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Abstract

Large Language Models (LLMs) are known for their performance, but we uncover a significant
structural inefficiency: a phenomenon we term attention collapse. In many pre-trained
decoder-style LLMs, the attention matrices in deeper layers degenerate, collapsing to near
rank-one structures. These underutilized layers, which we call lazy layers, are redundant
and impair model efficiency. To address this, we introduce Inheritune, a simple yet powerful
training recipe designed to build smaller, stronger language models. Inheritune initializes a
compact model by inheriting the potent early layers from a larger pre-trained model and
then progressively trains and expands it. Our experiments on various models, including
the GPT-2 family, demonstrate that models trained with Inheritune can match or even
surpass the performance of their larger counterparts, despite having significantly fewer
layers. This work presents a novel path toward model compression by design, enabling
the creation of compact, yet highly performant language models. Code is available at
https://github.com/sanyalsunny111/LLM-Inheritune.

1 Introduction

Large Language Models (LLMs) are composed of stacks of decoder-style transformer blocks (Vaswani et al.l
2017). As the model grows in size, the model capacity and performance typically improve (Kaplan et al.,
2020; Hofflmann et al., |2022). A substantial fraction of the total parameters is devoted towards adding more
transformer blocks to increase the depth. Each block or layer in the stack refines the representations learned
by the previous blocks, allowing the model to develop a nuanced understanding of the input data.

A transformer block primarily consists of a self-attention module and a feed-forward network (FFN, also
referred to as an MLP). Among these, the causal self-attention mechanism (hereafter referred to as attention)
is arguably the most critical component. It enables the model to combine token embeddings as a weighted
linear sum of attention scores, effectively capturing long-range dependencies and contextual relationships
within text. However, as models become deeper, they often exhibit a phenomenon known as attention
degeneration, characterized by a collapse in the rank of the attention matrices. While prior studies have
analyzed rank collapse in simplified transformer settings (Dong et all, 2021; [Noci et al.| |2022; [He et al., 2023)),
this phenomenon has not, to our knowledge, been systematically explored in standard decoder-only LLMs. A
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Figure 1: In decoder-style LLMs, attention matrices in deeper layers often degenerate to near
rank-1, limiting their ability to learn meaningful representations. We compute MaxRank") (averaged
over N = 100 randomly selected sequences each with 7' = 100 tokens) for each layer ! using the OpenWebText
validation set. Our rank analysis of 24-layer GPT-2 Medium, 36-layer GPT-2 Large, and 48-layer GPT-2
XLarge models reveals that attention matrices in many deeper layers collapse to near rank-1.

formal discussion of attention degeneration is provided in Section [2] In this paper, we conduct a detailed
empirical analysis of attention degeneration in the GPT-2 family of LLMs (Radford et al.| [2019), including
GPT-2 Medium (355M), GPT-2 Large (770M), and GPT-2 XLarge (1.5B). Our analysis reveals that many
deeper layers in these models exhibit predominantly rank-1 attention matrices across most attention heads
within a layer. This suggests that the attention mechanism loses its discriminative ability among tokens
and instead performs near-uniform averaging across the sequence. We refer to layers in which all attention
matrices degenerate to near rank-1 as lazy layers (a more formal definition is provided in Definition .
In the supplementary material, we further extend this analysis to billion-sized LLMs, including LLaMA-3
8B (refer Figure [11]), Falcon-7B (refer Figure 21)), OLMo-1B, Cerebras GPT 2.7B and LLaMA-3 3B (refer
Figure , to highlight that attention collapse persists even in several modern architectures.

Motivated by the new finding through our novel analysis we aim to develop performant small base language
models (LMs) utilizing weights from inefficient larger base LMs without losing pre-train performance (measured
by train/validation loss). A base LM is a decoder-style model trained solely for next-token prediction without
additional enhancements like instruction tuning or reinforcement learning with human feedback (RLHF).
Our proposal is straightforward, we start by initializing our smaller LM (target) using the first few blocks
from a large pre-trained LM (reference). We then train the target model for a specified number of steps.
After this initial training, we incrementally grow the target model by adding more blocks, continuing the
training process until it matches or surpasses the pre-train validation loss (also val loss) of the reference
model. During the growth phase, the newly added blocks can be initialized with lazy layers of the reference
LM. We refer to this simple yet effective training approach as Inheritune.

In summary, our key contributions are as follows:

1. Novel analysis of attention degeneration in standard decoder LLMs. We empirically
investigate attention degeneration in standard decoder style LLMs. Our analysis shows that rank-
collapse in attention matrices, revealing a significant structural inefficiency in the attention mechanism
of standard LLMs in deeper layers (refer Figure . This degeneration gives rise to what we refer to
as lazy layers.

2. Introduction of our training recipe Inheritune. Building on our analysis we observe that
deep LMs often fail to fully utilize their effective depth. To address this inefficiency, we propose
Inheritune— a simple yet effective training recipe for developing smaller LMs without losing pre-
training performance. This method involves inheriting a few early blocks from a much larger reference
model and progressively growing and training the smaller model. We validate the effectiveness
of Inheritune through extensive experiments on GPT-2 XLarge (1.5B), GPT-2 Large (770M), and
GPT-2 Medium (355M) models, trained primarily on the OpenWebText dataset and additionally on
FineWeb data.
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3. Evaluation against multiple baselines. Models trained using Inheritune consistently outperform
a wide range of baselines, including much larger models trained from scratch (see Figure [5| and
Figure , as well as same sized models trained from scratch for twice as many steps (extended
training; see Figure @ We further compare against warm-started baselines (models initialized with
pre-trained weights rather than random initialization (Ash & Adams| 2020)) as shown in Table

2 Attention Collapse and the Emergence of Lazy Layers in LLMs

Preliminaries: A vanilla transformer-based model consists of L transformer blocks (layers). The model
operates on an input sequence X € RT*¢ where T denotes the sequence length (number of tokens), and
e represents the embedding dimension or model hidden size. The output of each layer [ is denoted as
X® e RT*e. Each transformer block primarily consists of two modules: a self-attention block and a
feed-forward network (FFN). The self-attention mechanism enables the model to weight the relevance of
different tokens in the sequence relative to each other. Specifically, for a single attention head, the attention
computation is defined as equation [T}

Attention(Q, K,V) = softmax <?/Ic%:) Vv (1)

Attention matrix: A(X)

where the queries Q@ = XWg, keys K = XWg, and values V = XWy are linear transformations of the
input X. Here, Wg, W € R¥4 and Wy € R4*% are the weight matrices for the queries, keys, and values,
respectively. Typically, dp = d,, = %, where h is the number of attention heads. In this single-head scenario,
we set d, = d, = d.

The attention matrix A(X) € RT*T captures the pairwise attention scores between all token positions
in the sequence. The softmax is applied row-wise. The attention matrix A(X) is then used to compute
a weighted sum of the value vectors. Attention rank collapse refers to the phenomenon where the
attention matrices A(X) of individual heads in many layers of transformer-based language models lose their
expressive capacity, converging towards lower effective rank structures. Specifically, the effective rank of
attention matrices significantly reduces, often approaching rank-1, limiting the model’s ability to meaningfully
differentiate between token interactions across positions in the sequence. Previous research by [Dong et al.
(2021)) and [He et al.| (2023) has shown that in self-attention networks (SANs) without residual connections
and feed-forward networks (FFNs), the rank of an attention matrix converges to rank-1 doubly exponentially
with respect to the depth of the model. This phenomenon, known as rank collapse of attention matrices,
results in a loss of expressive power as the attention mechanism attends to all tokens uniformly. Noci et al.
(2022)) showed that even with residual connections (without layernorm) attention matrices can still lose rank
in deeper layers if the residual connections are not scaled by 1/ VL. Interestingly they also linked the rank
collapse to vanishing gradients of the keys and queries in deeper layers which affects the overall trainability
of the transformer based models. However, these findings do not directly apply to the standard LLMs, as
transformer blocks in these models include residual connections, layernorms and FFNs, which are expected to
mitigate both rank collapse and the vanishing gradient problem.

Approximate Rank Computation of Attention Matrices To assess the presence and severity of
rank collapse within standard decoder style transformer architectures (e.g., GPT-2, LLaMA etc.), we utilize
singular value decomposition (SVD) for each attention matrix A(X) = UXV ", where ¥ is a diagonal matrix
containing singular values o1 > 09 > -+ > o7 > 0. The approximate rank (referred to as rank hereafter) of
an attention matrix, parameterized by a variance threshold 7, is formally computed as:

g2
k* = min ke{1,2,...,T}|%>T :
> 107

where 7 € (0, 1) represents the proportion of variance that must be captured by the top k singular values. A
lower value of k* indicates stronger rank collapse. In this work, we set 7 = 0.90.
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In Figure[I} we present the layer-wise analysis of rank of GPT-2 models. For this analysis, we computed
A(X) using N = 100 sequences selected at random from the validation set of OpenWebText with 4M tokens,
each with a sequence length of T'= 100 tokens across all attention heads within each layer. We then define
the average approximate rank for each head and layer as Rank®! = % Ziv:l ky, n1- Subsequently, we

aggregate this metric per layer by taking the maximum rank across heads: MaxRank" = maxh{Rank(h’Z)}.
As demonstrated in Figure MaxRank” reveals that many deeper layers exhibit attention matrices that
are predominantly near rank-1. We highlight that this rank collapse occurs in GPT-2 Medium, Large, and
XLarge models, which are widely used modern LLMs thereby extending the limited findings of |Dong et al.
(2021) and |Noci et al|(2022)). We further visualize attention matrices from representative potent and lazy
layers of GPT-2 XLarge in Figure Overall, the degeneration of attention matrices in deeper layers
provides quantitative evidence for the existence of lazy layers. Specifically, we observe that some deeper
layers exhibit a near-complete rank collapse of attention matrices across all heads, suggesting potentially
reduced representational capacity and less effective token mixing in these layers.

We provide an extended discussion of attention collapse in Appendix [B] We analyze five modern LLMs for
attention collapse (also refer Appendix . We further assess the robustness of our findings by conducting
collapse analyses on different datasets and by using an alternative metric, namely the mass of attention
matrices. Finally, we perform an ablation over a range of values of 7 (refer Appendix to study the
sensitivity of the rank-based analysis with respect to 7.

2.1 The Functional Ineffectiveness of Lazy Layers

Having identified lazy layers, we investigate their practical utility: Do these structurally degenerated layers
retain transferable knowledge, or are they functionally impaired? Our experiments suggest the latter.
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(a) Rank analysis of GPT-2 Small (12 layer).  (b) Performance of 4 layer GPT-2 small variants.

Figure 2: Higher-rank (potent) layers transfer better. (Left, @) Layer-wise MaxRank® of a pre-trained
12L GPT-2 Small. (Right, |E[) Validation loss of 4 layer variants initialized with potent layers (AvgRank
~ 8.4 —9.5) vs. lazy layers (AvgRank =~ 1.2) and random weights, after training for 100K steps. Models
initialized with lazy layers mirrors the model with random initialization. Training curves are smoothed for
visual clarity.

In the first set of experiments, we trained a vanilla GPT-2 small (125M) model with 12 layers for 100K
steps on the OpenWebText dataset. We then performed the rank analysis described earlier, with results
presented in Figure 2] Specifically, we aggregated the approximate ranks over groups of contiguous layers
using AvgRank = %Zle MaxRank(l), where L is the number of layers in each group. Subsequently, we
trained three GPT-2 small variantﬂ for 100K steps, each initialized with a different contiguous block of four
layers from the trained vanilla GPT-2 small model: (a) layers 1-4, with AvgRank = 8.40; (b) layers 5-8, with
AvgRank = 9.48; and (c) layers 9-12, with AvgRank = 1.22. The last model is initialized with lazy layers.
For comparison, we also trained another GPT-2 small variant with random initialization for 100K steps. All

1A variant shares the same configurations as the reference model but has fewer layers.
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Figure 3: Initializing 12-layer and 18-layer variants of GPT-2 Medium and GPT-2 Large with deeper lazy
layers exhibiting degenerated attention results in performance comparable to random initialization. In
contrast, initializing with early (high-rank) potent layers leads to substantially better convergence and
generalization. Training curves are smoothed for visual clarity.

models were trained on the OpenWebText dataset. As shown in Figure [2] the model initialized with layers
from the vanilla GPT-2 small model having higher AvgRank demonstrated the best performance (i.e., lowest
final validation loss). Additionally, we observed that the model initialized with lazy layers performed very
similarly to the model with random initialization suggesting that lazy layers contain minimal transferable
knowledge. The results are also summarized in Table

For the second set of experiments we utilized larger models namely GPT-2 Medium and GPT-2 Large both
similarly trained for 100K steps using OpenWebText. Here we initialized a 12-layer GPT-2 Medium variant
and an 18-layer variant of GPT-2 Large using lazy layers extracted from pre-trained 24-layer GPT-2 Medium
and 36-layer GPT-2 Large models. We then trained these GPT-2 variants on the same dataset for 10K steps.
For comparison, we conducted two baseline experiments where the GPT-2 variants were initialized either
with the first half of transformer layers (potent layers with high AvgRank) and with random initialization. As
shown in Figure [3] models initialized with lazy layers demonstrate poor transferability, performing similarly to
models with random initialization. This provides additional evidence that lazy layers with fully degenerated
attention, fails to learn meaningful representations.

Theoretical Analysis. Finally, we analyze the implications of attention rank collapse on model training
from a theoretical perspective (refer Section [H). Our key insight is that rank-collapsed attention head(s)
impede learning by inducing vanishing gradients, effectively suppressing updates to the associated Wg and
Wk.

3 Inheritune: Our Proposed Training Recipe

This section provides a detailed description of our method, key implementation considerations, and how it
addresses the inefficiencies present in current architectures.

As previously established, we have identified the problem of attention degeneration and its connection to
lazy layers, highlighting specific inefficiencies in pre-trained LLMs. In this work, we transform this challenge
into an opportunity to create smaller base language models, which we refer to as target models Mg, that
achieve comparable performance with similar or lower validation loss compared to their larger, less efficient
counterparts, which we term reference models M.

Our proposed solution builds on two key insights: (1) the early layers of deep LLMs contain a higher
concentration of potent layers with high AvgRank values, making them suitable for effective model initialization,
and (2) lazy layers can be identified, removed, or utilized in smaller numbers, then subsequently re-trained to
improve overall model capacity.
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Algorithm 1 Inheritune: Training Recipe for Small Language Models

Require: Reference model M.t with L layers, datasets Diyain and Dy, steps T
: Copy embedding layer and LM head from Myet to Mgt
Select [ early contiguous layers from M, with high AvgRank
Initialize Mg with selected layers between embeddings and LM head
Train Mgt on Dypain for T steps
while Mg performance < M, performance on Dy, do
Grow Mg by inheriting additional layers
Train Mg, for T steps
end while
return Optimized model Mgt
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Figure 4: Overview of the Inheritune training recipe using a 24-Layer GPT-2 Medium model
example. A smaller target model is initialized using early layers from a larger, pre-trained reference
model. The target model goes multiple rounds of training while inheriting contiguous layers until it
matches/outperforms the reference model. The intensity of the red color in layers correlates with MaxRank®.

Setup: We split the dataset into a training set Di;.i, and a validation subset Dy,;. Next, we assume that there
exists a pre-trained reference model M, comprising L layers, represented by Wyer = {Wo, W1, ..., Wr_1}
trained with Dyrain for T steps. We want to train a smaller model Mg with the same or better validation
loss (lower is better) compared to its larger counterpart M es.

We now present Inheritune, our proposed training recipe for efficiently developing small base language models
(LMs). Inheritune operates on the principle of zero-shot initialization and progressive growth. The Inheritune
process consists of three main steps, which we present below and formalize in Algorithm [T}

1. Inherit: Initialize Mg with the first [ out of L layers of M,.¢, including prediction head, and token
embeddings.

2. Train: Train M for T steps on Dyyain and evaluate on Dya).

3. Grow: If needed, increase Mg;’s size by adding the next few contiguous layers and repeat steps 1-2
until desired performance is achieved.
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Figure 5: Models derived using Inheritune converge faster and match the final validation loss
of the full-sized model, despite having much fewer layers. Comparison of Inheritune trained models
(24-layer GPT-2 XLarge variant, 18-layer GPT-2 Large variant, 16-layer GPT-2 Medium variant) against
their full-sized counterparts and same sized variants trained from scratch. All models are trained for 100K
steps using OpenWebText data.

With our method now formally described, we turn to empirical validation. In the following sections, we
present comprehensive results demonstrating Inheritune’s effectiveness across various scenarios, including
different model sizes and data regimes. In addition, we conducted an in-depth ablation study to analyze the
impact of initialization on performance, providing insights into the adaptability of our approach.

4 Experiments

We evaluate Inheritune through a comprehensive set of experiments using several GPT-2 models: a 48-layer
GPT-2 XLarge (1.5B), a 36-layer GPT-2 Large (770M), a 32-layer GPT-2 Large (668M), and a 24-layer GPT-
2 Medium (355M) (Radford et all |2019). Table |§| provides detailed specifications of all model configurations
used in our experiments.

We use two training datasets: OpenWebText |Gokaslan & Cohen| (2019)) with 10B tokens and FineWeb
(education subset) (Penedo et al., |2024) also with 10B tokens. Our experimental setup closely follows prior
work (Liu et al.l [2023; [Sanyal et all 2024)). For models trained on OpenWebText, we report validation loss
(log perplexity), while for models trained on FineWeb, we report training loss (also log perplexity).

Additionally, for models trained on FineWeb, we conduct zero-shot downstream evaluations using the
lm-evaluation-harness (Gao et all [2024) across five standard benchmarks: ARC-Easy (ARCE; |Clark
et al., |2018]), LAMBADA (Paperno et al., 2016)), SciQ (Welbl et all 2017), HellaSwag (Zellers et al., 2019)),
and PIQA (Bisk et al.| [2020). Finally, we perform a detailed ablation study by initializing each submodule
within a transformer block in isolation and training it for 100K steps to identify which component contributes
most to performance. All training curves are smoothed for visual clarity.

We provide experimental details of our proposed training recipe Inheritune using a GPT-2 Medium model as
an example; similar procedure was applied to train other models. A visualization of the training recipe is
presented in Figure [4] Our recipe for applying Inheritune involves the following steps.

1. Reference Model: We train a vanilla 24-layer GPT-2 Medium model (reference model) on Diyaip for
100K steps and evaluate its validation loss ( log perplexity) on Dy,). This establishes our benchmark
validation loss.

2. Model initialization: We initialize an 12-layer model (I = L/2) using the reference model.

3. Training and Evaluation: We train the 12-layer model on Dyy,i, for T=100K steps and evaluate
its validation loss.
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Figure 6: Models trained with Inheritune match the validation loss of same sized models trained
from scratch for twice as many steps. We compare Inheritune-trained models (24-layer GPT-2 XLarge,
18-layer GPT-2 Large, and 16-layer GPT-2 Medium) against their same-sized counterparts trained from
scratch for twice the number of steps. Inheritune models are trained for 100K steps, while the baseline models
(trained from scratch) are trained for 200K steps, on OpenWebText data.
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Figure 7: Models derived using Inheritune without data repetition converge faster and match
the final validation loss of the full-sized model despite using lesser layers. Additionally, the model
trained using Inheritune demonstrates data efficiency, achieving a lower validation loss in fewer steps compared

to its full-sized and half-sized counterparts.

4. Tterative Refinement: If the smaller model’s performance is inferior to the reference model, then
we incrementally increase its size by adding additional layers and repeat steps 2-3 until we achieve
parity with the reference model’s validation loss.

We choose | = L/2 as the starting point and increase the model size by two layers in each round across all
our experiments, aiming to minimize the number of training rounds. In principle, Inheritune should generalize
to other hyperparameter choices as well.

Baseline-I. We compare GPT-2 model variants (i.e., models with fewer layers than their vanilla configura-
tions) trained using Inheritune against the following baselines:

1. Larger reference models with more layers, trained from scratch (random initialization).
2. Same-sized models with the same number of layers, trained from scratch.

3. Extended training baselines, same-sized models trained from scratch for twice as many steps
compared to models trained with Inheritune.
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Models Recipe Layers ARCE PIQA SciQ Hellaswag Lambada Average
rand init 24 51.05  61.81 748 30.79 20.28 47.74

GPT-2 Medium  rand init 16 49.92 6192 733 29.56 19.54 46.84
Ours 16 51.26  61.81 73.8 30.55 23 48.08
rand init 32 52.48  64.58 75.3 32.65 22.2 49.44

GPT-2 Large' rand init 16 50.34  63.11 75 30.86 21.56 48.17
Ours 16 52.9 63.55  76.1 32.14 24.06 49.75

Table 1: Models trained with Inheritune achieve comparable average zero-shot downstream
performance to their larger reference models and surpass same-sized counterparts trained
from scratch. Downstream evaluations are performed on models pre-trained with the FineWeb dataset
(see Figure [7)). Performance is measured using accuracy (acc) and normalized accuracy (acc-norm) metrics,
following the Open LLM Leaderboard protocol [Beeching et al.| (2023]). We have highlighted the best average
scores in bold.

Models Layers  Recipe Steps | Pre-train Val loss (1)
24 Half-width 100K 3.04
16 Stacking 100K 2.84
GPT-2 Medium 16 Hybrid-stacking 100K 2.83
16 Ours 100K 2.81
36 Half-width 100K 3.06
GPT-2 Large 12 it;lfll:iiitacking 188E SZ;
18 Ours 100K 2.80
48 Half-width 100K 2,77
GPr2Xtarge 3 AR ks 100K 261
24 Ours 100K | 2.64

Table 2: Inheritune outperforms warm-started baselines (Baseline-IT). Comparison of pre-training
validation loss for GPT-2 XLarge, GPT-2 Large, and GPT-2 Medium variants trained with Stacking, Hybrid
Stacking, Half-Width, and Inheritune recipes. All baselines are warm-started, i.e., initialized with pre-trained
weights rather than random initialization. Across model scales, Inheritune consistently achieves lower validation
loss than the majority of warm-started baselines. The lowest validation loss (lower is better) is highlighted in
bold.

Baseline-II. Additionally, we compare Inheritune against warm-started baselines (Ash & Adams| 2020).
Warm starting in neural network training refers to initializing a model’s parameters with weights from a
previously trained model, rather than starting from random initialization (a “cold start”). This setup enables
a fair comparison with our approach, which also leverages prior learned representations. The warm-started
baselines include stacking (Gong et al., 2019; |J. Reddi et all [2023), hybrid stacking (which initializes model
layers directly from a larger reference model), and half-width (which retains all layers but reduces both the
hidden dimension and number of attention heads by half, using weights from the reference model). Finally,
we briefly compare Inheritune with knowledge distillation (Hinton et al., 2015); results are provided in the
supplementary material (see Figure [17)). Detailed descriptions of all baselines are presented in Section |§| of
the supplementary material.



Published in Transactions on Machine Learning Research (02/2026)

4.1 Results and Discussions

Models trained with Inheritune outperform both larger and same sized models trained from
scratch. We present our main results in Figure [5| The 24-layer, 18-layer, and 16-layer variants derived
using Inheritune from the vanilla 48-layer GPT-2 XLarge, 36-layer GPT-2 Large, and 24-layer GPT-2 Medium,
respectively, achieve comparable or lower validation losses than both their full-sized counterparts and same-
sized models trained from scratch, when trained for the same number of steps (100K). Our GPT-2 XLarge
and GPT-2 Large variants require a single round of Inheritune training, while the GPT-2 Medium variant
undergoes three rounds with 12-, 14-, and 16-layer configurations. Furthermore, as shown in Figure [6]
models trained with Inheritune reach the same validation loss as same-sized models trained from scratch in
approximately half the number of training steps. Moreover, for the GPT-2 Medium and Large variants,
Inheritune achieves a strictly lower loss floor that same-sized models fail to reach even when trained for twice
as many steps. A tabular summary of these results is provided in Appendix Table

We conducted additional training experiments, using a high-quality training data namely Fineweb. We
trained a custom 32-layer GPT-2 Large! (668M) and a 24-layer GPT-2 Medium (355M) reference model
from scratch. Next, we trained two 16-layer variants: one derived from GPT-2 Large’ and the other from
GPT-2 Medium, using their respective reference models following Inheritune. For comparison, we also trained
16-layer baseline models from scratch. All models were trained for 100K steps, and training loss was used to
evaluate pre-training performance. We observe thematically consistent results: as shown in Figure[7] the
16-layer variants trained with Inheritune consistently match the performance of their full-sized counterparts
and outperform same-sized baselines, both in terms of training loss and zero-shot downstream evaluation.
Downstream results are provided in Table|l] Model configurations and training hyper-parameters are detailed
in the supplementary material (refer Section [F]).

Models trained with Inheritune outperform all warm started baselines. In Table[2] we compare
GPT-2 XLarge, GPT-2 Large, and GPT-2 Medium variants trained with Inheritune against same-sized
variants trained with stacking, hybrid stacking, and half-width baselines. The half-width baseline performs
poorly, revealing the limitations of naive width reduction. While stacking and hybrid stacking demonstrate
reasonable performance, they still fall short compared to Inheritune. Across all cases, Inheritune consistently
outperforms these baselines, highlighting its effectiveness as an initialization strategy, with a single exception
in the GPT-2 XLarge case where it matches one baseline. For a detailed view of the training curves across all
methods, refer to the training curves in supplementary Figure [I8

4.2 Inheritune Mitigates Attention Collapse

We attribute the success of Inheritune, to its ability to mitigate attention collapse, thereby leading to fewer lazy
layers after training. In Figures[§we juxtapose the attention rank patterns of the vanilla and Inheritune-trained
GPT-2 Medium. Notably, none of the GPT-2 Medium variants exhibit lazy layers. A similar analysis is
conducted with GPT-2 XLarge (refer supplementary Figure .

The corresponding attention patterns for GPT-2 Medium, shown in Figure [9] further corroborate our
observation. The attention patterns for both a vanilla 24-layer model trained from scratch and a 16-layer
model trained using our proposed method, Inheritune. Note just for the sake of better visualization we
visualized full attention and not causal attention, in practice GPT-2 models compute causal attention. We
computed these attention matrices using randomly selected strings from the validation set of OpenWebText
and took 40 tokens averaged over 3 runs. In the 24-layer model trained from scratch (top row of Figure |§[)7
we observe a clear progression in attention patterns. The early layers (L4 and L7) exhibit dense structured
attention patterns. In contrast, the deeper layers (L20 and L22) display more uniform patterns, indicating a
loss of focus (attention). This uniformity is a hallmark of lazy layers, where the attention mechanism loses its
ability to selectively focus on specific relevant tokens. In contrast, our 16-layer model trained with Inheritune
(bottom row) demonstrates more focused and effective attention patterns, even in its later layers (L11 and
L15). This striking difference suggests that our method makes the model more attentive and addresses
attention collapse, potentially leading to more efficient models in compact size.
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Figure 8: Rank collapse in deeper layers and its mitigation through Inheritune. The maximum
(max) rank across all attention heads for each layer is plotted, following the methodology in Figure[l] Analysis
of a 24-layer GPT-2 medium model reveals rank-1 attention matrices in later layers (those beyond the
halfway point), indicating rank collapse. Specifically, 3 out of the last 12 later layers exhibit rank-1 attention
matrices (mean rank across all the 100 runs). Our 16-layer GPT-2 medium variant, trained with Inheritune,
demonstrates improved rank across all layers, highlighting the effectiveness of our approach. Notably, none of
the later layers in our 16-layer variant exhibit rank-1 attention matrices.

L4 H2 L7 H3 L20 H2 L22 H4

Vanilla 24 layer GPT-2 Medium

L4 H2 L7 H3 L11 H2 L15 H1
GPT-2 Medium 16 layer variant (Ours)

Figure 9: Inheritune preserves effective attention patterns. Comparison of attention patterns across
layers (L) and heads (H) in two GPT-2 medium models: (top) vanilla 24-layer model trained from scratch,
(bottom) 16-layer variant trained with Inheritune. Attention maps are averaged over three randomly selected
strings, with 40 tokens each from the validation. Darker colors indicate higher attention scores. Inheritune

maintains focused attention even in deeper layers, contrasting with the uniform patterns in the vanilla model’s
deeper layers.

4.3 Ablations and Limitations

We conducted extensive experiments to better understand which sub-module initializations within a trans-
former block lead to improved generalization (in terms of validation loss) and faster convergence. For these
ablations, we fixed the model to a 16-layer GPT-2 Medium variant and explored three different sub-module
initializations using weights from a 24-layer GPT-2 Medium reference model. We initialize the transformer
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Layers Initialization Steps | Pre-train Val loss (1)
16 Attention 100K 2.84
16 MLP 100K 2.85
16 Attention and MLP" 100K 2.80
16 Ours 100K 2.81

Table 3: Impact of initializing various sub-modules within a transformer block. We compare
validation loss of a 16-layer GPT-2 Medium variant when different sets of sub-modules are initialized with
weights from the first 16 layers of a 24-layer GPT-2 Medium reference model. Submodules without the *
marker also include layernorm weights. All models are trained with the OpenWebText dataset. Key findings:
(1) Inheritune initialization and Attention and MLP initialization result in similar performance improvements;
(2) layernorm initialization shows minimal impact. The training curves of corresponding models are presented
in Figure The lowest and our corresponding validation losses (lower is better) are highlighted in bold.

blocks with 1) Attention block (key, query, value, and projection weights) along with the layernornﬂ 2)
Attention and MLP (FFN) weights without the layer-norm weights, and 3) MLP block weights along with the
layernorm. We note that Inheritune performs initialization by inheriting the entire layer weight i.e. attention,
MLP along with the layernorm weights.

As shown in Table (3] models initialized with both Attention and MLP weights achieve the best performance,
irrespective of the LayerNorm initialization. A detailed validation loss versus training steps plot is provided
in the supplementary Figure [I[9] These results suggest that jointly initializing the Attention and MLP
submodules offers a clear advantage over initializing either component alone. Interestingly, we also find that
initializing only the Attention or only the MLP weights yields comparable improvements in both convergence
speed and final validation loss.

Sensitivity Analysis for attention rank computation and lazy layers. Next, we analyze the sensitivity
of the approximate rank to the variance threshold 7. Following the rank computation methodology described
in Section [2} we perform rank analysis on the full GPT-2 Medium and GPT-2 Large models using a randomly
sampled subset of the OpenWebText’s validation set, varying 7 € {0.8,0.85,0.9,0.95}. As shown in Figure
the MaxRank(!) (y-axis) remains highly stable for the lazy layers across all values of 7 for both the models.

Limitations of our work. Our analysis primarily focuses on pre-layernorm (Pre-LN) architectures. By
default, we initialize training at [ = L/2, i.e. from the midpoint of the model where early layers have already
developed strong representations to minimize the total number of training rounds. Figure [20] presents an
ablation study showing training curves across three rounds performed following our proposed method. Notably,
by the third round (R = 3), models trained with Inheritune match the validation loss of their reference
counterpart (Full model). Despite its effectiveness, Inheritune is computationally expensive, as it may require
multiple rounds of training during the growth phase. Lastly, our current analysis focuses exclusively on
attention submodules; extending this framework to feedforward (MLP) layers remains an important direction
for future research.

5 Related Works

Attention degeneration has been studied in the past through the lens of attention rank collapse |[Dong
et al.| (2021) leading to representation collapse, and attention entropy collapse [Zhai et al| (2023) leading
training instability. This also has been studied is a theoretical setup for transformer models by [Noci
et al.| (2022)); Barbero et al.| (2024); |[Wu et al.| (2024). Recently |[He et al.| (2023) address rank collapse
in self-attention networks (SANs) without residual connections or layer norms, using two different model
initialization techniques that enable faithful signal propagation—i.e., X1, of A(X*) does not collapse in deeper
layers. However, this approach significantly slows down training. Noci et al.| (2022)) proposes scaling residual

2In GPT-2 models layernorm blocks are parameterized.
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Figure 10: Lazy layers remain robust under variations of 7. To study the sensitivity of attention rank
to the variance-ratio threshold 7 € {0.8,0.85,0.9,0.95}, we visualize MaxRank(l) as a function of layer index
for (a—d) the GPT-2 Medium full model with 24 layers (top row) and (e-h) the GPT-2 Large full model with
36 layers (bottom row).

connections by 1/+/L, while |Barbero et al.| (]2024[) suggest that adding additional tokens to already long
sequences of repeated tokens can help mitigate collapse. In contrast to prior works, we address attention
degeneration by developing smaller models that eliminate structural inefficiencies and training these models
to match the performance of their larger, inefficient counterparts.

LLM training recipes and model initialization. The stacking method |Gong et al. (2019);|J. Reddi et al.|
(2023) employs a stage-wise training strategy that uses weights from initial layers to initialize later layers
has been shown to be effective for LLM training both empirically |Gong et al.| (2019)); [J. Reddi et al.| (2023));
and theoretically Agarwal et al| (2024). Knowledge distillation Hinton et al. (2015) has
been very successful in training small LMs. In some cases Turc et al.| (2020); [Sanh et al.| (2019) the smaller
student model is also initialized with teacher layers, though this is often done without clear explanation or
intuition. Recent works in model initialization, such as|Trockman & Kolter| (2023)), have studied synthetic
attention patterns for initialization, primarily in vision settings. However, such methods have limited success
in language models. use weight initialization for faster fine-tuning of vision models. In
contrast, our proposed recipe focuses on creating smaller model by eliminating specific structural inefficiency
in lazy layers. This distinction sets our work apart in terms of both objective and methodology.

6 Conclusion

In this work, we identify a structural inefficiency in deep decoder-style LLMs, which we term attention
collapse, where attention matrices in deeper layers often degenerate into near rank-one structures, rendering
these layers ineffective. These ineffective layers referred to as lazy layers contribute little to the model’s
representational power. To address this, we introduce Inheritune, a multi-stage training recipe that initializes
a smaller model using a few potent early layers from a larger pre-trained model and then progressively trains
and expands it through multiple rounds. Our experiments demonstrate that models trained with Inheritune
can match or even surpass the performance of their larger counterparts despite having significantly fewer
layers. By mitigating attention collapse, our approach produces compact and highly performant models,
offering a new path toward designing smaller, more attentive architectures from the ground up.
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A Frequently Asked Questions

A.1 Is your method not just pruning?

Inheritune is a stage-wise efficient training recipe that addresses a structural issue in decoder-style transformer
blocks—Attention collapse—which we consistently observed across multiple models.

Unlike pruning, Inheritune includes a growth phase where the model is expanded until it outperforms the
reference model (refer Algorithm [If and Figure . Pruning doesn’t always require re-training (Ma et al.
2023)), whereas Inheritune may need multiple rounds of re-training. To the best of our knowledge, no pruning
method has explicitly studied or resolved attention collapse in LLMs. Our method has closer proximity
to efficient training recipes employing model initialization (J. Reddi et al., 2023; |Du et al.l |2024) or warm
starting (Ash & Adams, [2020).

A.2 Is the comparison with baseline models trained from scratch unfair since Inheritune uses weights
from pre-trained models?

In Baseline-II (refer Section [4) we have also compared our method with warm started baselines which also
uses pre-trained model weights for model initialization for fair comparisons.

For Baseline-1I, we include much larger reference models as well as same-sized models trained for twice as
many steps. Remarkably, Inheritune still outperforms both. We believe these findings are novel and reveal a
new axis for scaling.

A.3 The attention collapse analysis is not holistic?

TL;DR. We analyzed the phenomenon of attention collapse across four datasets and four different model
architectures, with model sizes ranging from millions to billions of parameters.

We evaluated attention patterns and analyzed the phenomenon of attention collapse using four datasets:
OpenWebText, FineWeb, RedPajama, and C4. Our analysis used two complementary metrics namely,
approximate rank and approximate mass to quantify the structure of attention matrices. We conducted
attention collapse analysis on a range of models, including GPT-2 (Medium 355M, Large 770M, XLarge
1.5B), LLaMA-3 (3B and 8B models ), OLMo 1B, Cerebras-GPT 2.7B, Falcon 7B and LLaMA-1
(OpenLLaMA 3B, 7B, 13B) which features a notably different architecture. The evaluation was performed on
10K tokens (100 samples x 100 tokens each), and we also provide visualizations of the resulting attention
patterns.
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A.4 What is the connection between Attention collapse and Attention sinks?

The term Attention sink (Xiao et al., 2024) refers to a phenomenon where a specific token in a sequence
receives disproportionately high attention scores compared to other tokens in the attention map.

In our analysis of Attention collapse, we also observed sink-like behavior for certain tokens across all attention
maps (see Figure El and Figure [12]). However, unlike typical attention sinks, we found that beyond the sink
token, no meaningful attention structure remains: all other tokens receive nearly uniform attention
scores. We further connect this behavior to the emergence of lazy layers. Therefore our analysis has unique
insights compared to attention sinks.

B Extended Discussion on Attention Collapse

B.1 Attention Collapse in LLaMA-3 models

Rank™" = % 25:1 n.h» where N =100 sequences are sampled from a subset of the C4 dataset
2019). As shown in Figure we observe that nearly 50% of the attention heads (500 out of 102
across all layers) are close to near rank-1, highlighted in red. This presents an interesting case: in very large
modern architectures such as LLaMA-3 8B, while there may not be entire lazy layers, a substantial number
of heads within many layers exhibit degeneracy. A different pattern of attention collapse compared to GPT-2
models can be attributed to the architectural differences between these models.

We conducted a rank analysis on a contemporary LLaMA-3 base model with 8B parameters. We compute
4
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Figure 11: Rank analysis of LLaMA-3 8B reveals that nearly half of the attention heads exhibit
rank collapse. We analyze the LLaMA-3 8B model, which contains 32 heads per layer (32 x 32), using
the rank metric defined in Section [2] The results are visualized as a heatmap of head index vs. layer index.
Potent (non-collapsed) heads are shown in varying shades of green, where higher intensity indicates higher
rank, while rank-collapsed heads (near rank-1) are highlighted in red. Approximately 50% of all attention
heads exhibit rank collapse, indicating widespread degeneracy.

B.2 Attention Pattern Visualization of Potent and Lazy Layers

Following the analysis in Section [2] and Figure [I, we present the attention patterns of two representative
layers from the GPT-2 XL model: a lazy layer (Layer 30) and a potent layer (Layer 8), as shown in Figure
The attention patterns of these layers exhibit distinctly different behaviors. In particular, the lazy layer
demonstrates a clear collapse, where attention concentrates almost exclusively on the first token. Next,
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L8 H16 L8 H17 L8 H18 L8 H19 L8 H20

A Potent layer of vanilla GPT-2 XLarge.

L30 H16 L30 H17 L30 H18 L30 H19 L30 H20
A lazy layer of vanilla GPT-2 XLarge.

Figure 12: Visualization of attention patterns in lazy and non-lazy layers of a vanilla GPT-2
XLarge model with 48 layers. The top row displays attention patterns for various heads (H) in layer
(L) 8, while the bottom row shows patterns for layer (L) 30. For visual clarity, we display the full attention
maps; however, attention in GPT-2 models is inherently causal.

following the discussions in Section [£.2] we visualize the rank-layer relationship for the GPT-2 XLarge model,
juxtaposing a vanilla model with a Inheritune-trained model containing half as many layers. Although both
models achieve similar validation loss, the Inheritune-trained model exhibits significantly fewer lazy layers
compared to the vanilla counterpart.

—e— Ours (Layers=24)
—e— Full Model (Layers=48)
——- MaxRank =1

Max Rank

0 10 20 30 40 50
# Layers

Figure 13: Rank collapse worsens for larger LLMs, Inheritune helps to mitigate rank collapse.
The maximum (max) rank across all attention heads for each layer is plotted, following the methodology
in Figure [l We analyze a 48-layer GPT-2 XLarge model which reveals rank-1 attention matrices in later
layers (those beyond the halfway point), indicating rank collapse. Specifically, 22 out of the last 24 later
layers exhibit rank-1 attention matrices (mean rank across all the 100 runs). Next, Our 24-layer GPT-2
XLarge variant, trained with Inheritune, demonstrates improved rank across many layers, highlighting the

effectiveness of our approach. Notably, 2 out of 12 of the later layers in our 24-layer variant exhibit rank-1
attention matrices.
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Figure 14: In decoder-style LLMs, attention matrices in deeper layers often degenerate to near
single column matrices, which is a special case of near rank-1. We compute Angass(l) (averaged
over N = 100 randomly selected sequences each with 7" = 100 tokens) for each layer [ using the OpenWebText
validation set. Our mass analysis of 24-layer GPT-2 Medium, 36-layer GPT-2 Large, and 48-layer GPT-2
XLarge models (L:layer, H:hidden size) reveals that attention matrices in many deeper layers collapse to
single column matrices on an average.

C Understanding Attention Degradation using Attention Mass Analysis

In this paper, we have analyzed the attention degradation phenomenon primarily using a single metric-rank
of the attention matrices (see Section . In this section, we aim to explore another thematically related
metric to further investigate the nature of attention degradation.

We further investigated the dominant structure of the rank-1 attention matrices and observed that, on an
average, many of these matrices have their mass concentrated in a single column. This intrinsic structure can
be viewed as a special case of rank-1 attention matrices. To quantify this, we computed the proportion of

the matrix mass contributed by each column j of A(X) by computing Hlx“l(X)H , where A. ; denotes the j-th
column of A(X), ||A. ||z is the £o-norm of that column, and ||A(X)||F is the Frobenius norm of A(X).

Next we determine the minimal number of columns required to capture 7 proportion of the total mass,
formally computed as;

m* =min{ m e {1,2,.. THZHA ,]””22 -

Here n € (0,1) represents the cumulative column mass threshold. In this work, we set n = 0.90. A lower
value of m* implies a stronger concentration of the attention matrix mass within fewer columns, reinforcing
the phenomenon attention collapse. This analysis provides additional quantitative evidence highlighting the
reduced representational capability of attention matrices in deeper transformer layers, further supporting the
identification of lazy layers.

In Figure we present the layer-wise analysis of the attention matrix mass concentration in GPT-2 models.
For this analysis, (similar to the rank analysis), we computed A(X) using N = 100 sequences selected at
random from the validation set of OpenWebText (4.4M tokens), each with a sequence length of T = 100 tokens
across all attention heads within each layer. We define the average minimal column count m required to

capture 90% of the attention matrix mass for each head and layer as: m! = % Z;\;l mfl7h7l.Subsequently,

we aggregate this metric per layer by taking the average across all heads: Angass(l) = % 25:1 m®D . We

observe that many of the rank-collapsed attention matrices in deeper layers exhibit single-column attention
structures, as measured by the Angass(l) criterion. As shown in Figure we performed a mass analysis
on contemporary billion-parameter OpenLLaMA models (Geng & Liul 2023) and observed a similar pattern
of attention degradation in the deeper layers. This provides concrete evidence that the phenomenon persists
across a broad range of architectures and also at the billion-parameter scale.
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Figure 15: The overall mass of attention matrices in billion-scale LLMs, pre-trained on trillions
of tokens, tends to concentrate in fewer columns. This phenomenon becomes increasingly
pronounced as the model size grows. We computed attention matrices using 100 tokens from a random
subset of RedPajama with 1B tokens. Next, we performed 100 runs and plotted the mean and standard
deviation of the mass as a function of layers for our mass analysis, respectively. We followed the same
procedure as discussed in Section 2] Pre-trained checkpoints of OpenLLaMA-3B, OpenLLaMA-7B, and
OpenLLaMA-13B (Geng & Liul [2023)), trained on 1T tokens from the RedPajama dataset
were utilized. Overall, we observed that 90 % of the total mass of the attention matrices resides in fewer
columns, with many attention matrices in the OpenLLaMA-13B model being single-column. This observation
aligns closely with our analysis in Figure
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Figure 16: In standard decoder-style LLMs, attention matrices in deeper layers often degenerate
into single-column matrices, leading to layers with fully degenerated attention that fail to learn
meaningful representations. All models were trained on the OpenWebText dataset, and both rank and
mass analyses were conducted using the FineWeb validation set, following the same procedure described in
Figure[I] This further demonstrates the robustness of our analysis, as we reach the same conclusion using
different evaluation datasets.
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C.1 Data Robustness of Attention Degeneration Analysis

In Section [2| (Figure [1)), we performed a rank analysis on three pre-trained GPT-2 models—Medium, Large,
and XLarge using the validation set of the OpenWebText dataset, whose training split was originally used
for pre-training these models. Here, we evaluate the data robustness of our analysis by repeating the same
procedure on a validation set from FineWeb, a newer and distinct dataset. Except for the dataset substitution,
all experimental steps remain identical to those described earlier. The results in Figure [L6| consistently show
that attention tends to lose rank, particularly in deeper layers, often collapsing into near single-column
structures across all models. These findings further reinforce the robustness and generality of our observations.
Moreover, for the LLaMA-3 model (Figure and the OpenLLaMA models (Figure , we used publicly
available model weights and conducted our analyses on off-the-shelf datasets that were not part of the models’
original training corpora.

D Baselines

We compare Inheritune against several baselines. While some baseline methods are illustrated using GPT-2
Large or medium (for the knowledge distillation baseline) as an example, the same methodology is consistently
applied across all model variants.

Baselines trained from scratch (random initializations) : We compare our Inheritune-derived model
against much larger GPT-2 reference models trained from scratch for the same number of steps and similar-
sized models trained from scratch for both the same and double the number of training steps.

Baselines trained with warm started training methods. Here we compare our model derived using
Inheritune, to similar sized models trained with various model initialization and effcient training techniques
which requires model to be initialized with trained weights such as stacking, hybrid stacking, and half-width.
We explain these baseline training recipes using GPT-2 Large and its variants as an example and apply the
same process for other models.

Stacking |Gong et al.| (2019); J. Reddi et al.| (2023) is a model initialization and efficient (stage-wise) training
recipe. We train a 9-layer GPT-2 Large variant from scratch for 100K steps, then expanded the model to 18
layers by copying the weights from layers 0-8 to layers 9-17. Finally we re-trained this new 18-layer GPT-2
Large variant, using stacking initialization for an additional 100K steps.

Hybrid stacking: Hybrid stacking is stacking but utilizes a large pre-trained reference model for initialization
instead of using its own pre-trained weights. We took the weights of layers 0-8 from the reference 36-layer
GPT-2 Large model and expanded it to a 18-layer model by copying the weights to layers 0-17. We then
trained this new 18-layer GPT-2 variant for 100K steps.

Half width: We initialized the baseline GPT-2 Large variant across the width dimension and preserved the
entire depth. We copied the weights of the first half the attention heads (0-9) and MLPs of the GPT-2 Large
reference model into baseline GPT-2 variant with half the width but all layers.

Baselines trained with Knowledge Distillation As a baseline, we first apply logit-based knowledge
distillation Hinton et al.| (2015) to train a 16-layer GPT-2 Medium variant (student) initialized randomly. For
the second baseline, we use a DistillBERT-style approach [Sanh et al.| (2019), where the student model 0-11
layers are initialized with every alternate block of its teacher, and the remaining 4 blocks are initialized using
layers 18, 19, 20, and 21 of the teacher. Both baselines are trained for 50K steps, using a vanilla 24-layer
GPT-2 Medium model as the teacher (our reference model).

E Supplementary Experiments
We provide supplementary tables and plots corresponding to the results discussed in the main paper, along

with additional experiments, in this section. The final validation losses shown in Figure [2| are presented in
Table[d Similarly, the final validation losses from the training curves in Figure [§]and Figure [f]are summarized
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Layers Initialization AvgRank ‘ Pre-train Val Loss ({)
4 rand N/A 3.25
4 1-4 layers from vanilla GPT2 8.40 3.22
4 5-8 layers from vanilla GPT2 9.48 3.19
4 9-12 layers (lazy layers) from GPT2 1.22 3.23

Table 4: Impact of initialization strategies on GPT-2 small variants. We analyzed the rank
characteristics of a vanilla GPT2-small model (125M, 12 layers) trained on OpenWebText for 100K steps.
Four-layer GPT2-small variants were initialized using the first 4 layers [1-4], middle 4 layers [5-8], last 4
layers [9-12], or with random initialization, and then trained for 100K steps on OpenWebText. Models
initialized with the last 4 layers performed similarly to random initialization, while those initialized with
layers exhibiting higher average max ranks achieved the best validation loss, regardless of proximity to the
embedding layer. The training plots and rank analysis are provided in Figure

3.60
—— Vanilla-KD
—— KD w/ teacher_init
—— Vanilla
3.45 —— Ours
%]
w
S
- 3.30
2
S
©
h=l
8315
3.00
0 10 20 30 40 50
Steps (in K)

Figure 17: A 16-layer GPT-2 Medium variant derived using Inheritune converges faster and
generalizes better than a same-sized model trained with logit-based distillation baselines.

in Table 5| We also include training curves for models trained using various warm-started baselines (i.e.,
models initialized with learned weights) compared against our method, these results correspond to Table
and are visualized in Figure Finally, Figure [19] presents the training curves for models used in the ablation
study discussed in Section

Distillation vs. Inheritune. We conducted an additional experiment to compare Inheritune with knowledge
distillation as a baseline. Specifically, we trained GPT-2 Medium variants with 16 layers under three different
settings. First, we performed logit-based distillation Hinton et al.| (2015]), transferring knowledge from a
24-layer vanilla GPT-2 Medium (teacher) to a 16-layer student model. Second, we applied a DistilBERT-style
distillation [Sanh et al.| (2019]), where the student is initialized with the teacher’s layers. Finally, we trained a
16-layer GPT-2 Medium model from scratch using vanilla training. Across all comparisons, the model trained
with our Inheritune recipe outperformed both distilled variants, achieving faster convergence and substantially
better generalization after 50K training steps. We defer a thorough investigation of the relationship between
Inheritune and distillation-based approaches to future work. The training configurations are provided in
Section [

F Architectural and Training Details

F.1 GPT-2 Model configurations

For our main experiments, we focus on three sizes of GPT-2 models Radford et al.| (2019)): GPT-2 XLarge
with 1.5B parameters, GPT-2 Large with 770M parameters, and GPT-2 Medium with 355M parameters. We
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Models Layers Initialization Steps ‘ Pre-train Val loss ({)
24 rand init 100K 2.81
16 rand init 100K 2.86
GPT-2 Medium 16 rand init 200K 2.83
12 Ours 100K 2.87
14 Ours 100K 2.84
Final Model — 16 Ours 100K 2.81
36 rand init 100K 2.85
18 rand init 100K 2.97
GPT-2 Large rand init 200K 2.84
18 Ours 100K 2.80
48 rand init 100K 2.65
24 rand init 100K 2.69
GPT-2 XLarge rand init 200K 2.62
24 Ours 100K ‘ 2.64

Table 5: Inheritune achieves superior performance with reduced model size. Comparison of
Inheritune-trained models (24-layer GPT-2 XLarge, 18-layer GPT-2 Large, and 16-layer GPT-2 Medium)
against full-sized counterparts and extended training baselines. The training steps of two different baselines
are reported in the table, we use validation loss on the OpenWebText validation set. Note: GPT-2 Large and
XLarge uses one round of Inheritune; GPT-2 Medium uses three rounds. The lowest and our corresponding
validation losses (lower is better) are highlighted in bold.
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Figure 18: Models derived using Inheritune outperform three warm-started baselines (Baseline-
II) in terms of final validation loss. Our models demonstrate better convergence and generalization
compared to all baselines. All the models are trained with OpenWebText for 100K steps. The curves are
smoothed for visual clarity.

developed several variants of these models by adjusting the number of layers, i.e., reducing the depth for
vanilla models for to be trained with Inheritune and baseline mathods. In one baseline namely, the half-width
variant we modified both the hidden size (and consequently, the number of attention heads) in addition to
the depth, as shown in Figure[2] The key architectural configurations of the reference, proposed, and baseline
models discussed in this paper are summarized in Table [6}

F.2 Training details of GPT-2 models

All GPT-2 models used in this study (unless otherwise stated) were pre-trained on the OpenWebText dataset,
which contains approximately 10B tokens. We employed a dataloader that samples tokens with replacement,
meaning that the tokens used for training are not necessarily unique, following the approach of [Liu et al.
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Figure 19: Full training curves of 16-layer GPT-2 variants trained during ablations. We analyze
Inheritune approach while initializing some specific sub-modules in transformer blocks. Here, we initialize
each transformer block of a 16-layer GPT-2 Medium variant with three different configurations. First, we
separately initialize attention and MLPs (FFNs) submodules; second, we initialize the attention and MLP
weights while randomly initializing the layer norms. Finally, we perform Inheritune-initialize only the attention

and MLP weights with all the respective layer norms.
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Figure 20: Training curves for the 24-layer GPT-2 Medium model (full model) and three rounds
of training following Inheritune recipe (to grow the model). We present the training trajectories

for all GPT-2 Medium variants trained using the Inheritune recipe. The final model obtained after the third
round (R = 3) with L = 16 layers matches the final validation loss of the full model. All models are trained

for 100K steps on the OpenWebText dataset.
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Model Family Type Layers Hidden Size Heads Notes
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Table 6: Overview of all GPT-2 models used in this study and their architectural configurations.
GPT-2 models are Pre-LN based architectures. The model configurations employed for the stacking and
hybrid stacking baselines are identical to those of our variants. For the half-width baseline, we used GPT-2
variants with half the hidden size and number of attention heads.

(2023)). For evaluating the pre-trained models, we used the validation split of the same dataset, which contains
4.4M tokens. The sole exception to this setup is the GPT-2 models trained on the FineWeb edu with 10B
tokens (Figure [7)), where we used unique tokens for training by employing a dataloader where we sample
without replacement.

We employed the AdamW optimizer with §; = 0.90 and 8y = 0.95. All GPT-2 models were trained on a
single NVIDIA A100 GPU (40 GB memory) with gradient accumulation. For the GPT-2 XLarge and its
variants, we utilized an NVIDIA H100 GPU. Most hyperparameters were adapted from |Liu et al.| (2023]),
with key details discussed in this section.

Hyper-parameter details of GPT-2 Medium and variants.

o Batch size: 394K tokens

 Learning rate: 3 x 10~*

o Warmup steps: 2K

e Scheduler type: cosine decayed to 1 x 107>
o Weight decay: 0.1

o Gradient clipping value: 1

e Total training steps: 100K
Hyper-parameter details of GPT-2 Large and variants.

o Batch size: 128K tokens

o Learning rate: 2 x 1074

o Warmup steps: 2K

e Scheduler type: cosine decayed to 1 x 107>
o Weight decay: 0.1

o Gradient clipping value: 1

e Total training steps: 100K
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Hyper-parameter details of GPT-2 XLarge and variants.

o Batch size: 128K tokens
 Learning rate: 1.5 x 1074
o« Warmup steps: 2K

Scheduler type: cosine decayed to 1 x 107

o Weight decay: 0.1
e Gradient clipping value: 1

e Total training steps: 100K

Hyper-parameter details of knowledge distillation training.

We use the below loss for as our distillation based training loss. The validation loss is the student_ loss.

Total_loss = « - student_ loss + (1 — «) - distillation_ loss

e Model: 16-layer GPT-2 Medium variants
e a: 0.6

o Batch size: 394K tokens

o Learning rate: 3 x 10~%

e Warmup steps: 2K

Scheduler type: cosine decay to %0 of max learning rate
e Weight decay: 0.1
e Gradient clipping value: 1

o Total training steps: 50K

G Additional Experiments and Discussions

G.1 Additional Downstream Evaluation

We extend our evaluation to models trained on OpenWebText, as described in Section [4] (see Table @
For this analysis, we focus on the largest model considered in this work, GPT-2 XLarge, along with its
variants. Downstream evaluation is performed on all datasets listed in Section [4] with the addition of
Winogrande (Sakaguchi et al., 2020), BoolQ (Clark et al.,[2019)), and Wikitext (Merity et al., 2016). Note that
the LAMBADA dataset is evaluated under two settings: missing-word prediction (accuracy) and language
modeling (perplexity), and is therefore reported twice. All evaluations are implemented using the widely
adopted Im-eval-harness.
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Task Full model Ours
Accuracy-based tasks (1)

ARC-E 50.38 &£ 1.03  51.22 £+ 1.03
PIQA 66.70 £ 1.10  66.87 + 1.10
SciQ 77.00 £ 1.33  79.20 £+ 1.28
HellaSwag 33.65 + 0.47  34.20 £+ 0.47
LAMBADA 39.90 £ 0.68  43.30 £+ 0.69
WinoGrande 51.93 + 1.40 53.28 + 1.40
BoolQ 57.86 + 0.86  60.40 + 0.86
Average 53.92 55.50

Perplexity-based tasks (/)

Wikitext 25.46 25.52
LAMBADA 20.24 16.51
Average 22.85 21.01

Table 7: Downstream evaluation of GPT-2 XLarge (1.5B) trained from scratch vs. a 24-layer
model trained with Inheritune (Ours). We evaluate both models on 7 accuracy-based tasks (higher is
better) and 2 perplexity-based tasks (lower is better). All models are trained on OpenWebText. Despite
using half the depth, the Inheritune model performs favorably compared to the full-sized counterpart. Best
average scores are highlighted in bold.

G.2 Additional Evidence of Attention Collapse in Modern LLMs

Following the discussion in Section we extend our analysis to several additional open-weight base LLMs
(see Figures 21| and , including Falcon—?BEL OLMO—lBEL Cerebras—GPT—Z.?BEL and LLaMA—3—3Bﬁ

Many of these models incorporate modern architectural components, including Grouped Query Attention
(GQA), RoPE positional embeddings, and RMS normalization applied both before and after the attention
module and trained with billions-trillions of tokens. We visualized the attention heads of each model using
heatmaps of head index versus layer index. Across all models, we observe a predominance of near rank-1
attention heads, indicating widespread attention collapse.

G.3 Additional Results on the Functional Ineffectiveness of Lazy Layers

Following the discussion in Section 2.1 on the poor transferability of lazy layers, we conduct an additional
experiment. We first train a 24-layer GPT-2 Medium model (reference) on OpenWebText for 100K steps. We
then train a second model of identical size using the same data and training configuration. In this model, the
deeper layers (layers 16-24) are initialized with the corresponding weights from the reference model, while the
remaining layers are randomly initialized. As shown in Figure reusing lazy layers consistently degrades
performance relative to training all layers from scratch. This result complements our findings in Section
and provides further evidence that lazy layers do not encode transferable or reusable representations suitable
for initialization. We used a batch size of 50K tokens with 2 H100 GPUs; all other training details remain
unchanged (see Section

Shttps://huggingface.co/tiiuae/falcon-7b
4https://huggingface.co/amd/AMD-0LMo
Shttps://huggingface.co/cerebras/Cerebras-GPT-2.7B
Shttps://huggingface.co/meta-1lama/Llama-3.2-3B
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Figure 21: Rank analysis of the Falcon-7B model reveals widespread attention collapse. We
analyzed Falcon-7B (version 1), which comprises 31 layers with 71 attention heads per layer, using the
rank metric defined in Section 2] The results are visualized as a heatmap with layer index on one axis and
head index on the other. Potent (non-collapsed) heads are shown in varying shades of green, with higher
intensity indicating higher rank, while rank-collapsed (near rank-1) heads are highlighted in red. Overall,
approximately 75% of attention heads exhibit rank collapse, indicating substantial degeneracy across the
model.
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Figure 22: Rank analysis of large open-weight LLMs reveals widespread attention collapse. We
analyze three base open-weight language models using the rank metric defined in Section [2} (a) OLMo (1B)
exhibits rank collapse in approximately 58% of attention heads; (b) Cerebras-GPT (2.7B) shows a similar
level of collapse at roughly 58%; and (c¢) LLaMA-3 (3B) exhibits rank collapse in about 50% of attention
heads. Each heatmap plots attention head index versus layer index. Potent (non-collapsed) heads are shown
in varying shades of green, with higher intensity indicating higher rank, while rank-collapsed (near rank-1)
heads are highlighted in red.

G.4 Additional Training Results in the Extended Training Regime

In this section we present a supplementary result where we have extended the training steps from 100K (as
discussed in Section [4)) to 200K steps to gauge the potential Inheritune holds for longer training runs. As
shown in Figure [24]a GPT-2 medium (24 layer full model) is compared against a 18 layer GPT-2 medium
variant trained following Inheritune recipe. We have inherited [ = 18 layers based on the previously known
best configuration for GPT-2 medium variant where a 16 layer model matches the performance its full sized
counterpart. We observe that the Inheritune model with 18 layers achieves a lower final validation loss (2.86)
than the 24-layer baseline (2.87), demonstrating that Inheritune continues to provide benefits even with
extended training. We used a batch size of 50K tokens with 2 H100 GPUs; all other training details remain
unchanged (see Section [F.2).
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Figure 23: Initializing deeper layers of GPT-2 Medium with lazy layers degrades performance.
We first train a full GPT-2 Medium model from scratch on OpenWebText for 100K steps. We then construct
a second model in which layers 16—24 are initialized using the corresponding lazy layers layers from the
trained reference model, while layers 1-15 are randomly initialized. Both models are trained using the same
optimization and data settings. The model whose deeper layers are initialized with lazy layers performs
significantly worse than its counterpart trained entirely from scratch.
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Figure 24: Inheritune continues to provide gains under extended training. Comparison between
a full 24-layer GPT-2 Medium model and an 18-layer GPT-2 Medium variant trained using the Inheritune
recipe, both trained on OpenWebText for 200K steps. The Inheritune model achieves a lower final validation
loss (2.86) than the full 24-layer baseline (2.87).

G.5 Discussion on Lazy Layers

In this section, we provide a formal characterization of lazy layers through the rank-based criterion.

Definition G.1 (Lazy Layer (Rank-based)). Let {X,,}Y_; be a collection of N sequences, each consisting
of T tokens. For each layer [ € {1,...,L} and head h € {1,...,H}, let A, 5, € RT*T denote the attention
matrix produced by head h in layer [ on input sequence X,,.

Let 01(Appny) > -+ > or(An,n,i) > 0 be the singular values of A, 5, ;. For a threshold 7 € (0,1), we define
the approximate rank as

2521 Uz’(An,h,l)2
Yy 05 (Ann)? - T} . 2

o (T) = min{k e{1,...,T}

We choose 7 via an ablation study; throughout the paper we use 7 = 0.90 (see Section [4.3)).
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Define the head-wise aggregated rank and layer-wise aggregated rank as

N
1
Rank(h,l) = szj ),  MaxRank(l) = pemax Rank(h, [). (3)

For a group of L layers (where L denotes the number of contiguous layers in the group), define

L
1
AvgRank = I ;MaXRank(l). (4)

Lazy Layer. A layer [ is a Lazy Layer if MaxRank(l) = 1
Lazy Layers. A group of contiguous blocks of L layers is termed Lazy if | AvgRank| = 1.

H Theoretical Analysis

H.1 Causal Attention Rank-1 Collapse and Vanishing Gradients

We isolate a simple mechanism in decoder-style (causal) self-attention: when a head becomes highly con-
centrated on a single sink position across time (e.g., the first/BOS token), the resulting attention matrix
is approximately rank-1, and the corresponding gradients through the softmax saturate, yielding vanishing
updates to Wg and Wi

Setup. We inherit notations discussed in Section [2| Let X € RT*? denote a sequence of T tokens. Define
Q=XWq, K=XWgk, V=XWy, e RT* and masked logits

1 0 i>j
A= —QK" + M, M;; = = 5

with attention weights A = softmax(fl) applied row-wise over unmasked indices, and the final output becomes
O = AV. Let L denote the training objective.

Definition (attention collapse). Let A € RT*T be an attention matrix (row-stochastic: A4;; > 0 and

Z};l A;; =1 for each row 7). Fix an index j* € {1,...,T} that is unmasked for all rows (e.g., j* =1 for the
BOS token). We say that A is e-sink-collapsed to j* if, for every row ¢ € {1,...,T},

J#I*

Equivalently, each row places at least 1 — ¢ probability mass on the same column j*, i.e.,

Ajje = 1= Ay > 1-— Vie{l,...,T}. (7)
J#J*

Theorem H.1 (Attention collapse to rank-1 sink and vanishing gradients). Consider a single-head causal
self-attention module with A = softmax(%@[(—r + M) and O = AV. If A is e-sink-collapsed to some j* as
in equation [0} then:

(i) Rank-1 collapse. Let Ay = 1e]. (rank-1). Then

[A—Aollr <ev2l = 02(A) <[|[A— Aoll2 < [|[A— Ao|lr <ev2T, (8)
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so A is numerically rank-1 where € > 0 is small.

(ii) Vanishing gradients through softmazx. For each row i, letting a® be the entries of that row (restricted
to unmasked indices),

o <

Thus, once rows are near one-hot (€ —0), the gradient to logits vanishes.

f) Ghag( ))"““%””T> 5%%7’ “52(

(7it) Vanishing gradients to Wg and Wy . Moreover,

HaWQH Z Xkl |55 gl < o5 10 etk 55, (10)

so parameter updates to queries/keys shrink linearly with the collapse level .

Proof. We prove the three claims sequentially.

(i) Let Ay = lejT* € RT*T_ Clearly Aj has rank 1. As the Frobenius norm is the £, norm aggregated

over rows, it follows that ||[A — Ao||% = Z;TF:lHa(i) — e ; Fix a row a € RT (without loss of generality
we omit the superscript ), under e-sink-collapse, Ej 2+ a5 S € Since A is an attention matrix (row-

stochastic), then Zszl aj = 1 and a; > 0, hence aj» = 1-3 ., .a; > 1—¢c. Now consider the
squared error [|a —ej- |3 = (ajr — 1) + 32, ,. a. Here, (aj» —1)* < & (follows from a;+ > 1 —¢), and

2
2 2 2 2 ; ;
) PN <§ g aj> < ¢”. Thus, the squared error |la — ej«||3 < 2¢®. Summing over T rows, gives

T T
A= AglF = D lla®? —ejull3 < D 2% = 2Te® = |A— Aollr < V2T,
= i=1

Hence, 02(A) < ||A — Aoll2 < ||A — Aollr <ev2T (following Weyl’s inequality).

(ii) (Gradients are taken only over unmasked logits; masked positions have zero gradient.) Let g £ 9L£/da(")
and § £ 9L£/0a”). For the row-wise softmax, the Jacobian is J = diag(a) — aa', hence § = Jg. Since

T
J =0, [|J|l2 < tr(J). Moreover, tr(J) = > a;(1 — a;) = 1 — ||al|3. Under e-sink collapse, aj« > 1 — ¢, so

lal]3 > (1 — ¢)? and therefore
[Jll2<1—(1—¢)? < 2e.
Thus (132 < [1/2llgll2 < 2]z, proving equation B}

(iii) We focus on Wg; the argument for WK is analogous. By the chain rule, d% =XT7 ‘% . Let G £ 9%

HA"
Since A = IQKT + M, we have 2 @ GK Bounding norms and using ||XTHHF < ||X||2||H||F, (by
definition)
|55, < 1] 55, < Z51Xa1G e
From (ii), row-wise [|0L£/0a ||y < 25||8£/8a( )||2, and therefore ||G||r < 25|| ||p Substituting gives equa-
tion [0 -

Interpretation and training-time implication. Theorem connects rank-1 causal attention
collapse (sink behavior) and vanishing gradients: once a head becomes near-deterministic, the softmax
Jacobian saturates and the head receives negligible learning signal to recover. Consequently, collapse becomes
sticky (hard to recover from) after entering the collapsed regime, subsequent gradient updates tend to be
too small to move the head back to a higher rank (non-collapsed) state. Over training, this stickiness can
accumulate across layers especially in deeper layers which are more prone to vanishing gradients leading to
increasingly persistent rank collapsed attention patterns and progressively smaller query/key weight updates.
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