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Abstract001

Large Language Models (LLMs) often pro-002
duce factoid hallucinations - plausible yet in-003
correct answers. A common mitigation strat-004
egy is model alignment, which improves fac-005
tual accuracy by training on curated (factual,006
non-factual) pairs. However, this approach of-007
ten relies on a stronger model (e.g., GPT-4) or008
an external knowledge base to assess factual009
correctness that may not always be accessible.010
Addressing this, we propose Atomic Consis-011
tency Preference Optimization (ACPO), a self-012
supervised preference-tuning method that en-013
hances factual accuracy without external su-014
pervision. ACPO leverages atomic consistency015
signals (i.e., the agreement of individual facts016
across multiple stochastic responses) to iden-017
tify high- and low-quality data pairs for model018
alignment. Despite being fully self-supervised,019
ACPO outperforms the strong supervised align-020
ment baseline by 1.95 points on the LongFact021
and BioGen datasets, demonstrating its effec-022
tiveness in improving factual reliability without023
relying on external models or knowledge bases.024

1 Introduction025

Large Language Models (LLMs) have emerged as026

powerful tools for accessing information through027

natural language generation. Long-form factoid028

question-answering (QA), in particular, plays a cru-029

cial role in human interactions with LLMs for in-030

formation retrieval (AlKhamissi et al., 2022). How-031

ever, a significant concern with LLMs is their ten-032

dency to produce content that appears plausible but033

is factually incorrect, a phenomenon commonly re-034

ferred to as hallucination (Rawte et al., 2023; Xu035

et al., 2024; Huang et al., 2025). This issue is es-036

pecially critical in the use of LLMs in domains037

like medical diagnosing, news reporting, and edu-038

cational tutoring. To mitigate this issue, numerous039

strategies have been proposed.040

The most common way to mitigate hallucina-041

tions involves a model alignment step to improve042

its factual accuracy. This process leverages curated 043

(factual, non-factual) data pairs to align the model 044

toward generating more factual content (Zhang 045

et al., 2024; Tian et al., 2023). Typically, these 046

data pairs are identified using a retriever paired 047

with a knowledge base or a more advanced lan- 048

guage model (like GPT-4) (Huang and Chen, 2024; 049

Zhang et al., 2024). However, the applicability of 050

these techniques is often limited by two key factors. 051

First, the unavailability of robust structured 052

knowledge bases in many scenarios, particularly 053

in low-resource domains such as IT technical sup- 054

port (Yang et al., 2023), medicine, and law (Sen- 055

gupta et al., 2025) restricts the effectiveness of 056

these methods. Second, relying on advanced pro- 057

prietary APIs (e.g., GPT-4 or Gemini 2.5) to score 058

alignment data is very expensive. It also introduces 059

serious privacy risks, especially when scored data 060

includes sensitive information. These challenges 061

underscore the need for self-supervised approaches 062

that can enhance factual accuracy and reduce hal- 063

lucinations without relying on knowledge bases or 064

external models. 065

Conversely, several inference-time techniques, 066

such as ASC (Thirukovalluru et al., 2024), CoVe 067

(Dhuliawala et al., 2024), and USC (Chen et al., 068

2024), operate in a fully self-supervised manner 069

(not relying on any external models/knowledge 070

bases) by evaluating an LLM’s output using self- 071

consistency or self-evaluation based mechanisms. 072

These methods are designed to identify and elim- 073

inate non-factual components, delivering a more 074

reliable final response. However, they are compu- 075

tationally intensive at inference time, often neces- 076

sitating multiple LLM calls (e.g., verifying each 077

individual fact) to improve performance. 078

Inspired by the success of these inference-time 079

hallucination reduction techniques in long-form 080

question answering, we propose a self-supervised 081

training approach that extends these principles to 082

the alignment phase, enabling models to learn in- 083
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herent factuality without reliance on external su-084

pervision. Although versions of self-supervised085

preference tuning has been explored in prior works,086

such as FactTune and SKT (Zhang et al., 2024;087

Tian et al., 2023), these methods remain computa-088

tionally expensive due to their heavy reliance on089

GPT-3.5 for extracting individual atomic facts and090

verification questions. Further, for factual calibra-091

tion, self-consistency-based approaches have been092

shown to outperform confidence estimation meth-093

ods such as self-evaluation in SKT and atomic ques-094

tion confidence in FactTune (Huang et al., 2024).095

Recent work on reasoning tasks further highlights096

that self-consistency-based alignment tuning out-097

performs alternative methods (Prasad et al., 2024).098

We propose Atomic Consistency Preference Op-099

timization (ACPO), a scalable self-supervised frame-100

work for enhancing factuality in long-form gen-101

eration. Unlike prior methods, ACPO does not102

depend on external knowledge bases or stronger103

models. Instead, it relies solely on a base large104

language model and a lightweight BERT-based105

embedder. Specifically, ACPO applies atomic self-106

consistency—the factual agreement across multiple107

stochastically sampled responses (Thirukovalluru108

et al., 2024)—to efficiently construct preference-109

alignment pairs without supervision. Our contribu-110

tions are:111

• ACPO a novel, privacy-guaranteed, cost-efficient112

self-supervised preference tuning method to im-113

prove long-form factoid QA abilities without re-114

liance on any stronger LLMs or knowledge bases.115

• ACPO effectively reduces hallucinations and out-116

performs FactAlign, a strong supervised base-117

line, by improving factual precision by an aver-118

age of +1.95 points on widely used fact-checking119

benchmarks: LongFact (Wei et al., 2024) and120

BioGen (Min et al., 2023).121

• Through systematic ablations, we show that122

atomic self-consistency provides a strong and123

effective signal for the reinforcement learning124

step of large language models, outperforming its125

direct application at inference time.126

2 Related Work127

This section provides an overview of128

inference-time methods and preference-tuning129

approaches aimed at reducing hallucinations and130

improving long-form question answering.131

2.1 Inference Time Methods 132

2.1.1 Using Retrievers, Self-Evaluation 133

FactScore (Min et al., 2023) uses an external re- 134

triever to evaluate and improve response factu- 135

ality. LongFact (Wei et al., 2024) extends the 136

original FactScore metric by incorporating an F1- 137

based evaluation for recall level factual assessment. 138

Chain of Verification (CoVe) (Dhuliawala et al., 139

2024) introduces a method that generates multiple 140

verification questions for a given response, retain- 141

ing only the segments that can be independently 142

verified. Similarly, Agrawal et al. (2024) filters 143

non-factual content from list-style answers using 144

indirect self-evaluation questions. 145

2.1.2 Using Self-Consistency 146

Consistency across stochastic responses has been 147

proven to be a strong signal for improving reason- 148

ing and code generation (Chen et al., 2024; Wang 149

et al., 2023). Building on this, SelfCheckGPT 150

(Manakul et al., 2023) uses agreement among di- 151

verse model outputs as an indicator of hallucination. 152

HaLo (Elaraby et al., 2023) used consistency-based 153

metrics to detect sentence-level hallucinations in 154

the generations. Atomic Self-Consistency (ASC) 155

(Thirukovalluru et al., 2024) extends consistency- 156

based methods by decomposing multiple stochastic 157

responses into atomic facts, clustering them to re- 158

duce redundancy, and using cluster strength as a 159

proxy for factual consistency. Inspired by ASC, we 160

leverage atomic-level consistency signals to con- 161

struct preference pairs for alignment. 162

2.2 Alignment Methods 163

Although inference-time methods have proven ef- 164

fective in reducing hallucinations, they are often 165

computationally expensive, typically relying on 166

multiple stochastic generations or repeated LLM 167

queries to verify individual atomic facts within a 168

response. To address this, recent work has focused 169

on alignment-based training approaches that aim 170

to induce factuality during training thus reducing 171

the inference-time costs. 172

FactAlign (Huang and Chen, 2024), a strong su- 173

pervised baseline, leverages Kahneman-Tversky 174

Optimization (KTO) aligns models using atomic 175

fact labels from FactScore, which identifies individ- 176

ual facts using GPT-3.5 models and verifies them 177

via a Wiki-based retriever. 178

SKT (Zhang et al., 2024) uses GPT-3.5-models 179

to first generate atomic facts and then verifying 180
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questions from multiple stochastic responses. An181

external retriever is then used to score each atomic182

fact, with scores aggregated to produce response-183

level ratings. Similarly, FactTune (Tian et al., 2023)184

generates atomic claims and corresponding ques-185

tions using GPT-3.5, and scores them with an exter-186

nal retriever, aggregating claim-level scores to ob-187

tain response-level scores. In both methods, these188

scores are used to construct preference pairs—high-189

scoring responses as preferred and low-scoring as190

non-preferred. These pairs are then used for DPO-191

based alignment training of the model.192

SKT and FactTune also propose self-supervised193

variants of their methods, wherein the base model194

is directly used to score atomic factuality instead195

of relying on an external retriever. However, these196

variants are not truly self-supervised, as they still197

depend on an additional GPT-3.5-based pipeline to198

generate atomic claims and verification questions.199

Assuming m stochastic responses are generated,200

both methods require m base LLM calls for the ini-201

tial generations. This is followed by approximately202

(m× f × 2) GPT-3.5 calls for generating f atomic203

claims and verification questions per response. Fi-204

nally, the self-evaluation scores are computed using205

an additional (k ×m× f) base LLM calls, where206

k ≈ 1 for SKT and k ≈ 20 for FactTune—making207

the overall process extremely expensive.208

In terms of scoring, SKT leverages the gen-209

erated atomic claims to estimate self-evaluation210

scores, while FactTune disregards the claims en-211

tirely and bases its confidence estimation solely212

on the calibration of atomic questions to estimate213

a response confidence. Notably, for factual cal-214

ibration, self-consistency-based approaches have215

been shown to outperform self-evaluation-based216

scoring—as used in SKT—and other methods like217

atomic question confidence, as used in FactTune218

(Huang et al., 2024). Recent work shows that219

self-consistency–driven preference tuning signif-220

icantly outperforms other baselines on reasoning221

tasks (Prasad et al., 2024).222

Motivated by these findings, we propose Atomic223

Consistency Preference Optimization (ACPO),224

which leverages atomic self-consistency—the225

agreement of individual facts across stochastic re-226

sponses—to score outputs and construct preference227

data for DPO-based alignment. ACPO generates m228

stochastic responses using only m base-LLM calls229

and eliminates the need for costly atomic fact la-230

beling or large-model verification (e.g., GPT-3.5).231

Instead, it employs a lightweight embedding model232

to cluster atomic facts and uses cluster strengths as 233

a measure of consistency. This design substantially 234

improves efficiency while fostering strong factual 235

consistency. Section 3 discusses basics of DPO 236

followed by our methodology in Section 4. 237

3 Background: DPO Alignment 238

Mechanism 239

Reinforcement Learning with Human Feedback 240

(RLHF) has become a foundational approach for 241

aligning large language models (LLMs) with hu- 242

man preferences and reducing hallucinations (Tian 243

et al., 2023; Zhang et al., 2024). This line of work 244

began with InstructGPT, which introduced a reward 245

model and Proximal Policy Optimization (PPO) for 246

fine-tuning (Ouyang et al., 2022). To reduce the 247

cost of human annotations and leverage the grow- 248

ing capabilities of LLMs, later approaches such 249

as Constitutional AI (Bai et al., 2022) and RLAIF 250

(Lee et al., 2024) replaced human preferences with 251

model-generated critiques. More recently, Direct 252

Preference Optimization (DPO) (Rafailov et al., 253

2023) simplified this process by eliminating the 254

need for a separate reward model and complex re- 255

inforcement learning, instead directly optimizing 256

log-likelihood ratios over preference pairs. In this 257

work, we create self-supervised preference data 258

and adopt DPO to perform alignment tuning. 259

We apply the standard DPO loss function, shown 260

in Equation 1. 261

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log πθ(yw|x)

πref(yw|x)

)
− log σ

(
β log πθ(yl|x)

πref(yl|x)

)]
(1) 262

The DPO approach fine-tunes a policy πθ by 263

maximizing the preference margin between a pre- 264

ferred response yw and a less preferred one yl, rel- 265

ative to a reference policy πref. The β controls how 266

aggressively the model separates preferred from 267

non-preferred responses. 268

4 Methodology 269

In this section, we present our ACPO framework, 270

detailing the training data generation process and 271

the fine-tuning methodology. 272

4.1 Overview 273

We leverage the model’s generation capabilities to 274

produce m stochastic responses for a given prompt 275
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Figure 1: ACPO data curation pipeline. Steps 1–5 (Top): Generate stochastic responses for a question, Split and
extract atomic facts; Cluster the atomic facts; Identify consistent and non-consistent clusters; Score responses based
on cluster consistency. Step 6-7 (Bottom): Highest and lowest scoring curated as preference pairs; DPO alignment.

P . Following the ASC (Thirukovalluru et al., 2024)276

framework, each response Ri is decomposed into a277

set of atomic facts [a1, a2 . . . ak]. All atomic facts278

from all responses are then aggregated and clus-279

tered. The core idea from ASC is that atomic facts280

appearing in larger clusters are more likely to be281

factual; we refer to these as consistent clusters Ci,282

while smaller clusters form Non-consistent clusters283

NCi. For each atomic fact in a response Ri, we284

determine whether it belongs to a consistent or non-285

consistent cluster. If the atomic fact belongs to a286

consistent cluster, we reward its initial response (by287

adding a positive score); if not, we apply a penalty.288

This results in a consistency-based score for each289

response Ri, allowing us to distinguish between290

preferred and non-preferred responses. Next, we291

describe the scoring mechanism and training data292

generation for DPO alignment in detail.293

4.2 Data Generation 294

4.2.1 Step 1: Initial Responses Generation 295

Given a question q, our objective is to prompt a 296

large language model L to generate a response that 297

is both accurate and informative. To achieve this, 298

we adapt the system prompt from FactTune (Tian 299

et al., 2023), modifying it to: “You are an intelli- 300

gent assistant who answers questions accurately”. 301

This modified prompt is then concatenated with 302

the input of the actual question q. As a result, 303

we obtain m independent responses denoted as 304

[R1, R2, . . . , Ri, . . . , Rm] by querying the model 305

L with q using the predefined prompt P . 306

4.2.2 Step 2: Splitting Initial Responses for 307

Atomic Facts 308

We then decompose each candidate response into 309

a set of atomic statements. A single response Ri 310

to a question may contain multiple sentences, each 311
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potentially expressing one or more atomic facts.312

While prior work Min et al. (2023); Zhang et al.313

(2024); Huang and Chen (2024) has employed large314

instruction-tuned models, like GPT-3.5, to identify315

atomic facts from long-form text, these methods316

are often computationally expensive and lack scal-317

ability. Inspired by Arslan et al. (2020); Thiruko-318

valluru et al. (2024); Liu et al. (2023), we adopt a319

simplified yet effective alternative: treating each320

sentence in a generation as an atomic fact. Specifi-321

cally, following the ASC paper, we apply standard322

sentence tokenization techniques (Bird et al., 2009)323

to segment each response into individual sentences,324

which we regard as atomic facts. After tokeniza-325

tion, the i-th response Ri is represented as a list of326

atomic sentences (atomic facts) [ai1, ai2, . . . , aik],327

where k is the atomic fact count.328

4.2.3 Step 3: Clustering Atomic Facts329

To address the high computational cost of verifying330

the relevance of each atomic fact across multiple331

generated responses, we follow the ASC frame-332

work by clustering semantically similar atomic333

units. ASC applies agglomerative clustering on334

sentence embeddings obtained from SimCSE (Gao335

et al., 2021) (a lightweight BERT-based sentence336

embedder), leveraging the substantial semantic337

overlap across generations to group atomic facts338

with similar meanings. Although agglomerative339

clustering has cubic worst-case complexity, it re-340

mains substantially more efficient than knowledge-341

base or LLM-based verification for each atomic342

fact.343

4.2.4 Step 4: Consistent (C) and344

Non-consistent (NC) Clusters345

Our method leverages the inherent consistency of346

model outputs that are quantified by the size of each347

cluster. Clusters with count below a threshold Θ348

are determined as NCi, while those above or equal349

to the Θ are classified as Ci. The hypothesis is that350

LLMs are knowledgeable, and the high-frequency351

information in responses is more factual than rare352

ones (Wang et al., 2024). Therefore, information353

in Ci is more factual, and we utilize this property354

to score the initial responses R.355

4.2.5 Step 5: Scoring Function356

We define a consistency-based scoring function for357

each response Ri based on the classification of its358

atomic facts into consistent and non-consistent clus-359

ters. Let the atomic facts extracted from response360

Ri be: Ri = [ai1, ai2, . . . , aik]. Let Ci denote the 361

set of consistent clusters (with size ≥ Θ), and NCi 362

denote the set of non-consistent clusters (with size 363

< Θ). We score each response Ri as: 364

Score(Ri) =

k∑
j=1

δ(aij); where

δ(aij) =


+1, if aij ∈ Ci
−1, if aij ∈ NCi

0, otherwise

(2) 365

This scoring mechanism rewards atomic facts 366

belonging to consistent clusters and penalizes those 367

from non-consistent clusters. For example, if Ri = 368

[ai1, ai2, ai3], and ai1, ai3 ∈ Ci while ai2 ∈ NCi, 369

then: Score(Ri) = 1 + (−1) + 1 = 1. 370

4.2.6 Step 6: Preference Data Obtain 371

After Steps 1-5, each Ri is assigned a consistency- 372

based score. To construct preference pairs, we 373

sort all responses by their scores and select the 374

top-1 response as preferred (Pi) and the bottom-1 375

response as non-preferred (NPi). This results in a 376

training dataset: D = {(xi, Pi, NPi)}, containing 377

N datapoints where xi is the prompt. 378

4.3 Step 7: DPO Alignment 379

The preference data pairs generated in § 4.2 are 380

subsequently used for DPO alignment, with the 381

detailed training setup described in § A.1. 382

5 Experiments 383

5.1 Models and Baselines 384

We conduct a comprehensive comparison of our 385

proposed method, ACPO, against two key baselines. 386

The first is FactAlign (Huang and Chen, 2024), a 387

recently introduced alignment technique that lever- 388

ages fine-grained, atomic fact-level annotations pro- 389

vided by the FactScore benchmark to guide the 390

alignment process. The second baseline is the un- 391

aligned model, RawModel, which serves as a refer- 392

ence point to assess the impact of alignment strate- 393

gies. To ensure a fair and thorough evaluation, 394

we perform experiments at two different model 395

scales: Phi-3.5 Mini (4B) and LLaMA-3 (8B), al- 396

lowing us to assess performance across varying 397

levels of model capacity. ACPO uses m = 30 fol- 398

lowing Zhang et al. (2024). β is set to 0.1 during 399

ACPO training. More details in §A.1. We are unable 400

to compare with SKT due to unavailable code, and 401

with FactTune as it requires 2M GPT-3.5 calls on 402
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LongFact dataset and uses private datasets during403

their training, preventing cross-evaluation.404

5.2 Datasets and Evaluation405

The training split of the LongFact dataset (Wei406

et al., 2024), consisting of 2,097 examples, was407

used to align both FactAlign and the proposed408

model, ACPO. Evaluation was conducted on the409

test splits of the LongFact and BioGen datasets410

(Min et al., 2023), with results reported for411

all models and baselines. As FactScore relies412

on topic names—which are not available for413

LongFact—GTR-XL was used to retrieve the most414

relevant documents from the full Wikipedia cor-415

pus to support factual grounding during evaluation.416

FactScore reports two key metrics: the factual pre-417

cision of the claims present in the output and the418

total number of factual claims identified in the out-419

put. The former is the more important metric.420

5.3 Main Results421

Table 1 shows the comparison between ACPO and422

other methods. Despite not utilizing any external423

signal like FactAlign, ACPO beats FactAlign in424

three out of the four scenarios. With Llama3-8B,425

ACPO also produces outputs containing a greater426

number of claims. This stems from its use427

of the ASC principle to identify preferred and428

non-preferred responses for training. As noted by429

(Huang et al., 2024), models vary in their calibra-430

tion (i.e., consistency across stochastic responses),431

which we believe explains why Phi-3 generates432

fewer claims. More details in §A.5.433

5.4 Analysis 1: Can Length Balancing434

Alignment data help?435

Our analysis of the alignment training data revealed436

distinct trends in preference behavior across the437

Phi-3 and Llama3 datasets. Specifically, in Phi-438

3, preferred responses were generally shorter than439

non-preferred ones, whereas in Llama3, the op-440

posite trend was observed—preferred responses441

tended to be longer. To evaluate whether explic-442

itly incorporating response length into the training443

signal could enhance the performance of ACPO, we444

explored several variants that adjusted the length445

of non-preferred responses in alignment with these446

trends—shortening them for Phi-3 and lengthening447

them for Llama3.448

Specifically, ACPO selects the single highest-449

and lowest-scoring responses as the preferred and450

non-preferred examples, respectively. In contrast,451

ACPO (5,5) expands this selection to the top five 452

and bottom five responses while keeping the num- 453

ber of training steps unchanged. Building on this 454

variant, we introduced a length-based modification, 455

replacing one or two of the non-preferred responses 456

with alternatives chosen by length—favoring 457

longer responses for Phi-3 and shorter ones for 458

Llama3. As shown in Table 2, this adjustment 459

yields performance improvements. Additionally, 460

length balancing increases the #Claims, which is 461

valuable in scenarios prioritizing high recall. This 462

is because ACPO’s selection process does not con- 463

strain response length, while the factual precision 464

metric is length-sensitive—short responses can in- 465

flate precision scores (Huang and Chen, 2024). 466

5.5 Analysis 2: Measuring Recall 467

While Table 1 reports results for factual precision, 468

recall is also critical in certain scenarios. Therefore, 469

we additionally compute the F1 score of different 470

models under LongFact using their custom API. It 471

is important to note that FactScore does not provide 472

an F1 metric; hence, we do not report it. As shown 473

in Table 3, ACPO outperforms other models. 474

5.6 Ablation 1: ACPO compared with 475

Inference time ASC 476

This ablation study investigates whether explicit 477

alignment training is necessary or if the ASC prin- 478

ciple can be effectively applied directly at inference 479

time to achieve performance comparable to or bet- 480

ter than ACPO. Although applying ASC at inference 481

time is computationally more expensive, we assess 482

its effectiveness relative to aligned models. Results 483

are shown in Table 4. Direct refers to generating re- 484

sponses from the raw or trained model without any 485

additional sampling, whereas ASC generation in- 486

volves sampling multiple stochastic outputs and se- 487

lecting the highest-scoring one based on Score(Ri). 488

As observed, ACPO with direct decoding outper- 489

forms ASC applied to the unaligned RawModel, 490

suggesting that incorporating ASC into the train- 491

ing process to construct a preference dataset leads 492

to more substantial improvements than applying 493

it only at inference time. Moreover, applying the 494

ASC on top of ACPO yields further gains. Motivated 495

by the improvements from ACPO+ASC, we con- 496

ducted an additional round of self-supervised train- 497

ing using the already-aligned model. While this 498

attempt did not improve test performance—likely 499

due to overfitting after 25 epochs of ACPO training 500

(§A.1). Iteration 2 had a higher Score(Ri) score 501
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Llama-3-8B-Instruct Phi-3-mini-4k-instruct
LongFact BioGen LongFact BioGen

Method Score #Claim Score #Claim Score #Claim Score #Claim

RawModel 79.8 121.2 55.9 61 78 90.2 41.7 88.4
FactAlign 83.3 119.9 57.1 56.7 81.2 113.8 47.1 100.9
ACPO 82.1 143.8 58 68 84.6 70.7 51.8 67.1

Table 1: Factscore accuracy for ACPO FactAlign and other baselines on LongFact, Bios datasets. FactAlign and
ACPO were trained on the train set of LongFact. #Claim is the average number of claims produced by the model.

LLama-3-8b-Instruct Phi-3-mini-4k-instruct
Length LongFact BioGen Length LongFact BioGen

Method P NP Score #C Score #C P NP Score #C Score #C

ACPO 478 457 82.1 143.8 58 68 307 327 84.6 70.7 51.8 67.1
ACPO (5,5) 466 449 79.6 150.6 57.3 83.2 287 295 85.1 72.5 49.4 64.3
ACPO (5,4+1) 466 461 80.2 140.2 58.2 73.9 287 285 85.4 75.6 50.5 65.4
ACPO (5,3+2) 466 468 81.4 127.8 59.7 68 287 279 84.9 75.2 50.6 67.1

Table 2: Using length as an additional criterion to balance preferred and non-preferred data leads improves #Claims,
thereby increasing recall. Results are better for Llama3 on BioGen and for Phi-3 on LongFact.

Method F1 #Claim

RawModel 75.88 100.85
FactAlign 80.32 103.33
ACPO (Ours) 83.84 120.17

Table 3: Longfact F1 score with Llama-3-8b-Instruct

than Iteration 1, which suggests that, although the502

model became more internally consistent, the im-503

provement did not generalize to the test set, likely504

due to overfitting on the LongFact training data.505

5.7 Ablation 2: Dissecting ACPO Scoring506

Mechanism507

To understand the contribution of individual com-508

ponents within ACPO, we conduct a series of studies,509

with results summarized in Table 6. In its full form,510

ACPO rewards responses that include atomic facts511

from consistent clusters and penalizes those con-512

taining atomic facts from non-consistent ones.513

We examine ACPO (5,5) alongside ACPO w/o514

Non-Consistent Penalty, which removes515

the penalty for selecting atomic facts from516

non-consistent clusters. To probe the effect of re-517

sponse length on alignment, we further extend our518

ablation by explicitly preferring either the longest519

or shortest responses, using a randomly selected520

response as the negative in both cases. Without521

the penalty, the model tends to favor longer re-522

Phi-3-mini-4k-instruct
BioGen

Model Inf. Score(Ri) Score #Claims

RawModel
Direct -5.61 42.9 85.3
ASC 4.10 45.7 84.5

ACPO (It. 1)
Direct 1.27 51.8 67.1
ASC 7.97 54 70.7

ACPO (It. 2)
Direct 2.30 48.2 80.5
ASC 10.83 51.8 93.4

Table 4: Performance with ASC at inference time. ACPO
with direct inference outperforms RawModel, showing
the importance of ASC in training. Applying ASC at
inference further boosts performance, with Iteration 1
performing best. Later iterations add no gains but still
beat RawModel while generating more #Claims, high-
lighting ASC’s value for alignment data.

sponses, often ranking them more highly. The sim- 523

ilarity in the number of factual claims between 524

the penalty-free variant and Longest Preferred 525

suggests that removing the penalty encourages be- 526

havior akin to explicitly favoring longer responses, 527

underscoring the penalty’s role in guiding align- 528

ment toward more precise and reliable outputs. No- 529

tably, the Shortest Preferred variant produces 530

very few factual claims and performs poorly on 531

FactScore precision, indicating that simply favor- 532

ing brevity is not an effective strategy for improv- 533

ing factual alignment. 534
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Question | "What is the De Beers diamond monopoly controversy?

Preferred Non-Preferred
The De Beers diamond monopoly controversy centers ... by the De Beers
company, ... had a near-complete monopoly over the global diamond market.
Several key details and examples include: 1. De Beers’ monopoly began in the
late 19th century when Cecil Rhodes, a British businessman and mining
magnate, founded the company in South Africa in 1888. 2. By the early 20th
century, De Beers ... and controlled over 90% of the world’s rough diamond
production and trade. 3. The company’s ... stockpiling diamonds and
controlling ... to maintain high prices and ensure a stable supply. ... 7. In 2005,
the Antitrust Division of the United States Department of Justice filed an
antitrust lawsuit ... price-fixing and maintaining a monopoly in the diamond
market....

The De Beers diamond monopoly controversy revolves around the company’s
control over the global diamond market in the ... early 21st centuries. De Beers,
a British company founded in 1888 by Cecil Rhodes, came to dominate the
diamond industry by controlling diamond production and distribution. ... De
Beers’ monopoly was challenged by a South African-based company, Cut
Stone, led by Ernest Oppenheimer, grandson of ..., Cecil Rhodes. Cut Stone
accused De Beers of fixing diamond prices and controlling the market. The
controversy intensified when the South African government, ..., announced
plans to nationalize the diamond industry in 1981. ... In 1998, a class action
lawsuit was filed against De Beers in the United States by the American
Antitrust Institute (AAI)....

Table 5: Preferred and Non-Preferred responses curated by ACPO. Green highlights indicate phrases verified as
correct, while red highlights mark incorrect ones according to Wikipedia. In this example, terms like Cutstone, the
nationalization claim, AAI are hallucinated.

BioGen
Method Score #Claim

ACPO 51.8 67.1
ACPO (5,5) 49.4 64.3
ACPO w/o NC Penalty 46.9 99.7
Longest Preferred 41.3 97.6
Shortest Preferred 42.8 10.6

Table 6: Stronger preference signals in ACPO perform
better than weaker ones in ACPO(5,5). Not penalizing
non-consistent atomic facts yields worse alignment. Fa-
voring short or long responses harms factual precision,
highlighting the value of ACPO’s alignment strategy.

Method Score #Claims

ACPO (Θ = 2) 51.8 67.1
ACPO (Θ = 3) 50.4 48.7

Table 7: ACPO performance under different Θ values.

5.8 Ablation 3: Effect of Θ535

A higher value of Θ encourages the model to favor536

highly consistent responses, which often leads to537

the selection of shorter responses, as maintaining538

consistency is easier with fewer facts. Results are539

shown in Table 7.540

5.9 Analysis 3: Can simple calibration541

techniques match ACPO performance?542

ACPO is a simple self-supervised algorithm that uses543

the atomic consistency principle to align the model544

to generate better responses. Temperature scaling545

is another way of model calibration (Renze, 2024).546

We investigate if the gains in ACPO can be achieved547

by simple temperature scaling of the RawModel.548

Table 8 shows the results. ACPO significantly out-549

performs all temperature settings of the RawModel.550

Temp. 0 0.3 0.6 0.9 1.2 1.5 ACPO

Score 42.9 43.2 41.7 38.4 36.3 33.3 51.8
#Claim 85.3 85.2 88.4 93 99.9 111 67.1

Table 8: Self-supervised alignment in ACPO (temp=0)
outperforms temperature scaling—a simple post-hoc
calibration method—across multiple temperatures.

5.10 Analysis 4: Qualitative Analysis 551

Preferred and non-preferred examples curated by 552

ACPO are shown in Table 5. As the highlights indi- 553

cate, ACPO identifies high-quality examples without 554

relying on external signals. 555

6 Conclusion 556

We introduce Atomic Consistency Preference Op- 557

timization (ACPO), a self-supervised method for 558

aligning LLMs to improve factual accuracy in 559

long-form question answering. ACPO leverages the 560

atomic self-consistency principle to curate high- 561

quality preference data, eliminating the need for ex- 562

ternal supervision or strong LLMs. By identifying 563

preferred and non-preferred generations based on 564

internal consistency signals, ACPO enables efficient 565

and scalable DPO training. Our extensive evalua- 566

tions on LongFact and BioGen show that ACPO not 567

only outperforms a strong supervised baseline (Fac- 568

tAlign), but also surpasses all temperature-tuned 569

variants of unaligned models. Furthermore, we 570

show that using atomic consistency during train- 571

ing leads to better factual precision than applying 572

it solely at inference time. Additional ablations 573

validate the length penalties and the robustness of 574

ACPO across different model sizes. In summary, 575

ACPO presents a simple, effective, and efficient self- 576

supervised approach to enhance factual alignment 577

in LLMs, leading to more trustworthy and factual 578

generation capabilities. 579
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7 Limitations580

The self-consistency principles employed in this581

work present opportunities for integration with582

self-evaluation strategies, potentially enabling the583

development of hybrid self-supervised alignment584

frameworks that combine the strengths of both585

paradigms. Such approaches could leverage586

self-consistency for generating reliable preference587

signals while incorporating self-evaluation mecha-588

nisms to further refine alignment quality. How-589

ever, in this study, we deliberately focus on590

self-consistency-based methods to isolate and rig-591

orously assess their effectiveness.592

8 Ethics Statement593

While our model is not tied to any specific applica-594

tions, it could be used in sensitive contexts such595

as health-care, etc. Any work using our method is596

requested to undertake extensive quality-assurance597

and robustness testing before applying in their598

setting. To the best of our knowledge, the datasets599

used in our work do not contain any sensitive600

information.601
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A Appendix 808

A.1 Training Details 809

The alignment procedure is adapted from Tian et al. 810

(2023). For training, we set the batch size to 32 811

for the Phi-3-mini-4k-instruct model and 64 for 812

the LLaMA-3-8B-Instruct model. We use a linear 813

warmup learning rate schedule, with 100 warmup 814

steps for the LLaMA model and 150 for the Phi 815

model, followed by cosine decay. The learning rate 816

is kept as default=1e−6, and β is set as 0.1. Rather 817

than using a fixed number of epochs, training is 818

controlled by the total number of steps. Given that 819

we use either ACPO (5,5) (5× 5 = 25) preference 820

pairs per question or ACPO (1,1) (1× 1 = 1) pref- 821

erence pairs per question, we ensure 1 complete 822

epoch for the 25-pair case. Consequently, for the 823

1-pair case, we train for 25 epochs to maintain step 824

parity. Gradient clipping is applied with a default 825

threshold of 10. The total training time is approxi- 826

mately 1 hour for the Phi model and 2.5 hours for 827

the LLaMA model, using 4 NVIDIA H800 GPUs 828

with 80 GB of memory each. 829

We used the default temperature values - 0.5 830

for FactAlign (Huang and Chen, 2024) and 0.6 831

for RawModel. For ACPO, we use greedy decoding 832

(temperature = 0) to ensure reproducibility and to 833

evaluate the model’s capability without introducing 834

randomness. Results for greedy decoding of all 835

models present in §9. ACPO beats FactAlign even 836

in this setup. 837

A.2 Clustering Details 838

We employ Agglomerative Clustering with aver- 839

age linkage and cosine distance as the similarity 840

metric. The number of clusters is determined dy- 841

namically by setting n_clusters = None and ap- 842

plying a distance_threshold = 0.15, such that 843

clusters are continuously merged until the pairwise 844

inter-cluster distance exceeds the specified thresh- 845

old. The Θ value for consistent and non-consistent 846

filtering is set as 2. 847

A.3 Results with Greedy (temperature=0) 848

Table 9 shows the results for all models at tempera- 849

ture=0. ACPO beats baselines and FactAlign even 850

at greedy decoding (temperature=0). 851

A.4 Data Sheet 852

We present the dataset details along with key statis- 853

tics relevant to the clustering process in Table 10. 854
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Llama-3-8B-Instruct Phi-3-mini-4k-instruct
LongFact BioGen LongFact BioGen

Method Score #Claim Score #Claim Score #Claim Score #Claim

RawModel 79.5 121.6 55.3 61.1 79.8 91.1 42.9 85.3
FactAlign 83.1 118.2 57.6 58.1 82.6 112.2 48.4 97.3
ACPO 82.1 143.8 58 68 84.6 70.7 51.8 67.1

Table 9: ACPO vs other methods at temperature=0 during inference

Datasets Model (Train Test) Response Number ACS ARC

LongFact
LLaMA-3

(2097,233) 30
290 23

Phi-3.5-mini 245 14

Table 10: Summary of the training dataset statistics. Response Number
denotes the number of initial responses generated per question. ACS (Average Cluster Size) represents

the average number of clusters formed per question based on atomic fact clustering. ARC (Average
Response Coverage) indicates the average number of clusters that each response contributes to

A.5 Model Calibration855

We used a very small threshold (Θ=2) for identify-856

ing consistent clusters for both Phi3 and Llama3.857

Note that ACPO leverages the confidence of a858

model in generated responses to pick preferred/non-859

preferred data. Not all models are equally cali-860

brated (confident about their responses). Some861

models are more calibrated than others (Huang862

et al., 2024). Hence, some models might perform863

better with ACPO than others.864

Table 11 shows the ratio of the number of consis-865

tent clusters and non-consistent ones. Despite the866

same small threshold (Θ), we note that Phi3 has867

a much higher number of non-consistent clusters.868

Fewer consistent clusters suggest that the model869

is less calibrated compared to Llama3. Hence,870

Phi3 tends to pick smaller responses as preferred871

ones (this can avoid the negative score from non-872

consistent clusters). As shown in Table 2, one can873

relax the constraint from ACPO to length balance874

the training dataset.875

Training Data (#Consistent : #Non-Consistent)
Phi3 (1 : 3)
Llama3 (1 : 1.8)

Table 11: Ratio of consistent to non-consistent data
across training sets.

A.6 Data Generation, Training, Evaluation 876

Prompts 877

The system prompt we use for the initial response 878

generation is modified from FactTune (Tian et al., 879

2023), The User Prompt (questions) is kept the 880

same as FactAlign (Huang and Chen, 2024). 881

Initial Response Generation (Training Data
Creation)

System Prompt:
"You are an intelligent assistant who an-
swers questions accurately."

User Prompt:
"What is the geographical importance of the
Strait of Gibraltar? Provide as many spe-
cific details and examples as possible (such
as names of people, numbers, events, loca-
tions, dates, times, etc)."

882

The training prompt for DPO alignment is kept 883

as the default, which is the same question prompt 884

as the generation part. 885

For the test data generation, The actual question 886

exactly follows FactScore (Min et al., 2023) official 887

repository: 888

12



Test Response Generation

System Prompt:
"You are an intelligent assistant who an-
swers questions accurately."

User Prompt:
"Answer this question. Question: Tell me a
bio of Kourosh Zolani."

889
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