

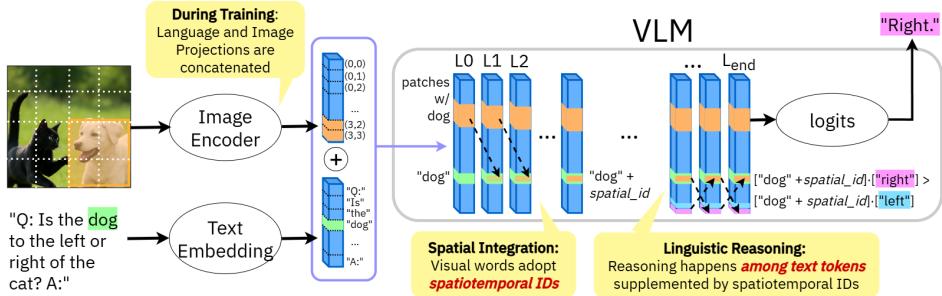
LINEAR MECHANISMS FOR SPATIOTEMPORAL REASONING IN VISION LANGUAGE MODELS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Spatio-temporal reasoning is a remarkable capability of Vision Language Models
 012 (VLMs), but the underlying mechanisms of such abilities remain largely opaque.
 013 We postulate that visual/geometrical and textual representations of spatial struc-
 014 ture must be combined at some point in VLM computations. We search for such
 015 confluence, and ask whether the identified representation can causally explain as-
 016 pects of input-output model behavior through a linear model. We show empiri-
 017 cally that VLMs encode object locations by linearly binding *spatial IDs* to tex-
 018 tual activations, then perform reasoning via language tokens. Through rigorous
 019 causal interventions we demonstrate that these IDs, which are ubiquitous across
 020 the model, can systematically mediate model beliefs at intermediate VLM layers.
 021 Additionally, we find that spatial IDs serve as a diagnostic tool for identifying
 022 limitations and bottlenecks in existing VLMs. We extend our analysis to video
 023 VLMs and identify an analogous linear temporal ID mechanism. By character-
 024 izing our proposed spatiotemporal ID mechanism, we elucidate a previously un-
 025 derexplored internal reasoning process in VLMs, toward improved interpretability
 026 and the principled design of more aligned and capable models.



037 **Figure 1: Hypothesis for spatiotemporal visual reasoning.** The VLM linearly binds spatiotem-
 038 poral localization to object word activations in early layers. Subsequent linguistic reasoning about the
 039 object is informed by its location in space and time per the spatiotemporal ID.

1 INTRODUCTION

042 Reasoning about visual input with textual queries is a key challenge behind vision-language models
 043 (VLMs). Consider a typical visual question answering (VQA) prompt: *"Is the dog to the left or right*
 044 *of the cat?"*. To succeed at this, one must resolve linguistic references, locate entities in the visual
 045 field, assess spatial relationships, and make a categorical decision. Though complex capabilities
 046 in spatial or temporal reasoning are still far from being fully understood or reliably engineered
 047 (Stogiannidis et al., 2025; Chen et al., 2025; Tong et al., 2024), SoTA VLMs have seen steady
 048 progress in simple visual reasoning without explicit guidance. So how do they do it?

049 Attention-based analyses in VLMs have shown various structural properties emerge in VLM inter-
 050 nals during VQA (Jiang et al., 2025b; Neo et al., 2024; Zhang et al., 2024a). Relatedly, mechanistic
 051 interpretability in LLMs has uncovered linear circuits for relational linguistic reasoning (Park et al.,
 052 2024; Feng & Steinhardt, 2024; Hernandez et al., 2024). Might such linear processes also be driving
 053 visual reasoning in VLMs, and if so, how exactly? This leads us to ask: **Q1. Can we linearly model**
emergent structured reasoning processes that drive spatial reasoning in VLM internals?

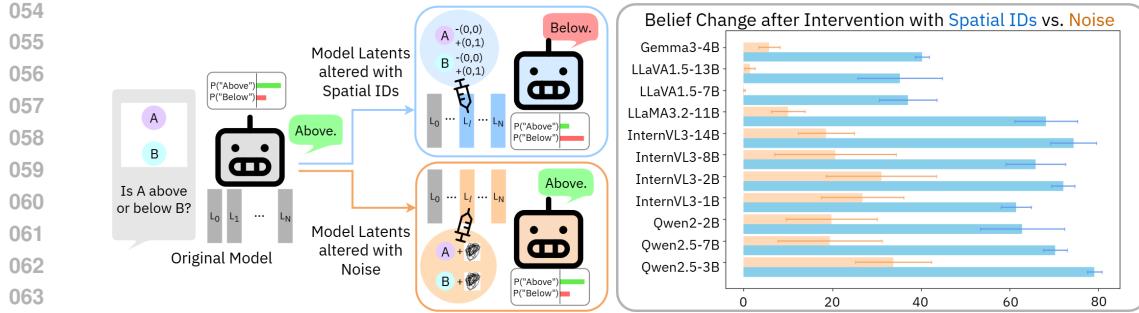


Figure 2: **Results from Targeted Intervention** (§3). Median binary belief swap due to spatial ID steering is 64.4%, and 29.5% for noise. Spatial IDs have 43.6% above-chance influence on average. We conclude that spatial IDs mediate models’ beliefs about objects’ locations in space.

The typical VLM architecture utilizes a vision encoder which projects the input image to embeddings that are prepended to text token embeddings. This is then processed by a downstream vision-aligned LLM. Popular model families using this paradigm are LLaVA(Liu et al., 2023), LLaMA(Dubey et al., 2024), Qwen (Bai et al., 2025), InternVL (Chen et al., 2024b), and Gemma (Team et al., 2024). A growing body of work aims to improve spatial reasoning capacities in VLMs (Chen et al., 2024a; Fan et al., 2025) and temporal reasoning in video models (Xiao et al., 2024; Li et al., 2024b). Identification of the internal mechanism by which Sota VLMs do spatial VQA can empower engineers to identify current architectural components leading to VQA failure modes in 3D reasoning or simple VQA. To this end, we ask: **Q2.** *Given our linear model of spatial reasoning in model activations, how do we use it to understand and improve SoTA VLMs?*

Similar training paradigms to image-based VLMs yield video models such as LLaVA-Video(Zhang et al., 2024b), VideoLLaMA3(Zhang et al., 2025), and Qwen2.5 (Bai et al., 2025), among others. Given our theory for the mechanisms underlying spatial reasoning in VLMs, we ask: **Q3.** *Do video models utilize analogous linear mechanisms for temporal reasoning?*

To address these questions, we conduct a mechanistic analysis of autoregressive VLMs and construct a linear model for spatiotemporal reasoning. We show that VLMs decompose a visual reasoning task by first binding spatial information about visual objects to object word activations, in the form of linear components we term *spatial IDs*, answering Q1 (Fig. 1). We then extract these IDs and demonstrate their mediative capacity on model output through targeted belief steering in text activations (Fig. 2). We further find that spatial IDs provide insight on VLMs’ struggle with depth reasoning, and incorrect spatial IDs as a result of weak vision encoder or poor modality integration leads to failures in LLaVA and LLaMA. This answers Q2. Finally, we show that temporal IDs similarly mediate video models, answering Q3. In summary, our novel contributions are:

- **Spatial ID Model Formulation:** We propose a linear model of spatial reasoning in VLMs, called *spatial IDs*. These are text-anchored latent structures that bind visual elements to object tokens thus enabling linguistic reasoning about space (§2.1). We empirically extract them from SoTA VLMs for characterization (§2.2).
- **Analytical and Empirical Proof of Causality:** We show model belief can be manipulated by perturbing only the spatial IDs, demonstrating their causal role in reasoning (§3), and provide theoretical intuition for the emergence of spatial IDs in VLMs (§2.3).
- **SoTA VLM Analysis with Spatial IDs:** Through targeted intervention, we identify limitations in depth expression (§4.1) and systematic failure modes in LLaMA/LLaVA (§4.2), **and find models can be effectively finetuned with spatial ID guidance (§4.3.).**
- **Extension to Temporal IDs in Video Models:** We perform our extraction and characterization analysis on SoTA video models and show that linear temporal IDs, like spatial IDs, can drive temporal reasoning in VLMs (§5).

2 EMERGENT STRUCTURE IN SPATIAL VISUAL REASONING

In this section, we characterize the spatial reasoning circuits in SoTA VLMs and isolate any linearly separable components used to communicate spatial information. Towards this end, we track information flow in VLMs and identify important junctions for spatial information transfer across token sequences. Then we empirically extract linear spatial IDs, and analytically derive how they arise.

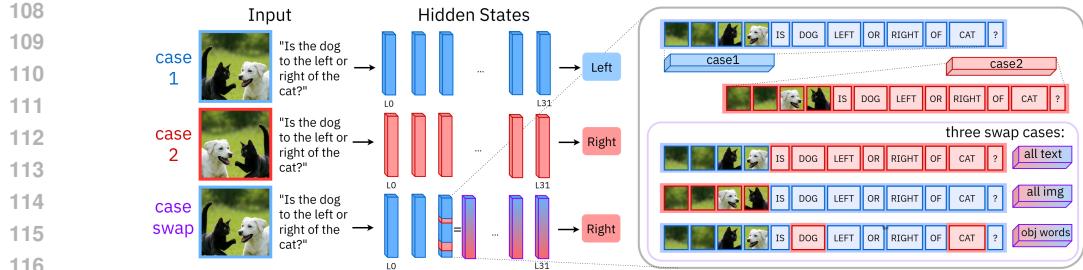


Figure 3: **Mirror swapping experiment** (§2.1). Activations from case 1 and 2 are partially swapped at a select layer, in one of three arrangements. Computations continue normally after this point.

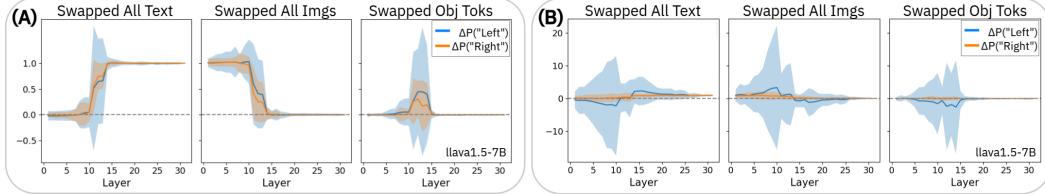


Figure 4: **Ratio change in log probability for logits “left” and “right” from mirror swap (A) and attribute swap (B) interventions.** (A) shows distinct binary belief swaps, where text tokens have an influence after middle layers. Image patches stop having an influence after that point, and object word tokens *only* have an influence in these middle layers. The control, (B), is noisy.

2.1 TRACKING INFORMATION FLOW DURING REASONING

To uncover whether VLMs engage in structured visual reasoning, i.e., isolating and propagating spatial information across layers, we intervene on internal activations during inference.

Mirror Swapping Experiment. Our goal is to compare the model’s output when presented with two distinct images and the same text query. If the model uses localized intermediate representations to reason about spatial relationships, then swapping activations between spatially distinct inputs at key layers and sequence indices should disrupt its final belief about spatial orientation, while swaps between spatially equal but attribute-wise different inputs shouldn’t have a strong effect.

Concretely, we run inference on plain and mirrored image-text pairs, extract their representations x at an intermediate layer L , then replace a subset Q of activations in the original x_L with activations from the mirrored counterpart y_L . The modified representation \tilde{x}_L is passed through the remaining layers. We conduct interventions with three variants of Q : (1) all text tokens (2) all image patches (3) object-word tokens only. If information critical to spatial reasoning is concentrated in any of these, the model’s belief will change when that region is overwritten. As a control, we concurrently perform “attribute swapping”, which follows the same steps but instead of mirroring the input image for the intervention case, changes its colors. The intervention procedure is visualized in Fig. 3 and formally defined in Alg. 1. Further implementation specifics are deferred to Appendix §A.1.

Algorithm 1 Swapping Intermediate Activations in Mirrored Images

```

149  $x_L, y_L \leftarrow f_L \circ \dots \circ f_1(x), f_L \circ \dots \circ f_1(y)$   $\triangleright x, y: [\text{seq\_dim}, \text{embed\_dim}]$ 
150  $\tilde{x}_L \leftarrow x_L[\tilde{Q}] + y_L[Q]$   $\triangleright \tilde{x}_L: [\text{seq\_dim}, \text{embed\_dim}], Q: [\text{num\_of\_inds}]$ 
151  $\tilde{x}_{\text{out}, L}, y_{\text{out}} \leftarrow f_{L_{\text{max}}} \circ \dots \circ f_{L+1}(\tilde{x}_L), f_{L_{\text{max}}} \circ \dots \circ f_{L+1}(y_L)$   $\triangleright P_{\tilde{x}_{\text{out}, L}}(\text{“GT”}): [1]$ 
152

```

Here, Q denotes the selected indices in the input sequence to swap, and \tilde{Q} is all other indices. We use the COCO-SPATIAL benchmark (Kamath et al., 2023) for the mirrored images, which is a curated subset of COCO (Lin et al., 2014) annotated with spatial language. To quantify belief shift caused by the intervention, we compute the fraction of the mirror-induced change that can be attributed to the swapped activations at layer L . For the ground truth logit “GT”, this quantity is derived as:

$$\text{belief shift}_L = \frac{P_{x_{\text{out}}}(\text{“GT”}) - P_{\tilde{x}_{\text{out}, L}}(\text{“GT”})}{P_{x_{\text{out}}}(\text{“GT”}) - P_{y_{\text{out}}}(\text{“GT”})} \quad (1)$$

Results from Mirror Swapping are shown in Fig. 4A. Through mirror swapping, we observe a *layer-specific effect* for intervention effect across modalities. Intervening on visual patch tokens

162 has a strong effect in early layers but fades with depth. Conversely, interventions on text tokens
 163 increasingly affect final outputs in later layers. This is corroborated by observations that middle
 164 layers have a modality switching effect in VLMs (Jiang et al., 2025b). Notably, swapping only the
 165 object-word tokens alters spatial belief specifically within a narrow band of intermediate layers.

166 Attribute swapping results (Fig. 4B) indicate that mirror swapping is a strong experimental setup
 167 for assessing spatial information flow in isolation from spurious visual factors. For the belief shift
 168 metric, a value of 0.0 on the y axis indicates model belief in the intervened case is equivalent to case
 169 1 (original query), while 1.0 indicates the belief is equivalent to case 2 (mirrored/changed query).
 170 Mirror swapping results in distinct and strong binary belief swaps whereas attribute swapping yields
 171 mostly noise, to the point belief shift magnitudes are -20~20x that of the original belief difference.

172 These results suggest that VLMs extract and encode spatial facts from the image into object word
 173 tokens’ activations, then operate over them in text-space. We term the latent structures holding visual
 174 spatial information *spatial ids*. Inspired by latest mechanistic interpretability findings (discussed in
 175 §6), we hypothesize that the manner of spatial information storage is approximately linear.

177 2.2 EMPIRICAL DERIVATION OF SPATIAL IDs

179 If spatial IDs are indeed linearly bound to object word activations, we should be able to ex-
 180 tract them by averaging out object-related semantics from text activations. Below we out-
 181 line the process of their extraction. In §3, we will test if these IDs causally mediate model
 182 beliefs, to validate whether the spatial reasoning mechanism in VLMs is indeed linear.

183 **Extraction Preliminaries.** We first set up some
 184 formalisms to derive spatial IDs. Let $\mathcal{O} =$
 185 $\{o_1, o_2, \dots, o_N\}$ denote a set of object categories.
 186 For each object $o \in \mathcal{O}$, we have a set of images
 187 $\{I_{(i,j)}\}$ where the object is positioned at spatial co-
 188 ordinates (i, j) in a $m \times m$ grid. Then let $T^{(o)}$ be
 189 a natural language query containing the token corre-
 190 sponding to object o , such as “Is there an o ?”.
 191 We define $\phi_L(o; I_{(i,j)}^{(o)}, T^{(o)}) \in \mathbb{R}^d$ as the embedding of
 192 the text token corresponding to object o , extracted
 193 from layer L of the VLM when input = $(I_{(i,j)}^{(o)}, T^{(o)})$.
 194 The mean embedding for object o at layer L is then:

$$\bar{\phi}_L^{(o)} = \frac{1}{m^2} \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} \phi_L(o; I_{(i,j)}^{(o)}, T^{(o)}) \quad (2)$$

195 Yielding the object-specific spatial ID at location (i, j) for object o :

$$\Delta_L^{(o)}(i, j) = \phi_L(o; I_{(i,j)}^{(o)}, T^{(o)}) - \bar{\phi}_L^{(o)} \quad (3)$$

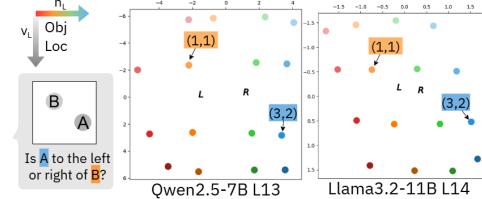
196 From this we can derive the *universal spatial ID* at location (i, j) , averaged over N objects.

$$\Delta_L(i, j) = \frac{1}{N} \sum_{n=1}^N \Delta_L^{(o_n)}(i, j) \quad (4)$$

205 To extract canonical horizontal and vertical directions from the universal spatial IDs $\Delta_L(i, j) \in$
 206 \mathbb{R}^d , we compute average difference vectors across grid-aligned coordinate pairs. The vertical and
 207 horizontal direction vectors $v_L, h_L \in \mathbb{R}^d$, corresponding to increasing i and j , are computed based
 208 on the spatial IDs. Eq. 5 shows the derivation for v_L , and h_L is derived in an analogous manner.

$$v_L = \frac{1}{m \cdot \binom{m}{2}} \sum_{i=0}^{m-1} \sum_{j_1 > j_2} [\Delta_L(i, j_1) - \Delta_L(i, j_2)] \quad (5)$$

212 **Empirical Extraction.** For our study, we extract spatial IDs from 11 SoTA VLMs, with synthetic
 213 images created from open-source OBJaverse (Deitke et al., 2023) objects. The object renders are
 214 paired onto a grid of $m = 4$ on top of random natural backgrounds. We provide further extraction
 215 details in Appendix §A.2, along with ablations showing extracted spatial IDs are invariant to chosen
 images §D and counterfactual studies confirming that spatial IDs reside in object words, and spatial



216 **Figure 5: Spatial IDs in a grid.** Color and
 217 saturation of markers represent the location
 218 of the object when spatial ID was extracted.
 219 x and y axes are coefficients of ID projections
 220 onto h_L and v_L . L, R represent “left”, “right”
 221 textual activations.

axes are orthogonal §C. Fig. 5 shows two example spatial ID grids projected onto their respective spatial vectors. IDs from more models are shown in §B. We see that these extracted IDs arrange in an approximate $m \times m$ grid at modality binding layers. Also projected are activations for spatial words, where we find that “left” is closer to leftmost spatial IDs, and “right” vice versa.

2.3 THEORETICAL SKETCH OF SPATIAL IDs

We now offer a quick, highly minimal analytical intuition for how the emergence of spatial IDs can be ubiquitous across many different models. Let $p = (i, j)$ be some coordinate on a $m \times m$ grid. Then for some query to a VLM, let the input sequence contain projected visual tokens $\{x_p\}$ for all p , and the query text tokens include an object token o . The residual update to o by one head is:

$$r_o \leftarrow r_o + W_{\text{out}} \sum_{p \in P} \alpha_{o \leftarrow p} v_p, \quad \alpha_{o \leftarrow p} \propto \exp\left(\frac{q_o^\top k_p}{\sqrt{d}}\right), \quad v_p = W_V x_p. \quad (6)$$

With cross-modal alignment, attention peaks at the true object patch p^* , giving $\delta r_o \approx W_{\text{out}} W_V x_{p^*}$. Decompose each patch as $x_p = s_p + P \psi(p) + \varepsilon_p$, where s_p encodes content, $\psi(p) \in \mathbb{R}^{d_\psi}$ is a shared positional basis (e.g. RoPE or learned 2D embeddings), P maps positional features into model space, and ε_p is small. We can now substitute $\phi_L(o; I_{p^*}, T^{(o)}) = r_o + \delta r_{o, p^*}$ into Eq. 3. A detailed derivation is in §2.2, but in summary we get:

$$\Delta_L(p^*) = \Delta_L(i, j) \approx \underbrace{W_{\text{out}} W_V P}_{M \text{ (fixed per model)}} \left(\psi(i, j) - \frac{1}{m^2} \sum_p \psi(p) \right). \quad (7)$$

Thus, spatial IDs are approximately a linear transformation of a universal positional basis written into the object token by attention. Spatial logits are thus approximately linear readouts:

$$\ell(\text{LEFT}) - \ell(\text{RIGHT}) \approx (w_{\text{LEFT}} - w_{\text{RIGHT}})^\top \Delta_L(i, j), \quad (8)$$

so if $(w_{\text{LEFT}} - w_{\text{RIGHT}})^\top M$ aligns with the x -coordinate in ψ , the model prefers “left.” Empirically, a low-rank linear fit from positional encodings ψ to spatial IDs Δ_L explains most variance (e.g. rank-3 gives $R^2 \gtrsim 0.85$, see §E.2, Table 1). A more detailed derivation for $\Delta_L(i, j)$ for the multihead case is shown in Appendix §E.1. This is a particularly simplified setting, and real reasoning circuits in VLMs will involve a lot more noise and nonlinearities. The main takeaway is that VLM designs like Fig. 1 encourage models to endow text tokens with visual information, followed by linguistic reasoning. This information transfer, in its most simplified linear form, is in the form of spatial IDs.

In practice, the finegrained circuit employed by VLMs may be much more varied, distributed, and nonlinear. The spatial ID framework could capture just one component of a more complex system. But per Ockham’s Razor, spatial IDs are powerful due to their simplicity. In following sections, we demonstrate the mediative influence of this simple spatial ID model on final VLM outputs, and further show how spatial IDs can be leveraged to improve existing models and build stronger ones.

3 SPATIAL IDs MEDIATE MODEL BELIEFS

If spatial IDs capture the causal mechanisms behind spatial reasoning, we should be able to linearly subtract or add arbitrary IDs to object word activations and change the model’s belief about object location. In this section, we design and perform experiments on real naturalistic images to test that empirically derived spatiotemporal IDs have causal effects on model outputs on spatial VQA.

Steering with Arbitrary IDs Experiment. For some layer L , we denote the model residuals corresponding to the entire input sequence after that layer as x_L , and perturb its token activation at some index q to observe any effects on the output belief. Alg. 2 illustrates the process.

Algorithm 2 Intervention at Layer L via Residual Modification

$$\begin{aligned} x_L &\leftarrow f_L \circ \dots \circ f_1(x) && \triangleright x: [\text{seq_dim}, \text{embed_dim}] \\ \tilde{x}_L &\leftarrow x_L[:q] + [x_L[q] + \Delta_L(i, j) - \tilde{\Delta}_L(i, j)] + x_L[q+1:] && \triangleright \Delta_L(i, j): [\text{embed_dim}] \\ \tilde{x}_{\text{out}} &\leftarrow f_{L_{\text{max}}} \circ \dots \circ f_{L+1}(\tilde{x}_L) && \triangleright P_{\tilde{x}_{\text{out}}}(\text{“GT”}): [1] \end{aligned}$$

Here we scale the norm of $\Delta_L(i, j)$ to be $\alpha |x_L[q]|$, and $\tilde{\Delta}_L(i, j) = \Delta_L(m - i - 1, j)$. This approximately preserves the norm of x_L . $\alpha = 5$ is some scaling constant set after grid searching for

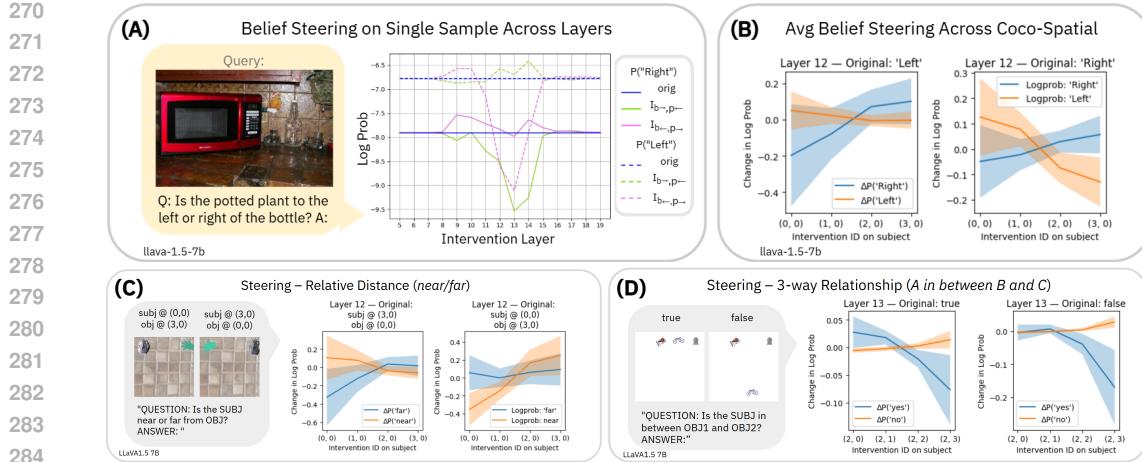


Figure 6: **Effect of spatial steering on real images** on one sample across different intervention layers (A) and across a dataset for one layer (B). In (A), dotted and solid lines indicate answer probabilities for “left” or “right”. Different colors indicate no intervention (blue), steering the bottle to the left and plant to the right (pink), and the reverse steering (green). Blue lines are flat and show that the un-intervened model incorrectly assigns a higher log probability to “left”. Pink lines show intervention on intermediate layers results in overwriting initial incorrect beliefs. (B) shows the shift in log probability for “left” vs. “right” as a result of spatial steering on the subject word token. (C) and (D) show shifts in log probability for “near” vs. “far”, and “yes” to an object being sandwiched between two others, vs. “no”.

stable intervention. We take 100 COCO images where one object is to the left or right of another, per labels from COCO-SPATIAL, and ask queries of the form “Is x to the left/right of y”? We measure the log probability of “left” and “right” tokens in the final output logits to assess steering effects.

Results from Arbitrary Steering. Fig. 6 shows the effects of model belief steering on real images and videos. Fig. 6A shows that steering impact is greatest at modality alignment layers as expected per the mirror swapping analysis, and Fig 6B shows that intervening with the rightmost spatial ID largely enhances model belief that the object is to the right, and vice versa for the leftmost ID for leftward belief. The y axes show changes in log probability for those binary directions for the whole dataset, and x axes show the different ID locations. Regardless of whether the answer to the original query was “left” or “right”, subplot trends are the same. **We repeat the analysis for queries about relative distance and three-way relationships where one object is sandwiched *in between* two others.** Again, we find that when the object is to the left, altering the spatial ID of the subject towards the right increases the likelihood of “far” and decreases that of “near”, and vice versa if the object is to the right. Similarly, we find that bringing a subject closer and closer to be surrounded by two objects **increases the model’s belief that the subject is *in between* the objects.**

Adversarial Steering Experiment. If spatial IDs are indeed ubiquitous across models, interventions on internal activations should change the resultant model beliefs across many SoTA models. To confirm this, we evaluate the log probability of the correct answer (“GT”) and its opposite (“ \neg GT”) for all samples in COCO-SPATIAL on 11 SoTA models. Then, we repeat this measurement after intervention with spatial IDs most likely to reverse their original beliefs. More detailed experimental procedure is provided in §A.5. In addition to targeted adversarial steering, we perform steering with noise vectors of the same norm as the spatial IDs, to evaluate chance belief swaps.

Adversarial Steering Results. We report % binary belief swaps on COCO-SPATIAL from the spatial ID vs. noise steering case in Fig. 2. Steering with spatial IDs yields a median 64.6% swap in beliefs, versus 29.5% with noise. This indicates activation intervention has nonzero chance influence on model output, but there is a clear above-chance average of 43.6% increase with spatial IDs. Here, a model’s belief on one sample is considered “swapped” if the relative likelihood of the ground truth and its opposite answer has changed. For example, if $P(\text{“left”}) > P(\text{“right”})$ before intervention, but after intervention we see $P(\text{“left”}) < P(\text{“right”})$, the intervention has swapped the model belief. Thus we conclude that spatial ID mechanisms mediate model belief in the models considered.

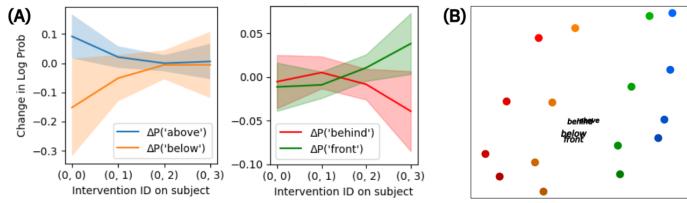
324 4 SPATIAL IDs FOR UNDERSTANDING AND IMPROVING IMAGE VLMs

326 With the existence and causal nature of spatial IDs established, we explore two ways to leverage
 327 them towards stronger VLMs. First, we aim to understand why 3D reasoning fails in SoTA VLMs.
 328 Second, we use spatial IDs to diagnose architectural bottlenecks of SoTA VLMs in VQA.
 329

330 4.1 DEPTH REPRESENTATION IN IMAGE VLMs

332 Spatial IDs suggest that VLMs represent visual space within a 2D grid. What might this mean for
 333 depth? We hypothesize that the language model must reason about depth related queries using the
 334 2D localization in context. To verify whether this is the case, we look at the resulting belief changes
 335 in the depth axis when the LLaVA1.5 7B model is steered with spatial IDs varying in height. Fig.
 336 7 shows the results. The same spatial IDs increasing the likelihood for “above” and decreasing
 337 “below”, also drive up “front” and drive down “behind” in LLaVA.

338 Further, projection of these word embeddings onto spatial vectors reveals that “above”/“behind”
 339 and “below”/“front” map to overlapping locations, indicating their functional relationships with spatial
 340 IDs are similar. These results may be due to biases in training, or innate shortcomings in the VLM
 341 architecture. They certainly highlight the need for better depth-handling mechanisms, whether
 342 that be through improved training data or tooling.
 343
 344
 345
 346
 347
 348
 349
 350



351 **Figure 7: Depth and height are strongly correlated in LLaVA.**
 352 (A) Steering results for IDs varying in y-dim and their impact on beliefs about height or depth.
 353 (B) Projection of spatial words onto a spatial ID grid. Embeddings for “above”/ “front” and “below”/“behind” are nearly identical.

354 4.2 DIAGNOSING VLMs

355 When a VLM fails at a spatial task, how do we pinpoint the reason it failed? Referring back to
 356 Fig. 1, VLM failure points can roughly be divided into modality encoding, crossmodal information
 357 integration, or linguistic reasoning stages. Knowing what part of a VLM’s architecture must be
 358 improved to reduce failures is paramount to efficient model engineering.

359 Per-sample analysis of spatial IDs provides a unique ability to identify a model’s bottleneck. Consider
 360 an evaluation set $\mathbf{K} = \{k_1, k_2 \dots k_K\}$, where each $k = (image, query)$. An imperfect VLM
 361 will fail at some samples. In this section, we perform two experiments to identify the architectural
 362 component which causes for the distribution of $\mathbf{K}_{\text{wrong}}$ to be statistically distinct from $\mathbf{K}_{\text{correct}}$.

363 An example diagnosis process may look like this. If a model exhibits *incorrect* spatial ID binding,
 364 and that incorrect output produced is faithful with the spatial ID, then the language-only reasoning
 365 stage is likely not at fault. From there, if a model exhibits sensitivity to masking the correct object
 366 region for $\mathbf{K}_{\text{wrong}}$ but not for $\mathbf{K}_{\text{correct}}$, the vision encoder is the likely bottleneck. If there is
 367 no distinct sensitivity difference, the errors are likely taking place after the vision encoder, but
 368 before the linguistic reasoning. **If model accuracy seems independent of both spatial ID correctness**
 369 and **image recognition capacity**, the language model layers beyond spatial ID binding are likely
 370 the biggest bottleneck. Note that it is possible for incorrect spatial IDs to be correlated to wrong
 371 answers, but still have some model inaccuracies be resultant from factors other than spatial IDs,
 372 such as erroneous priors during LM readout (Leng et al., 2024; Ramakrishnan et al., 2018). In this
 373 case, it is still valuable to find if models can benefit from **stronger spatial representations through**
 374 **this diagnosis process, and minimize avenues for failure**. For the described analyses, we need a
 375 sufficient $\mathbf{K}_{\text{wrong}}$ subset. As their $\mathbf{K}_{\text{wrong}}$ are biggest on COCO-SPATIAL, we select LLaVA1.5 7B
 376 and LLaMA3.2VL 11B as model organisms for this section.

377 **Ground Truth Spatial ID Deviation Experiment.** First, we want to identify if models predict
 378 incorrect spatial IDs for the samples they get wrong. If the answer is *yes*, then it is likely that the
 379 downstream language model is not the performance bottleneck, since it is faithful to the spatial
 380 information received. To compute the deviation of the model’s believed spatial ID to the ground

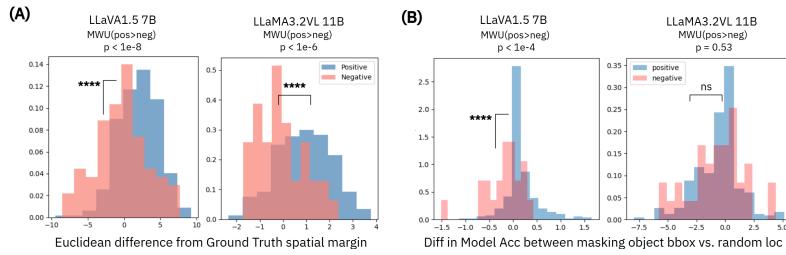


Figure 8: **Contrasting density histograms show incorrect spatial IDs drive bad predictions.** (A) shows deviation of model spatial IDs from g.t., and (B) the difference in model accuracy when masking objects vs. random locations in images. Histograms are samples VLMs got right (blue) or wrong (red). LLaVA shows faulty object detection with wrong answers, while LLaMA does not.

truth (g.t.), we compute the g.t. spatial ID by projecting the word activation onto the spatial axes:

$$\Delta_L^{(o)}(i, j)_{ext} \approx VV^T \phi_L(o; I_{(i,j)}^{(o)}, T^{(o)}), \quad V = [v_L, h_L] \quad (9)$$

For a spatial query like “Is the o to the left or right of a \tilde{o} ”, we can thus compute $\Delta^{(o)}(i, j)_{gt}$ and $\Delta^{(\tilde{o})}(i, j)_{gt}$. The model’s assigned spatial IDs to the objects are computed per Eq. 9, for $\Delta^{(o)}(i, j)_{ext}$ and $\Delta^{(\tilde{o})}(i, j)_{ext}$. Then the g.t. ID margin deviation for some object o is:

$$\text{ID deviation margin} = \epsilon_{ext} - \epsilon_{gt}, \quad \text{where } \epsilon_{gt} = i_{gt}^{(o)} - i_{gt}^{(\tilde{o})}, \epsilon_{ext} = i_{ext}^{(o)} - i_{ext}^{(\tilde{o})} \quad (10)$$

Here, a negative margin indicates that the model’s extracted spatial IDs oppose the ground truth.

ID Deviation Results. From Fig. 8A, we see that deviation from ground truth in extracted spatial ID margin is highly correlated with model mistakes. In other words, for LLaVA and LLaMA, wrong spatial IDs in object word activations led to wrong model answers, so linguistic reasoning was not the reason these failures occurred. Each subplot shows two density histograms overlaid in the same grid, where the x axis is $\epsilon_{ext} - \epsilon_{gt}$. The red histogram represents the density of ID deviations for \mathbf{K}_{wrong} , and the blue histogram shows the same for $\mathbf{K}_{correct}$. The red distribution is visibly skewed to the negatives compared to the blue. Quantitatively, we perform the Mann-Whitney U test (McKnight & Najab, 2010) to calculate the p-value for the hypothesis that the two distributions (red and blue) are non-identical. Now we ask, is this failure mode stemming from the vision encoder level, or does it occur during the spatial ID binding across modalities?

Image Masking Experiment. Altering the raw image input at the pixel level can help us understand whether it is a faulty vision encoder or faulty crossmodal information integration that has led to the failures. If the model’s beliefs on $\mathbf{K}_{correct}$ are more sensitive to masking the image raw input at the g.t. location of o , while beliefs on \mathbf{K}_{wrong} change more with masking elsewhere, we can conclude that the vision encoder of this VLM is doing a poor job at object detection, leading to observed failures. If we do not observe this is the case, the failure may arise from the crossmodal information integration stage. In other words, the language model is doing a poor job appending binding IDs, despite the vision encoder having the necessary object recognition capacity.

We design an obfuscation paradigm inspired by methods like D-RISE (Petsiuk et al., 2021), where we either blur the bounding box of o , or R other locations in the image that do not intersect with the bboxes for o or \tilde{o} . We then measure model belief change when masking the object vs. elsewhere:

$$\text{bbox sensitivity} = (P(\text{“GT”}) - P(\text{“GT”}| \text{mask } o)) - (P(\text{“GT”}) - \min_r [P(\text{“GT”}| \text{mask } r), r \in R]) \quad (11)$$

Image Masking Results. Fig. 8B shows overlaid histograms for bounding box masking sensitivities of $\mathbf{K}_{correct}$ and \mathbf{K}_{wrong} . Here, a negative value indicates greater sensitivity to raw pixel masking of random scenes, suggesting poor object detection. For LLaVA, there is a statistically significant p-value for the hypothesis that \mathbf{K}_{wrong} is shifted more negative than $\mathbf{K}_{correct}$, indicating its vision encoder fails at object detection when it answers incorrectly. In contrast, \mathbf{K}_{wrong} , $\mathbf{K}_{correct}$ in LLaMA are agnostic to image obfuscation. This suggests that its failure modes likely stem after the vision encoder. These insights could be attributed to how LLaVA uses an out-of-the-box ViT that was text-aligned at a massive scale, hence not being tuned for finegrained detection, while LLaMA has a trained in-house ViT whose image-text alignment may be less robust.

432 **Diagnosis Conclusion.** With spatial IDs, we explore the causes for failure in a few model VLMs.
 433 We find that for both LLaMA and LLaVA, the linguistic reasoning stage is faithful to spatial IDs.
 434 LLaVA’s vision encoder is likely creating wrong spatial IDs from poor object detection, while
 435 LLaMA’s weak point appears to be information integration across the image patch activations to
 436 the text tokens. These conclusions are preliminary and do not suggest that *all* of a model’s fail-
 437 ures stem from *one* architectural component, but can serve to guide finetuning stage choices when
 438 resources are scarce, or provide intuition for future model designs.

439 440 441 4.3 IMPROVING VLMs

442 **Spatial IDs and Model Performance.** To understand if spatial
 443 IDs could be a valuable learning signal, we first evaluate whether
 444 stronger steerability from spatial IDs is correlated to stronger mod-
 445 els. Fig. 9 shows the results of this analysis, where indeed we see
 446 that models with higher zero-shot accuracy on COCO-spatial also
 447 exhibit greater belief changes with spatial ID interventions.

448 We define “steerability” as the difference between the change of be-
 449 lief resultant from steering with opposing spatial IDs versus noise.
 450 The layers of intervention are chosen as the middle third of all lay-
 451 ers for that model. Each point shows the model’s mean steerability
 452 (on x) against its accuracy on COCO-spatial with no spatial inter-
 453 vention. Dotted lines connect models within a family.

454 **Spatial Loss Module** Fig. 9 shows spatial IDs signal stronger
 455 model performance. This suggests that the strength of spatial IDs
 456 could be a valuable learning signal for VLMs to learn principled
 457 spatial reasoning. To validate this intuition, we finetune Qwen2-2B on a synthetic dataset similar
 458 to the one used to extract spatial IDs, and evaluate on COCO-Spatial. We introduce an additional
 459 loss module at layer 11 that computes the cosine similarity between the predicted and ground-truth
 460 spatial ID at that layer. We provide detailed explanations for this process in §A.7. This spatial ID
 461 loss is added to the standard language modeling objective, providing extra supervision. We perform
 462 a control training without the spatial ID loss. Indeed, we see that explicit spatial ID loss helps the
 463 model generalize faster, reaching 90% accuracy on COCO-spatial at 3.2k steps, as shown below:

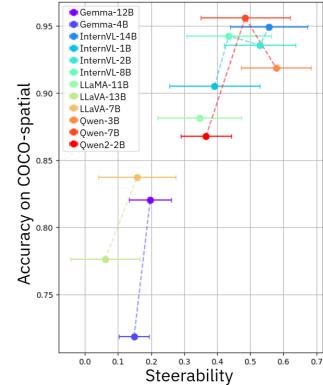
	Num Steps	0	800	1600	2400	3200
Control	LM Loss (↓)	3.30	0.05	<0.01	<0.01	<0.01
	COCO Val Accuracy (↑)	0.77	0.83	0.84	0.85	0.85
With Spatial Loss	LM Loss (↓)	2.71	0.04	<0.01	<0.01	<0.01
	Spatial ID Loss (↓)	0.75	0.58	0.41	0.36	0.33
	COCO Val Accuracy (↑)	0.77	0.83	0.84	0.88	0.91

473 474 5 TEMPORAL IDs IN VIDEO MODELS

475 Thus far, we have characterized spatial IDs as a causal model for spatial visual reasoning in VLMs.
 476 Could we find a similar linear paradigm for the temporal axis? In this section, we repeat the ex-
 477 periments in §2-3 for the temporal dimension in video models, with the goal of identifying linearly
 478 separable temporal markers on object words. For space, experimental procedures are described
 479 briefly here, and in greater detail in Appendix §A.

480 481 482 5.1 MIRRORING, EXTRACTING, AND STEERING ACROSS THE TEMPORAL AXIS

483 **Temporal Mirror Swapping.** We validate that there exist modality alignment layers with object-
 484 level visual information transfer in video models. For mirrored videos, we take the Scene_QA subset
 485 of MVBENCH (Li et al., 2024a) and swap the order of frames from back to front. Following Alg.
 1, we show results for swapping text tokens, image patches, and object words in Fig. 10A. While



486 **Figure 9: Accuracy vs. Steerability.** Models with
 487 higher accuracy can be better steered with spatial IDs.

486 the error bound is noisier than spatial LLaVA, likely as LLaVA-Video follows response formats less
 487 well, we see the expected bump around middle layers for crossmodal integration.
 488

489 **Temporal ID Extraction.** Derivation of temporal IDs and the temporal vector t_L follows Eq. 2 - 5,
 490 with synthetic 8-frame videos of OBJAVERSE renders. Results are shown in Fig. 10B. We again see
 491 that the text activation for “before” projects closer to earlier frames, than the activation for “after”.

492 **Causality of Temporal IDs.** Finally, to
 493 confirm controllability with arbitrary temporal IDs, we
 494 perform the steering experiment per Alg. 2 on
 495 MV BENCH videos. Results are shown in Fig. 10C. On these real, naturalistic videos, we see that later
 496 temporal IDs steer the model belief towards “after”,
 497 and earlier IDs towards “before”, as expected.
 498

5.2 EMERGENCE OF TEMPORAL IDs

501 Fig. 10 shows summary results on LLaVA-Video,
 502 but we include temporal IDs from VideoLLaMA3
 503 and Qwen2.5 in Appendix §B.2. LLaVA-Video and
 504 VideoLLaMA3 use textual description of the video
 505 length and number of frames to indicate timestamps
 506 preceding the visual input, while Qwen uses explicit
 507 MRoPE time IDs. This suggests that spatiotemporal
 508 IDs can emerge without explicit positional encoding,
 509 beyond the simple mechanism derived in Eq. 7.

6 RELATED WORK

512 Mechanistic interpretability is a growing field uncovering the inner workings of large models, popularizing
 513 techniques such as circuit tracing (Elhage et al., 2021; Ameisen et al., 2025), Sparse Autoencoders
 514 (Cunningham et al., 2023), linear probing (Alain & Bengio, 2016), and others. The Linear
 515 Representation Hypothesis posits that concepts are linearly encoded in LLM latents (Park
 516 et al., 2024), and activation patching supports that linear changes in activations drive model belief
 517 (Meng et al., 2022; Zhang & Nanda, 2023). Internal in-context reasoning mechanisms such as linear
 518 *binding IDs* (Feng & Steinhardt, 2024; Feng et al., 2024) have been identified in LLMs, along with
 519 other evidence for linear multi-hop reasoning (Yang et al., 2024), in-context task vectors (Hendel
 520 et al., 2023) and linear relational embeddings (Hernandez et al., 2024) during reasoning.

521 Linearity of embeddings have also been discovered in VLM latent spaces (Trager et al., 2023; Jiang
 522 et al., 2025a) to some degree. Previous work showed that VLMs separate VQA into image-focused
 523 then text-focused stages (Jiang et al., 2025b), and others have extended LLM interpretability
 524 techniques like logit lens (Neo et al., 2024) or attention tracking (Zhang et al., 2024a; Yu & Ananiadou,
 525 2025) to VLMs to unearth internal circuits. In our work, we mechanistically capture spatiotemporal
 526 information flow from image patches to text tokens in VLMs, via the spatial ID mechanism.

7 CONCLUSION, LIMITATIONS, & FUTURE WORK

527 We propose spatiotemporal IDs as a linear model for visual reasoning about space and time in VLMs.
 528 With a series of causal analyses, we show these IDs can be obtained in many SoTA models, and that
 529 they closely mediate models’ beliefs about visual objects’ location in space and time. We further
 530 offer ways to extend this mechanistic insight to improving existing VLMs. For tractability, our
 531 work is currently limited to analyses in simple spatial queries or appearance-based temporal queries.
 532 Experimental design for more complex, open-ended queries will enhance our understanding of how
 533 VLMs utilize rudimentary concepts like spatial IDs in more nuanced settings. Further, we only
 534 extract and steer models of sizes up to 14B parameters due to compute constraints. Investigation into
 535 whether the spatial ID circuit plays a similarly prominent role in larger models will reveal whether
 536 VLMs of varying capacities follow analogous methods for visual reasoning, or employ distinct
 537 measures. Lastly, while we show two potential ways to leverage spatial IDs for VLM diagnostics,
 538 future work could include other use cases, such as spatiotemporal IDs as a proxy learning signal, a
 539 motivator for explicit temporal encodings, and more.

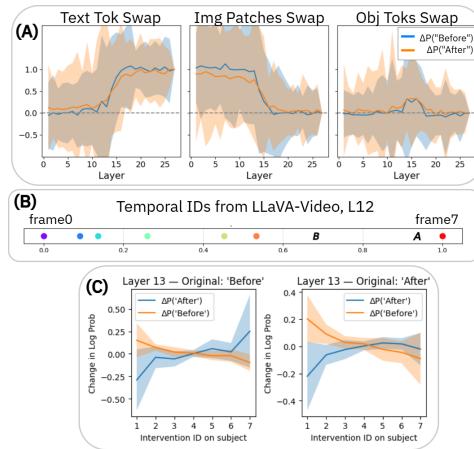


Figure 10: **Temporal ID Results.** Mirror Swapping on videos (A), Temporal ID grid (B), and temporal ID steering on model beliefs (C) with LLaVA-Video

540 REPRODUCIBILITY
541

542 We provide finegrained details for all experiments in §A of the Appendix, and results on all the
543 models considered in §B. We include experimental details, results from various ablation analyses and
544 counterfactual trials in §C-D. We will release the code for reproducing all results upon acceptance.
545

546 REFERENCES
547

548 Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
549 probes. *arXiv preprint arXiv:1610.01644*, 2016.

550 Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
551 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
552 Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
553 Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
554 Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
555 computational graphs in language models. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/methods.html>.

557 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
558 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
559 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
560 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-VL Technical Report, Febru-
561 ary 2025. URL <http://arxiv.org/abs/2502.13923>. arXiv:2502.13923 [cs].

562 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
563 Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings*
564 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14455–14465,
565 2024a.

567 Shiqi Chen, Tongyao Zhu, Ruochen Zhou, Jinghan Zhang, Siyang Gao, Juan Carlos Niebles, Mor
568 Geva, Junxian He, Jiajun Wu, and Manling Li. Why is spatial reasoning hard for vlms? an
569 attention mechanism perspective on focus areas. *arXiv preprint arXiv:2503.01773*, 2025.

570 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
571 Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. InternVL:
572 Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks, January
573 2024b. URL <http://arxiv.org/abs/2312.14238>. arXiv:2312.14238 [cs].

575 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
576 coders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*,
577 2023.

578 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
579 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
580 tated 3d objects. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
581 *recognition*, pp. 13142–13153, 2023.

582 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
583 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
584 *arXiv e-prints*, pp. arXiv–2407, 2024.

585 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
586 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
587 Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
588 Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
589 Chris Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*,
590 2021. <https://transformer-circuits.pub/2021/framework/index.html>.

592 Yue Fan, Xuehai He, Diji Yang, Kaizhi Zheng, Ching-Chen Kuo, Yuting Zheng, Sravana Jyothi
593 Narayananaraju, Xinze Guan, and Xin Eric Wang. GRIT: Teaching MLLMs to Think with Images,
May 2025. URL <http://arxiv.org/abs/2505.15879>. arXiv:2505.15879 [cs].

594 Jiahai Feng and Jacob Steinhardt. How do Language Models Bind Entities in Context?, May 2024.
 595 URL <http://arxiv.org/abs/2310.17191>. arXiv:2310.17191 [cs].
 596

597 Jiahai Feng, Stuart Russell, and Jacob Steinhardt. Monitoring Latent World States in Language
 598 Models with Propositional Probes, December 2024. URL <http://arxiv.org/abs/2406.19501>. arXiv:2406.19501 [cs].
 599

600 Roei Hendel, Mor Geva, and Amir Globerson. In-Context Learning Creates Task Vectors, October
 601 2023. URL <http://arxiv.org/abs/2310.15916>. arXiv:2310.15916 [cs].
 602

603 Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob Andreas,
 604 Yonatan Belinkov, and David Bau. Linearity of Relation Decoding in Transformer Language
 605 Models, February 2024. URL <http://arxiv.org/abs/2308.09124>. arXiv:2308.09124
 606 [cs].

607 Nick Jiang, Anish Kachinthaya, Suzie Petryk, and Yossi Gandelsman. Interpreting and Editing
 608 Vision-Language Representations to Mitigate Hallucinations, February 2025a. URL <http://arxiv.org/abs/2410.02762>. arXiv:2410.02762 [cs].
 609

610 Zhangqi Jiang, Junkai Chen, Beier Zhu, Tingjin Luo, Yankun Shen, and Xu Yang. Devils in Middle
 611 Layers of Large Vision-Language Models: Interpreting, Detecting and Mitigating Object Hallu-
 612 cinations via Attention Lens, April 2025b. URL <http://arxiv.org/abs/2411.16724>.
 613 arXiv:2411.16724 [cs].
 614

615 Amita Kamath, Jack Hessel, and Kai-Wei Chang. What's" up" with vision-language models? in-
 616 vestigating their struggle with spatial reasoning. *arXiv preprint arXiv:2310.19785*, 2023.
 617

618 Raphi Kang, Yue Song, Georgia Gkioxari, and Pietro Perona. Is clip ideal? no. can we fix it? yes!
 619 *arXiv preprint arXiv:2503.08723*, 2025.

620 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
 621 Mitigating object hallucinations in large vision-language models through visual contrastive de-
 622 coding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 623 nition*, pp. 13872–13882, 2024.

624

625 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo
 626 Chen, Ping Lou, Limin Wang, and Yu Qiao. MVBench: A Comprehensive Multi-modal
 627 Video Understanding Benchmark. In *2024 IEEE/CVF Conference on Computer Vision and
 628 Pattern Recognition (CVPR)*, pp. 22195–22206, Seattle, WA, USA, June 2024a. IEEE. ISBN
 629 9798350353006. doi: 10.1109/CVPR52733.2024.02095. URL <https://ieeexplore.ieee.org/document/10658165/>.
 630

631 Lei Li, Yuanxin Liu, Linli Yao, Peiyuan Zhang, Chenxin An, Lean Wang, Xu Sun, Lingpeng Kong,
 632 and Qi Liu. Temporal reasoning transfer from text to video. *arXiv preprint arXiv:2410.06166*,
 633 2024b.

634

635 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 636 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 637 conference on computer vision*, pp. 740–755. Springer, 2014.

638

639 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual Instruction Tuning, December
 2023. URL <http://arxiv.org/abs/2304.08485>. arXiv:2304.08485 [cs].
 640

641 Patrick E McKnight and Julius Najab. Mann-whitney u test. *The Corsini encyclopedia of psychology*,
 642 pp. 1–1, 2010.

643

644 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 645 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022.

646

647 Clement Neo, Luke Ong, Philip Torr, Mor Geva, David Krueger, and Fazl Barez. Towards In-
 648 terpreting Visual Information Processing in Vision-Language Models, October 2024. URL
 649 <http://arxiv.org/abs/2410.07149>. arXiv:2410.07149 [cs].

648 Kiho Park, Yo Joong Choe, and Victor Veitch. The Linear Representation Hypothesis and the Geom-
 649 etry of Large Language Models, July 2024. URL <http://arxiv.org/abs/2311.03658>.
 650 arXiv:2311.03658 [cs].

651 Vitali Petsiuk, Rajiv Jain, Varun Manjunatha, Vlad I Morariu, Ashutosh Mehra, Vicente Ordóñez,
 652 and Kate Saenko. Black-box explanation of object detectors via saliency maps. In *Proceedings of*
 653 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11443–11452, 2021.

654 Sainandan Ramakrishnan, Aishwarya Agrawal, and Stefan Lee. Overcoming language priors in
 655 visual question answering with adversarial regularization. *Advances in neural information pro-*
 656 *cessing systems*, 31, 2018.

657 Bin Ren, Yahui Liu, Yue Song, Wei Bi, Rita Cucchiara, Nicu Sebe, and Wei Wang. Masked jigsaw
 658 puzzle: A versatile position embedding for vision transformers. In *Proceedings of the IEEE/CVF*
 659 *Conference on Computer Vision and Pattern Recognition*, pp. 20382–20391, 2023.

660 Ilias Stogiannidis, Steven McDonagh, and Sotirios A Tsaftaris. Mind the gap: Benchmarking spatial
 661 reasoning in vision-language models. *arXiv preprint arXiv:2503.19707*, 2025.

662 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
 663 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
 664 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

665 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 666 shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF*
 667 *Conference on Computer Vision and Pattern Recognition*, pp. 9568–9578, 2024.

668 Matthew Trager, Pramuditha Perera, Luca Zancato, Alessandro Achille, Parminder Bhatia, and Ste-
 669 fano Soatto. Linear spaces of meanings: compositional structures in vision-language models. In
 670 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15395–15404,
 671 2023.

672 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 673 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information
 674 Processing Systems (NeurIPS)*, 2017. URL <https://arxiv.org/abs/1706.03762>.

675 Junbin Xiao, Angela Yao, Yicong Li, and Tat-Seng Chua. Can i trust your answer? visually grounded
 676 video question answering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 677 *Pattern Recognition*, pp. 13204–13214, 2024.

678 Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do Large Lan-
 679 guage Models Latently Perform Multi-Hop Reasoning?, February 2024. URL <http://arxiv.org/abs/2402.16837>. arXiv:2402.16837 [cs].

680 Zeping Yu and Sophia Ananiadou. Understanding Multimodal LLMs: the Mechanistic Interpretabil-
 681 ity of Llava in Visual Question Answering, January 2025. URL <http://arxiv.org/abs/2411.10950>. arXiv:2411.10950 [cs].

682 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong
 683 Leng, Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, and
 684 Deli Zhao. VideoLLaMA 3: Frontier Multimodal Foundation Models for Image and Video Under-
 685 standing, January 2025. URL <http://arxiv.org/abs/2501.13106>. arXiv:2501.13106
 686 [cs].

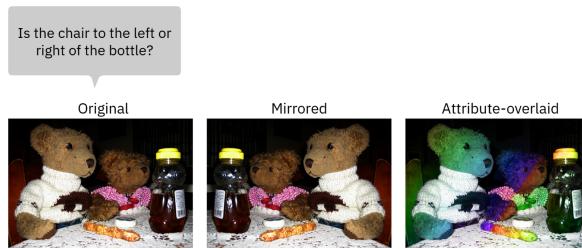
687 Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
 688 Metrics and methods. *arXiv preprint arXiv:2309.16042*, 2023.

689 Xiaofeng Zhang, Yihao Quan, Chen Shen, Xiaosong Yuan, Shaotian Yan, Liang Xie, Wenxiao
 690 Wang, Chaochen Gu, Hao Tang, and Jieping Ye. From Redundancy to Relevance: Infor-
 691 mation Flow in LVLMs Across Reasoning Tasks, October 2024a. URL <http://arxiv.org/abs/2406.06579>. arXiv:2406.06579 [cs].

692 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 693 Instruction Tuning With Synthetic Data, October 2024b. URL <http://arxiv.org/abs/2410.02713>. arXiv:2410.02713 [cs].

702 LINEAR MECHANISMS FOR SPATIOTEMPORAL REASONING IN VISION
 703 LANGUAGE MODELS
 704 –SUPPLEMENTARY MATERIAL–
 705
 706
 707

708	A Experimental Details	15
709	A.1 Mirror Swapping	15
710	A.2 Spatiotemporal ID Extraction	16
711	A.3 Arbitrary Steering Experiments	17
712	A.4 Color-binding Reasoning Experiments	17
713	A.5 Adversarial Steering Experiments	18
714	A.6 ID Deviation	19
715	A.7 Obfuscating Experiments	19
716	A.8 Model Diagnosis Addendum	19
717	A.9 Model finetuning with Spatial Loss	20
718		
719		
720		
721		
722		
723		
724		
725	B Experimental Results on More Models	21
726	B.1 Spatial Grids on More Models	21
727	B.2 Temporal Grids on more Models	23
728		
729		
730		
731	C Counterfactuals	23
732	C.1 Spatial IDs from non-object words	23
733	C.2 Mirror Swapping on non-object words	24
734	C.3 Steering Effects on Orthogonal Directions (x vs. y), (time vs. x)	24
735		
736		
737		
738		
739	D Ablations	26
740	D.1 Scaling Analysis for Spatiotemporal ID Extraction	26
741	D.2 Varying prompt wording and object sizes during extraction	26
742		
743		
744		
745	E Theoretical Analysis of Spatial IDs	27
746	E.1 Informal Proof for Spatial ID Emergence	27
747	E.2 Empirical Relationship between Positional Encoding and Spatial IDs	28
748		
749		
750		
751		
752	F LLM Usage Disclosure	29
753		
754		
755		

756 **A EXPERIMENTAL DETAILS**
757758 **A.1 MIRROR SWAPPING**
759769 Figure A1: Example altered images for mirror swapping and attribute swapping.
770

771 **Token handling.** Different models and tokenizers have different tokenizing schemes. For example,
772 for the query “Question: Is the the thermometer to the left or right of the desktop? Answer left or
773 right. Answer: ”, the tokenization from Gemma, LLaMA, LLaVA, and Qwen will be as shown:
774

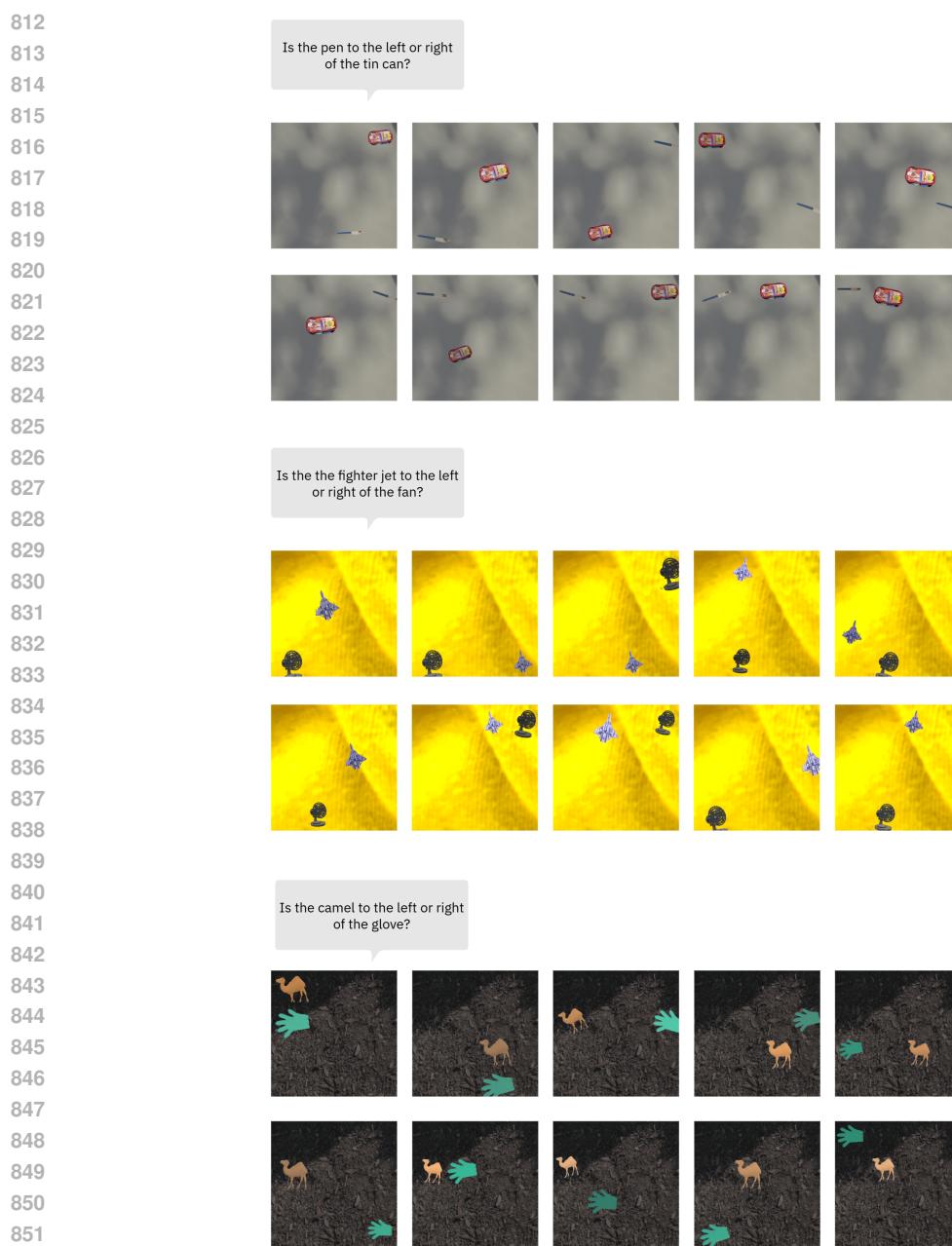
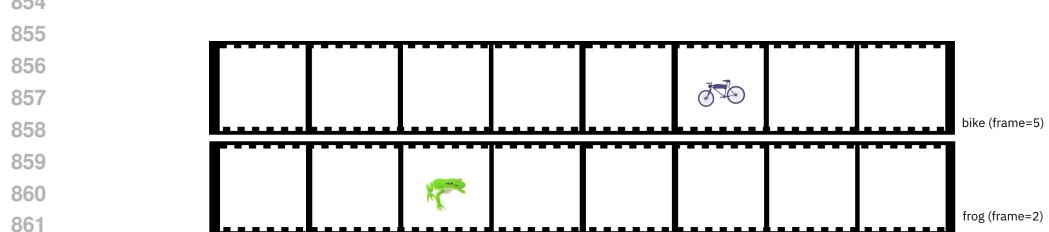
```
775 === Gemma ===
776 Tokens: ['Question', ':', '_Is', '_the', '_thermometer', '_to',
777 '_the', '_left', '_or', '_right', '_of', '_the', '_desktop', '?',
778 '_Answer', '_left', '_or', '_right', '.', '_Answer', ':']
779
780 === LLaMA ===
781 Tokens: ['_Question', ':', '_Is', '_the', '_therm', 'ometer',
782 '_to', '_the', '_left', '_or', '_right', '_of', '_the', '_desktop',
783 '?', '_Answer', '_left', '_or', '_right', '.', '_Answer', ':']
784
785 === LLaVA ===
786 Tokens: ['_Question', ':', '_Is', '_the', '_therm', 'ometer',
787 '_to', '_the', '_left', '_or', '_right', '_of', '_the', '_desktop',
788 '?', '_Answer', '_left', '_or', '_right', '.', '_Answer', ':']
789
790 === Qwen ===
791 Tokens: ['Question', ':', 'GIs', 'Gthe', 'Gthermometer', 'Gto',
792 'Gthe', 'Gleft', 'Gor', 'Gright', 'Gof', 'Gthe', 'Gdesktop', '?',
793 'GAnswer', 'Gleft', 'Gor', 'Gright', '.', 'GAnswer', ':']
```

793 When a word is represented as multiple tokens per a model’s processor (e.g., *frog* is tokenized into
794 $[-f, ro]$ in LLaVA), we take the last index of this list to be most representative of the object, as it is
795 the distinguishing element. So in the case of LLaMA or LLaVA, we would take the “ometer” token
796 to represent the object “thermometer”.

797 **Logit Probabilities.** For assessing the model’s likelihood of saying “left” vs. “right”, or two other
798 options, we take the log probability for that token following the tokenization scheme of the model
799 family. This means we take the model output.logits and index at the token ID for ‘Gright’ in Qwen,
800 for example, to get $P(\text{“right”})$.

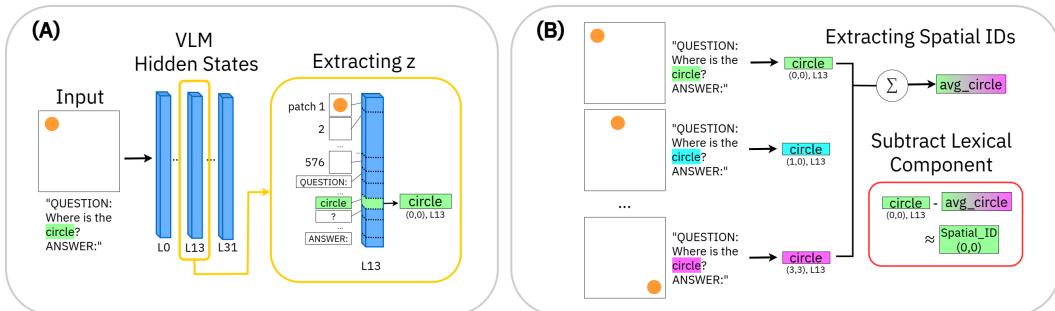
801 **Activation Patching.** For every model, we first register a forward hook at each layer to collect the
802 intermediate activation for both the original (case 1) and mirror-swapped (case 2) cases. Then, we
803 register another forward-hook replace the original activations with the mirror-swapped one at select
804 indices according to the three different settings.

805
806
807
808
809

810 A.2 SPATIOTEMPORAL ID EXTRACTION
811853 Figure A2: Synthetic images used towards spatial ID extraction
854864 Figure A3: Illustration of synthetic videos used towards temporal ID generation. All videos had 8
865 frames.

864 **Synthetic Image generation for Spatial IDs.** We use 55 OBJAVERSE object renders and project
 865 them in various pairs onto random backgrounds, per (Kang et al., 2025). All images with the same
 866 objects get the same text query. In §D.1 we show the different number of objects and total number
 867 of images used to generate spatial IDs. For w object pairs, we generate $w \times s \times m^2 \times (m^2 - 1)$
 868 total images, where s is the number of object sizes we consider, and m is grid size. While we
 869 find minimal difference with extraction dataset size, as shown in §D.1, we use 90 object pairs, and
 870 consider $s = 4$ from {224, 174, 124, 74}, yielding 86,400 images. Note that each image size is
 871 $224 \times 4 = 896$ in width and height.

872 **Synthetic Video generation for Temporal IDs.** We take 5 unique OBJAVERSE object pairs in 61
 873 distinct temporal arrangements. For baseline temporal ID extraction, all objects were centered in
 874 the image. For spatial vs. temporal disentanglement verification, we try three spatial variants - left,
 875 center, and right - for object location.



918 shows the example query setup, as well as the results of swapping all image tokens, all text tokens,
 919 just the color word tokens, or just the object word token.
 920

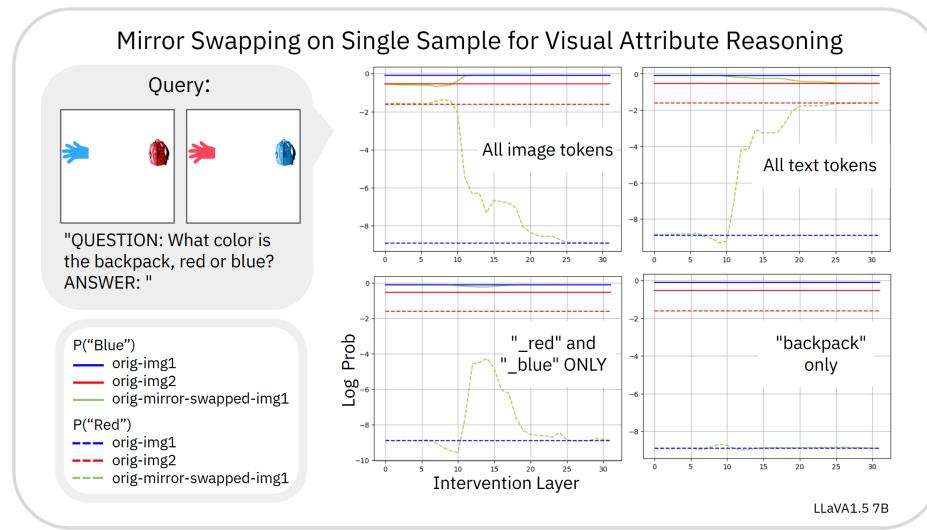


Figure A6: Mirror Swapping on Single Sample for Color Binding

Notice that swapping the activations for “backpack” has no effect, since the spatial ID encoded in the object word activation stays the same regardless of the input image (the backpack is in the same location in both images). Swapping the activations of color-related words, on the other hand, alters model belief at key modality binding layers. This suggests that the color words were storing spatial IDs that corresponded to the location where that color was present, and matching this color spatial ID to the object token was the readout process.

We repeat this experiment across 100 total such images, and show the results in Fig. A7. On average we see that swapping the color word tokens influences model beliefs in intermediate layers, much more so than swapping non-color word tokens. This suggests that spatial IDs mediate visual reasoning beyond direct spatial queries.

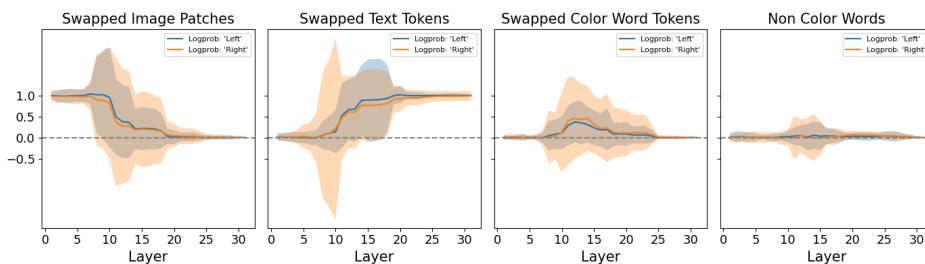


Figure A7: Swapping tokens for color binding.

A.5 ADVERSARIAL STEERING EXPERIMENTS

We perform steering on layers 9 through layer 2($\text{model_len} // 3$) per model. To ensure activation norms don’t explode, we test a few different scaling factors for the intervening spatial ID’s norm. In the scaling factor = 1 case, we scale the norm of the spatial ID to equal the norm of that word token’s activation vector. We try a few scaling factors and choose 5 for steering all models, both for the noise vectors as well as the spatial IDs. Here, the norm of the spatial ID is fine to exceed that of the original token activation, as we subtract the opposing spatial ID to readjust the norm. This is shown in Alg. 2. For confidence intervals, we choose the three layers which had greatest steering effect, and report equivalent layers’ effects for the noise case.

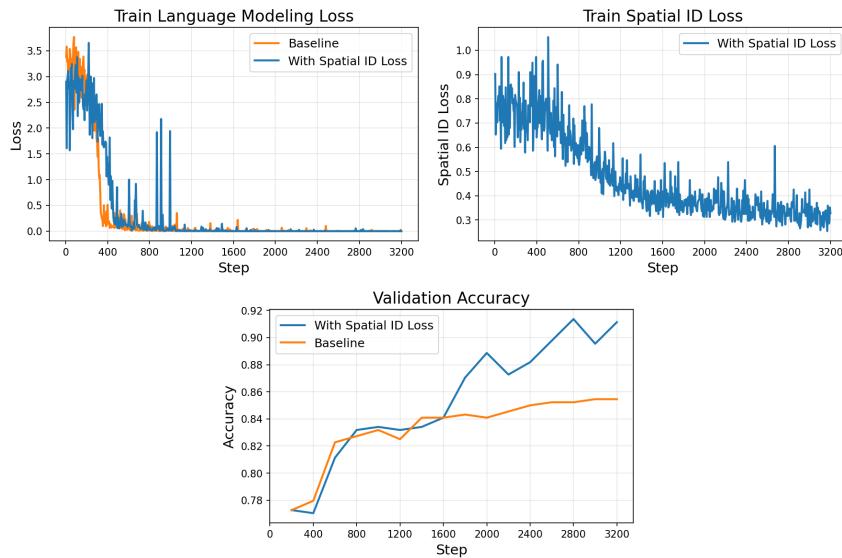
1026
 1027 effect, while intervening on intermediate layers preceding the modality integration layer increases
 1028 model accuracy by a modest amount (1%). Note that the low percentage is likely because LLaMA
 1029 has higher accuracy on this spatial dataset to begin with. This behavior is in line with our expec-
 1030 tation from §4.2, where we do not expect it to benefit greatly from altering image encoder spatial
 1031 localization performance, but instead benefit from spatial information condensation into the proper
 1032 tokens.

1033 For this experiment, we evaluated on synthetic images made with objaverse, such as those shown
 1034 in Fig. A2. The interventions were performed with IDs from layer 17 on LLaMA for all layers
 1035 including and below 17, and IDs from layer 12 on LLaVA for all layers including and below 12,
 1036 as these were the layers identified as carrying spatial ID information in these respective models.
 1037 LLaMA interventions were performed at layers [1, 3, 7, 10, 13, 17, 21, 25, 30, 35] and LLaVA
 1038 interventions on [1, 5, 7, 12, 16, 19, 23, 27].
 1039
 1040

A.9 MODEL FINETUNING WITH SPATIAL LOSS

1041
 1042 **Spatial ID Loss Module** In §4.2 we described finetuning Qwen2-2B with a spatial ID augmented
 1043 loss module. Specifically, we freeze all weights except the MLPs of the last six vision encoder
 1044 blocks, which we believe are most important for spatial reasoning, and train with synthetic data akin
 1045 to those shown in Fig. A2. We batch 15 images of the same object but varying locations into a mini-
 1046 batch, and compute the predicted spatial ID by subtracting the average activation. This is similar to
 1047 how we extracted the spatial IDs in §2.2.

1048 The validation accuracy and training plots are shown in Fig. A10. We see that with spatial ID loss,
 1049 model accuracy on the naturalistic validation set (COCO-spatial) increases around 6% (absolute)
 1050 beyond the baseline plateau, reaching a 90% accuracy in under 2.8k steps.
 1051



1070 Figure A10: Plots from Qwen2-2B finetuning with and without spatial ID loss
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080

B EXPERIMENTAL RESULTS ON MORE MODELS

1081

1082

B.1 SPATIAL GRIDS ON MORE MODELS

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Figure A11: Spatial ID grids for LLaVA, LLaMA, and Qwen models.

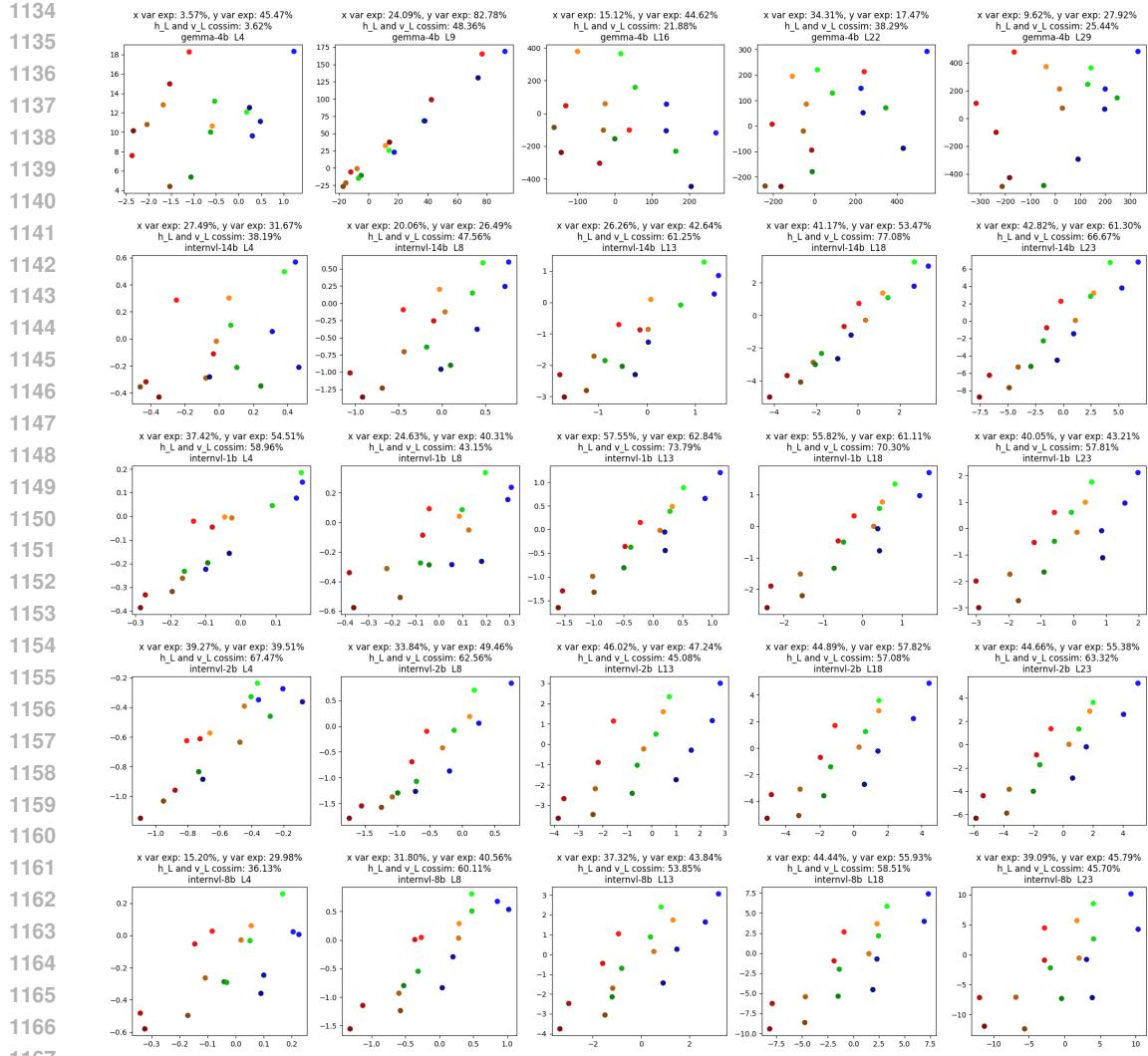


Figure A12: Spatial ID grids for Gemma and InternVL models.

Fig. A11, A12 show spatial ID grids for all models shown in Fig. 2. Subplot headings include % variance explained by each spatial axis, as well as the cosine similarity between the spatial axes. Notably, spatial IDs on some models seem to yield highly correlated v_L and h_L , suggesting different spatial directions may be conflated.

1188

B.2 TEMPORAL GRIDS ON MORE MODELS

1189

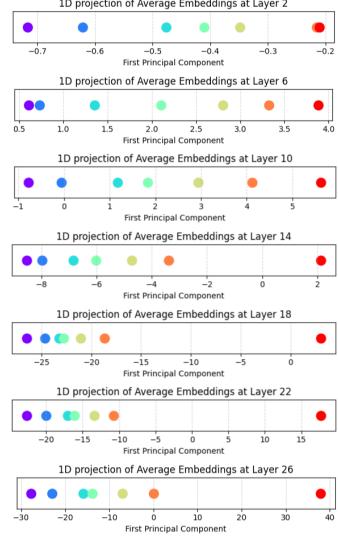
1190

1191

1192

Videollama3 7B

1193



1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

Videollama3 7B

llava-video (Qwen2) 7B

qwen2.5-VL 7B

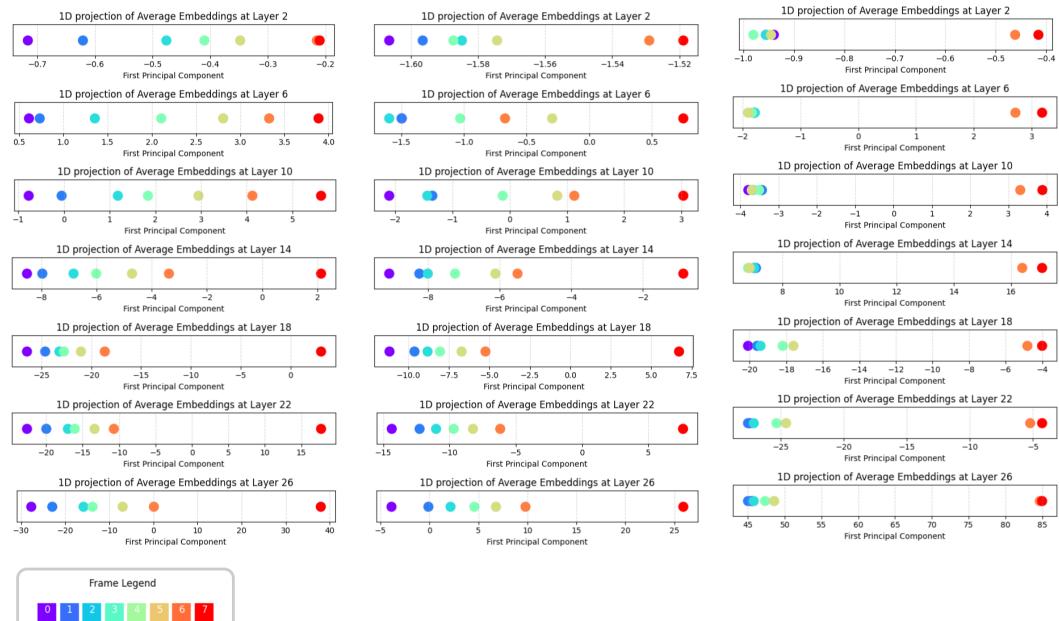


Figure A13: Temporal ID grids for VideoLLaMA3, LLaVA-Video, and Qwen2.5.

1218

1219

1220

1221

1222

1223

1224

C COUNTERFACTUALS

1225

1226

1227

C.1 SPATIAL IDs FROM NON-OBJECT WORDS

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Across the models, there is a trend for the last frame(s) to be much farther away from the rest of the frames' temporal IDs. This may be a result of the data bias during model training, where a lot of instruction tuning datasets will ask temporal questions that only require paying attention to the last frame (e.g., *did the person leave the room?* only requires looking at the first and last frame, and intermediate nuances are less important).

We then perform steering on object words, as well as non-object words, with both the spatial IDs extracted from object words and non-object words. We use the same steering algorithm as Alg. 2. The results are shown in Table 1. We see that some spatial semantics seems to be extractable from non-object words, and model belief is partially steerable through non-object words when using spatial IDs from object words, likely due to the fact that semantic word meanings are rarely perfectly contained within the initial word token in practical applications. **In particular, spatial word tokens are likely to have information bleed over from the object word tokens while performing spatial queries, due to the way attention merges information between similar sequences.** Regardless, effects from steering on object words with spatial IDs from object words is by far the strongest.

Model Name	ID-LR/apply-LR	ID-LR / apply-obj	ID-obj / apply-obj	ID-obj / apply-LR
Qwen-3b	18.77	51.19	81.23	48.46
Qwen-7b	6.12	38.78	72.35	47.96
LLaVA-7b	29.83	30.51	46.26	26.19
LLaVA-13b	8.16	19.39	48.30	15.25

Table 1: Spatial IDs extracted from object words and applied onto object words are most successful at steering model beliefs. Spurious effects are observed from IDs extracted from or applied unto unrelated words, but the effects are clearly concentrated on the object words.

C.2 MIRROR SWAPPING ON NON-OBJECT WORDS

To first showcase on a single sample the difference between mirror swapping on object tokens versus non object tokens, we choose a synthetic example with two objects on a blank background. Fig. A14 shows the results. Here, the green line shows model belief change, and the x axis indicates the layer of intervention. Mirror swapping at just the object words has a slightly less prominent effect than intervening at the object words in addition to immediate neighboring tokens (such as the space preceding the animal word), which captures some of the information bleed. Swapping all tokens except for those belonging to object words, on the other hand, has the smallest observable effect. Hence spatial information is likely concentrated in object tokens.

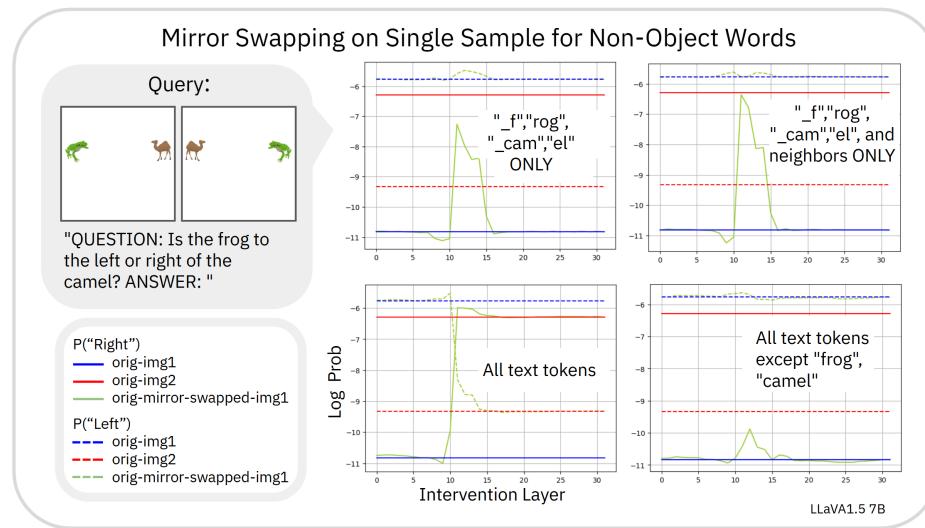


Figure A14: Synthetic image example for mirror swapping. Swapping non-object tokens has minimal impact on model belief change.

We can now repeat the mirror swapping at non-object tokens at scale on COCO images. Fig. A15 shows the difference between steering on object words and immediate neighboring tokens, versus non object words. Here, the non object words are randomly selected to be the same number of token indices as the object words. We again see that while there is some minor information bleed, the bulk of spatial ID information lies in object word tokens.

C.3 STEERING EFFECTS ON ORTHOGONAL DIRECTIONS (X VS. Y), (TIME VS. X)

In Fig. 4, we show the results of horizontal steering on “left” vs. “right” beliefs, and vertical steering on “above” and “right”. To verify that steering directions can be decoupled, we perform the same steering and observe affects on beliefs of orthogonal directions. We show results of this preliminary analysis on LLaVA. Fig. A16 shows these orthogonal effects. Spatial IDs that are equivalent in the

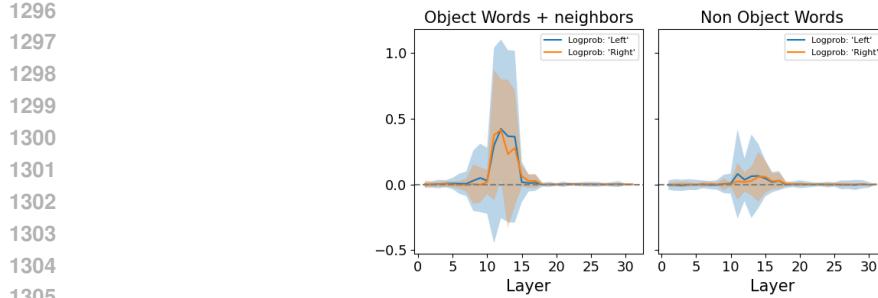


Figure A15: Mirror Swapping non object words

y coordinate but changing in x coordinate do not change beliefs in “above” or “below”. Similarly, static x coordinates with a changing y coordinate in spatial IDs has no effect on model belief about “left” and “right”.

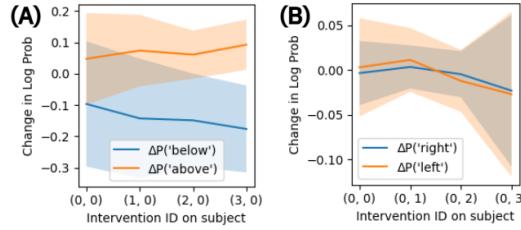


Figure A16: Steering effects of horizontal vectors on vertical beliefs (A) and vertical vectors on horizontal beliefs (B) in LLaVA.

Further, we check orthogonality between the space dimension and temporal dimension in video models. Fig. A17 shows a spatiotemporal ID grid from L11-14 on LLaVA-Video. The IDs are from videos where the object was in one of 8 frames (temporal change), and in one of 3 locations (spatial change). The experimental setup was minimal due to compute limitations. But even in this minimal setting, we see that the spatial and temporal axes are well separated.

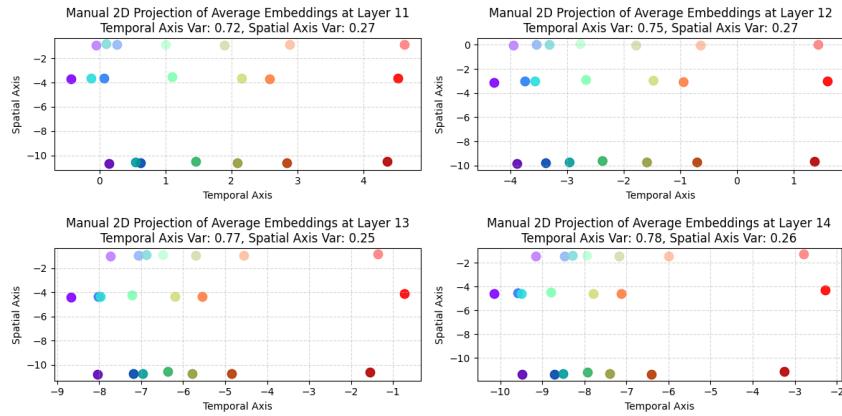


Figure A17: Spatiotemporal ID grid, where y axis is space and x axis is time.

1350

D ABLATIONS

1351

1352

1353

D.1 SCALING ANALYSIS FOR SPATIOTEMPORAL ID EXTRACTION

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

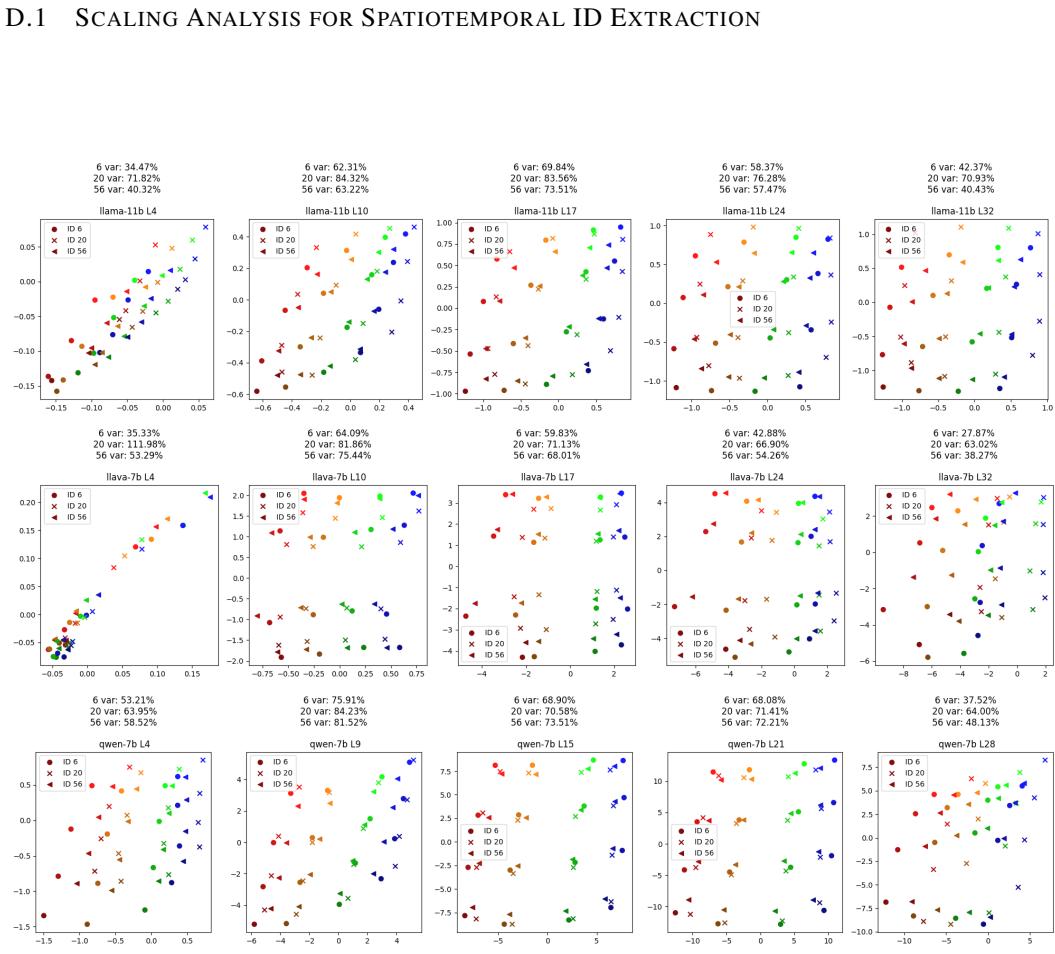


Figure A18: Extracting IDs with 6, 20, and 56 object pair images.

The projection axes are from the 56 object pair case. At intermediate layers, where we expect spatial IDs to be most crucial, we see a tight color-wise clustering, indicating spatial IDs extracted from various numbers of objects still converge. The variance explained by the spatial axes for all spatial ID extraction cases is $\gtrsim 50\%$, showing even at as little as 9 object pairs, we can extract good spatial IDs.

D.2 VARYING PROMPT WORDING AND OBJECT SIZES DURING EXTRACTION

Varying prompt wording. In this work, we use a spatial query in the form “Is the x to the left or right of the y?” to extract spatial IDs from object words. To verify that the choice of prompt does not matter, and that information about spatial location of objects flows into the word activation regardless, we extract spatial IDs from a *plain* prompt in the form “Is there an x or y in the image?”. In Fig. A19 we show the results of this extraction. We see that regardless of the input query formatting, spatial information can be extracted from the object words at intermediate.

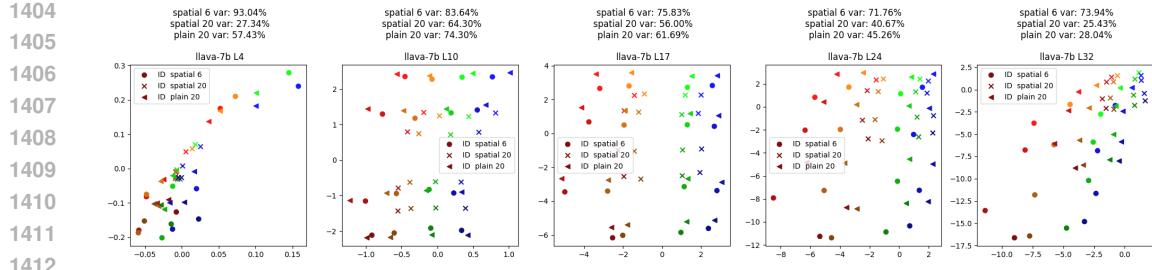


Figure A19: Plain prompts and spatial prompts projected onto spatial axes created from spatial prompts. Colors exhibit tight clustering.

Varying Image Sizes. To test that spatial IDs are roughly agnostic to object size, we extract spatial IDs from images where the object is 80px in diameter, 128px, and 176px, then project all extracted spatial IDs onto spatial axes created only from the medium sized object case. The result is shown in Fig A20. While the variance explained by the spatial axes drops by 10~20%, the spatial IDs extracted from different sized objects still exhibit strong in-color clustering, and $\gtrsim 50\%$ of variance are explained by the spatial axes.

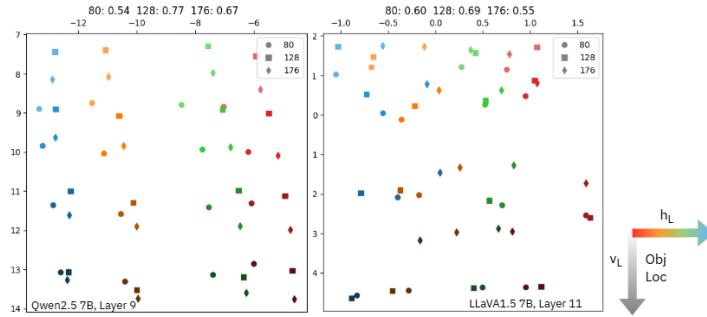


Figure A20: Spatial ID grids for Qwen and LLaVA, extracted from multiple object sizes. Circles are IDs extracted from images where object size was 80px in diameter, square is 128px, and diamond is 176px. On the top row, is the variance explained by the spatial axes for each size case.

E THEORETICAL ANALYSIS OF SPATIAL IDs

E.1 INFORMAL PROOF FOR SPATIAL ID EMERGENCE

Proposition: *Universal spatial IDs arises in any VLM using positional encoding, per self attention (Vaswani et al., 2017).*

Preliminaries. Consider a VLM layer with one attention head. Let the input sequence contain projected visual tokens $\{x_p\}_{p \in \mathcal{P}}$, where each patch index $p = (i, j)$ lies on an $m \times m$ grid, and text tokens including an object token o (as in prompts “Is there an o ?”). Define queries, keys, and values $q_o = W_Q r_o$, $k_p = W_K x_p$, $v_p = W_V x_p$, and the standard residual update $r_o \leftarrow r_o + W_{out} \sum_p \alpha_{o \leftarrow p} v_p$ with $\alpha_{o \leftarrow p} = \text{softmax}_p(q_o^\top k_p / \sqrt{d})$.

We make two very weak assumptions.

(1) First, we approximate that each patch vector decomposes as

$$x_p = s_p + P \psi(p) + \varepsilon_p,$$

where s_p encodes content (semantics), $\psi(p) \in \mathbb{R}^{d_\psi}$ is a shared positional basis (e.g., learned 2D embeddings or RoPE-induced features), P maps positional features into model space, and ε_p is some small deviation. In practice, explicit positional encoding is appended in autoregressive VLMs, so this assumption is explicitly true. In §E.2 we show empirically that positional encodings of VLMs linearly explain spatial IDs.

(2) We also assume that at a patch level, objectness is still encoded such that for images where a visual instance of the object word o occurs at a unique patch $p^* = (i, j)$, the attention kernel is peaked at p^* . In other words, $q_o^\top k_{p^*} \gg q_o^\top k_p$ for $p \neq p^*$, so that $\alpha_{o \leftarrow p^*} \approx 1$. Again, this is almost always true in practice, as modality alignment is encouraged during training.

Proof. Write the value at patch p using the decomposition:

$$v_p = W_V x_p = W_V s_p + W_V P \psi(p) + W_V \varepsilon_p \quad (12)$$

Under assumption (2), the attention update to the object token is

$$\delta r_o = W_{out} \sum_p \alpha_{o \leftarrow p} v_p \approx W_{out} W_V x_{p^*} \quad (13)$$

Then we can rewrite Eq.3 as:

$$\begin{aligned} \Delta_L^{(o)}(p^*) &= r_{o,p^*} - \overline{r_{o,p}} \\ &= \left(r_o + W_{out} W_V (s_{p^*} + P \psi(p^*) + \varepsilon_{p^*}) \right) - \overline{\left(r_o + W_{out} W_V (s_p + P \psi(p) + \varepsilon_p) \right)} \\ &= W_{out} W_V P \left(s_{p^*} - s_p + \psi(p^*) - \psi(p) + \varepsilon_p^* - \varepsilon_p \right) \end{aligned} \quad (14)$$

Note that $s_{(o,p^*)} = s_{(o,p)}$ for any p , for the first initial text embedding. Therefore, we can reduce Eq. 14 into:

$$\Delta_L^{(o)}(p^*) = \Delta_L^{(o)}(i, j) \simeq W_{out} W_V P \left(\psi(i, j) - \overline{\psi(p)} \right) \quad (15)$$

This expression is independent of o except through the common matrix $W_{out} U$, so averaging over objects leaves it unchanged. (In practice, we perform the averaging to reduce background noise.)

Notice that $W_{out} W_V P = M$ is fixed for some frozen network, and independent of location. Hence the centered attention update to the object token recovers a fixed linear ID of a shared positional basis, i.e., a universal spatial ID. The implications of the emergence of these intermediate IDs is that a shared spatial vocabulary need only be aligned with their respective positional basis vectors to perform “reasoning”. Let z_o be the residual stream at the object token after the update, and let W_{vocab} be the (approximately linear) readout to logits. Then

$$\ell(\text{LEFT}) - \ell(\text{RIGHT}) \approx (w_{\text{LEFT}} - w_{\text{RIGHT}})^\top \Delta_L(i, j) \approx (w_{\text{LEFT}} - w_{\text{RIGHT}})^\top M (\psi(i, j) - \mu_\psi) \quad (16)$$

so if $(w_{\text{LEFT}} - w_{\text{RIGHT}})^\top M$ aligns with the x -coordinate component of ψ , the model correctly predicts spatial words.

Multi-head and multi-layer accumulation. For H heads, $M = \sum_{h=1}^H W_{out}^{(h)} W_V^{(h)} P^{(h)}$; across layers, the contribution composes linearly in the residual stream. The “alignment band” in our experiments corresponds to layers where $\|M\|$ (or its projection onto the readout) is largest.

E.2 EMPIRICAL RELATIONSHIP BETWEEN POSITIONAL ENCODING AND SPATIAL IDs

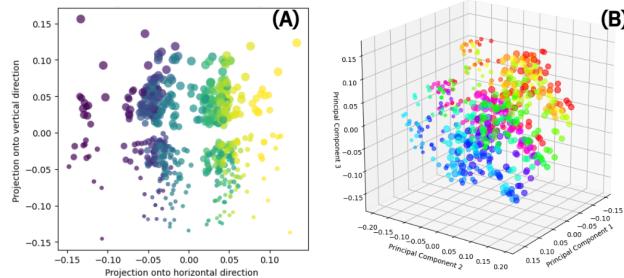


Figure A21: LLaVAPositional Encodings

Fig. A21 shows the patch level positional encodings from LLaVA(which uses the CLIP ViT-L/14 image encoder) projected onto 2 computed spatial axes or 3 principal components. The learned positional encoding vectors clearly have a linear structure, and with reduction in dimension are a linear transformation of the spatial ID grids we extract in §2.2. For a model like Qwen, which starts with fixed Rotary Positional Encodings (RoPE) that are not learned, this separable structure is innate. Previous work has shown that positional encoding in vision encoders continues to be linearly recoverable at penultimate activations (Ren et al., 2023). We are interested in whether this structure is linearly recoverable in a downstream LLM, in the form of spatial IDs, to support §E.1. We show that for the models studied, there exist low rank linear mappings from positional encodings to spatial IDs.

Setup. Let $X \in \mathbb{R}^{N \times d}$ be positional encodings for some model and $Y \in \mathbb{R}^{N \times M}$ be the spatial IDs extracted. To find their linear relationship, we simply must solve for $W \in \mathbb{R}^{d \times M}$ in $Y \approx XW$.

The least-squares solution is obtained with the Moore–Penrose pseudoinverse as $W^* = X^+Y$. To impose a rank constraint r , we compute the truncated singular value decomposition $X = U\Sigma V^\top$ and keep only the top r singular values Σ_r . Then the rank- r solution is

$$W_r = V_r \Sigma_r^{-1} U_r^\top Y \quad (17)$$

The in-sample fit can be quantified by the coefficient of determination:

$$R_r^2 = 1 - \frac{\|Y - XW_r\|_F^2}{\|Y - \bar{Y}\|_F^2}, \quad (18)$$

where \bar{Y} is the column-wise mean of Y .

For models like LLaVAand LLaMA, we acquire X by taking the learned positional embeddings. For models that use RoPE (which encodes position through complex rotations applied to query–key pairs) such as Qwen, we need an additional step to extract X . Specifically, we can form a RoPE design matrix from the sinusoidal basis functions underlying these rotations and perform the same reduced-rank regression to the extracted spatial IDs Y . Each position $p \in \{0, \dots, N-1\}$ is mapped to sinusoidal features at different frequencies. Let the hidden dimension be d , with frequencies

$$\theta_i = 10000^{-\frac{2i}{d}}, \quad i = 0, \dots, \frac{d}{2} - 1.$$

The RoPE design matrix $X_{RoPE} \in \mathbb{R}^{N \times d}$ is then

$$X_{RoPE}(p) = [\cos(\theta_0 p), \sin(\theta_0 p), \cos(\theta_1 p), \sin(\theta_1 p), \dots, \cos(\theta_{d/2-1} p), \sin(\theta_{d/2-1} p)], \quad (19)$$

with each row of Φ corresponding to a position p .

Results. We find that a weight matrix of rank 3 linearly relates the positional encoding matrix to the spatial IDs of a model with $R^2 \geq 0.85$. The three independent weight vectors likely correspond to horizontal, vertical, and radial axes, meaning such structure is preserved in the spatial IDs with high fidelity. Results are shown in Table 2.

Model	Rank-2 R^2	Rank-3 R^2
LLaVA1.5-7B	0.458	0.854
LLaMA3.2VL-11B	0.610	0.869
Qwen2.5VL-7B	0.605	0.903

Table 2: R^2 from low rank W

F LLM USAGE DISCLOSURE

GPT-4 and GPT-5 were used in the process of occasionally coding experiments and editing paper wording.