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Abstract

Recurrent Neural Networks (RNNs) are useful in temporal sequence tasks. How-
ever, training RNNs involves dense matrix multiplications which require hardware
that can support a large number of arithmetic operations and memory accesses.
Implementing online training of RNNs on the edge calls for optimized algorithms
for an efficient deployment on hardware. Inspired by the spiking neuron model,
the Delta RNN exploits temporal sparsity during inference by skipping over the
update of hidden states from those inactivated neurons whose change of activa-
tion across two timesteps is below a defined threshold. This work describes a
training algorithm for Delta RNNs that exploits temporal sparsity in the backward
propagation phase to reduce computational requirements for training on the edge.
Due to the symmetric computation graphs of forward and backward propagation
during training, the gradient computation of inactivated neurons can be skipped.
Results show a reduction of ∼80% in matrix operations for training a 56k parame-
ter Delta LSTM on the Fluent Speech Commands dataset with negligible accuracy
loss. Logic simulations of a hardware accelerator designed for the training algo-
rithm show 2-10X speedup in matrix computations for an activation sparsity range
of 50%-90%. Additionally, we show that our training algorithm will be useful for
online incremental learning on edge devices with limited computing resources.

1 Introduction

Recurrent Neural Networks (RNN) are widely used in applications involving temporal sequence in-
puts such as edge audio voice wakeup, keyword spotting, and spoken language understanding. These
RNNs are commonly trained once and then deployed, but there is an opportunity to continually im-
prove their accuracy and classification power without giving up privacy by incremental training on
edge devices. Training of RNNs on the edge requires a hardware platform that has enough comput-
ing resources and memory to support the large number of arithmetic operations and data transfers.
This is because the computation in RNNs consists mainly of Matrix-Vector Multiplications (MxV),
which is a memory-bounded operation. An effective method to reduce the energy consumption for
training RNNs is to minimize the number of memory accesses.

Among various approaches that exploit sparsity in RNN inference to improve efficiency [11, 21, 3,
14], a previously proposed biologically inspired network model named Delta Network (DN) [16],
uses temporal sparsity to dramatically reduce memory access and Multiply-Accumulate (MAC) op-
erations during inference. By introducing a delta threshold on neuron activation changes, the update
of slow-changing activations can be skipped, thus saving a large number of computes while achiev-
ing comparable accuracy. Hardware inference accelerators that exploit this temporal sparsity [5–7]
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(d) Sparse MxV in training Delta RNNs.

Figure 1: Delta network concept and the sparse BPTT computations in traininig Delta RNNs.

can achieve 5-10X better energy efficiency with a custom design architecture that performs zero-
skipping on sparse delta vectors. However, these accelerators only do inference, i.e., the forward
propagation. This paper proves for the first time that the identical forward delta sparsity can be
used in the backward propagation of training RNNs without extra accuracy loss and extends the DN
framework to the entire training process. The main contributions of this work are:

1. The first mathematical formulation for Delta RNN training, showing that Delta RNN train-
ing is inherently a type of sparse Backpropagation Through Time (BPTT), utilizing the
identical temporal sparsity during both forward and backward propagation.

2. Empirical results showing that for a fixed number of training epochs, a Delta RNN training
uses 7.3X fewer training operations compared to the dense RNN with only a factor of 1.16X
increase in error rate on the Fluent Speech Commands Dataset (FSCD).

3. Empirical results showing that ∼80% training operations can be saved in an incremental
learning setting of Delta RNNs on the Google Speech Command Dataset (GSCD).

4. Register Transfer Level (RTL) simulation results of the first Delta RNN training accelerator
which show 2-10X speedup for an activation sparsity range of 50%-90%.

2 Methodology

This section summarizes the key concepts of the Delta Network, extends the theory to the BPTT
process of RNN training, and shows its theoretical reduction in computation and memory costs.

2.1 Delta Network Formulation

In a vanilla RNN layer, the pre-activation vector Zt is given by:

Zt = Wxxt +Whht−1 + bh (1)

where Wx, Wh are the weight matrices for input and hidden states respectively, xt is the input vector,
and bh is the bias vector. The hidden state vector is ht = tanh(Zt). In the DN formulation, Eq. (1)
is calculated recursively by adding a new state variable vector, Mt holding a preactivation memory:

Mt = Wx∆xt +Wh∆ht−1 +Mt−1 (2)

if we define delta vectors ∆x and ∆h as:

∆xt = xt − xt−1 ∆ht = ht − ht−1 (3)

with the initial state M0 = bh, where Mt−1 stores the pre-activation from the previous time step.
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Since the internal states of an RNN have temporal stability, the DN zeros out the changes in |∆xt|
and |∆ht| which are smaller than a given delta threshold Θ, and those neurons are considered as “in-
activated” (Fig. 1a). Then the DN only propagates the changes of those activated neurons (Fig. 1b),
while the inactivated neurons keep current states until their changes go over the threshold later.

Formally, x̂i,t denotes the latest value of the i-th element of the input vector at the t-th time step.
The values x̂i,t and ∆xi,t will only be updated if the absolute difference between the current input
xi,t and the previously stored state x̂i,t−1 is larger than the delta threshold Θ:

x̂i,t =

{
xi,t, if |xi,t − x̂i,t−1| > Θ

x̂i,t−1, otherwise
∆xi,t =

{
xi,t − x̂i,t−1, if |xi,t − x̂i,t−1| > Θ

0, otherwise
(4)

The hidden state ht is updated the same way. Eqs. (2)-(4) summarize the delta principle in [16].

Until now, this principle has been applied only to the inference process, i.e., the Forward Propagation
(FP) phase. Here we show that the delta sparsity can also be exploited in the Backward Propagation
(BP) phase during the training process of DN.

The intuition comes from the fact that in the gradient-descent approach, the gradient of a state vector
used to reduce the loss depends on how much it contributes to the network output. The changes of
inactivated neurons are discarded in FP (Fig. 1b) and make no contribution to the output, so their
gradients are not needed. Therefore, we only need to propagate the errors of the changes of activated
neurons, and calculate the weight gradients of the corresponding connections (Fig. 1c). Detailed
BPTT formulations are given in Appendix A. Here we outline the proof for vanilla RNNs.

To allow later skipping the unchanging activations, we store a binary mask vector mt during FP:

mi,t =

{
1, if |xi,t − x̂i,t−1| > Θ

0, otherwise
(5)

which indicates the neurons that are activated at the t-th time step. In BPTT, we only compute the
gradients of the cost C w.r.t. the change of activated neurons ∆xt (for multi-layer RNNs):

∂C

∂∆xt
=

(
W ⊺

x

∂C

∂Mt

)
⊙mt (6)

and calculate the weight gradients of those activated neurons:

∂C

∂Wx
=

T∑
t=1

∂C

∂Mt
∆x⊺

t =

T∑
t=1

∂C

∂Mt
(mt ⊙ (xt − x̂t−1))

T (7)

where C =
∑T

t=1 Lt is the loss function values Lt summed across all time steps, ⊙ denotes the
element-wise multiplication, and T is the total number of time steps. The gradients for ∆ht can be
derived similarly. More specifically, the vector ∂C

∂∆xt
is not sparse, but the gradients of the inactivated

neurons will be zeroed out during BPTT due to the non-differentiability of Eq. (4) in the below-
threshold case. So those values in ∂C

∂∆xt
are not needed and can be treated as zeros. This sparse

version of BPTT (Eqs. 6 and 7) is equivalent to the dense version in DN, i.e., they result in exactly
the same weight changes. Therefore, exploiting temporal sparsity in BPTT will not cause an extra
accuracy loss when the delta threshold has already been applied in FP.

Fig. 1d illustrates how the sparse BPTT training method of DN exploits the temporal sparsity in
the main matrix operations (Eqs. 2, 6 and 7). By storing a binary mask mt or a Non-Zero Index
List (NZIL) during FP, the calculations involving inactivated neurons and entire columns of their
weights can be skipped in all these MxV operations. This partially regular sparsity pattern resembles
structured sparsity and is hardware-friendly.

2.2 Theoretical Reduction in Computations and Memory Accesses

Proposition 1. In training a vanilla RNN layer (described in Eq. 1), the computation cost for
calculating the gradients of weights Wx,t or Wh,t during each BPTT time step decreases linearly
with the sparsity of delta input ∆xt or delta states ∆ht respectively. The total computation cost for
the gradients of Wx or Wh with BPTT is the sum of terms proportional to the sparsity of ∆xt or
∆ht at each time step.
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Figure 2: Left: FSCD accuracy vs number of training operations for LSTMs and Delta LSTMs.
Each point denotes an epoch where x and y are the number of MxV operations performed and the
best accuracy reached up to this epoch respectively. Right: training results of dense/sparse BPTT.

The intuition for Proposition 1 is provided in Fig. 1d. We save the detailed proof in Appendix A.
To compute the theoretical reduction of computation and memory access resulting from the sparse
delta vectors, we define oc to be the occupancy of a vector, i.e., the ratio of non-zero elements in a
vector. According to the calculations in [16], the computation and memory access costs for sparse
MxV in forward propagation is reduced to:

Csparse/Cdense ≈ (oc · n2)/n2 = oc (8)

where n is the size of the delta vector. Since the sparsity of the FP equation (4) is identical for the
BP equations (6) and (7), the BP costs are also reduced to oc (calculations given in Appendix A).
This illustrates the nice property of Delta Networks: once we induce temporal sparsity in FP, it can
be exploited in all the three MxVs in both FP and BP with nearly the same efficiency (Fig. 1d). For
example, for a ∆ sparsity of 90% (oc = 10%), the computation and memory access costs are reduced
to 10%, thus the theoretical speedup factor is 1/oc = 10X for matrix computations in training.

3 Experiments

In this section, we first verify the mathematical correctness of the sparse BPTT training method.
Next, we evaluate the performance of Delta RNNs on speech tasks, for both batch-32 training from
scratch and batch-1 Class-Incremental Learning (CIL). Finally, we establish the benchmark of a
custom hardware accelerator designed for training Delta RNNs. For software experiments, we im-
plement Delta RNNs in Pytorch using custom FP and BP functions. The training experiments are
conducted on a GTX 2080 Ti GPU. The hardware accelerator is implemented using Hardware De-
scription Language (HDL) and is benchmarked in the Vivado simulator.

3.1 Spoken Language Training from Scratch Experiments

We use the FSCD [15] to evaluate the accuracy and cost of Delta RNNs on Spoken Language Un-
derstanding (SLU) tasks. The dataset contains 30,043 utterances from 97 speakers for controlling
smart-home appliances or virtual assistants. It has 248 SLU phrases mapping to 31 intents with three
slots: action, object, and location. The network model is a two-layer LSTM or Delta LSTM that
both have 64 neurons, followed by one fully connected layer for classification. The model is trained
for 80 epochs with learning rate 1e-3 and batch size 32. Results are averaged from 5 random seeds.

Fig. 2 (left) compares the classification accuracy versus training computation cost of a standard
LSTM model against Delta LSTMs with various delta thresholds. When the delta threshold Θ
increases, the number of operations needed to train the model to a given accuracy decreases dramat-
ically, but the accuracy of Delta LSTM only slightly decreases. For a set 80 epochs of training, the
Delta LSTM with Θ=0.067 (green curve) requires 7.3X fewer training operations than the LSTM
with only a 1.155X increase in error rate. In summary, when computing resources are limited, the
Delta Network can offer efficient training with an acceptable accuracy loss.
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Table 1: Test accuracy, sparsity, and number of operations for CIL with LSTM and Delta LSTM
(Θ=0.1) models on GSCD. Every network model is 16-128H-12 with 73.7k parameters.

CIL
setting Model Batch

size
Accuracy

(%)
Sparsity

(%)
MACs

(K)
DRAM W accesses

(K words)

35 LSTM 32 90.8 - 221.2 221.2
Delta LSTM 32 90.5 81.7 40.4 221.2

20+3x5 LSTM 1 82.3 - 221.2 221.2
Delta LSTM 1 80.3 79.8 44.7 44.7

20+1x15 LSTM 1 76.6 - 221.2 221.2
Delta LSTM 1 74.8 79.8 44.7 44.7
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Figure 3: System architecture and Vivado simulation results of the Delta RNN training accelerator.

The table in Fig. 2 (right) compares the training results of dense/sparse BPTT (D/Sp on the second
row) for Delta LSTM. The third column shows the baseline of the original LSTM model with regular
dense training. The identical accuracy and sparsity in bold in the last two columns illustrates the
mathematical equivalence of the masked BPTT equations with the original ones for Delta LSTM.

3.2 Incremental Keyword Learning Experiments

An attractive application of DNs is for online incremental training, where new labeled data become
available in the field to an edge device and must be incorporated into the RNN to personalize or
improve accuracy. To evaluate the performance of Delta RNNs on CIL tasks, we use GSCD v2 [23],
a dataset frequently used for benchmarking ASIC keyword spotting implementations [12, 20, 8].
It contains 105,829 utterances of 35 English words. We employ iCaRL [19] as the incremental
learning algorithm with exemplar set size K = 2000. Models are trained for 20 epochs with learning
rate 1e-4 for each task. Test results are averaged over 5 runs with random permutations of classes.

Table 1 shows the results. The first column is the CIL setting, The first setting “35” is the baseline
where the network model learns all 35 classes directly. “20+3x5” means pretraining the model to
learn 20 classes and then retraining the model to learn 3 additional classes each step for 5 times. The
forth column shows the final accuracy after learning all 35 classes. The second last column shows
the number of MAC operations per timestep in the LSTM layer. The last column shows the number
of DRAM accesses for weights or weight gradients per timestep per batch in the LSTM layer.

It is clear from the table that Delta LSTM models have ∼80% sparsity and can save this proportion of
MAC operations during training. Moreover, the number of memory accesses for weights or weight
gradients is also saved by the ∼80% when the batch size is 1. In an online learning setting, batch-1
training is natural and also desirable if the on-chip memory resources are too limited.

3.3 Hardware Simulation of Delta Training Accelerator

To demonstrate the speedup of the Delta RNN training method, we evaluated the potential perfor-
mance of a hardware training accelerator in the RTL simulation. The accelerator (Fig. 3a) mainly
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consists of a Processing Element (PE) array where each PE can perform an MAC operation in par-
allel at each clock cycle. To efficiently exploit the temporal sparsity of Delta RNNs, the accelerator
stores sparse delta vectors in the format of NZIL and Non-Zero Value List (NZVL) [5] to enable the
zero-skipping technique (Fig. 1d). The detailed computation flow is described in Appendix B.

Fig. 3a shows the architecture of the accelerator that we instantiated with 16 PEs. It computes
Eqs. (2), (6) and (7), which are the three MxVs of training a Delta RNN. We tested three different
network sizes: 64, 128 and 256. Random input data of fixed sparsities are generated to evaluate the
performance of the accelerator. We measure computation time Tmeasured in clock cycles for each MxV
equation, and calculate the speedup factor Fspeedup = Tdense/Tmeasured, where Tdense is the theoretical
computation time for a dense MxV equation of the same size in an ideal case.

Fig. 3b shows the speedup factors measured in the RTL simulations for different network sizes and
activation sparsities. For input data of 50%, 80%, and 90% sparsity, the 256I-256H Delta RNN
nearly achieves 2X, 5X, and 10X speedup, which are the theoretical speedup factors calculated in
Section 2.2. For smaller networks such as 64I-64H, the speedup factors for Eqs. (2) and (6) are
lower due to the computation overhead. To conclude, the hardware accelerator would boost MxV
operations in incremental batch-1 training by 5-10X with our sparse BPTT algorithm.

4 Related Works

The computational efficiency of neural networks can be improved by creating sparsity in the net-
works. [17] proposed an approach similar to DN for CNNs to accelerate the inference, but [1, 16]
showed that it doubles the inference cost since CNNs are dominated by activation memory. By
contrast, using DN on RNNs is beneficial because the fully-connected RNNs are weight-memory
bounded, and the energy saving brought by temporal sparsity is much larger for RNNs. [7] and
[10] exploit both DN activation sparsity and weight sparsity to achieve impressive inference per-
formance on hardware. Another method that can create sparsity in neural networks is conditional
computation, or skipping operations. Zoneout [13] randomly selects whether to carry forward the
previous hidden state or update it with the current hidden state during training. It aims to prevent
overfitting in RNNs and provides only limited sparsity. Skip RNN [2] uses a gating mechanism to
learn whether to update or skip hidden states at certain timesteps, which is trained to optimize the
balance between computational efficiency and accuracy. The skipping is applied to the whole RNN
layers, rather than element-wise on activation vectors as in Delta RNNs.

EGRU [22] uses event-based communication between RNN neurons, resulting in sparse activations
and a sparse gradient update. While this method resembles DN, its activation sparsity is different
from the temporal sparsity of our work. Their surrogate function makes the activation function
differentiable but decreases the sparsity in the BP phase by a factor of 1.5X to 10X than in FP.
[18] also touches on sparse BPTT but uses Spiking Neural Networks (SNN). In a similar spirit, the
authors show that computations can be saved by calculating the gradients only for active neurons
(i.e. neurons producing a spike as defined by a threshold). However, the set of active neurons in BP
can be different from those in FP. In contrast, in our work the mask vectors computed in FP can be
directly reused in BP as the temporal sparsity is identical in both passes.

5 Conclusion

Training RNNs with BPTT involves a huge number of arithmetic operations and especially mem-
ory accesses, which leads to inefficient deployment on edge platforms. This paper shows that the
temporal sparsity introduced in the Delta Network inference can also be applied during training
leading to a sparse BPTT process. The MxVs operations in BPTT can be significantly sped up by
skipping the computation and propagation of gradients for inactivated neurons. Our experiments
and digital hardware simulations demonstrate that the number of matrix multiplication operations in
training RNNs can be reduced by 5-10X with marginal accuracy loss on speech tasks. Furthermore,
the number of memory accesses can also be reduced by the same factor if training with a batch
size of 1 on a hardware accelerator specifically designed for Delta RNNs, saving substantial energy
consumption. Therefore, our proposed training method would be particularly useful for continuous
online learning on resource-limited edge devices that can exploit self-supervised data, such as errors
between predictions and measurements.
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Appendix A Delta RNNs BPTT Formulations

This section shows the derivation of BPTT equations of Delta RNNs. First we show the proof of
Proposition 1 in Section 2.2. Next we derive the BPTT formulation of Delta RNNs [16], then extend
it to the two variants of RNNs: Gated Recurrent Unit (GRU) [4] and Long Short-Term Memory
(LSTM) [9].

A.1 Proof of Proposition 1

In this subsection we give the proof of Proposition 1 in Section 2.2 for the gradient of weight Wx.
Proof for the gradient of weight Wh is similar.

In a Delta RNN layer, the computation in the forward propagation phase is formulated as:

Mt = Mx,t +Mh,t +Mt−1 (9)

Mx,t = Wx∆xt (10)

Mh,t = Wh∆ht−1 (11)

x̂i,t =

{
xi,t, if |xi,t − x̂i,t−1| > Θ

x̂i,t−1, otherwise
(12)

∆xi,t =

{
xi,t − x̂i,t−1, if |xi,t − x̂i,t−1| > Θ

0, otherwise
(13)

In the backward propagation phase, the cost function is the sum of the loss function at every timestep:

C =

T∑
t=1

Lt (14)

Hidden states ht is a function of Mt associated with any activation function and loss function Lt is
a function of ht and ground truth value at that time step. The gradient of weight Wx is the partial
derivative of the cost C w.r.t. Wx:

∂C

∂Wx
=

∂(
∑T

t=1 Lt)

∂Wx
=

T∑
t=1

∂Lt

∂Wx
(15)

For each timestep, according to the chain rule:

∂Lt

∂Wx
=

∂Lt

∂ht

∂ht

∂Wx
=

∂Lt

∂ht

∂ht

∂Mt

∂Mt

∂Wx
(16)

From Eqs. (9)-(11) we can expand the last term:

∂Mt

∂Wx
=

∂(Wx∆xt +Wh∆ht−1 +Mt−1)

∂Wx
= ∆x⊺

t +
∂Mt−1

∂Wx
(17)

Using telescoping we get

∂Mt

∂Wx
= ∆x⊺

t +∆x⊺
t−1 + · · ·+∆x⊺

1 =

t∑
i=1

∆x⊺
i (18)

Then Eq. (16) becomes:

∂Lt

∂Wx
=

∂Lt

∂ht

∂ht

∂Mt
(

t∑
i=1

∆x⊺
i ) (19)

For simplicity we write
∂Lt

∂ht
= L′(ht),

∂ht

∂Mt
= h′(Mt)

9



Plug them into Eq. (15), we get:

∂C

∂Wx
=

T∑
t=1

∂Lt

∂Wx
=

T∑
t=1

[
L′(ht)h

′(Mt)(

t∑
i=1

∆x⊺
i )
]

= L′(h1)h
′(M1)∆x⊺

1︸ ︷︷ ︸
t=1

+L′(h2)h
′(M2)(∆x⊺

1 +∆x⊺
2)︸ ︷︷ ︸

t=2

+ · · ·+ L′(hT )h
′(MT )(

T∑
i=1

∆x⊺
i )︸ ︷︷ ︸

t=T

=

T∑
t=1

L′(ht)h
′(Mt)∆x⊺

1 +

T∑
t=2

L′(ht)h
′(Mt)∆x⊺

2 + · · ·+
T∑

t=T

L′(ht)h
′(Mt)∆x⊺

T

=

T∑
t=1

[( T∑
i=t

L′(hi)h
′(Mi)

)
︸ ︷︷ ︸

1⃝

∆x⊺
t

]

︸ ︷︷ ︸
2⃝

(20)

1⃝ is a partial sum that has constant complexity in each timestep in BPTT. 2⃝ is a vector outer
product performed at each timestep. For a vector ∆xt of size n and occupancy oc (Section 2.2), the
computation cost of 2⃝ is

Ccomp,sparse = oc · n2

which decreases linearly with the sparsity of ∆xt. The total cost of Eq. (20) is the sum of 2⃝ across
all timesteps, thus proportional to the sparsity of ∆xt at each timestep.

A.2 Delta RNN Computation and Memory Costs Calculation

For the BP phase in training, the computation cost for each timestep in Eq. (7) is

Ccomp,sparse = oc · n2

for a weight matrix Wx of size n× n and a sparse ∆xt vector of occupancy oc.

The memory access cost is
Cmem,sparse = oc · n2 + 3n

consisting of fetching oc · n2 weights for Wx, reading n values for ∆xt and n values for the mask
mt, and writing n values for ∂C

∂Wx,t
. The costs for Eq. (6) can be derived analogously.

Therefore, the costs of matrix operations in BP (Eqs. 6 and 7) are also reduced to:

Csparse/Cdense ≈ (oc · n2)/n2 = oc

The memory storage cost for the sparse DN training method is marginal. Each timestep in FP we
store a binary mask mt for ∆x or ∆h which only takes up n bits in the memory for a delta vector
of size n. Alternatively we may use an NZIL to memorize the indices of activated neurons at each
timestep which occupies at most n words in the memory depending on the delta vector sparsity.

A.3 Delta RNN BPTT Formulation

The Forward Propagation (FP) equations of Delta RNNs [16] are shown in Section 2.1. The FP
computation graph is shown in Fig. 4a. The lines in orange/gray color means that only values
of activated/inactivated neurons are propagated along these paths. For clarity we only show the
computation paths relevant to ht. The other parts regarding xt can be drawn in the similar way.

In BPTT, the loss function Lt is computed for each timestep, which sums up to the cost: C =∑T
t=1 Lt. The BP computation paths are reversed (Fig. 4b) from the FP paths. The error is propa-

gated backward through time, and the gradients are calculated along the paths according to the chain
rule. The total gradient of a vertex in the graph is the sum of the gradients of all incoming paths.
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(a) FP computation graph regarding ht. (b) BP computation graph regarding ht.

Figure 4: Computation graphs of a Delta RNN layer. Weight matrices are omitted for clarity.

The pre-activation memory Mt has two incoming connections in the BP computation graph, one
from Mt+1 and the other from ht. So the PD of Mt w.r.t. the cost C has two components:

∂C

∂Mt
=

∂C

∂ht

∂ht

∂Mt
+

∂C

∂Mt+1

∂Mt+1

∂Mt
=

∂C

∂ht
tanh′(Mt) +

∂C

∂Mt+1
(21)

We use an overline to denote the part of a Partial Derivative (PD) that only takes the direct connection
into account. For example, ∂Mt+1

∂Mt
is the PD coming from the path Mt+1 → Mt directly, excluding

any other path such as Mt+1 → ∆ht → ht → Mt.

Similarly, we can derive the other gradients in the computation graph as follows.
∂C

∂∆ht−1
=

∂C

∂Mt

∂Mt

∂∆ht−1
= W ⊺

h

∂C

∂Mt
(22)

∂C

∂ĥt−1

=
∂C

∂ĥt

∂ĥt

∂ĥt−1

+
∂C

∂∆ht

∂∆ht

∂ĥt−1

(23)

∂C

∂ht
=

∂C

∂ĥt

∂ĥt

∂ht
+

∂C

∂∆ht

∂∆ht

∂ht
+

∂Lt

∂ht
(24)

∂C

∂Wh

=

T∑
t=1

∂C

∂Mt

∂Mt

∂Wh
=

T∑
t=1

∂C

∂Mt
∆h⊺

t−1 (25)

The pre-activation memory is initialized as M0 = bh in FP, so the gradient of the bias is ∂C
∂bh

= ∂C
∂M0

.

The equations for gradients w.r.t. xt are similar, except that there is no direct connection between xt

and the loss Lt. So Eq. (24) can be modified for xt as:
∂C

∂xt
=

∂C

∂x̂t

∂x̂t

∂xt
+

∂C

∂∆xt

∂∆xt

∂xt
(26)

To compute the first two terms in Eqs. (23) and (24), we need to look back at the FP equations:

ĥi,t =

{
hi,t, if |hi,t − ĥi,t−1| > Θ

ĥi,t−1, otherwise
(27)

∆hi,t =

{
hi,t − ĥi,t−1, if |hi,t − ĥi,t−1| > Θ

0, otherwise
(28)

Eq. (27) has two branches, thus the PDs of ĥt w.r.t. ht and ĥt−1 also have two branches:

∂ĥi,t

∂hi,t
=

{
1, if |hi,t − ĥi,t−1| > Θ

0, otherwise
∂ĥi,t

∂ĥi,t−1

=

{
0, if |hi,t − ĥi,t−1| > Θ

1, otherwise
(29)
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From Eq. (28) the PDs of ∆ht w.r.t. ht and ĥt−1 are:

∂∆hi,t

∂hi,t
=

{
1, if |hi,t − ĥi,t−1| > Θ

0, otherwise
∂∆hi,t

∂ĥi,t−1

=

{
−1, if |hi,t − ĥi,t−1| > Θ

0, otherwise
(30)

For convenience we use a mask vector mh,t to memorize whether a neuron is activated during FP:

mh,i,t =

{
1, if |hi,t − ĥi,t−1| > Θ

0, otherwise
(31)

Then Eqs. (27) and (28) can be rewritten as:

ĥt = ht ⊙mh,t + ĥt−1 ⊙ (1−mh,t) (32)

∆ht = (ht − ĥt−1)⊙mh,t (33)
where ⊙ denotes the element-wise multiplication.

And the PDs in Eqs. (29)- (30) can be rewritten as:

∂ĥt

∂ht
= mh,t

∂ĥt

∂ĥt−1

= 1−mh,t

∂∆ht

∂ht
= mh,t

∂∆ht

∂ĥt−1

= −mh,t

Plug them into Eqs. (23) and (24), we have:

∂C

∂ĥt−1

=
∂C

∂ĥt

⊙ (1−mh,t)−
∂C

∂∆ht
⊙mh,t (34)

∂C

∂ht
=

∂C

∂ĥt

⊙mh,t +
∂C

∂∆ht
⊙mh,t +

∂Lt

∂ht
(35)

The term ∂C
∂∆ht

is multiplied with the mask mh,t for all the equations relevant to it. In other words,
only values at the indices of those neurons who are activated during FP are used in BP. So we only
need to calculate the values in ∂C

∂∆ht
for activated neurons in Eq. (22) and discard other values, just

like we discard the changes of inactivated neurons ∆ht in FP. In fact, Eq. (22) can be calculated as:

∂C

∂∆ht−1
=

(
W ⊺

h

∂C

∂Mt

)
⊙mh,t−1 (36)

which would give exactly the same results Eqs. (34) and (35) and other equations in BPTT.

This can also be seen from Eq. (28). ∆ht is a constant 0 at the below-threshold branch which is not
differentiable, so the PDs of ∆ht w.r.t. ht and ĥt−1 are 0 at this branch. According to the chain
rule, any gradients of ∆ht passing through this branch will be multiplied by these PDs, effectively
zeroing out those gradients. Consequently, we only need the ∆ht gradients for the above-threshold
branch, which can be expressed by Eq. (36).

Therefore, once the delta threshold Θ is introduced in FP, the accuracy of the network may decrease
due to the loss of some information, but the temporal sparsity created in ∆x and ∆h during FP can
be leveraged in BP without causing any extra accuracy loss.

The main computations regarding the hidden state vector ht in BP are the vector outer products in
Eq. (25) and the MxVs in Eq. (36), both of them sparsified by the delta mask mh,t. The gradients
regarding the input vector xt can be derived in a similar way, which would also results in sparse
MxVs with the mask mx,t.

In conclusion, in the BPTT phase of Delta RNNs, we only need to propagate the errors of the
changes of activated neurons, and calculate the weight gradients of the corresponding connections.
The three MxV operations during the training of Delta RNNs, which are expressed by Eqs. (11),
(25), and (36), share the same sparsity (Figs. 1d). A large number of operations can be reduced
by skipping computations of inactivated neurons in both forward and backward propagation using
binary mask vectors or NZILs.
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(a) FP computation graph regarding ht. (b) BP computation graph regarding ht.

Figure 5: Computation graphs of a Delta LSTMs layer.

A.4 Delta LSTM BPTT Formulation

Figs. 5a and 5b show the FP and BP computation graphs pertaining to the hidden state ht of a
Delta LSTM layer. The delta updating rules described by Eqs. (27) and (28) in Section A.3 are also
applied to the Delta LSTM. The pre-activation memory vector Mt consists of four components that
correspond to the four gates of LSTM: input gate it, forget gate ft, input modulation gate gt, and
output gate ot. It also has a memory cell state ct.

The FP equations of the Delta LSTM are shown below.

Mi,t = Wxi∆xt +Whi∆ht−1 +Mi,t−1 (37)

Mf,t = Wxf∆xt +Whf∆ht−1 +Mf,t−1 (38)

Mg,t = Wxg∆xt +Whg∆ht−1 +Mg,t−1 (39)

Mo,t = Wxo∆xt +Who∆ht−1 +Mo,t−1 (40)

it = σ(Mi,t) (41)

ft = σ(Mf,t) (42)

gt = tanh(Mg,t) (43)

ot = σ(Mo,t) (44)

ct = ft ⊙ ct−1 + it ⊙ gt (45)

ht = ot ⊙ tanh(ct) (46)

Eqs. (37)-(40) can also be expressed by Eqs. (9)-(11) if we concatenate the weight matrices and
the pre-activation memory vectors of the four gates. The memory vectors are initialized to the
corresponding biases: Mi,0 = bi, Mf,0 = bf , Mg,0 = bg , Mo,0 = bo.

The BP equations are derived according to the computation graph (Fig. 5b).

∂C

∂ct
=

∂C

∂ht

∂ht

∂ct
+

∂C

∂ct+1

∂ct+1

∂ct
=

∂C

∂ht
⊙ ot ⊙ tanh′(ct) +

∂C

∂ct+1
(47)

∂C

∂Mi,t
=

∂C

∂ct

∂ct
∂it

∂it
∂Mi,t

+
∂C

∂Mi,t+1

∂Mi,t+1

∂Mi,t
=

∂C

∂ct
⊙ gt ⊙ σ′(Mi,t) +

∂C

∂Mi,t+1
(48)

∂C

∂Mf,t
=

∂C

∂ct

∂ct
∂ft

∂ft
∂Mf,t

+
∂C

∂Mf,t+1

∂Mf,t+1

∂Mf,t
=

∂C

∂ct
⊙ ct−1σ

′(Mf,t) +
∂C

∂Mf,t+1
(49)
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∂C

∂Mg,t
=

∂C

∂ct

∂ct
∂gt

∂gt
∂Mg,t

+
∂C

∂Mg,t+1

∂Mg,t+1

∂Mg,t
=

∂C

∂ct
⊙ it ⊙ tanh′(Mg,t) +

∂C

∂Mg,t+1
(50)

∂C

∂Mo,t
=

∂C

∂ht

∂ht

∂ot

∂ot
∂Mo,t

+
∂C

∂Mo,t+1

∂Mo,t+1

∂Mo,t
=

∂C

∂ht
⊙ tanh(ct)⊙ σ′(Mo,t) +

∂C

∂Mo,t+1
(51)

The term with an overline denotes the part of a partial derivative that only takes the direct connection
into account. For example, ∂ct+1

∂ct
is the PD that comes from the path ct+1 → ct directly, excluding

any other paths such as ct+1 → it+1 → Mi,t+1 → ∆ht → ht → ct.

The PD of the cost w.r.t. ∆ht−1 is:

∂C

∂∆ht−1
=

∂C

∂Mi,t

∂Mi,t

∂∆ht−1
+

∂C

∂Mf,t

∂Mf,t

∂∆ht−1
+

∂C

∂Mh,t

∂Mg,t

∂∆ht−1
+

∂C

∂Mo,t

∂Mo,t

∂∆ht−1
(52)

The gradient vectors for the pre-activation memories of the four gates can also be concatenated into
a longer vector ∂C

∂Mt
. Then Eq. (52) becomes:

∂C

∂∆ht−1
=

∂C

∂Mt

∂Mt

∂∆ht−1
= W ⊺

h

∂C

∂Mt
(53)

The PDs of the cost w.r.t. ĥt−1 and ht are:

∂C

∂ĥt−1

=
∂C

∂ĥt

∂ĥt

∂ĥt−1

+
∂C

∂∆ht

∂∆ht

∂ĥt−1

=
∂C

∂ĥt

⊙ (1−mh,t)−
∂C

∂∆ht
⊙mh,t (54)

∂C

∂ht
=

∂C

∂ĥt

∂ĥt

∂ht
+

∂C

∂∆ht

∂∆ht

∂ht
+

∂Lt

∂ht
=

∂C

∂ĥt

⊙mh,t +
∂C

∂∆ht
⊙mh,t +

∂Lt

∂ht
(55)

The gradients of weight matrices obtained at the t-th timestep are given by:

∂C

∂Whi,t

=
∂C

∂Mi,t

∂Mi,t

∂Whi,t

∂C

∂Whf,t

=
∂C

∂Mf,t

∂Mf,t

∂Whf,t

∂C

∂Whg,t

=
∂C

∂Mg,t

∂Mg,t

∂Whg,t

∂C

∂Who,t

=
∂C

∂Mo,t

∂Mo,t

∂Who,t

The gradients of biases are:

∂C

∂bi
=

∂C

∂Mi,0

∂C

∂bf
=

∂C

∂Mf,0

∂C

∂bg
=

∂C

∂Mg,0

∂C

∂bo
=

∂C

∂Mo,0

By concatenating the four weight gradient matrices into ∂C
∂Wh

, we have:

∂C

∂Wh

=

T∑
t=1

∂C

∂Mt

∂Mt

∂Wh
=

T∑
t=1

∂C

∂Mt
∆h⊺

t−1 (56)

It can be seen that Eqs. (53)-(56) are the same as Eqs. (22)-(25). Only the values at the indices of
activated neurons in ∂C

∂∆ht−1
are used in Eqs. (54) and (55), so Eq. (53) can be made sparse using

the mask vector mh,t. Eq. (56) is also sparse since the term ∂C
∂Mt

is multiplied with the sparse
vector ∆ht−1. The sparsity in the gradient computations for the input x can be obtained in the
same way. Therefore, the temporal sparsity created in Delta LSTMs during FP also exist in the
matrix multiplications during BP as shown in Eqs. (53) and (56). Other claims about Delta RNNs
in Section A.3 are also true for Delta LSTMs.
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(a) FP computation graph regarding ht. (b) BP computation graph regarding ht.

Figure 6: Computation graphs of a Delta GRU layer.

A.5 Delta GRU BPTT Formulation

The GRU has a reset gate r, an update gate u, and a candidate activation vector c. In Delta GRU we
apply the delta updating rules described by Eqs. (27) and (28) in Section A.3 to the input x and the
hidden state h. Figs. 6a and 6b show the FP and BP computation graphs relevant to the hidden state
ht of a Delta GRU layer.

The FP equations of the Delta GRU are shown below.

Mr,t = Wxr∆xt +Whr∆ht−1 +Mr,t−1 (57)

Mu,t = Wxu∆xt +Whu∆ht−1 +Mu,t−1 (58)

Mcx,t = Wxc∆xt +Mcx,t−1 (59)

Mch,t = Whc∆ht−1 +Mch,t−1 (60)

Mc,t = Mcx,t + rt ⊙Mch,t (61)

rt = σ(Mr,t) (62)

ut = σ(Mu,t) (63)

ct = tanh(Mc,t) (64)

ht = (1− ut)⊙ ht−1 + ut ⊙ ct (65)

The pre-activation memory vectors are initialized to their corresponding biases: Mr,0 = br, Mu,0 =
bu, Mcx,0 = bc, Mch,0 = 0.

The BP equations are derived according to the computation graph (Fig. 6b).

∂C

∂ct
=

∂C

∂ht

∂ht

∂ct
=

∂C

∂ht
⊙ ut (66)

∂C

∂Mc,t
=

∂C

∂ct

∂ct
∂Mc,t

=
∂C

∂ct
⊙ tanh′(Mc,t) (67)

∂C

∂Mch,t
=

∂C

∂Mc,t

∂Mc,t

∂Mch,t
+

∂C

∂Mch,t+1

∂Mch,t+1

∂Mch,t
=

∂C

∂Mc,t
⊙ rt +

∂C

∂Mch,t+1
(68)

∂C

∂Mr,t
=

∂C

∂Mc,t

∂Mc,t

∂rt
+

∂C

∂Mr,t+1

∂Mr,t+1

∂Mr,t
=

∂C

∂Mc,t
⊙Mch,t +

∂C

∂Mr,t+1
(69)

∂C

∂Mu,t
=

∂C

∂ht

∂ht

∂ut

∂ut

∂Mu,t
+

∂C

∂Mu,t+1

∂Mu,t+1

∂Mu,t
=

∂C

∂ht
⊙(ct−ht−1)⊙σ′(Mu,t)+

∂C

∂Mu,t+1
(70)
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The PD of the cost w.r.t. ∆ht−1 is:

∂C

∂∆ht−1
=

∂C

∂Mu,t

∂Mu,t

∂∆ht−1
+

∂C

∂Mr,t

∂Mr,t

∂∆ht−1
+

∂C

∂Mch,t

∂Mch,t

∂∆ht−1
(71)

The gradient vectors ∂C
∂Mr,t

, ∂C
∂Mu,t

, and ∂C
∂Mch,t

can be concatenated into a longer vector ∂C
∂Mh,t

. Their
weight matrices Whr, Whu, and Whc can also be concatenated as W ⊺

h . Then Eq. (71) becomes:

∂C

∂∆ht−1
=

∂C

∂Mh,t

∂Mh,t

∂∆ht−1
= W ⊺

h

∂C

∂Mh,t
(72)

The PDs of the cost w.r.t. ĥt−1 and ht are:

∂C

∂ĥt−1

=
∂C

∂ĥt

∂ĥt

∂ĥt−1

+
∂C

∂∆ht

∂∆ht

∂ĥt−1

=
∂C

∂ĥt

⊙ (1−mh,t)−
∂C

∂∆ht
⊙mh,t (73)

∂C

∂ht
=

∂C

∂ĥt

∂ĥt

∂ht
+

∂C

∂∆ht

∂∆ht

∂ht
+

∂C

∂ht+1

∂ht+1

∂ht
+

∂Lt

∂ht

=
∂C

∂ĥt

⊙mh,t +
∂C

∂∆ht
⊙mh,t +

∂C

∂ht+1
⊙ (1− ut+1) +

∂Lt

∂ht

(74)

The gradients of weight matrices obtained at the t-th timestep are given by:

∂C

∂Whr,t

=
∂C

∂Mr,t

∂Mr,t

∂Whr,t

∂C

∂Whu,t

=
∂C

∂Mu,t

∂Mu,t

∂Whu,t

∂C

∂Whc,t

=
∂C

∂Mch,t

∂Mch,t

∂Whc,t

The gradients of biases are:

∂C

∂br
=

∂C

∂Mr,0

∂C

∂bu
=

∂C

∂Mu,0

∂C

∂bc
=

∂C

∂Mcx,0

By concatenating the weight gradient matrices ∂C
∂Whr

, ∂C
∂Whu

, and ∂C
∂Whc

into ∂C
∂Wh

, we have:

∂C

∂Wh

=

T∑
t=1

∂C

∂Mh,t

∂Mh,t

∂Wh
=

T∑
t=1

∂C

∂Mh,t
∆h⊺

t−1 (75)

It can be seen that Eqs. (72)-(75) are essentially the same as Eqs. (22)-(25), except that there is an
additional term in Eq. (74) derived from the self-recursion of ht in Eq. (65). But the values at the
indices of inactivated neurons in ∂C

∂∆ht−1
are still unused in BP, so Eq. (72) can still be sparsified

with the mask vector mh,t. Eq. (75) is also sparse as the term ∂C
∂Mh,t

is multiplied with the sparse
vector ∆ht−1. The sparsity in the gradient computations for the input x can be obtained in the
same manner. Therefore, the temporal sparsity created in Delta GRUs during FP also exist in the
matrix multiplications during BP as shown in Eqs. (72) and (75). Other claims about Delta RNNs
in Section A.3 are also true for Delta GRUs.
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Appendix B Experiment Details

This section provides more details about the experiments in Section 3.

B.1 Delta RNN Training Accelerator

B.1.1 Computation Flow

The training accelerator described in Section 3.3 stores sparse delta vectors in its Static Random
Access Memory (SRAM) in the format of NZIL and NZVL [5], which enables the accelerator to
skip computations and memory accesses of entire weight columns for zero elements in delta vectors.
This zero-skipping technique can efficiently exploit the temporal sparsity in Delta RNNs (Fig. 1d).

In the FP equation (2), the accelerator reads the NZIL of input ∆xt, which is a list containing indices
of activated neurons at t-th timestep, and fetches the corresponding weight columns from Dynamic
Random Access Memory (DRAM), then multiply it with the Nonzero Values (NZV) of ∆xt.

In BP, for Eq. (6) the same weight columns are fetched using the ∆xt NZIL, and they are multiplied
with the gradient of pre-activation ∂C

∂Mt
to produce the gradients of activated neurons in ∆xt.

For Eq. (7), the accelerator fetches the gradient of pre-activation ∂C
∂Mt

and multiply it with the NZVs
of ∆xt, producing the gradient of weight columns ∂C

∂Wx
for activated neurons. The NZIL is used for

output indexing in this step. The weight gradients are accumulated for all timesteps.

The same operations are performed for hidden states ∆h.

The accelerator processes input samples one by one, i.e., the batch size of training is 1, so it can skip
both the DRAM access of weight columns of inactivated neurons and the computation for them.
Dynamically skipping weight columns ideally matches properties of burst mode DRAM memory
access, where addressing DRAM columns is slow but reading them out is fast.

B.1.2 Measurements in Simulation

In the simulation, we measure the computation time Tmeasured in clock cycles for each MxV equation,
starting from the time when the input data is loaded into memory, to the time when PE array outputs
the last data. The speedup factor is calculated as Fspeedup = Tdense/Tmeasured, where Tdense is the
theoretical computation time for a dense MxV equation of the same size in an ideal case. More
specifically, assuming that there is no memory latency or communication overhead, and PEs are
fully utilized, the computation time (in clock cycles) for a dense MxV is: Tdense = Nl ∗Nl−1 ∗ Ts/P
where Nl, Ts, and P denote the size of the l-th layer, the length of the s-th input sequence, and the
number of PEs in the accelerator respectively.
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