]. (6)
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Figure 2: Simulation results comparing GACBO with MCBO (true and incorrect graphs) and GP-UCB.
GP-UCB is not applicable to ToyGraph due to hard interventions.

It is important to note that 6 is not suitable for standard optimization methods because it requires
maximization over a set of functions with a bounded RKHS norm.

Therefore for a graph g within the plausible models, the reparametrisation trick introduced in Curi et al.
[2020] and utilised for CBO in Sussex et al. [2022] can be used to write any function f̃gi ∈ f̃g ∈ Mg

t
using ηi,g : Zg

i ×Ag
i −→ [−1, 1], as

f̃gi,t(z̃
g
i , ã

g
i ) = µg

i,t−1(z̃
g
i , ã

g
i ) + βtσ

g
i,t−1(z̃

g
i , ã

g
i )ηi,g(z̃

g
i , ã

g
i ), (7)

The acquisition function can therefore be expressed in terms of ηg : Zg ×Ag −→ [−1, 1]|V (g)|, where
|V (g)| is the number of nodes in the graph g,

argmax
a∈A

max
g∈Gt

max
ηg(·)

E[y|f̃g,a]. (8)

More details about the optimistic reparameterisation trick can be found in A.5. The data collected is
used to update model posteriors and construct plausible models for next time step.

4 Results

We evaluate GACBO on synthetic environments (Dropwave, Alpine3, Rosenbrock, ToyGraph) and
a real-world Epidemiology Graph from [Astudillo and Frazier, 2021, Branchini et al., 2023]. The
metric used is the average reward, inversely related to cumulative regret. We repeat each experiment
5 times with different seeds and report average rewards ±σ/

√
5, where σ is the standard deviation.

We compare GACBO with: 1) MCBO [Sussex et al., 2022] using the true causal graph, 2) MCBO with
incorrect graphs (missing or extra edges), 3) GP-UCB [Srinivas et al., 2009] for soft interventions.

Simulations Figure 2 shows our results. For soft interventions, we use Dropwave, Alpine3, and
Rosenbrock. For hard interventions, we use ToyGraph [Aglietti et al., 2020]. MCBO with the true
graph generally performs best, except in Rosenbrock, where GP-UCB excels due to the function’s
additive structure. MCBO struggles with incorrect graphs, particularly when extra edges increase
dimensionality or missing edges misrepresent the function space. GACBO, initially hampered by lack
of graph information, quickly learns the correct structure and matches MCBO’s performance after
about 100 rounds. Further information regarding performance in specific environments can be found
in A.9.

R YLTB

R YLTB

Figure 3: Epidemiology application. Top left: true causal
graph. Bottom left: incorrect causal structure for MCBO.
Right: performance comparison.

Real-World Application: Epidemi-
ology We test GACBO in an Epi-
demiology setting [Havercroft and
Didelez, 2012, Branchini et al., 2023],
aiming to minimize HIV viral load
by choosing from interventions I =
{∅, {T}, {R}, {T,R}}. Despite the
environment’s complexity, GACBO
quickly learns the correct causal struc-
ture and matches MCBO’s perfor-
mance with the true graph within 100
rounds, significantly outperforming
MCBO with incorrect graphs.
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A APPENDIX

A.1 Nomenclature

Using standard notation, we use Capital letters to denote random variables and lowercase letters to
denote the realization of said random variables. We use bold letters to denote sets of certain nodes.
The support of a variable is given by curly letters. We use the subscript t to index data observed thus
far, and the subscript i is used to index a particular node in a vector, the superscript g is used to refer
to the input space

Symbol Description

Vj jth observed variable
Y Target variable we seek to optimize corresponds to

Vm
V Set of all observed variables
X Set of intervenable variables
C Set of non intervenable variables
Ai Action performed on node i
g∗ True latent causal graph
A Action vector composed of {Ai}mi=0

Zg∗

i The parents of node i in graph g∗

fg
∗

i (zg∗

i ,ag∗

i ) functions relating a node i with its parents and
actions

fg∗
(a) The overall function with input action composed

of functions {fg
∗

i }mi=0 related by graph g∗

Fg∗ the set of respective unknown functions associated
with g∗, i.e. {fg

∗

i }mi=0

Ω a set of independent noises with zero mean and
known distribution, i.e. {Ωi}mi=0

pag∗(i) indices of parent nodes of any node, defined for
the DAG g∗

{yt,vt,at} Observation of reward variable yt and intermediate
variables vt for the corresponding action at

Dt Observations for actions until time t, is the set
{yj ,vj ,aj}tj=0

Gt Posterior of the distribution over graphs at time t
g Random DAG samples from Gt

kgi (·, ·) Kernel defined on input space implied by graph g
for node i, gives covariance between two points

kg
i,t(·) A vector of covariances of the current input to

previous inputs [kgi ((z
g
i,t, a

g
i,t), ·)]ti=0

Kg
i Covariance matrix based on previous Dt

µg
i,t(·) Mean function based on data Dt and kernel kgi (·, ·)
σg
i,t(·) Variance function based on data Dt and kernel

kgi (·, ·)
GP (µg

i,t, σ
g
i,t) Gaussian Process f̃gi (·) ∼ N (µg

i,t(·), σ
g
i,t(·))

Hkg
i

Hilbert Spaces of functions implied by kernel kgi
f̃gi A function sampled from Gaussian Processes GP
ωi Observational noise of node i
Mt Plausible models at time t based on confidence

bounds

8



A.2 Related Work

Causal Decision Making The first causal Bayesian optimisation setting was proposed in Aglietti
et al. [2020], which focused on hard interventions and the best intervention identification setting.

Sussex et al. [2022] expanded their setting to include soft interventions and noisy environments.
They proposed the Model-based Causal Bayesian Optimisation (MCBO) algorithm, which is the state-
of-the-art method with a known graph. With unknown graphs for cumulative regret objective, Lu
et al. [2021], De Kroon et al. [2022], Konobeev et al. [2023] considered causal multi-armed bandits.
Lu et al. [2021] studied causal trees, causal forests and proper interval graphs, with regret analysis
under a few causal assumptions. De Kroon et al. [2022] utilised an estimator based on separating
sets, with no theoretical analysis on regret shown. Konobeev et al. [2023] proposed a RAndomized
Parent Search algorithm (RAPS) and showed conditional regret upper bounds. Malek et al. [2023]
show that the unknown causal graph be exponentially hard in parents of the outcome and studies the
problem under the additive assumption on the outcome. All the above work considered discrete arms
(intervention values) and linear bandits, while our work addresses continuous intervention values,
non-linear relations between nodes and a more general class of graphs.

Branchini et al. [2023] studied the CBO setting with an unknown graph for the best intervention
identification setting. Their approaches are based on the entropy search criterion. However, directly
applying their method to cumulative regret objective would lead to suboptimal performance since
one needs to further balance the exploitation-exploration balance between picking actions that lead to
the best rewards and learning causal structures. Alabed and Yoneki [2022a] studied the CBO problem
for unknown causal graph scenarios with a specific application to autotuners. To the best of our
knowledge, we are the first to study the CBO with unknown graph and cumulative regret objectives.

Active Causal Discovery von Kügelgen et al. [2019] developed a Bayesian optimal experimental
design framework to perform active causal discovery for Gaussian Process networks. Lorch et al.
[2021], Giudice et al. [2023] addressed the problem of causal discovery for graphs with a larger
number of nodes. Based on this, Tigas et al. [2022, 2023] performed active causal discovery for
larger graphs. Toth et al. [2022] considered the active learning methods for unifying sequential causal
discovery and causal reasoning.

The goals of active causal discovery and Bayesian optimisation are misaligned. While Bayesian
optimisation tries to balance exploration and exploitation to minimise cumulative regret, the active
causal discovery acquisition function might choose an intervention that has a low reward and does
not help future steps of CBO but helps discover the true underlying Causal Graph. Therefore it is sub-
optimal to first perform active causal discovery and then followed by causal Bayesian optimisation as
separate steps. Our algorithm naturally unifies these two steps by making causal discovery a sub-task
of causal Bayesian optimisation. See Appendix A.10 for a detailed discussion.

A.3 Surrogate models

Surrogate models help us incorporate our prior beliefs into the modelling process and allow us to
enact interventions without performing them in the real environment and also quantify the total
uncertainty related to certain outcomes. Define surrogate model mt ∼ Mt at time step t as a triple
mt = (gt, f̃

g
t ,ω

2
t ). Mt denotes the posterior of plausible models, gt ∼ Gt is one possible realisation

of posterior Gt at time t, f̃g
t = {f̃gt,i}mi=0 where the surrogate function f̃gt,i ∈ Hkg

i
belongs to the

RKHS Hkg
i

which is defined on the input space Sg
i = Zg

i ×Ag
i (and Sg

i = Zg
i for hard interventions)

for all nodes i as implied by kernel kgi : Sg
i × Sg

i −→ R. And we assume subgaussian observational
noise of each node ω2

t = {ω2
t,i}mi=0.

Surrogate Functions We model surrogate functions using Gaussian processes (GPs). Posterior
means µg

i,t and variances σg
i,t for any function parameterising any possible graph g at a given point is

calculated according to the GP posterior at time step t. The posterior is calculated using GP update
equations [Williams and Rasmussen, 1995].

f̃gi,t(z
g
i ,a

g
i ) ∼ N (µg

i,t(z
g
i ,a

g
i ), σ

g
i,t(z

g
i ,a

g
i )), (9)
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where

µg
i,t(z

g
i ,a

g
i ) = kg

i,t(z
g
i ,a

g
i )

⊤(Kg
i + ρ2i I)

−1vec(vi,1:t);

σg
i,t(z

g
i ,a

g
i ) = kgi ((z

g
i ,a

g
i ), (z

g
i ,a

g
i ))− kg

i,t(z
g
i ,a

g
i )

⊤(Kg
i + ρ2i I)

−1kg
i,t(z

g
i ,a

g
i ),

(10)

where I is used to define the identity matrix, vec(vi,1:t) = [vi,1 . . . vi,t]
⊤ ,

kg
i,t(z

g
i ,a

g
i ) = [kgi ((z

g
i,1,a

g
i,1), (z

g
i ,a

g
i )), . . . , k

g
i ((z

g
i,t,a

g
i,t), (z

g
i ,a

g
i ))], [Kg

i ]t1,t2 =

kgi ((z
g
i,t1
,ag

i,t1
), (zg

i,t2
,ag

i,t2
)).

Graph Likelihood The Markov Property of Bayesian networks allows for a compact factorisation of
the joint distribution of all observed nodes V = {V1, . . . , Vm} in the Bayesian Network,

p(V |g) =
m∏
i=0

p(Vi|Zg
i ). (11)

The joint distribution factorises into conditional distributions given its parents in the graph g.

In the case of soft interventions any observed node Vi is affected by its parents Zg
i as well as the

actions which appear as extra nodes in the SCM, we use Ag
i to denote the set of action nodes affecting

node i therefore it is calculated as

p(V |g) =
m∏
i=0

p(Vi|Zg
i ,A

g
i ) (12)

The distribution factorises into conditional distributions for each variable, given its parents in the
DAG and the associated actions for the node.

GPs admit a closed-form expression for the marginal likelihood of the t observations vi,1:t of the
node Vi. p(vi,1:t|g,θi) can be calculated as below

(2π)−
t
2 |K̃g

i,θ|
− 1

2 exp
(
−1

2
v⊤i,1:t(K̃

g
i,θ)

−1vi,1:t

)
(13)

where K̃g
i,θ = Kg

i,θ + ω2
i I . The covariance matrix Kg

i,θ is given by the kernel kgi,θ used and
observations collected until time step t (zg

i,1,a
g
i,1) . . . (z

g
i,t,a

g
i,t), (z

g
i,1) . . . (z

g
i,t) for soft and hard

interventions respectively. The input space of the functions and hence the kernel specified is dependent
on the selected graph. The lengthscales θi = {θi,j}i∈pag(i) chosen for different input nodes in the
selected graph, determine the smoothness of the functions in the RKHS implied by the kernel. The
lengthscales chosen for the kernel relate directly to the smoothness of the functions sampled from the
GP [Berkenkamp et al., 2019]. We define priors θi ∼ π(θi) over hyperparameters consistent with our
smoothness assumptions.

A.4 Bayesian Score

The Score is defined as Friedman and Nachman [2013] as S and is calculated as follows. The score
shows the probability of the observed values of node Vi is vi,1:t given the graph g and dataset Dt−1,
where graph g indicates the parents of node Vi is Zg

i and actions Ag
i .

S(Vi,Z
g
i ,A

g
i |Dt) =

∫
p(vi,1:t|g,θi)π(θi|g)dθi, (14)

Therefore the probability of observing data Dt given g is given as the product of observing the values
of each node in i ∈ [m] given the values of its parents according to graph g

P (Dt|g) =
m∏
i=0

S(Vi,Z
g
i ,A

g
i |Dt). (15)

The probability of the graph g given Dt is directly proportional to the product of the probability of
observing the data given graph P (Dt|g) and prior probability of graph g p(g) using Bayes Rule,

P (g|Dt) ∝ P (Dt|g)p(g). (16)
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A.5 Optimistic Reparameterisation

Actions are evaluated based on the topological ordering of nodes in a graph g. Finding the optimal
value of the target node requires selecting the correct actions for all its ancestor nodes. This task is
challenging due to two key factors. First, there is function uncertainty, meaning that for a given set of
node values and a fixed action, the exact value of the affected node is not known but lies within a
confidence interval. Second, the values of ancestor nodes, given actions up to node i in g, can vary.
The optimistic reparametrization approach involves choosing values for these ancestor nodes within
their confidence intervals in a way that allows descendant nodes to take on values that optimize the
target node.

For a graph g within the set of plausible models, the reparametrization trick from Curi et al. [2020]
and used for CBO in Sussex et al. [2022] allows us to express any function f̃gi ∈ f̃g ∈ Mg

t using
ηi,g : Zg

i ×Ag
i → [−1, 1] as

f̃gi,t(z̃
g
i , ã

g
i ) = µg

i,t−1(z̃
g
i , ã

g
i ) + βtσ

g
i,t−1(z̃

g
i , ã

g
i )ηi,g(z̃

g
i , ã

g
i ).

The acquisition function can then be expressed in terms of ηg : Zg × Ag → [−1, 1]|V (g)|, where
|V (g)| is the number of nodes in graph g:

argmax
a∈A

max
g∈Gt

max
ηg(·)

E[y|f̃g,a].

By selecting a sequence ηg corresponding to actions a:,t, we can choose optimistic but plausible
functions that maximize the target node for a given action. The objective then becomes finding the
right sequence ηg and the optimal action a:,t to achieve the best possible outcome given the current
function estimates.

In noiseless settings, instead of parameterizing each ηi as a neural network, it can be parameterized
as a constant. Without noise, the inputs to ηi,g (zgi and agi ) are fixed given a, reducing the parameter
space to optimize. This allows us to use the optimization procedure from EIFN by Astudillo and
Frazier [2021], which is also implemented as an optimizer in the BoTorch package Balandat et al.
[2020].

For noisy settings where each ηi,g : Zg
i ×Ag

i → R is parameterized as a neural network, we use our
own optimizer. For each initialization of η parameters, we perform stochastic gradient descent to
optimize both the ηi parameters and the action a, leveraging the differentiability of the acquisition
function with respect to both a and the ηi parameters. After running stochastic gradient descent on
many random initializations, we select the candidate with the highest acquisition function value. Since
the acquisition function may be highly non-convex, we use a large number of random initializations.
Alternative approaches, such as those in Curi et al. [2020] for model-based reinforcement learning,
could also be adapted to optimize our acquisition function. When parameterizing each ηi with a
neural network, we use a two-layer feed-forward network with a ReLU non-linearity, followed by an
element-wise Sigmoid function to map the output into [−1, 1].

A.6 Regularity Assumption

We operate under standard smoothness assumptions for any function relating any node to its parents
fg

∗

i −→ S ×Vi is defined over a compact domain S . For all nodes i ∈ [m], we assume fg
∗

i (·) belongs
to a reproducible Kernel Hilbert Space (RKHS) H

kg∗
i

, a space of smooth functions defined on the

input space S = Zg∗

i ×Ag∗

i for FNs and S = Zg∗

i for SCMs. This means all functions fg
∗

i ∈ H
kg∗
i

are induced by kg
∗

i : S × S −→ R. We also assume that kg
∗

i (s, s′) ≤ 1 for every s, s′ ∈ S. We
enforce our smoothness assumptions by placing a bound on the RKHS norm of fg

∗

i (·), ∥fg
∗

i ∥ ≤ Bi

for some fixed constant Bi ≥ 0. To ensure the compactness of the domain Zg∗

i we assume that the
noise ωi is either subgaussian or bounded i.e ωi ∈ [−1, 1].

A.7 Supplementary Algorithms

GACBO Hard Similar to the acquisition function defined in 6, we define an acquisition function
for hard interventions, with the only difference being that hard interventions are performed instead of
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Algorithm 2 Graph Agnostic Causal Bayesian Optimisation (Hard intervention) (GACBO-H)

Requires: Parameters {βt}t≥1, Ω, generic kernel function ki, prior over possible graphs G0, prior
means µg

i,0 = 0∀i ∈ [m], g ∈ G0.
for t = 1 . . . T do

Construct confidence bounds for plausible functions Mt as in 4
Construct plausible graphs as in 5.
Select I,aI ∈ argmaxI,aI∈A maxg∈Gt

maxηg(·) E.[y|f̃g, do(VI = aI)] as in 17.
Observe all nodes vt and update Dt = Dt−1 ∪ {vt,at} Update posterior

{{µg
i,t(·), σ

g
i,t(·)}mi=0}g∈G.

end for

Algorithm 3 Causal Subgraph Discovery

Input: Si = {S(Vi, Zi, Ai|Dt),∀(Zi, Ai) ∈ Zi ×Ai}, where i ∈ [m], gt = {}, De(m) = {}.
function FINDSUBGRAPH(g, i,Si, De(i))

if i ∈ g then
return g

end if
Sc
i = {S ∈ Si | Zi ∩De(i) = ∅},S̃c

i = { S∑
S∈Sc

i
S∀S ∈ Sc

i }, (Zc
i , A

c
i ) ∼ Multinomial(S̃c

i )

if Zc
i = ∅ then
g = g ∪ {i : (Zc

i , A
c
i )}

else
g = {g ∪ {i : (Zc

i , A
c
i )}, Pag(i) ∼ Uniform(Permutations(Zc

i ))
for j ∈ Pag(i) do

De(j) = De(j) ∪ {i}, g = FINDSUBGRAPH(g, j,Sj , De(j))
end for

end if
return g

end function
Output: gt = FINDSUBGRAPH(gt,m,Sm, De(m))

soft interventions. The observational uncertainty is propagated through the resulting mutilated graph,
the reparameterisation trick is used to find optimistic upper confidence for all plausible graphs

arg max
I,aI∈A

max
g∈Gt

max
ηg(·)

E[y|f̃g, do(VI = aI)]. (17)

This is slightly different as compared to soft interventions, because a hard intervention mutates the
graph, making the node independent of all ancestor nodes and interventions performed on them,
thus simplifying the problem. This induces the notion of Minimal Intervention Sets MIS [Lee and
Bareinboim, 2018]. A MIS for an SCM ⟨g, Y,V ,fg,Ω⟩ is defined as the set of variables Xs ∈ P(X)

such that there exists no such X
′

s ⊂ Xs for which E[Y | do(Xs)] = E[Y | do(X′
s)]. We denote the

MIS for graph g with target node y as Mg,y however since the graph structure is not known to us a
priori, we construct our Plausible MIS My,t, by taking the union over the MIS of plausible graphs
at time step t, i.e. My,t =

⋃
g∈Gt

Mg,y. For each plausible graph, we only compare interventions
within the MIS of the given graph to find the intervention which maximises the surrogate model
associated with that particular graph and then compare across all possible graphs to find the best
plausible intervention.

Causal Subgraph Discovery Our causal Subgraph discovery algorithm is used in both versions of
the GACBO algorithm to sample from the posterior over graphs. The Graph discovery algorithm
only focuses on components that are possibly ancestors of the target variables. It recursively samples
graph components based on scores of the graph components for any given node. The given nodes are
those of already sampled components closer to the target variable. We ensure acyclicity by excluding
components that form a cycle with one or more of the already sampled nodes. We randomly sample
the ordering of the parents of a node to determine their respective graph components.
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Figure 4: Problem Settings and Causal Structures: (a) Bayesian optimisation; (b) Structural causal
models and hard interventions; (c) Function networks and soft interventions; (c-w1) Incomplete graph
for (c), missing X1; (c-w2) Incorrect graph for (c), reversing the order of X1 and X2. The blue circles
X1 and X2 represent non-manipulative variables, the orange squares A1 and A2 represent actions
that can be taken, and Y is the outcome of interest.

A.8 Motivating Examples

We illustrate an example of how making use of causal structure in soft or hard intervention cases can
improve the optimization in Figure 5. This example shows observing intermediate nodes is essential.
Consider a modeller trying to optimize Y using A2, while ignoring the values of X1, X2, they would
observe a lot of different values of y for the same action A2 considering that X1 can take on several
different values, consequently affecting X2 and Y .

Consider an investigator trying to optimize her crop yield, the crop could be dependent on several
variables such as hours of daylight, soil moisture content, soil nitrogen content, temperature, rainfall,
pest control, fertilizer use, crop rotation, irrigation practices, planting density, soil pH, weed control,
climate conditions, genetic factors and so on.

While she is aware of all the factors that are related to crop yield, the causal relations between these
factors and the target variable are either unknown or partially known to her.

Some of these factors are not directly manipulable like rainfall, soil moisture content, soil pH, and
soil nitrogen content. However, they can be manipulated using soft interventions such as changing
irrigation frequency or adding pesticides. For example, soil moisture would be dependent on both rain
and irrigation practices, so even though we cannot directly set soil moisture content to our desired
level we can manipulate it by changing irrigation practices.

Adding pesticides could be treated as a soft intervention on both soil nitrogen content and soil pH
level. Both these variables might have a nonlinear relation to the amount of pesticide used.

If by some mechanism we could set the soil pH to our desired value that would be equivalent to a
hard intervention.

By experimentation, she can manipulate the values of these variables discover the causal relations
between them, and consequently design a policy that maximizes crop yield.

A.9 Simulation Details

A.9.1 Dropwave

Surjanovic and Bingham [2013], Astudillo and Frazier [2021], Sussex et al. [2022]
For our setting we consider A0 ∈ [−5.12, 5.12] and A1 ∈ [−5.12, 5.12], we set β = 0.5 and
ϵi = 0.1∀i ∈ [m]
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Figure 5: Illustrative example based on Ackley [2012], X2 = f2(X1, A2), Y = fy(X2). Hard
Interventions: X2 can be manipulated therefore optimisation objective can directly be achieved by
setting X2 to the correct value. Soft Interventions : X2 cannot directly be modified but is a function
of the value of X1 and action A2, hence by observing the value of X1 and appropriately choosing A2
(represented by plot on X1, A2 plane) the desired value of X2 can be achieved. This example shows
observing intermediate nodes is essential. Consider a modeller trying to optimise Y using A2, while
ignoring the values of X1, X2, they would observe a lot of different values of y for the same action
A2 considering that X1 can take on several different values, consequently affecting X2 and Y.

X0

A0

Y

A1

X0

A0

Y

A1

X0

A0

Y

A1

Figure 6: Dropwave: True DAG structure, and Incorrect DAG structures used in Experiment

x0 = f0(a0, a1) =
√
a20 + a21 + ϵ0

y = fy(x0) =
1 + cos(12x0)

2 + 0.5x20
+ ϵy

(18)

Results GACBO outperforms all cases other than MCBO when the graph is known as apriori. We
see a dip in performance in the initial rounds as expected, which are spent on graph discovery,
however after the 20th iteration on all seeds the posterior is concentrated around the true graph and
the performance matches that of MCBO.

A.9.2 Rosenbrock

Jamil and Yang [2013], Astudillo and Frazier [2021], Sussex et al. [2022]
For our setting we use ai ∈ [−2, 2] for i ∈ [m], we use β = 0.5 and ϵi = 0.1∀i ∈ [m]
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Figure 7: Rosenbrock: True DAG structure, and Incorrect DAG structures used in Experiment

f0(a0, a1) = −100a1 − a202− (1− a0)
2 + ϵ0

fk(ak, ak+1, xk−1) = −100ak+1 − a2k2− (1− ak)
2 + xk−1 + ϵki = 1, . . . ,m

(19)

Results GACBO matches the performance of other baselines in this environment. This behaviour
is expected as Rosenbrock has an additive structure and causal graph knowledge does not help
accelerate BO’s performance. However as demonstrated in our experiments, MCBO with missing
edges performs drastically worse as compared to all other methods demonstrating that utilising
MCBO with a misspecified graph can result in bad performance.

A.9.3 Alpine3

[Jamil and Yang, 2013, Sussex et al., 2022, Astudillo and Frazier, 2021] For our experiments we
consider ai ∈ [0, 10], for i ∈ m, we consider β = 0.5 and η = 0.1

f0(x0) = −
√
x0 sin(x0) + ϵ0

fi(ai, xi−1) =
√
ai sin(ai)xi−1 + ϵi, i = 1, . . . ,m

(20)

Results Similar to Dropwave, GACBO outperforms all methods except MCBO with a known
graph. For Alpine, the non-linear relationships make knowing the graph structure crucial for faster
identification of optimal actions, as shown by the empirical results.

A.9.4 ToyGraph

Aglietti et al. [2020]
X = ϵx
Z = exp(−X) + ϵz
Y = cos(Z)− exp(−Z/20) + ϵy

(21)

Results GACBO significantly outperforms MCBO with the wrong graph in both cases (extra and
missing edges). The ToyGraph environment is incredibly noisy when intervening on non-parent
nodes and therefore knowledge of the graph structure boosts performance.
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Figure 8: Alpine3: True DAG structure, and Incorrect DAG structures used in Experiment

X1 YX0

X0 YX1

X1 YX0

Figure 9: Toy Graph: True DAG structure, and Incorrect DAG structures used in Experiment

A.9.5 Epidemiology

, Branchini et al. [2023], Havercroft and Didelez [2012]
In our settings, we consider the following input ranges for interventions T ∈ [0, 4] and R ∈ [0, 4], we
use β = 1 and noise levels are specified according to the SCM.

B = U [−1, 1]

T = U [4, 8]
L = expit(0.5T + U)

R = 4 + LT

Y = 0.5 + cos(4T ) + sin(−L+ 2R) +B + ϵ withϵ ∼ N (0, 1)

(22)
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A.10 Causal Discovery and Causal Bayesian Optimization

Causal discovery from observational data [Verma and Pearl, 2022, Andersson et al., 1997, Spirtes
et al., 2000, Chickering, 2002, Friedman and Koller, 2003, Shimizu et al., 2006] can recover causal
graphs up to Markov Equivalence Classes (MEC). Friedman and Koller [2003], Janzing et al. [2012]
go beyond MEC from purely observational data based on information asymmetry. Tong and Koller
[2001], Murphy [2001], Eaton and Murphy [2007], Hauser and Bühlmann [2014], Wang and Jegelka
[2017], Ness et al. [2017], Yang et al. [2018], Ghassami et al. [2018], Agrawal et al. [2019], Faria
et al. [2022] study the problem of learning graphs from observational and interventional data.

Active causal discovery aims to learn the SCM efficiently. For example, von Kügelgen et al. [2019]
studied causal structure learning actively using Bayesian Optimal Experimental Design (BOED). The
acquisition function used in their model seeks to select the intervention that is maximally informative
about the underlying causal structure with respect to the current model.

Bayesian optimisation aims to learn the optimal point of unknown functions. Knowing the causal
structure helps us reduce the causal intrinsic dimension of the optimisation problem for hard interven-
tion. In the case of soft interventions, causal knowledge is useful for utilising the information from
intermediate nodes and converting a high-dimension problem into n smaller dimensional optimisation
problems (where n is the number of intermediate nodes).

However, learning the entire SCM such as in active causal discovery (i.e., all the causal edges and
mechanisms of all nodes in their entire domain) is not necessary for causal Bayesian optimisation.
This is understood in two separate cases:

Hard Intervention A hard Intervention mutates the graph, making the intervened node independent
of all its parents and ancestors. Lee and Bareinboim [2018] demonstrated that the optimal intervention
lies within the parents when there are no unobserved confounders. In such a case learning the causal
relation between the ancestors of the parents does not help the underlying goal of causal Bayesian
optimisation. Consider the example of ToyGraph, in the true data-generating mechanism X1 is the
parent of Y , and on performing do(X1 = x1) the value of Y is not affected by the value of X0, hence
for optimization knowing the causal direction or mechanism relating X0 and X1 is not required.

Soft Intervention A soft intervention does not mutate the graph, hence learning the causal relations
of the ancestral nodes is still relevant to the downstream optimisation problem, however learning the
entire causal structure might still be wasteful. If we have determined (specified by expert knowledge
or during a certain step of our active causal discovery process) that a certain node is not an ancestor
of the target node, then knowing the ancestors or descendants of the node does not contribute to
causal Bayesian optimisation. Causal structure in the case of soft intervention utilises values of
intermediate nodes to constrain the optimisation problem. Causal structure is only useful when
the decomposed problem is simpler than the original problem. For example consider function
f(x1, x2) = g(h(x1), x2), knowing the intermediate value h(x1) is only useful if the composed
function f is more difficult to optimise (because of non-linearity) than the individual functions g and
h. We observe in our experiments with the Rosenbrock graph in Section 4 that there is no significant
advantage of causal structure when the intermediate functions are purely linear.

Our algorithm naturally unifies the two steps of causal discovery and causal Bayesian optimisation
by making causal discovery a sub-task of causal Bayesian optimisation. If multiple causal graphs
exist within our hypothesis space that explain the data collected up to time step t, we only perform an
intervention aimed at disambiguation between these graphs if it potentially leads to better rewards
than the optimal value observed thus far. Our acquisition function (2) has three maximisations,
for a given graph g ∈ Gt there are several plausible functions for each node f̃gi,t and all possible
combinations of node functions define the function space for the graph g. We use the optimistic
reparameterisation trick to find the combination of functions and actions ag which maximises the
target node. We do this for all plausible graphs and compare the best possible value for each graph
g. We select the plausible graph g with the maximum possible value for the target node and the
corresponding action ag which maximises it. Consider a hypothetical scenario with two different
graphs g1, g2 which disagree on the value of node i for intervention a but the action which maximises
the value of target node yg1 , yg2 in g1 and g2 is same a∗, and the target node values also agree i.e.,
y∗g1 = y∗g2 for action a∗, even though performing a would help identify the true graph our acquisition
function is designed to choose a∗. Because yg1 ≤ y∗g1 or yg2 ≤ y∗g2 for any action a ̸= a∗.
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A.11 Superexponential Scaling of DAGs and Scalability

The problem setting we addressed in this paper is challenging due to the super-exponential growth of
the number of DAGs with the increase in the number of nodes. We only focus on small graphs where
all the graphs can be enumerated to study the problem of CBO with unknown graphs in isolation.
Our approach can be further improved to be more scalable, by MCMC-based sampling in the space
of graphs Giudice et al. [2023], or Differential approaches like DiBS Lorch et al. [2021] in latent
spaces or topological ordering of nodes. We leave it as a future work.

Our method in its current state computes the GP score of all possible graph components (all combina-
tions of parents and actions for all observed nodes) and samples graphs based on the GP score and
individually optimises and compares all sampled graphs. For larger graphs, the problem becomes
intractable as the number of components for which the GP score needs to be calculated increases
exponentially. In the initial rounds, the number of graphs that need to be optimised and the number of
comparisons that need to be made also increases superexponentially. Causal Bayesian optimisation
using the MCBO approach also takes longer for larger graphs.

A.12 Discussion on Theoretical Analysis

Our approach suggests attaining a similar regret bound to MCBO but with an added constant term.
However, our method holds the potential for a superior regret bound by simultaneously exploring the
causal structure and exploiting rewards from the outset. Empirical results indicate that our algorithm,
GACBO, exhibits a significantly faster increase in average rewards after initial rounds, underscoring
its potential for improved regret. The lack of guarantees for the convergence of the posterior to the
true graph in finite samples is a major obstacle. A potential theoretical proofing can be achieved by
decomposing our regret into two parts:

• Constant term: For the first n samples before learning the true graph, we obtain the constant
regret. This is due to the boundness assumption of function (See section 2.3 “Regularity
Assumption”) ||fg

∗

i || ≤ Bi. No matter what actions are selected, the upper bound of instant
regret can be bounded by 2Bi.

• MCBO regret: the second term is the same as the MCBO regret term since after n samples
we’ve discovered the true graph.

Effect of Graph Knowledge on Optimisation Theorem 1 of Sussex et al. [2022] bounds the
regret with high probability when the graph is known but functions are unknown in the case of
soft intervention as RT ≤ O(LN

f L
N
σ β

N
T K

Nm
√
TγT ) where γT = maxi γi,T , and N denotes

the maximum distance from a root node to Vm, K = maxi |pa∗g(i)| as compared to Standard
Bayesian Optimisation that makes no use of graph structure resulting in cumulative regret exponential
in m. Assuming the use of the Squared Exponential Kernel for modelling all functions, γT =
O((K + q)(logT )K+q+1) scales exponentially with respect to K and q the length of each action
vector. This results in an expression that scales exponentially in K,N . The theorem demonstrates
a potentially exponential improvement in the scaling of cumulative regret for possible actions
m ≥ K +N .

For environments allowing hard interventions, the optimisation problem can be reduced to the
Causal Intrinisic dimension [Aglietti et al., 2020] if interventions on parents are allowed, Lee and
Bareinboim [2018] shows results that the optimal intervention is always found among parents. For
environments which do not allow direct interventions on parents, the problem can be studied as a soft
intervention for the mutilated graph, by treating the intervened nodes as action nodes and propagating
uncertainty through the remaining nodes. For certain graphs, the depth N of the resulting graph can
be reduced significantly, consider by figure 1 of Aglietti et al. [2020] with a slight modification where,
intervention on the parent nodes {X100, Z100} is not possible but we are allowed to intervene on
{X99, Z99}, this allows us to reduce N = 2 from N = 100, resulting in an exponential improvement
in performance.

Convergence to the True Graph As the posterior mass on the graph distribution converges to
the dirac delta distribution on the true graph p(g) −→ δg=g∗ the cumulative regret converges to the
cumulative regret accrued when the graph is known. For hard interventions the posterior convergence
to the true graph is guaranteed under a few assumptions. For soft intervention models DAGs belonging
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to Markov Equivalence Classes are further distinguished under the assumptions underpinning the
GPN models, considering the functions fi, are not generally invertible [Giudice et al., 2023], the
GPN usually suggest higher scores to models admitting the true SEM structure as confirmed in our
numerical experiments. For cases where functions are invertible [Hoyer et al., 2008] guarantees
identifiability by leveraging the asymmetry of residual noise distributions.

While asymptotic convergence to the true graph structure is guaranteed, there are no known results
for finite samples. However, in our numerical experiments, we observe that the graph converges to
the essential graph in a small number of samples and potentially observes exponentially less regret
as compared to not knowing the graph henceforth. Several studies have considered the problem
of learning the causal structure optimally, Murphy [2001], Tong and Koller [2001], Masegosa and
Moral [2013], Hauser and Bühlmann [2014], Kocaoglu et al. [2017]. Future work could look at more
efficient techniques to learn the structure with finite time guarantees to place an upper bound on the
cumulative regret for the case when the graph is unknown apriori.

A.13 Experiment Details

All our experiments were performed on Google Colab without a GPU or TPU enabled, we used
random seeds 47, 42, 73, 66, 13 for 5 repeats for all given algorithms and given environments.

We use the BoTorch library for both our surrogate models and acquisition functions, specifically
implementing the acquisition function with the qSimpleRegret module. For each node, we initialize
the lengthscales using BoTorch’s default prior and set a lower bound on the lengthscale using
functionality provided by GPyTorch. Inputs to the individual functions are normalized to the [0, 1]d

range. To fit the hyperparameters, we maximize the marginal log-likelihood.

A.14 Limitations and Future Work

In the current work we focus on the problem of causal Bayesian optimisation with unknown graphs,
however we make several assumptions which may be violated in practice. We assume no unobserved
confounders, this assumption is critical to our causal discovery algorithm and our model-based
approach for causal Bayesian optimisation is also not resilient to unobserved confounders. We
assume additive noise and known noise distribution for each node, this is a strong assumption in
practice and needs to be relaxed in future work. Our regularity assumptions might also restrict the
application of our method to problems where the relation between a node and its parents is not highly
nonlinear. Our current method does not scale well to larger graphs, however, this can be addressed in
future work as described in section A.11. We defer providing theoretical guarantees for our method
to future work as discussed in A.12.
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