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Abstract

Spiking Neural Networks (SNNs) often rely on rate coding, where high-precision
inference depends on long time-steps, leading to significant latency and energy
cost—especially for ANN-to-SNN conversions. To address this, we propose
Adaptive Fission, a post-training encoding technique that selectively splits high-
sensitivity neurons into groups with varying scales and weights. This enables
neuron-specific, on-demand precision and threshold allocation while introducing
minimal spatial overhead. As a generalized form of population coding, it seamlessly
applies to a wide range of pretrained SNN architectures without requiring additional
training or fine-tuning. Experiments on neuromorphic hardware demonstrate up to
80% reductions in latency and power consumption without degrading accuracy.

1 Introduction

Unlike traditional artificial neural networks (ANN$s) that use floating-point activations, spiking neural
networks (SNNs) encode activations as binary spike sequences over time, promising energy-efficient
intelligence on neuromorphic hardware [31,15]. However, they still lag behind ANNS in precision
and performance due to inefficient rate-based encoding. While a T-bit quantized ANN represents 27
distinct values, an SNN needs 7' time-steps with 1-bit outputs per step to encode only 7’41 discrete
states, as illustrated in Fig.[I] This makes high-precision inference slow and energy-intensive on
complex tasks such as generation [44, 20].

Inspired by training-aware quantization [9, [51]], recent efforts aim to train SNNs from scratch
with variable bit-lengths or time-steps [45] 37]], thereby reducing reliance on temporal precision.
However, in many real-world cases such as open-vocabulary detection, SNNs are converted from
large, pretrained ANNSs (e.g., applications of CLIP [35] 241150, 48]]), where retraining is infeasible
due to proprietary data or computational cost. To address this, existing post-training methods either
modify spike bits [42} 41] or increase firing steps locally [27], but yield only modest gains. Moreover,
most neuromorphic chips lack support for multi-bit, multi-threshold neurons or dynamic time-steps.
Therefore, a hardware-friendly post-training solution for low-latency deployment remains critically
needed.
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Figure 1: An overview of encoding methods. Adaptive Fission combines the sparsity of SNN rate
encoding with the efficiency of ANN quantization, enabling variable bit-lengths and weights.

As a classical yet underutilized alternative, population coding distributes representation across
groups of neurons, replacing temporal integration with spatial parallelism and thus reducing latency.
Prior works [40, 30} 24] typically adopt static group structures with fixed scales, weights, and
thresholds, resulting in substantial memory overhead and hindering practical deployment. In contrast,
we propose Adaptive Fission, a flexible, generalized population-coding strategy that selectively
splits high-sensitivity neurons into dynamically sized groups and allocates precision and thresholds
on demand. This neuron-wise bit allocation enables mixed-precision inference while remaining
compatible with binary neuron models. Our analysis shows it approaches the theoretical capacity of
population coding with only moderate spatial overhead.

To implement Adaptive Fission, we design a two-stage iterative pipeline to address two key challenges:
identifying which neurons should undergo fission and determining the scales and thresholds within
each neuron group. In the first stage, we estimate and rank neuron sensitivity by jointly analyzing
gradients and residual membrane potentials, prioritizing those with the greatest impact. This targeted
reallocation achieves capacity comparable to fixed-length population encoding with only 20% addi-
tional neurons. In the second stage, we derive an optimality condition for assigning thresholds to the
newly created sub-neurons, based on the cumulative distribution of membrane potentials. Although
analytically intractable, we approximate the solution using Monte Carlo sampling combined with
Newton’s method, yielding minimal encoding error.

By enhancing representational precision under strict latency constraints, Adaptive Fission enables
faster, more energy-efficient inference. As a post-training technique, it is compatible with both
ANN-to-SNN conversions and directly trained SNNs, and can be combined with quantization and
pruning to offset the modest increase in neuron count. Deployments on a Lynxi HP201 neuromorphic
chip [34]] demonstrate up to 80% reductions in latency and energy consumption without compromising
accuracy. Beyond classification, Adaptive Fission also supports generative tasks like image synthesis,
highlighting its potential for high-throughput neuromorphic computing.

Our key contributions are as follows:

1. We propose Adaptive Fission, a post-training population-coding method that assigns variable
bit lengths and weights, with theoretical guarantees of exponential error reduction.

2. We introduce a practical, hardware-aware encoding pipeline for parallel SNN acceleration,
compatible with both ANN-to-SNN conversion and directly trained SNNs.

3. Evaluation on a neuromorphic platform demonstrates up to 80% reductions in latency and
power consumption while maintaining competitive accuracy.

2 Related Work

2.1 Spike Encoding

Rate coding [} [L1] remains the dominant strategy in SNNs, where all spikes contribute equally
with temporal information discarded. Despite its simplicity and robustness, it suffers from low
information density. Variants such as signed or ternary spikes [42, [14] and variable spike amplitudes



or thresholds [15] 147, |8, [41] enhance expressivity but often compromise hardware compatibility.
Alternatively, population coding leverages multiple neurons to jointly represent scalar values. While
promising, existing works typically employ fixed-scale ensembles [45 [37]] or rely on hand-crafted
heuristics for neuron substitution [24]], limiting precision scalability. Besides, temporal coding [12,
39, 132] 22]] uses spike timing rather than frequency to improve encoding density, but it currently
underperforms rate coding. Our method can be viewed as a generalized framework of population
coding with adaptive, hardware-aware support.

2.2 Latency Reduction in SNNs

Reducing the number of simulation steps is critical for latency and energy-efficiency. Existing
efforts can be categorized into three main types: (1) Post-training conversions introduce burst
spikes [29] or negative spikes [42], but still typically require > 32 time-steps to match ANN-
level accuracy. (2) Quantization-aware conversions emulate low-bit activations via modified
activation functions [17, 4], or employ pre-charged neurons [23], 3] to reduce inter-layer delays,
bringing time-steps down to 8-16 but necessitating training from scratch. (3) Direct training
approaches treat SNNs as recurrent networks and use surrogate gradients [33} [52] or synaptic
plasticity [25} 2]], with recent work incorporating variable-bit activations [43}37]. Despite achieving
2-8 time-steps, they suffer from training instability and scalability issues in larger networks [46]]. Our
method complements these approaches by offering a post-training optimization without retraining or
architectural modifications, and is fully compatible with both converted and directly trained SNNs.

3 Preliminaries

As our method operates at the neuron level, we first formulate the model from the perspective of
individual neurons.

ANN models: In a standard feedforward ANN with ReLU activation, each neuron receives input
from presynaptic activations a7, via synaptic weights w’. The total input g, and activation a are:

Gann = ijag;rev a = InaX{Qannv 0} (1)
J
SNN models with weighted spikes: We focus on soft-reset Integrate-and-Fire (IF) neurons [36][16]

and adopt the weighted-spike formulation commonly used in ANN-SNN conversion [28]. Let ¢ be
the firing threshold, and s/ . (t) the presynaptic spike at time-step ¢. The total input is gg,, (t) =

. pre
> ws),..(t), and membrane dynamics are defined as:
Charging: viemp(t) = v(t — 1) + gonn (1), 2)
Firing: s(t) = 0 - H (vgemp(t) — ), 3)
U(t) = Utemp(t) - S(t)a “4)

where v(t) is the membrane potential after step ¢, and H(-) the Heaviside function. Here s(t) is
not binary {0, 1} but weighted {0, 8}. To support binary-only hardware, we absorb 6 into synaptic
weights:

wi= 0w, s(t):=5(t)/0 = H (viemp(t) — 0) € {0,1}. 3)

For simplicity, we continue using the {0, ¢} notation, where ¢ also denotes the effective output
weight.

SNN and Quantized ANNSs: In rate coding, a neuron’s activation intensity is represented by its

T
. . . " s(t .
average firing rate over T time-steps, i.e., s = M Assuming ), ¢snn(t) = Gann = a, the

SNN activation approximates a T-level quantized ANN:
a—vo(T) 0-cip(|%],0,T)
T T

Thus, the firing rate approximates the quantized ANN activation, with quantization error stemming
from 6 and reflected in the residual potential v(7T'). Increasing T distributes activation across more
steps, allowing a smaller threshold 6 ~ max(a)/T for finer quantization.

: (©)




4 Population Encoding Models

Most SNNs assign a single binary neuron to each activation, limiting precision under temporal
constraints. We propose a generalized population coding framework where multiple binary neurons
jointly encode a single activation, enabling finer quantization while preserving hardware-friendly
binarization. Unlike prior methods that require retraining or weight updates, our approach is entirely
post-training and model-agnostic, making it applicable to both converted and directly trained SNNS.

4.1 Static Models and Error Analysis
To understand the precision limits of multi-neuron representations, we first isolate static encoding
behavior, independent of spike timing.

Definition 4.1 (Encoding Error). Consider a group of k neurons with distinct thresholds 6; € R™.
Let n; denote the spike count of neuron ¢ within 7" time-steps. The set of representable values is:

k
S= {O,Z&mﬂ—b

i=1

nze{07177T}}7 (7)
where b is constant bias. Given an input distribution P(q) with ¢ > 0, the expected encoding error is:

r=E, [sergisrlﬁq (¢ — s)} . (®)

In this context, a conventional IF neuron is a simplified case with k& = 1. For a fixed 6, the
optimal firing count is n = clip( LqTTbj ,0,T ) Assuming a uniform feature distribution, the expected
encoding error can be directly computed, aligning with previous results [7].

Proposition 4.2 (Optimal Error of Single Neuron). If ¢ ~ U(0, gmax ), the minimal error of a single

neuron is given by r = 221:,‘1’1"1) with the threshold and bias 6 = 2r and b = r.

Extending to multi-neuron encoding (Def. [4.T)), the absence of fixed firing patterns across neurons
prevents direct computation of individual spike counts n;. Yet under the uniform assumption, an
optimal configuration can still be derived without explicit firing rules.

Proposition 4.3 (Optimal Error of Neuron Groups). For a k-neuron group encoding q ~ U (0, ¢max ),
the optimal error v, threshold 0; and bias b are given by:

qmax qmax b = r. (9)

r=—n = ="

2T+ DF T (T

As the number of neurons increases, the error decreases exponentially, yielding far substantial
precision gains compared to the linear improvement from increasing time-steps 7". This result,
however, captures only aggregate encoding after all T steps, providing an optimal hindsight solution
while ignoring spike dynamics.

4.2 Temporal Dynamic Encoding Models

Previous encoding analyses typically assume full knowledge of the input ¢ over all time-steps. In
contrast, practical SNN inference operates under an online regime, where input is incrementally
accumulated and spikes are emitted as soon as the membrane potential crosses the threshold. This
scenario can be viewed as a special case of Proposition[d.3|with 7' = 1.

Proposition 4.4 (Optimal Error with Temporal Dynamics). For a k-neuron group, assume the
residual membrane potential at the final step follows P (Utemp (T)) € U(0, Zz=). The optimal error
r, threshold 0; and bias b are given by

Qmax qmaX
;= dmax g 1
7o Vi = g b= (10)

r =

This proposition implies that exponentially increasing precision (25! levels) can still be achieved
under online temporal encoding by assigning thresholds as powers of two. Moreover, it provides
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Figure 2: Dynamics of our proposed neuron groups. Neurons are arranged in a hierarchical structure
based on descending thresholds, and can be parallelized by pre-compiled indicators. Their response
of input spikes forms a multi-level step function as an uneven quantization.

theoretical support for recent neuron-grouping heuristics [30]. However, these results critically rely
on the assumption of a uniformly distributed residual potential, which rarely holds in practice, where
long-tailed or multi-modal distributions are more common.

To generalize the analysis to arbitrary input distributions, a more explicit mathematical formulation of
a neuron group’s temporal dynamics is necessary. While multiple formulations are possible, we adopt
a descending-threshold population model (Fig. [2), where the residual input is successively propagated
to neurons with lower thresholds after higher-threshold neurons fire. Although this formulation is
inherently sequential, it admits an equivalent parallel implementation that preserves efficiency.

Definition 4.5 (Spiking Neuron Group Model). Consider a group of k neurons with descending
thresholds 6; > 6y > --- > 0. At time-step ¢, let ¢(¢) denote the total synaptic input, v;(t) the
residual potential of neuron ¢, and s;(t) its weighted output spike.

Initialize the first neuron’s potential as vy (1) = ¢(1). Then, forallt =1,..., T andi=1,... k:
Transfer: Vi1 (t) = vy (t) — s4(2), (12)
Charging: v1(t + 1) = vr(t) — sk(t) + q(t + 1). (13)
The total output s(t) is the sum of individual weighted spikes:
k
s(t) = silt). (14)
i=1

Although the above dynamics is presented as a sequential cascade—where higher-threshold neurons
fire first and residual potential is propagated downward—the computation can equivalently be realized
in a fully parallel manner. Specifically, each neuron’s firing condition depends solely on the total input
and the predefined threshold set, eliminating the need for explicit synchronization with upstream firing
events. This property enables the cascade to be “precompiled” into lightweight parallel comparison
logic. Formally, once the thresholds 6; are fixed, all spike firings can be expressed as binary indicator
functions I; composed of Heaviside terms:

i—1 i—1
Sl(t) = 91]Il(vl(t)) :91 Z H(’Ul(t) 72777,]'9]') 7H(U1(t) 7ij0j 791) (15)
mp€{0,1} Jj=1 J=1
This representation requires only comparisons against fixed thresholds and thus introduces negligible
overhead on neuromorphic hardware. The resulting hierarchical model forms the foundation for
adaptive neuron encoding. By tuning the number of neurons £ and the threshold set 6; for each
activation, precision can be flexibly allocated without retraining or modifying weight values. In the
following section, we demonstrate how to determine the optimal configuration of this structure for
each neuron based on post-training statistics.

5 Methodology: Adaptive Fission Encoding

5.1 Overview

In practical networks, individual neurons exhibit diverse activation distributions and precision re-
quirements, making it intractable to derive optimal bit-lengths or threshold assignments analytically.
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Figure 3: Overview of the two iterative stages in Fission Encoding pipeline. Sensitivity Estimation
identifies neurons with high impact using residual potentials and gradients. Threshold Fission splits
selected neurons and optimizes their thresholds based on their activation distribution. The process
progressively enhances precision while preserving binary spike constraints.

To address this, we adopt a two-stage iterative pipeline, termed Adaptive Fission, as illustrated in
Fig[3] Analogous to post-training calibration in ANN quantization [21]], the first stage employs a
small calibration set to estimate each neuron’s precision demand based on its contribution to the
output error. This calibration procedure is entirely training-free, as it involves no weight updates
and only collects activation statistics, thereby requiring a small number of samples and incurring
negligible computational overhead. In the second stage, we selectively allocate additional neurons
and adjust their thresholds to minimize the expected residual potential. The algorithm progressively
splits the most influential neurons into two units with reduced weights in each iteration. This neuron
“fission” mechanism achieves a principled balance between precision and resource consumption
while maintaining the original network’s accuracy.

5.2 Stage 1: Sensitivity Estimation and Selection

To prevent excessive scale increase, we consider the inherent redundancy in deep networks, and focus
precision enhancement on neurons with the most significant impact on output accuracy, introducing
a “sensitivity” metric to quantify such impact. Specifically, its estimation involves two propagation
passes. In the first, a standard SNN inference records the residual potential v, (1) after T" steps. In
the second pass, we temporarily substitute spiking neurons with ReLUs to enable ANN-like gradient
backpropagation. Denoting the continuous activation of a neuron as a,, the sensitivity of., can be
approximated by a first-order Taylor expansion:

daout

Ofea = ]E”aout(afea) - aout(afea —o(T))|l2 = E|| : Ufea(T)”% (16)

da fea
where the expectation is taken over calibration samples. Intuitively, this measures how much the
residual potential at each activation neuron affects the final output. Neurons are ranked by 0 f,, and
only a top fraction (fission rate) are selected for further enhancement.

5.3 Stage 2: Optimal Threshold Fission

For each neuron group selected for fission, we add one extra neuron to redistribute thresholds and
achieve finer-grained representation. Unlike prior analysis, we estimate the potential distribution
directly from calibration data. Because residual potential is mainly determined by the smallest
threshold, fission is applied to the last neuron in the group with threshold 6,,4. We split it into two
with thresholds 6 > 61 such that 0 + 0,41 = 6,4, preserving total contribution. Given the
residual potential v = vy (T'), the improved quantization reduces residual error as:

Av = (0 — k1) H(w —0k) + 01 H(v — O11), a7
and the objective is therefore to determine 6}, that maximizes the expected error reduction, E[Av].

Since Aw is non-differentiable, closed-form solutions are infeasible. Instead, we derive the optimal
thresholds using the cumulative distribution of potential.



Theorem 5.1 (Optimal Fission Threshold). Ler F'(-) denote the cumulative distribution function of
residual potential v. The optimal threshold 0y, is given by solution of equation:

2F(0r) — F(0o1a — 0r) — 1 =0, (18)
and the maximum expected reduction in residual potential is:
E[Av] = Oo1a - (1 = F(6)), (19)
which is bounded by:
1  E[Av]
- < <1 2
2~ Ep — 20)

Remark 5.2. Detailed proof is in the Appendix[A.3]. We first substituting the expectation of Av with
an integral over the range of v, then transforming it into the cumulative distribution function F'(v):

Ootd

Oota
E[Av] :/ 0k — Og11)p(v)dv +/ Or+1p(v)dv

Ok Or+1
=0k [1 = F(0k)] — (Oota — Ok) - [F(6) — F(Oota — Ok)]-
The extremum of 0, = arg maxy, E[Av] can be obtained by differentiation. As F'(v) is estimated
from discrete samples, its derivative p(v) can be neglected, yielding:
dE[Av]
do
which provides the optimal solutions in Eq[T8]

= [2F(6)) — F(0o1a — 0x) — 1] = 0, 1)

This result implies that each additional neuron introduced by fission encoding can reduce the quan-
tization error by at least half, even under the worst-case residual distribution. Consequently, the
precision exhibits exponential scaling with a base greater than 2, surpassing the efficiency of uniform
quantization and demonstrating even stronger empirical performance.

For practical numerical implementation, the search for 8y, is conducted using a Monte Carlo estimation
of F(v) collected from the calibration set. Owing to the piecewise nature of F'(v), we first initialize
0, using a coarse grid search, followed by refinement via the Newton iteration method:

2F (6),) — F(0yi1) — 1

Ok := 0 — 22
H O 060 + p(Bes) 22
where p(0y,) is estimated by sampling within small intervals ¢ around 6y, i.e.,
1
I = ~ — — < < .
F(0) =p(0) = o XU:I(H §<v<0+9) (23)

To further reduce quantization bias caused by Heaviside activation, we adopt a rounding strategy
similar to [4]] for the last neuron in each group. Specifically, we apply a linear compensation to the
input and modify the step function to be symmetric around the threshold:

o) = alt) + 0, e

thereby compensating for the flooring bias in spike generation.

6 Experiments

6.1 Implementations

Fission Encoding is a post-training strategy broadly compatible with diverse SNN architectures. It
leverages high-accuracy training with long time-steps while enabling low-latency inference at deploy-
ment. We evaluate it across representative paradigms, including continuous-activation conversion
Calib [28], quantized conversion QCFS, SRP [4}[17], direct training for spike CNNs TEBN [10], post-
training conversion of ANN Transformers STA [24]], and spike-based Transformers Spike-driven [49].

For classification, we conduct experiments on CIFAR-100 [26] and ImageNet [6] using ResNet20 [[18],
VGG16 [38], and a spike-based Transformer [49]. Converted models use 7' = 32 time-steps, while



Table 1: Performance comparison before/after Fission. Mem., Time and Energy per epoch are
measured directly on-chip. All accuracy values reflect the best performance at evaluated time-step.

Method Time Fission Accu. Mem. Time/ Energy Method Time Fission Accu. Mem. Time/ Energy
Step Rate (%) (GB) Epoch(s) (Wh) " cho Step Rate (%) (GB) Epoch(s) (Wh)
CIFAR-100 & ResNet20 ImageNet & VGG16
32 76.32 56.8  0.64 Calin, 32 63.64 604  7.55
Calib. 16\ 6448 (oo 291 037 alb. y 16 No 5579 371 302 430
(Conversion) 8 32.10 163 022 OWERIOMg g0 154 237
4 204 ] 100 0.14 16 0.5 6194 393 324 475
16 010 7620 088 314 042 +Fission 8 087 6079 528 169 261
+ Fission 0.78 7328 1.17 195 027 4 157 5831 621 88 1.43
4 135 7311 131 120 0.8
2 370 7050 225 64 0.1 QCFS. 32, 6810 55, 627 782
’ (Quantization)16 5097 324 4.49

32 76.78 59.6 0.70

16 0. . .
QCES. 16 6754 ¢, 302 036 gjsion 8§ 091 6451 501 157 291
(Quantization) 8 62.60 16.2 0.21 4

4

716 016 7461 084 318 039 ._ TEBN. 4 No 69.03 362 78 _ 1.16

L. 0.69 7279 1.09 16.4 0.22 . . 2 0.39 67.85 4.19 47 0.84
+Fission "0 2005 122 100 o1g  TESSOM 431 6419 577 28 0.69

2 293 6943 183 59 0.3 TmageNet & ResNet34
SrRp. 32 65.50 5.1 057 . 32 6482 2.68 348  3.02
16 64.71 283 035 Calib.

F—4 No 0.80 16 No 5621 189 173
(Quantization)® 62.94 157 018 (Conversion) ¢ 3175 o 093
A S 80 _ OdL - === 07 6694 281 214 201

» 16 028 6872 086 278 039  pion 8 096 6375 460 135 138

4 271 6539 165 91  0.16 ; i ‘ ‘
QCFS. 32 6937 248 372 3.29
TEBN. 4 76.13 98  0.18 e No
tization)16 59.35 228 2.08
(Training) 2 N° seo4 083 5o gy Quantizatemle 3955 228 208

. 2 147 7346 118 53 0.14 . : : :
+ Fission + Fission 8 1.04 66.51 4.38 156 1.54
1 195 6920 150 32 009 4 195 6241 505 8L3 095

CIFAR-100 & ViT-B/32 (ANN Transformer Conversion) ImageNet & Spike-driven Transformer 8-384
STA. 64 85.25 128.3 1.72 - :
Spike-d .4 N 72.28 4.57 192 3.49
(Comversion) 32 N0 sa1s 871 705 o3 SPEEEER 5" *55%[ 7o41 554 o8 T 1901
+ Fission 16 053 8270 104 392 0.77  + Fission 1 0:98 70:29 6:49 60 1:02

8 1.15 80.28 15.7 243 0.42

directly trained models use 7' = 4. Fission Encoding is applied post-training with 2,000 calibration
samples for CIFAR-100 and 20,000 for ImageNet. For image generation on CIFAR-10, we convert a
4-layer spike CNN generator (WGAN-GP [13]]) and a U-Net diffusion model [19], both configured
with T' = 64 and calibrated on the full 60,000-sample dataset. The output layer remains in non-
spiking RGB format. All models are deployed on a Lynxi HP201 neuromorphic accelerator (16GB),
a commercial successor to Tianjic [34], for real-time measurement of memory usage, latency, and
energy consumption. More details see Sec.

6.2 Main Results on Image Classification

Table [[| summarizes classification results with Fission Encoding across various time-steps, training
strategies, and architectures. We report top-1 accuracy, on-chip memory, inference latency per epoch,
and energy usage, all measured on the Lynxi HP201 accelerator with a batch size of 32. Fission
Encoding consistently improves the accuracy—efficiency trade-off. By reallocating precision spatially
instead of extending spike windows temporally, it reduces inference time-steps by up to 8 x while
maintaining competitive accuracy. For example, decreasing T from 32 to 4 results in less than a 5%
accuracy drop, up to 83% energy savings, and only a 1.6 x memory increase.

This trade-off is particularly advantageous for neuromorphic SNN deployments, where memory
budgets are typically modest. The additional memory introduced by fission remains well below the
16 GB on-chip capacity of the HP201 accelerator, obviating the need for off-chip storage or compres-



sion. Furthermore, the increased neuron count has negligible impact on per-cycle power, while the
substantial reduction in time-steps markedly lowers both latency and total energy consumption.

Figure []illustrates how accuracy and power consumption scale with time-steps on ResNet20. At
moderate 7', only a small fraction of fission neurons is required to recover full accuracy. Under ultra-
low latency constraints (7' = 1-2), additional neurons significantly improve precision, maintaining
competitive performance with minimal spatial overhead. These results demonstrate that Fission
Encoding achieves exponential efficiency gains while keeping spatial complexity bounded. A more
detailed analysis of memory and computational overhead is provided in Appendix [C]

6,3 Main Results on Generation Accuracy and Energy Consumption at Different Time-step
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Figure 4: Accuracy and energy consumption
across time-steps. Each point on the same
curve denotes a different fission rate.

6.4 Further Analysis of Algorithm

Fission Rate and Threshold. Fig[]shows that accuracy initially improves rapidly with increasing
fission rate and saturates once most layers achieve sufficient precision. At very low time-steps, the
saturation point shifts due to the SNN unevenness effect [17], where excessive residual potential
accumulates in late steps. Layer-wise analysis in Figl6|reveals that deeper layers typically undergo
more fission (“Fission 1/2” denotes activations split into two or three neurons). Fig[7]further illustrates
that high-sensitivity neurons often exhibit long-tailed or multimodal activation distributions; optimal
thresholds derived after fission (red lines) effectively capture these patterns.

Ablation and Sensitivity-Based Selection. We further examine the effect of Stage-1 sensitivity
selection within the pipeline. Unlike prior coding schemes [24} 30]] that uniformly allocate precision,
our approach selectively applies fission to highly sensitive neurons. As shown in Fig.|8| disabling
selection (i.e., fissioning all neurons) slightly increases peak accuracy (< 2%) by including rare but
important units. However, this significantly increases computational and memory overhead. With
selection enabled, about 70% of neuron fission is avoided, yielding a better cost-accuracy trade-off.

Comparison with Baselines. We compare Fission Encoding with two population-coding methods:
Spatial Approximation [24] and Group Neuron [30]. Even without sensitivity selection, our approach
achieves 68.22% accuracy with 100% additional neurons, surpassing the 66.94% of [24]]. When each
method uses its optimal neuron budget, baseline accuracy plateaus at 72.85% with 400% overhead,
while ours reaches 73.28% with only 78%. These results demonstrate that Fission Encoding delivers
both higher accuracy and significantly better neuron efficiency.

6.5 Computational and Hardware Implications

Computational Complexity. Transitioning from cascade to parallel firing introduces more compar-
isons (CMPs) but significantly reduces additions (ADDs). For a group of n split neurons, achieving
2"-level precision requires 2" —1 CMPs and n ADDs with our approach, compared to 2" —1 CMPs
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Figure 5: Image generation and PSNR for CIFAR-10 at varying inference time-steps. Top row:
original SNN outputs. Bottom row: results with fission encoding applied.
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Figure 6: Neuron fission rounds
across layers. Red numbers is the
average fission rates per layer.

and 2" —1 ADDs in conventional parallel coding. While CMP complexity grows exponentially in
both cases, ADD operations—typically more expensive—scale only linearly, making computation
substantially more hardware-friendly. The slightly increased CMP cost is offset by exponentially
fewer time-steps, yielding overall energy and latency benefits without hardware modifications. Further
complexity analysis is provided in Appendix[C]

Compatibility with Pruning. Fission Encoding can be combined with unstructured pruning to
further reduce memory overhead by removing neurons with low sensitivity and weak post-synaptic
weights. While less effective on conventional GPUs, this sparsification provides clear gains on
neuromorphic hardware: on ResNet20 with T=2, pruning reduces memory usage from 2.25 GB to
1.53 GB with less than 2% accuracy loss.

7 Conclusion and Discussion

Activation quantization under limited time-steps remains a critical obstacle to scaling SNNs toward
complex tasks. Drawing inspiration from post-training quantization in ANNs, we reinterpret pop-
ulation coding from a hardware-aware perspective and propose Adaptive Fission, a post-training
mechanism that redistributes precision across the network while preserving binary spike compatibility.

Our design is motivated by a simple observation: conventional ANN quantization imposes two unnec-
essary constraints—global fixed bitwidth and fixed bit weights (e.g., powers of two). By representing
precision through multiple spiking sub-neurons, Adaptive Fission relaxes these constraints and flexi-
bly allocates representational capacity where it is most needed. This enables efficient conversion of
ANN backbones into SNNs without additional training or fine-tuning.

While broadly applicable across architectures and tasks, our framework shares limitations with
existing ANN-to-SNN conversions. It is not directly suitable for event-driven datasets (e.g., CIFAR10-
DVS), where input dynamics evolve with simulation time. Moreover, the temporal gains achieved
by Adaptive Fission come at the cost of increased spatial complexity, which may raise resource
demands in large-scale deployments. Despite these trade-offs, we believe that this precision-aware,
post-training strategy represents a practical step toward bridging the gap between high-performance
ANNs and efficient neuromorphic deployment.
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Neural Networks (SNNs), which results in significant reductions in inference time and
overall power consumption. These improvements are validated through experiments.
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* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The main limitation of our method is that the reduction in inference time and
power consumption comes at the cost of increased spatial complexity. This trade-off is
discussed in the Conclusion and Discussion section.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details of our algorithm and model design are included in the appendix under
the Guidelines and Experiment Settings sections.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the corresponding code in the supplementary materials and plan to
release it after the paper is accepted.
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* The answer NA means that paper does not include experiments requiring code.
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¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training details are provided within the submitted code, and experimental
settings are included in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: An analysis of randomness in our experiments is provided in Table[3]in the
Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

10.

11.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report inference time and system energy consumption directly in Table[T|
of the main paper, as these metrics are central to our contribution.
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* The answer NA means that the paper does not include experiments.
* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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experimental runs as well as estimate the total compute.
* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [NA]

Justification: No ethical issues are involved.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No significant or foreseeable social impact is associated with our work.
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* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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12.

13.

14.

Justification: Our work does not involve specific risks.
Guidelines:

e The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our work does not involve such models or datasets.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced in this work.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects are involved in this study.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are involved in this study.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are only used for writing and language polishing.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Proofs and Explanations

This section provides proofs and explanations for theorems and propositions in Section 3| ] and 3]

A.1 Explanations of Equations[5/and (6]

We provide additional clarification on the motivation and interpretation of the two key equations used
in ANN-to-SNN conversion preliminaries.

Equation[5} Weight Normalization for Hardware Compatibility. In the weighted-spike formula-
tion introduced in Eq. 3] the spike output s(¢) takes values in {0, 8} instead of the binary set {0, 1}
assumed in standard IF neuron models. This discrepancy causes a mismatch when deploying SNNs
on neuromorphic hardware or when aligning their computation with standard ANN formulations.

A common solution in training-free ANN-to-SNN conversion [28| 42] is to absorb the threshold

scaling factor into the synaptic weights. For example, when a presynaptic neuron emits a spike with

) and the postsynaptic neuron fires if its membrane potential exceeds Vt(,f), the firing

magnitude V;(}f_ !
condition is

ASIRA VACIS A (25)
This inequality is equivalent to
-1
Vi WO

@ >1, (26)
indicating that the threshold Vtgffl) can be absorbed into the synaptic weight, thereby fixing the
threshold to 1 without changing the neuron dynamics.

Following the same principle, Eq. [ performs a linear rescaling:

t
w:= 0w, s(t):= % = H(v(t) — 0) € {0,1}, 27
which normalizes the spike outputs and ensures computational compatibility with hardware platforms
that support only binary spikes. Conceptually, this step aligns the weighted-spike model with a
standard {0, 1} IF neuron model, while preserving equivalence in input-output behavior.

Equation [6; Firing-Rate Approximation as Quantized Activation. Equation [6] provides an
interpretation of the firing rate of a spiking neuron in terms of a quantized ANN activation. In
rate-coding SNNs, the firing rate over 7" time-steps,

1z
s==>Y s(t), (28)
T

represents the activation intensity. Assuming that the total integrated input matches the ANN pre-
activation a, i.€e., Zt Gsnn(t) = ann = a, the firing rate can be rewritten as:

_a—v(T) 0-clip([4],0,T)
e - : (29)

This expression shows that the firing rate effectively corresponds to a T-level quantized version of
the ReLU activation a. The term |a/6] represents the discrete spike counts (bounded by T), while
the residual membrane potential v(7T') reflects the quantization error. Such a formulation is widely
used in quantization-based conversion approaches [28 7], where the temporal accumulation of spikes
is treated as a discretized approximation of continuous activations.

Furthermore, Eq. [6]reveals a useful design principle: since the quantization granularity is determined
by 0, a larger simulation window T allows for a smaller threshold 6 ~ max(a)/T, thereby enabling
finer-grained representation of neuronal activation with minimal quantization error.
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A.2 Additional Proof for Population Encoding Models

Proof for Prop.2] This is a special case of Prop[4.3|when the bit-length of a neuron group k = 1
See the proof of Prop4.3] O

Proof for PropH-3]

Define {3(1), cey s(m)‘s(i) €S,5q) <+ < s(m)}, where m = (T + 1)* as an ordered sequence

of all possible spike combinations. Consider g(;) € [S(i—1)7 s(i+1)). The errors within this interval
can be calculated as:

S(i) S(i+1)
Ty = / (g — s(i—1))dq + / (g —5(:))dq

S(i-1) 5(i)
1 > 2
= |56 — 5(s6-1) +560) | + 7 [56-1) — 56+
1 2
> 1 [s41) — Sa-1)]

where the equation is taken when s(;) = %(s(i_l) + 8(i+1))- Define 50y = 0, 8(m41) = Gmax aS
boundary conditions,

1 - 1 1
r (Z ri) + 5(50) = 80)” + 5(5Gn41) = 8(m>)2>

B 2qmax i—1

>

Sa— 25 = 50)" + (52) = 50)" ++ + (S6m41) = 5n-1)" + 250m41) = 5m)°]
1 ) 4(S(m+1) — 5(0))2

 Smax  (3H+1+-+1)

I S o
_8(]max (T + 1)k
_ Qmax
2(T + 1)k
where the equation is taken when s(;) = %(s(i_l) + 8(i+1)) holds for all i = 1,...,m. Thus, we
have
qIIl‘dX
b = = ———
TR
J— qmax
Tty

O

Proof for Prop#4] Consider multiple neurons operating at the final single step, setting 7" := 1 and
¢ := Utemp(T). Substitute these into Eq@ to obtain the above result. O

A.3 Proof for Theorem5.1]

Proof. For clarity, we let 6,4 = 1 and denote 0,11 = 6, consider v € [0, 6},) in most cases. The
reduction caused by fission is given by:

0 0<wv<¥b
Av=v—v =6 0<v<1l-90
1-0 1-60<v<1
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Using the CDF to represent the piece-wise function, we can rewrite the error reduction on sample
batch. The optimization target is defined as

E[Av] = /Av -p(v)dv

:9/19§v<170 -p(v)dv — (1 — 0)/1170§v<1 -p(v)dv

1-0
—9/ v)dv — ( 1—0)/1 ep(v)dv
F(1-0)—F@)]0+[1—F(1-6)](1-9).

Given 6 = arg maxy E[Av], the extremum can be obtained by derivation. At the maximum point,
we have:

dE[Av]
do
where p is the probability density function. Considering that in actual sampling, the distribution of v
is approximately discrete, we assume p(f) = p(1 — ) = 0. Thus we have:
2F(1-60)—F(@)—1=0
EAv=1-F(1—-0)=F(1—-0)—F()

=[2F(1-0)—-F(0)—1] - 0-[2p(1 - 0) +p(0)] +p(1 - 0) =0,

yielding the result in Eq[T8] We can further estimate Ev by piece-wise scaling
0
0< / vdv < OF(6),
0
1-6
0[F(1—0) — F(0)] < / vdv < (1— 0)[F(1 - 0) — F(9)],
0

(1—9)(1—F(1—9))</119vdv<1—F(1—0).

Substituting this to E[v] and E[Av] = 1 — F(1 — ) back to Ev can derive the range for E[Av]. O

Algorithm 1 Overall Algorithm
Input: Original SNN; time-step T’
Set fission rate f, required accuracy p%.
Collect a batch of input data z(/)
while Validation accuracy < p% do
for each feature dimension fea do
Conduct SNN forward propagation for 7" steps to calculate residual potential v seq (T').

Conduct ANN forward and backward propagation to calculate gradient 37 dam‘t

end for
Calculate sensitivity o; with vf.q(T") and j;l;:z . (cf. Eq
Determine threshold oy, as the f-percentile of all o
for each layer l = 1,2, ..., m in the SNN do
if sensitivity of ¢-th neuron o;; > oy, then
Perform fission encoding (cf. Theorem and obtain new threshold sets 8;; of post-fission
neuron group
end if
end for
end while

Output: Threshold sets 6;; for all fission neurons
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B Guidelines for the Overall Pipeline

We first provide the algorithm for our pipeline described in Section[5] The fission rate f should be
dynamically adjusted based on the network architecture and the desired reduction in time-steps. For
modest reductions in time-steps (e.g., halving the time-steps), setting f ~ 15% is typically effective.
For more substantial reductions, f can be incrementally increased by 15%, and further tuning may
be required based on empirical performance. In the case of an ANN-to-SNN conversion with 32
time-steps, where the inference requires at least 8 time-steps (i.e., reducing to one-quarter of the
original time-steps), a higher threshold of f ~ 80% is usually sufficient. This can often be achieved
with just one round of fission encoding. However, for more aggressive reductions, where fewer
time-steps are required (e.g., reducing to 2 or 4 steps), the fission rate f should be lowered to around
35%, and multiple rounds (typically 2 to 4 iterations) of fission encoding may be necessary to ensure
performance convergence. The fission rate should be continuously adjusted based on the specific
network architecture and the corresponding trade-offs between computational efficiency and accuracy.
Empirical evaluation is recommended for fine-tuning these parameters in different settings.

C Spatial Complexity Analysis

We analyze the spatial and computational implications of neuron fission from four complementary
perspectives:

Memory Overhead. Consider a fully connected layer Linear(n,n) with n thresholds, n membrane
potentials, and n? synaptic weights. After fission with an average rate k, each original neuron is split
into k 4 1 neurons. These fissioned neurons share the same input (membrane potential) but have
independent outputs, which determines how overhead arises:

o Thresholds: Increase from n to n(k + 1), one per fissioned neuron.

* Membrane Potentials: Theoretically remain n since inputs are shared, but in practice
duplicated to n(k + 1) for matrix computation efficiency.

* Synapses: Each new neuron contributes n additional outgoing synapses, resulting in an
increase of nk X n weights.

Thus, memory overhead grows linearly with the fission rate £ across all components. In deployment,
compiler optimizations such as in-place computation and buffer reuse typically reduce actual memory
usage below this theoretical bound.

Computation Complexity (CMPs and ADDs). The transition from cascade to parallel firing
indicators introduces additional comparisons but dramatically reduces additions. For a group of n
split neurons, the parallel model requires 2°~!' comparisons (CMPs) and one addition (ADD) for
the ¢-th neuron, leading to a total of 2” — 1 CMPs and n ADDs for 2"-level precision. In contrast,
achieving the same precision with a conventional parallel scheme would require 2™ — 1 neurons, each
with one CMP and ADD, resulting in 2" — 1 CMPs and 2" — 1 ADDs overall. While CMPs grow
exponentially in both cases, ADDs — typically more expensive — grow only linearly in our method.
Although a cascade implementation would reduce comparisons to n, its sequential nature hinders
parallel execution and is thus unsuitable for hardware deployment.

Hardware Implications. Threshold comparisons align well with neuromorphic architectures, where
CMP circuits are often implemented as dedicated units due to inherent spiking dynamics. Comparators
typically consume 3-5x less energy and have lower delay and area than adders. As a result, the
CMP-dominant computation pattern introduced by Adaptive Fission is well matched to hardware
execution. Moreover, per-step complexity increases are offset by exponential reductions in time-steps,
yielding overall computational efficiency gains.

Power and On-Chip Efficiency. Measured power profiles show that a significant portion of neuro-
morphic ASIC energy is consumed by I/O and memory access rather than arithmetic computation.
Consequently, the growth in CMP operations has limited impact on total power consumption, while
reduced time-steps translate into substantial energy savings. This trade-off — slightly higher per-
step complexity for significantly improved temporal efficiency — is generally advantageous for
neuromorphic deployment.

Hardware Compatibility. All neurons, including fissioned ones, are implemented as modular IF
units with segmented step functions expressed via CMP-based firing logic. Spikes remain binary
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{0, 6;} and are normalized to {0, 1} during deployment. Hardware experiments on our prototype
neuromorphic chip confirm that Adaptive Fission integrates seamlessly without requiring custom
logic paths.

D Discussion on spike-based ViTs and LLMs

Our method is applicable to spike-based vision transformers, as demonstrated with the Spike-driven
Transformer in the main paper. However, many existing models still include floating-point operations
(e.g., Softmax), limiting full compatibility with neuromorphic hardware. We believe that future
spike-based transformers should avoid such nonlinearities to enable efficient deployment. We further
tested our method on the Spatio-temporal Approximation model [24]], a floating-point-free ViT-B/32
backbone from CLIP, used for zero-shot classification. Results on both GPU and the HP201 ASIC
are shown in Table 2] While basic operations executed successfully, limited compiler support led to
low execution efficiency, preventing meaningful power measurements.

Method Time-Step Fission Rate  Accu. (%)
CIFAR-100 & CLIP-pretrained ViT-B/32 Zero-shot

64 85.25
St 2o Yoo osa1s

16 0.53 82.90

+ Fission 8 1.15 81.48

Table 2: Accuracy comparison of pretrained ViT-B/32 by CLIP for Zero-shot classification.

Applying our method to large language models (LLMs) faces additional challenges:

Attention precision: Attention scores typically require at least 8-bit precision, translating to long
inference durations in SNNs. Adaptive Fission can help alleviate this, though memory costs may
become more noticeable.

Error accumulation: The scale of LLMs amplifies small precision errors. More refined fission rate
allocation strategies may be needed across network depth to balance overhead and accuracy.

E Experiment Settings

E.1 Hardware Resources

All our experiments were conducted on a workstation with Intel-13900KS, 32GB memory with
a single 4090 GPU and a Lynxi HP201 neuromorphic accelerator. As a commercial version of
Tianjic chip [34], HP201 adopts a many-core decentralized architecture, commonly utilized in
neuromorphic chips, and integrates 60 configurable functional cores, 16 GB of memory, and image
encoding/decoding units. This design allows it to support quantized ANN/SNN models of up to
approximately 13 billion parameters. The chip is packaged in a PCle form factor with a peak power
consumption of 55 W. The provided LynBIDL library enables the compilation of SNN models based
on PyTorch. However, since the underlying interfaces are not open, we are unable to directly measure
the power consumption of individual cores or the number of MAC/AC operations during runtime.
Instead, we record the total energy consumption using power readings from the sensors. While this
method inevitably introduces interference (including power consumption from peripheral circuits,
memory, and I/O interfaces), it reflects a more practical scenario. In such a case, reducing inference
time significantly contributes to lowering power consumption, as the energy usage of peripheral
circuits is largely determined by runtime duration.

Notably, while fission encoding can increase the number of neurons for single activation value, it
does not alter the network’s original parameters. As a result, the memory consumption typically
increases by less than twice that of the baseline model.
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E.2 Implementation of Classification

The baseline models and network architectures used in fission are directly sourced from the original
codebase, including the Calibration [28]] and QCFS [4] conversion methods, and spike-driven trans-
formers [49]. We slightly modify the TEBN [10] hyperparameters to suit ResNet20 and VGG16, as
the original experiments were conducted on ResNet19 and VGG11. Details can be found in the code.

E.3 Implementation of Image Generation

For the image generation model, we employ a 4-layer convolutional architecture based on the
improved Wasserstein GAN (WGAN-GP) [13]]. The architecture is structured as follows:

* ConvTranspose2d(100, 1024), BatchNorm2d, ReL.U,
* ConvTranspose2d(1024, 512), BatchNorm2d, ReL.U,
* ConvTranspose2d(512, 256), BatchNorm2d, ReLU,

* ConvTranspose2d(256, 3)

All convolutional transpose layers use a kernel size of 4. For the first layer, the stride is set to 1 and
padding to 0, while for the remaining layers, the stride is 2 and padding is 1. This model is trained on
the CIFAR-10 dataset using the WGAN-GP framework [13]. After training, the model is converted
to a spiking neural network (SNN) representation by discretizing the output into 64 time-steps using
the Calibration (Calib.) method.

It is important to note that direct training of SNN’s for image generation tasks, especially with lower
quantization precision, typically fails to achieve satisfactory performance, as demonstrated by the
difficulty in generating high-quality images. Consequently, methods such as fission encoding are
employed to improve inference performance in this context.

For the diffusion model, we follow the implementation described by Ho et al. [19]. The model
consists of 4 residual blocks with a channel configuration of [2, 4, 4, 2], and uses the Swish activation
function instead of ReLU. This prevents a direct conversion of the model to an Integrate-and-Fire
(IF) spiking neuron network. To address this, we introduce an IF layer after each Swish activation,
thereby discretizing the continuous output into spike events.

The diffusion model is trained on CIFAR-10 with 500 iterations for image generation. After training,
the model is also converted to 64 time-steps using Calib. However, it is worth noting that the
ANN-based diffusion model requires 500 iterations for each image generation, which results in
a corresponding SNN model requiring 64 x 500 = 32,000 iterations. This computational cost is
prohibitively high for real-time inference and necessitates the use of fission encoding to reduce
latency.

For evaluating experimental results, we used the Peak Signal-to-Noise Ratio (PSNR) to measure the
difference between the generated images and those from the original ANN model. The PSNR is
calculated as follows:

MSE (30)
where M AX represents the maximum possible pixel value in the image data. For 8-bit images,
MAX = 255. The Mean Squared Error (MSE) is defined as the average of the squared differences
between the pixel values of the generated image and the reference image, and is calculated as follows:

MSE:%ZZ[I(M—K@J)F, (31)

i=1 j=1

MAX?
PSNRzlo-loglo( ),

where (4, 7) and K (4, j) represent the pixel values at position (7, j) in the generated image and the
reference image, respectively, and m and n denote the height and width of the images.

E.4 Random error and Reproducibility

Fission Encoding employs a small batch of examples for Sensitivity detection and estimates each
neuron’s cumulative density function, which introduces some variability. By allocating an additional
validation set, we can assess the optimal execution, which is then applied to the test set. In most of our
experiments, we selected the best solution from 10 runs on the validation set. Table [3|displays the best
and worst cases under these conditions, highlighting relatively significant performance variability.
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Time-step 10% 20% 40% 80% 160% 320%

T=2 12.14-15.77 12.02-16.91 17.76-21.84 25.14-30.22 48.79-51.67 60.43-66.55
T=4 14.06-22.65 18.10-24.38 27.69-31.74 50.67-57.69 67.35-72.80 70.44-74.73
T=8 35.51-38.70 36.32-42.53 52.69-57.40 68.11-73.26 69.32-72.54 70.68-73.07
T=16  68.65-71.43 72.74-76.10 73.31-76.21 73.55-75.90 72.42-76.79 74.51-75.84

Table 3: The best and worst accuracy range of fission rate at different time-steps within 10 runs.

F Raw Data for Figures

In this section, we present the raw data corresponding to the figures in the main paper. The data points
in Fig[]are provided by Table[I|along with the supplementary Table 4 here. Table [5]corresponds to

Fig[8]

Time-step 10% 20% 40% 80% 160% 320%

T=2 15.77 1691 21.84 30.22 51.67 66.55
T=4  22.65 2438 31.74 57.69 72.80 74.73
T=8 38.70 42.53 57.40 73.26 72.54 73.07
T=16 71.43 76.10 76.21 75.90 76.79 75.84

Table 4: Accuracy comparison of fission rate at different time-steps. The raw model is ResNet20
trained with 32 time-steps on CIFAR-100 with calibration.

Method Fission (%) Accuracy
100 66.94
Group [30] 400 71.67
e 100 69.39
Sensitivity + Group 150 72.85
] 100 52.51
Spatial [24] 600 66.43
- . 100 63.37
Sensitivity + Spatial 250 68.61
o 100 68.22
Fission (Ours) 200 72.40
- . 100 72.79
Sensitivity + Fission 78 73.28

Table 5: Ablation and Comparison of different neuron selection and group combining methods.

G Experimental Visualization and Analysis

This section provides a detailed analysis of the various components of the fission encoding method,
including demonstrations of its effects on neurons within actual networks, the distribution of neurons
across different layers after fission, and the distribution of sensitivity. Additionally, we provide more
results of image generation tasks in a high-resolution format.
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Feature Distribution and Fission Threshold Sampled from Each Layer in ResNet20
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Figure 9: Feature distribution and their fission threshold in ResNet20. The feature distributions
presented are randomly sampled from the more sensitive neurons across various layers of the network.
The horizontal axis represents the feature distribution, the left vertical axis (associated with the bar
chart) indicates the distribution density, while the right vertical axis (corresponding to the red line)
reflects the fission threshold and the activation function resulting from the combination of neurons
post-fission.
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Figure 10: Distribution of Fission Neurons on all ReLLU activation layers in ResNet20 and VGG16,
when 30% of neurons undergo fission in a single round. The distribution shows that although the
number of activation values significantly decreases in the network, the number of fission neurons
only slightly reduces, while their proportion increases in deeper layers.
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Figure 11: Distribution of Fission Neurons across ReLU activation layers in ResNet20 and VGG16
after two rounds of fission. The data indicates that the proportion of neurons undergoing multiple
fission rounds is higher in the deeper layers, suggesting an increasing demand for feature precision in
the deeper network layers.
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Sensitivity Distribution of Each Layer in ResNet20
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Figure 12: Sensitivity in ResNet20 and VGG16. The distributions is characterized by a long-tail
distribution. The majority of neurons have a sensitivity of zero, indicating that fission is unnecessary
for them. However, due to variations in sample sampling, there may be some random error in this
distribution. 29
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Figure 13: Image generation results of WGAN and PSNR for CIFAR-10 at different inference
time-steps.
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Figure 14: Image generation results of diffusion U-Net and PSNR for CIFAR-10 at different inference
time-steps.
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