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Abstract. In medical image analysis, obtaining labeled data is expen-
sive and time-consuming. Numerous unlabeled data can be used for ef-
ficient abdominal organ segmentation. Besides, partially annotated data
is easier to collect and can be used to develop label-efficient algorithms,
reducing the annotation cost for considerable performance. We proposed
a progressive weakly supervised learning for abdomen organs and tumor
segmentation, i.e., PWS-Seg. PWS-seg can learn from organs to tumors
via a progressive framework based on partially annotated images. More-
over, we applied a class-wise label fusion strategy to get a new set of
reliable pseudo labels. On the FLARE2023 online validation cases, with
the help of unlabeled data, our method obtained the average dice similar-
ity coefficient (DSC) of 82.68% and average normalized surface distance
(NSD) of 86.00%, which is better than the method only using partial
annotated. The average running time is 100.17s per case in the inference
phase, and the maximum used GPU memory is 4128 MB.
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1 Introduction

Supervised segmentations in medical image analysis depend on the quantity
and quality of manual voxel-level labels, which is time-consuming and expensive
because of the requirement of professional domain knowledge.

In more common scenarios where there is a small amount of labeled data
and a large amount of unlabeled data [5, 6], semi-supervised segmentation is
effective [2, 3, 23]. Larger medical image datasets are provided for researchers,
e.g., FLARE22 Challenge [18], to develop the semi-supervised segmentation.

Besides the semi-supervised segmentation, label-effective image segmentation
has attracted attention due to the relaxation of the need for dense labels to weak
or partial labels, resulting in the weakly supervised segmentation (WSS) [16,17,
26]. The bounding boxes, scribbles, and partial labels are the most commonly
used supervision types for WSS [26]. Among all these types, partial annotations,
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i.e., only one or a few classes are labeled in images, can provide the flexibility to
allocate the workload and have the potential to reduce the annotation cost.

However, it is difficult to directly learn from partially labeled datasets via
traditional fully supervised learning frameworks. To segment multiple organs,
existing methods made efforts to learn from partially annotated datasets.

When training with partially-labeled images, Zhou et al., tried to incorporate
anatomical priors from fully-labeled dataset [31]. Fang et al., proposed the target
adaptive loss to learn a unified multi-organ segmentation model from partially-
and fully-labeled datasets [7]. Huang et al., trained multiple binary segmentation
models using partially-labeled images and then learned a multi-organ network
using pseudo labels from the binary models [12]. Zhang et al., used a dynamic
segmentation head and a task-specific controller to address the partial annotation
issues [30].
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Fig. 1. Volume statistics of organs and tumors for partially labeled data of FLARE23.
The labels in the horizontal coordinate are the abbreviations of the names of 13 organs
(from Liver(LI) to Left Kidney(LK)) and tumor.

FLARE23 is different from FLARE22 in two ways; the first is that FLARE23
is partially labeled, and the second is that FLARE23 requires segmenting the tu-
mor. One of the reasons why the latter is more difficult than organ segmentation
is due to its uncertain location and state. For example, as shown in Figure 1,
the volume distribution of the tumor (TU) has a larger variance than that of
the other 13 organs.

In this paper, we propose a self-training strategy, i.e., a progressive weakly
supervised learning framework (PWS-Seg), to segment the abdomen organs
and tumors based on partial label annotation. The framework consists of two
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stages, i.e., the organ segmentation (OS) stage and the organ-tumor segmenta-
tion (OTS) stage. The OS stage extracts the features of multiple organs from the
limited labeled organs and then propagates the knowledge to unlabeled regions.
The OTS stage uses the consistency of organ prediction during the progressive
self-training process to correct the pseudo labels of organs and tumors.

2 Method

Figure 2 shows the diagram of our two-stage approach.
We propose a progressive weakly-supervised segmentation (PWS-Seg) frame-

work for multi-organ and tumor segmentation tasks, which can leverage partial
annotated data and numbers of unlabeled data. Since we assume that the abdom-
inal tumors were highly spatially related to the abdominal organs, we introduce
a two-stage segmentation to complete the organ-tumor segmentation task. The
two networks have similar UNet-based architectures.

Algorithm 1 presents the scheme for PWS-Seg. In the first stage, we train
the organ segmentation network (OS CNN) twice (Section 2.3). We can use each
of the trained OS CNNs to predict the pseudo labels of organs of unlabeled data
and partially annotated data. OS CNN was trained using our previous work, i.e.,
a cross-supervision method [15].

In the second stage, we also train the organ and tumor segmentation network
(OTS CNN) twice. We can use each of the trained CNNs to predict the pseudo
labels of organs and tumors of unlabeled data and partially annotated data. To
generate more reliable pseudo labels, we propose a fusion strategy for the pseudo
labels and partially annotated data (Section 2.4).

2.1 Preprocessing

The annotated images were cropped as patches using their corresponding
labels, which avoided using numerous patches without any labels. For the unla-
beled images, we used the results of the OS stage to crop the abdominal organ
regions. All the images were re-sampled for a fixed spacing, i.e., 2.5mm×0.8mm×
0.8mm.

2.2 Notation of partial label segmentation

Let L =
{
(x(1),y(1)), (x(2),y(2)), ..., (x(N),y(N))

}
and U =

{
x(N+1), ...,x(M)

}
denote the labeled data and unlabeled data. Here, we denote x as the intensity
image, and denote y(i) as annotation(label) image.

We can define the partial label data P based on L. For a given element
(x(i),y(i)) in L and class k, we can define the partial annotated label image:

y(i) = [y
(i)
1 , y

(i)
2 , ..., y

(i)
K ] ⊆ {0, 1}K . (1)

Here y(i) = 1 and y(i) = 0 mean the annotation of class k is present and absent
for x(i), respectively. Based on the definitions of P and L, the partially labeled
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Fig. 2. The diagram of the two-stage organ and tumor segmentation framework. Stage
1 (OS stage): A fully annotated organ dataset and an unlabeled dataset are used to
segment the organ using the cross-supervision method. The trained OS CNN (pθ1) is
used to predict pseudo labels of organs of the unlabeled images. The pseudo labels
of organs, which can also seen as a set of partially annotated labels of organs and
tumors, are combined with the given partially annotated labels to generate a set of
more reliable pseudo labels. Stage 2 (OTS stage): Based on the more reliable dataset,
we can segment the organs and tumors, simultaneously.
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Algorithm 1: Framework of PWS-Seg.
Input: Partially annotated data: P = {PO,POT }; Unlabeled data:U ;

Organ segmentation network:OS CNN(θ),Organ-tumor
segmentation network:OTS CNN(φ);

Output: φ.

Initialize θ and φ according to Tables 2 and 3;
foreach epoch in max-num-epoch do

Sample batch from PO, POT and U ; POT in this step were
considered as unlabeled data;

Train parameter θ of OS CNN;
Predict pseudo labels of organs for U and POT , divide the tumor label
into different organs;

foreach epoch in max-num-epoch do
Sample batch from PO, and sample batch from POT and U with
their pseudo labels of organs;

Train parameter θ of OS CNN;
Predict pseudo labels of organs (Ŷ) for POT using trained OS CNN;
For POT , abandon the data whose partial label did not contain tumor
class and fuse the pseudo organ labels of organs and partial
annotations, resulting in a set of data with more reliable pseudo labels
Ỹ;

foreach epoch in max-num-epoch do
Sample batch from Ỹ; Train parameter φ of OST CNN;

Predict pseudo labels of organs and tumors (Ŷ) for PO, POT and U ;
Fuse the partial labels and pseudo labels into Ỹ;
foreach epoch in max-num-epoch do

Sample batch from Ỹ ;
Train parameter φ of OST CNN;

data P is also the labeled data related to the target class K. In this paper, we
assume that the tumors were unknown, such that those images where all the
organs are fully labeled (i.e., PO) can be seen as partially annotated images.
The images where organs and tumors are partially labeled are denoted as POT .

The aim of the partial label segmentation is to obtain a segmentation plan
that can leverage all the obtained data, i.e., P and U . We can use the segmen-
tation plan P to predict a probability map p for x as:

P = pφ(x). (2)

2.3 Organ segmentation using cross supervision

In the organ and tumor segmentation task, fully annotated organ labels can
also be seen as partial labels when we assume that the tumor class is absent.
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In this stage, to segment abdominal organs with limited organ-labeled and un-
labeled data U , we use the cross-supervision method, which is presented in our
previous work [15]. Two sub-networks (pθ1 and pθ2) are introduced. They have
the same structures and the same number of parameters but are initialized dif-
ferently at the beginning.

During the training procedure, to leverage the unlabeled data, the cross-
supervised (CS) losses for organ-labeled and unlabeled data, i.e., Cu

u and Cl
u, are

introduced, respectively.
The training loss function for organ segmentation can be formulated as:

C = Cs + Cu
u + Cl

u. (3)

In the first stage, we train the OS CNN twice. During the first training proce-
dure, we input fully organ-labeled images (PO), partially labeled images(POT ),
and unlabelled images (U). The partially labeled images are treated as unlabelled
images in this stage. We use the first trained OS CNN to predict pseudo-labels
for both partially labeled and unlabelled images. Since there are a certain num-
ber of correct organ labels in the partially labeled images, we retain the labeled
organ labels and classify the tumor regions into organ categories when generat-
ing pseudo-labeled images for the partially labeled images. In other words, we
only use data with organ labels in the second training of OS CNN. At the end
of the OS stage, we use the second trained OS CNN to predict ŷ as shown in
Figure 2. More details about this stage are provided in Algorithms 1.

2.4 Class-wise label fusion strategy for partially annotated labels

To obtain more reliable pseudo labels, we propose a class-wise label fusion
strategy to use partially labeled data. Although cross-supervision strategy can
leverage the unlabeled data U , partially labeled data could not be used directly.
We can generate more reliable pseudo labels of partially annotated images.

Given the partial labeled data (x(j),y(j)) in P and its corresponding pseudo
label is:

ŷ(j) = [ŷ
(j)
1 , ŷ2

(j), ..., ŷK
(j)] ⊆ {1}K . (4)

Here, ŷ(j) ⊆ Ŷ can be generated by any teacher models. Based on partial label
and pseudo label information, we can generate more reliable pseudo labels for
partially labeled images: ỹ(j) = [ỹ

(j)
1 , ỹ2

(j), ..., ỹK
(j)] ⊆ Ỹ:

ỹk
(j) =

{
y
(j)
k , if y

(j)
k = 1;

ŷk
(j), others.

(5)

In the second stage, we also train the OTS CNN twice. During the first
training procedure, we use the label fusion strategy (Equation 5) to generate a
set of more reliable pseudo labels for the partially annotated images. It should be
noted that the partially annotated images, whose labels did not contain tumor
class were abandoned, resulting in a set of data with more reliable pseudo labels
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Ỹ. We use the first trained OTS CNN to predict pseudo-labels for both partially
labeled and unlabelled images. Label fusion strategy and label selection strategy
are also used to generate the second set of pseudo labels, which are used to train
a second OTS CNN. More details about this stage are provided in Algorithms 1.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [20] [21],
aiming to aim to promote the development of foundation models in abdominal
disease analysis. The segmentation targets cover 13 organs and various abdomi-
nal lesions. The training dataset is curated from more than 30 medical centers un-
der the license permission, including TCIA [4], LiTS [1], MSD [25], KiTS [10,11],
autoPET [8, 9], TotalSegmentator [27], and AbdomenCT-1K [22]. The training
set includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [28], nnU-Net [14], and
MedSAM [19].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04.4 LTS and Windows 11
CPU e.g., Intel(R) Core(TM) i9-13900K CPU@3.00GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) One NVIDIA 3090 24G
CUDA version 11.0
Programming language Python 3.8
Deep learning framework torch 1.11.0
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Training protocols We implemented the proposed framework using EfficientSeg-
Net [29] and nnUnet [14] used in FLARE21 [20] and FLARE22 [18] challenge.

In the OS stage of our proposed method, we used 2250 partially labeled
images (50 fully organ-annotated images from FLARE22 and 2200 partially la-
beled images from FLARE23) and 2800 (1000 from FLARE22 [18] and 1800
from FLARE23) unlabeled images. In this stage, we also employed a cascade
strategy, which aimed to segment the abdomen organs via a coarse-to-fine pro-
cedure. Since the abdominal region is large, we can not efficiently segment all
organs in a single-stage way. Therefore, we segmented the organs from down-
sampled images in the first place, which can be seen as a coarse segmentation.
With the help of coarse segmentation results, we segmented the organs of the
original images.

In the OTS stage, we used 50 partially annotated images (fully organ-annotated
images), 1496 partially annotated images (must have the tumor label), and 2800
(1000 from FLARE22 and 800 from FLARE23) unlabeled images to train the
network.

We used the same processing strategy and data augmentation method for all
images as in our previous work [15]. Crop, random rotation, random transition,
and random elastic deformation were used for data augmentation. We randomly
resampled the data with the size and spacing described in Table 2 and Table 3.

Table 2. Training protocols for OS stage.

Network initialization Kaiming normal initialization
Batch size 8(coarse), 1(fine)
Input size (coarse) 160×160×160
Input size (fine) 192×192×192
Total epochs 500(coarse), 1000(fine)
Optimizer Adam with betas (0.9, 0.99), L2 penalty: 0.00001
Loss Dice loss and focal loss (alpha = 0.5, gamma = 2)
Initial learning rate (lr) 0.01
Training time (coarse) 6 (coarse), 300(fine) hours

4 Results

The results show that the method using unlabeled data improves the dice
score of the method with partially labeled images.

Table 4 shows the results of the proposed methods on the validation dataset.
The results of our submitted solution (docker container), which was evaluated
by the organizers of FLARE2023, are reported in Table 4. The public validation
dataset contains 50 cases, while the online validation dataset contains 100 cases.
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Table 3. Training protocols for OTS stage.

Network initialization Kaiming normal initialization
Batch size 2
Patch size 48×192×192
Total epochs 1000
Optimizer Adam
Initial learning rate (lr) 0.01
Training time 672 hours
Loss function Cross-entropy and Dice loss
Number of model parameters 48.84M3

Number of flops 995.46G4

Table 4. Quantitative results PWS-Seg(P+U) in terms of DSC and NSD on the vali-
dation dataset. There are 50 validation cases in the public validation and 100 cases in
the online validation. We report the mean and standard deviation with ±.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 97.21 ± 1.36 96.36 ± 4.55 97.24 96.66
Right Kidney 94.47 ± 6.31 94.30 ± 8.02 94.07 94.12
Spleen 96.28 ± 3.03 97.14 ± 5.46 96.47 97.35
Pancreas 81.74 ± 5.26 93.38 ± 3.60 79.65 91.54
Aorta 95.69 ± 3.68 97.86 ± 4.70 95.97 98.09
Inferior vena cava 92.44 ± 4.10 94.23 ± 4.93 92.21 93.75
Right adrenal gland 80.35 ± 6.17 91.07 ± 5.29 79.73 91.10
Left adrenal gland 75.79 ± 10.49 84.46 ± 10.58 75.29 83.67
Gallbladder 77.61 ± 25.28 74.85 ± 25.43 78.05 74.59
Esophagus 79.41 ± 15.57 90.19 ± 15.06 80.21 91.24
Stomach 90.48 ± 6.98 92.52 ± 9.59 90.02 91.75
Duodenum 77.32 ± 9.20 91.67 ± 6.10 77.97 91.88
Left kidney 93.01 ± 10.26 91.85 ± 13.09 92.55 91.83
Tumor 34.42 ± 33.26 27.40 ± 27.47 28.05 16.40
Average(Organ) 87.06 ± 8.02 91.53 ± 5.85 86.88 91.35
Average 83.30 ± 15.61 86.95 ± 17.45 82.68 86.00
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Table 5. Quantitative results of i.e., PWS-Seg in terms of DSC and NSD on the
validation dataset. The symbol 1540 (P) denotes the method using 50 fully annotated
organ images PO and 1496 partially annotated organ-tumor images POT . PWS-Seg∗(P)
denotes the method without using label fusion strategy. PWS-Seg†(P+U) denotes the
method with larger sized network. We report the mean and standard deviation with
±.

Organ/Tumor
PWS-Seg∗(P) PWS-Seg(P) PWS-Seg†(P+U)

1540(P)=50+1496 1540(P)=50+1496 1540(P)+2800(U)
DSC(%), NSD(%) DSC(%), NSD(%) DSC(%), NSD(%)

Liver 96.52±2.21,95.50±6.04 96.86±3.29,96.49±4.20 97.71±0.62,97.81±1.94
RK 92.02±9.34,90.55±10.99 91.04±15.59,90.15±16.42 94.94±7.18,94.93±7.75
Spleen 94.79±7.42,94.32±8.00 95.77±4.54,96.30±6.63 96.36±3.45,97.11±5.44
Pancreas 78.28±6.73,89.72±5.67 82.08±6.11,93.71±4.87 83.20±4.91,94.68±3.22
Aorta 96.14±3.06,98.43±4.40 94.84±4.32,97.49±5.28 95.73±3.96,97.97±4.71
IVC 92.69±4.03,94.97±5.13 92.74±4.38,94.54±5.19 92.75±3.90,94.42±4.87
RAG 81.72±6.04,91.61±4.87 74.41±10.12,86.38±7.71 83.42±5.60,92.84±4.40
LAG 74.97±13.58,84.93±15.20 74.91±10.47,83.57±9.88 78.49±9.76,87.31±9.17
Gallbladder 77.33±25.78,76.26±25.64 78.19±24.62,77.54±26.19 83.27±20.08,81.23±21.11
Esophagus 76.85±15.38,89.65±13.74 77.32±16.26,87.40±15.92 80.04±15.07,90.75±14.23
Stomach 87.97±9.18,89.38±11.12 89.83±7.10,92.76±8.95 91.25±6.25,94.30±7.40
Duodenum 77.89±7.79,92.11±5.98 78.95±8.63,92.87±6.13 79.58±8.71,93.18±6.02
LK 87.41±17.53,83.35±18.39 91.57±12.15,91.44±13.83 93.33±12.19,93.08±14.20
Tumor 31.10±33.89,25.40±27.84 37.72±33.76,35.18±29.26 44.19±34.26,40.06±30.85
Avg. 81.83±15.97,60.45±35.05 82.59±14.72,86.84±15.29 85.30±13.21,89.26±14.29

4.1 Quantitative results on validation set

In Table 4, the average DSC of organ segmentation on public and online
validation datasets are separately 87.06% and 86.88%, which demonstrates that
our method shows robust performance on organ segmentation. However, the DSC
of tumor segmentation on public and online validation datasets are separately
34.42% and 28.05%, which shows that tumor segmentation remains challenging.

Compared to the method of only using partially annotated data (PWS-
Seg(P) ) shown in Table 5), using unlabeled data, the PWS-Seg improves the
average DSC from 82.59% to 83.30%, while the average NSC improves from
86.84% to 86.95%, which is consistent with the conclusion of FLARE22 chal-
lenge [18].

Table 4 shows that the Tumor, LAG, Duodenum, and Gallbladder are the
three difficult regions, while the Liver, Spleen, and Aorta are the three easy
organs for abdominal organ and tumor segmentation. The difficulties may be due
to unclear boundaries, class imbalanced issues, and large variations of shapes.
Besides, Table 4 and Table 5 show that the standard deviations of the tumor and
Gallbladder segmentation are relatively large, which demonstrates the method
achieves disappointed robustness for Tumor and Gallbladder.
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To validate the effect of the label fusion strategy, we perform PWS-Seg with
simple pseudo labels without any fusion, i.e., PWS-Seg∗(P) in Table 5. The
average DSC decreases from 82.59 % to 81.83%, which shows the efficacy of the
label fusion strategy.

To validate the effect of the larger size of the network on the results, we
increase the number of features to 32 and the patch size to 48 × 224 × 224,
denoted as PWS-Seg†(P+U). The results in Table 5 show that a larger sized
network can improve the accuracy of the segmentation, which is consistent with
the conclusion in the work [13] of FLARE22.

As shown in Figure 3, in Case #0093, the segmentation results of our method
have large boundary variations of Duodenum. Moreover, both in Case #0093 and
Case #0033, our method fails to recognize the tumor of RK even if the tumor
boundaries are clear.

Table 6. Quantitative evaluation of segmentation efficiency in terms of the running
them and GPU memory consumption. Total GPU denotes the area under the GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 65.13 3442 156868
0051 (512, 512, 100) 101.57 4402 358826
0017 (512, 512, 150) 117.42 4618 432704
0019 (512, 512, 215) 87.14 3874 262002
0099 (512, 512, 334) 122.24 4388 396838
0063 (512, 512, 448) 146.61 4602 489157
0048 (512, 512, 499) 150.43 4524 509211
0029 (512, 512, 554) 180.96 5196 692933
Avg. - 100.17 4128 339753(20 cases)

4.2 Qualitative results on validation set

Figure 3 shows two examples with good segmentation results(#0038_#slice172
and #0053_#slice72) and two examples with bad segmentation results(#0093_#slice58
and #0033_#slice74) in the validation set.

4.3 Segmentation efficiency results on validation set

Table 6 presents the segmentation efficiency results of 8 cases, whose image
sizes are increasing. The runtime of the case with the smallest image size, i.e.,
Case #0001, is 65.13 s. By contrast, the runtime of the case with the largest
image size, i.e., Case #0029, is 180.96 s.

The mean runtime is 100.17 s per case in the prediction step, the maximum
used GPU memory is 4128 MB, and the AUC GPU time is 339753 MB.
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Case #FLARETs_0093 (slice #58)

Case #FLARETs_0038 (slice #172)

Case #FLARETs_0053 (slice #72)

Case #FLARETs_0033 (slice #74)

90.12

89.83

76.94

74.73

Intensity image Ground truth PWS-Seg (𝒫 + 𝒰)PWS-Seg(𝒫)

Case#FLARETs_0033(slice #74)

Case#FLARETs_0038(slice #58)

90.09

89.65

70.48

83.13

Fig. 3. Qualitative results on good (Case #0038 and Case #0053) and bad (Case
#0093 and Case #0033) examples. The first column is the intensity image, the second
column is the ground truth, and the third and the fourth columns are the results
achieved by our proposed method. PWS-Seg(P) denotes the proposed method using
only the partially annotated dataset. PWS-Seg(P+U) denotes our proposed solution.
The DSC of each case is presented in the top-left corner.
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4.4 Results on final testing set

5 Discussion and conclusion

Using unlabeled data, the proposed progressive weakly supervised method
achieved better results than the results of the method using the partially an-
notated data. Whichever method is used, the segmentation of some organs and
tumors is still challenging. Tumors are highly variable in shape and appearance
due to uncertainty of location and status. As shown in Figure 1, the volumes of
tumors have larger variations than organs. Thus, tumor segmentation obtained
disappointing performance because of uncertainties of locations, regularity of
unremarkable shapes, unclear boundaries, number of individuals, etc. The exis-
tence of tumors in organs, such as Livers and Kidneys, are critical factor for poor
organ segmentation performance. Besides, further research is needed to identify
and use the remarkable image properties and shape patterns.

The proposed PWS-Seg model used over 1000 unlabelled images, but the
performance of the method is limited by the amount of time-consuming training
of the model using images of the same type. Future attention may need to be
paid to how representative training samples can be filtered out of thousands of
data.

5.1 Limitation and future work

We summarize the limitations and future work as follows:

– Efficiently extract the features of tumors and organs with large shape and
appearance variations.

– Robust network trained with partially annotated labels.
– High-quality datasets which have enough diversity and common features.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2023 challenge has not
used any pre-trained models nor additional datasets other than those provided
by the organizers. The proposed solution is fully automatic without any manual
intervention. We thank all the data owners for making the CT scans publicly
available and CodaLab [24] for hosting the challenge platform.

This work was supported fully by InnoHK Project at Hong Kong Centre for
Cerebro-cardiovascular Health Engineering (COCHE).

References

1. Bilic, P., Christ, P., Li, H.B., Vorontsov, E., Ben-Cohen, A., Kaissis, G., Szeskin, A.,
Jacobs, C., Mamani, G.E.H., Chartrand, G., Lohöfer, F., Holch, J.W., Sommer, W.,
Hofmann, F., Hostettler, A., Lev-Cohain, N., Drozdzal, M., Amitai, M.M., Vivanti,
R., Sosna, J., Ezhov, I., Sekuboyina, A., Navarro, F., Kofler, F., Paetzold, J.C.,



14 Dengqiang Jia et al.

Shit, S., Hu, X., Lipková, J., Rempfler, M., Piraud, M., Kirschke, J., Wiestler, B.,
Zhang, Z., Hülsemeyer, C., Beetz, M., Ettlinger, F., Antonelli, M., Bae, W., Bellver,
M., Bi, L., Chen, H., Chlebus, G., Dam, E.B., Dou, Q., Fu, C.W., Georgescu, B.,
i Nieto, X.G., Gruen, F., Han, X., Heng, P.A., Hesser, J., Moltz, J.H., Igel, C.,
Isensee, F., Jäger, P., Jia, F., Kaluva, K.C., Khened, M., Kim, I., Kim, J.H., Kim,
S., Kohl, S., Konopczynski, T., Kori, A., Krishnamurthi, G., Li, F., Li, H., Li, J.,
Li, X., Lowengrub, J., Ma, J., Maier-Hein, K., Maninis, K.K., Meine, H., Merhof,
D., Pai, A., Perslev, M., Petersen, J., Pont-Tuset, J., Qi, J., Qi, X., Rippel, O.,
Roth, K., Sarasua, I., Schenk, A., Shen, Z., Torres, J., Wachinger, C., Wang, C.,
Weninger, L., Wu, J., Xu, D., Yang, X., Yu, S.C.H., Yuan, Y., Yue, M., Zhang,
L., Cardoso, J., Bakas, S., Braren, R., Heinemann, V., Pal, C., Tang, A., Kadoury,
S., Soler, L., van Ginneken, B., Greenspan, H., Joskowicz, L., Menze, B.: The liver
tumor segmentation benchmark (lits). Medical Image Analysis 84, 102680 (2023)
7

2. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In:
Proceedings of the eleventh annual conference on Computational learning theory.
pp. 92–100 (1998) 1

3. Chen, L.C., Lopes, R.G., Cheng, B., Collins, M.D., Cubuk, E.D., Zoph, B., Adam,
H., Shlens, J.: Naive-student: Leveraging semi-supervised learning in video se-
quences for urban scene segmentation. In: European Conference on Computer Vi-
sion. pp. 695–714. Springer (2020) 1

4. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S.,
Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., Prior, F.: The cancer imaging
archive (tcia): maintaining and operating a public information repository. Journal
of Digital Imaging 26(6), 1045–1057 (2013) 7

5. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3213–3223 (2016) 1

6. Everingham, M., Eslami, S., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.:
The pascal visual object classes challenge: A retrospective. International journal
of computer vision 111(1), 98–136 (2015) 1

7. Fang, X., Yan, P.: Multi-organ segmentation over partially labeled datasets with
multi-scale feature abstraction. IEEE Transactions on Medical Imaging 39(11),
3619–3629 (2020) 2

8. Gatidis, S., Früh, M., Fabritius, M., Gu, S., Nikolaou, K., La Fougère, C., Ye,
J., He, J., Peng, Y., Bi, L., et al.: The autopet challenge: Towards fully au-
tomated lesion segmentation in oncologic pet/ct imaging. preprint at Research
Square (Nature Portfolio ) (2023). https://doi.org/https://doi.org/10.21203/
rs.3.rs-2572595/v1 7

9. Gatidis, S., Hepp, T., Früh, M., La Fougère, C., Nikolaou, K., Pfannenberg, C.,
Schölkopf, B., Küstner, T., Cyran, C., Rubin, D.: A whole-body fdg-pet/ct dataset
with manually annotated tumor lesions. Scientific Data 9(1), 601 (2022) 7

10. Heller, N., Isensee, F., Maier-Hein, K.H., Hou, X., Xie, C., Li, F., Nan, Y., Mu,
G., Lin, Z., Han, M., Yao, G., Gao, Y., Zhang, Y., Wang, Y., Hou, F., Yang, J.,
Xiong, G., Tian, J., Zhong, C., Ma, J., Rickman, J., Dean, J., Stai, B., Tejpaul,
R., Oestreich, M., Blake, P., Kaluzniak, H., Raza, S., Rosenberg, J., Moore, K.,
Walczak, E., Rengel, Z., Edgerton, Z., Vasdev, R., Peterson, M., McSweeney, S.,
Peterson, S., Kalapara, A., Sathianathen, N., Papanikolopoulos, N., Weight, C.:
The state of the art in kidney and kidney tumor segmentation in contrast-enhanced

https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1


PWS-Seg 15

ct imaging: Results of the kits19 challenge. Medical Image Analysis 67, 101821
(2021) 7

11. Heller, N., McSweeney, S., Peterson, M.T., Peterson, S., Rickman, J., Stai, B.,
Tejpaul, R., Oestreich, M., Blake, P., Rosenberg, J., et al.: An international chal-
lenge to use artificial intelligence to define the state-of-the-art in kidney and kidney
tumor segmentation in ct imaging. American Society of Clinical Oncology 38(6),
626–626 (2020) 7

12. Huang, R., Zheng, Y., Hu, Z., Zhang, S., Li, H.: Multi-organ segmentation via
co-training weight-averaged models from few-organ datasets. In: Medical Image
Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International
Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part IV 23. pp. 146–155.
Springer (2020) 2

13. Huang, Z., Wang, H., Ye, J., Niu, J., Tu, C., Yang, Y., Du, S., Deng, Z., Gu, L.,
He, J.: Revisiting nnu-net for iterative pseudo labeling and efficient sliding win-
dow inference. In: MICCAI Challenge on Fast and Low-Resource Semi-supervised
Abdominal Organ Segmentation, pp. 178–189. Springer (2022) 11

14. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18(2), 203–211 (2021) 7, 8

15. Jia, D.: Semi-supervised multi-organ segmentation with cross supervision us-
ing siamese network. In: MICCAI Challenge on Fast and Low-Resource Semi-
supervised Abdominal Organ Segmentation, pp. 293–306. Springer (2022) 3, 6,
8

16. Lei, W., Su, Q., Jiang, T., Gu, R., Wang, N., Liu, X., Wang, G., Zhang, X.,
Zhang, S.: One-shot weakly-supervised segmentation in 3d medical images. IEEE
Transactions on Medical Imaging (2023) 1

17. Lv, J., Liu, B., Feng, L., Xu, N., Xu, M., An, B., Niu, G., Geng, X., Sugiyama, M.:
On the robustness of average losses for partial-label learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2023) 1

18. Ma, J., Wang, B.: Fast and Low-Resource Semi-supervised Abdominal Organ Seg-
mentation: MICCAI 2022 Challenge, FLARE 2022, Held in Conjunction with MIC-
CAI 2022, Singapore, September 22, 2022, Proceedings, vol. 13816. Springer Nature
(2023) 1, 8, 10

19. Ma, J., Wang, B.: Segment anything in medical images. arXiv preprint
arXiv:2304.12306 (2023) 7

20. Ma, J., Zhang, Y., Gu, S., An, X., Wang, Z., Ge, C., Wang, C., Zhang, F., Wang,
Y., Xu, Y., Gou, S., Thaler, F., Payer, C., Štern, D., Henderson, E.G., McSweeney,
D.M., Green, A., Jackson, P., McIntosh, L., Nguyen, Q.C., Qayyum, A., Conze,
P.H., Huang, Z., Zhou, Z., Fan, D.P., Xiong, H., Dong, G., Zhu, Q., He, J., Yang,
X.: Fast and low-gpu-memory abdomen ct organ segmentation: The flare challenge.
Medical Image Analysis 82, 102616 (2022) 7, 8

21. Ma, J., Zhang, Y., Gu, S., Ge, C., Ma, S., Young, A., Zhu, C., Meng, K., Yang, X.,
Huang, Z., Zhang, F., Liu, W., Pan, Y., Huang, S., Wang, J., Sun, M., Xu, W., Jia,
D., Choi, J.W., Alves, N., de Wilde, B., Koehler, G., Wu, Y., Wiesenfarth, M., Zhu,
Q., Dong, G., He, J., the FLARE Challenge Consortium, Wang, B.: Unleashing
the strengths of unlabeled data in pan-cancer abdominal organ quantification: the
flare22 challenge. arXiv preprint arXiv:2308.05862 (2023) 7

22. Ma, J., Zhang, Y., Gu, S., Zhu, C., Ge, C., Zhang, Y., An, X., Wang, C., Wang, Q.,
Liu, X., Cao, S., Zhang, Q., Liu, S., Wang, Y., Li, Y., He, J., Yang, X.: Abdomenct-
1k: Is abdominal organ segmentation a solved problem? IEEE Transactions on
Pattern Analysis and Machine Intelligence 44(10), 6695–6714 (2022) 7



16 Dengqiang Jia et al.

23. Mittal, S., Tatarchenko, M., Brox, T.: Semi-supervised semantic segmentation with
high-and low-level consistency. IEEE transactions on pattern analysis and machine
intelligence 43(4), 1369–1379 (2019) 1

24. Pavao, A., Guyon, I., Letournel, A.C., Tran, D.T., Baro, X., Escalante, H.J., Es-
calera, S., Thomas, T., Xu, Z.: Codalab competitions: An open source platform to
organize scientific challenges. Journal of Machine Learning Research 24(198), 1–6
(2023) 13

25. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken,
B., Kopp-Schneider, A., Landman, B.A., Litjens, G., Menze, B., Ronneberger, O.,
Summers, R.M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M., Golia-Pernicka,
J., Heckers, S.H., Jarnagin, W.R., McHugo, M.K., Napel, S., Vorontsov, E., Maier-
Hein, L., Cardoso, M.J.: A large annotated medical image dataset for the develop-
ment and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063
(2019) 7

26. Wang, C., Cui, Z., Yang, J., Han, M., Carneiro, G., Shen, D.: Bowelnet: Joint
semantic-geometric ensemble learning for bowel segmentation from both partially
and fully labeled ct images. IEEE Transactions on Medical Imaging 42(4), 1225–
1236 (2022) 1

27. Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W.,
Heye, T., Boll, D.T., Cyriac, J., Yang, S., Bach, M., Segeroth, M.: Totalsegmen-
tator: Robust segmentation of 104 anatomic structures in ct images. Radiology:
Artificial Intelligence 5(5), e230024 (2023) 7

28. Yushkevich, P.A., Gao, Y., Gerig, G.: Itk-snap: An interactive tool for semi-
automatic segmentation of multi-modality biomedical images. In: Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society. pp.
3342–3345 (2016) 7

29. Zhang, F., Wang, Y., Yang, H.: Efficient context-aware network for abdominal
multi-organ segmentation. arXiv preprint arXiv:2109.10601 (2021) 8

30. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Dodnet: Learning to segment multi-organ and
tumors from multiple partially labeled datasets. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 1195–1204 (2021) 2

31. Zhou, Y., Li, Z., Bai, S., Wang, C., Chen, X., Han, M., Fishman, E., Yuille, A.L.:
Prior-aware neural network for partially-supervised multi-organ segmentation. In:
Proceedings of the IEEE/CVF international conference on computer vision. pp.
10672–10681 (2019) 2



PWS-Seg 17
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