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ABSTRACT

Compression methods, including quantization, distillation, and pruning, improve
the computational efficiency of large reasoning models (LRMs). However, exist-
ing studies either fail to sufficiently compare all three compression methods on
LRMs or lack in-depth interpretation analysis. In this paper, we investigate how
the reasoning capabilities of LRMs are compromised during compression, through
performance benchmarking and mechanistic interpretation. To uncover the effects
of compression on reasoning performance, we benchmark quantized, distilled, and
pruned DeepSeek-R1 models on four reasoning datasets (AIME 2024, FOLIO,
Temporal Sequences, and MuSiQue). To precisely locate compression effects on
model weights, we adapt difference of means and attribution patching techniques,
focusing on the activation of every linear component in compressed LRMs, to in-
terpret fine-grained causal relationships between weights and various reasoning
capabilities. This fine-grained interpretation addresses a fundamental question of
compression: which weights are the most important for reasoning? Overall, we
find dynamically quantized 2.51-bit R1 reaches close-to-R1 performance. With
empirical verification, we present three main findings that generalize across both
Llama and Qwen: (1) Weight count has a greater impact on LRMs’ knowledge
memorization than reasoning, highlighting the risks of pruning and distillation;
(2) The MLP up projection in the final layer of distilled LRMs is one of the most
important components, offering a new perspective on locating critical weights —
a fundamental problem in model compression; and (3) Current quantization meth-
ods overly compress the final-layer modules and MLP gate projections, so pro-
tecting just 2% of all weights that are excessively compressed can raise average
accuracy by 6.57%, greatly surpassing the state-of-the-art.

1 INTRODUCTION

Large reasoning models (LRMs) such as DeepSeek-R1 (Guo et al., 2025) excel at complex reason-
ing tasks. However, due to their large sizes, deploying them can be costly and even infeasible for
individuals, which hinders AI democratization. Compression methods including quantization, distil-
lation, and pruning reduce computational resources (e.g., GPU memory and disk space). Represen-
tative quantization techniques include dynamic quantization by Unsloth (Daniel Han & team, 2023),
activation-aware quantization AWQ (Lin et al., 2024), and post-training quantization GPTQ (Fran-
tar et al., 2022). Current distillation involves black-box (Li et al., 2024a) or white-box (Gu et al.,
2024) settings. Representative pruning techniques include unstructured (Zhang et al., 2024; Frantar
& Alistarh, 2023) and structured pruning (Xia et al., 2024; Ma et al., 2023).

However, existing works do not sufficiently study the performance of compression method on
LRMs (Liu et al., 2025; Srivastava et al., 2025; Feng et al., 2025). Although current quantization
and pruning methods claim to preserve the performance of general-purpose LLMs, benchmarking
both of them on LRMs with more reasoning-intensive datasets helps compare their collapse point.
Regarding distillation, recent works either fail to comprehensively evaluate their student models
on diverse reasoning benchmarks of varying difficulty or neglect to consider distillation effect on
knowledge and reasoning (Huang et al., 2024; Agarwal et al., 2024). Another research gap is the
lack of interpretability of compression effects on LRMs. It is necessary to interpret how compres-
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Figure 1: An overview of our pipeline. Left: We benchmark compressed R1 variants on various
reasoning tasks. Right: By computing weight importance towards a specific reasoning behavior (a
dot product of the steering vector and gradients with respect to an LRM’s activations), we study the
compression effects on individual weight. We empirically verify our findings on weight importance
by selectively quantizing or protecting a module to test its importance.

sion methods affect LRMs, as such analysis can reveal existing bottlenecks and provide guidance
for future compression research.

Therefore, due to the lack of compression works on LRMs, we study this fundamental research
question: How are the reasoning capabilities of LRMs compressed during compression? We
answer it from two perspectives — performance benchmarking and mechanistic interpretation. We
first benchmark compressed DeepSeek-R1 on various reasoning tasks to investigate how model com-
pression affects performance. We test dynamic quantization (Daniel Han & team, 2023), distilla-
tion with supervised fine-tuning (SFT) (Guo et al., 2025), SparseGPT (Frantar & Alistarh, 2023),
AWQ (Lin et al., 2024), GPTQ (Frantar et al., 2022), GPTAQ (Li et al., 2025), and ANY4/3 (El-
houshi & Johnson, 2025) on R1 (or distilled R1). Then, we apply mechanistic interpretability to
quantify weight contribution towards four core reasoning capabilities of LRMs: backtracking, un-
certainty estimation, example testing, and adding knowledge. By focusing on the activation of every
linear component in compressed LRMs, we adapt difference of means (Arditi et al., 2024) to extract
steering vectors and attribution patching (Syed et al., 2023) to compute weight importance. Un-
like previous analysis (Venhoff et al., 2025) that only measures layer-wise weight contribution, our
weight importance scores offer more fine-grained interpretation of weight contribution, addressing
the fundamental compression question of locating important weights. By comparing weight impor-
tance scores between compressed LRMs and original LRMs, we quantify the effects of distillation
and quantization on model weights1. Our analysis framework is shown in Figure 1.

With empirical verification, our key findings are summarized below for better understanding and
improving LRMs compression:

• Weight count has a greater impact on LRMs’ knowledge memorization than their reasoning ca-
pabilities, highlighting the compression effects of pruning and distillation. Thus, both distillation
and pruning are discouraged when tasks require LRMs’ parametric knowledge.

• The mlp.up proj in the final layer of R1 distilled models emerges as one of the most important
model components, addressing a core concern in pruning and quantization literature: identifying
critical weights. Quantizing only this matrix to 3-bit reduces the average accuracy by 16.3%.

• Final-layer modules, along with the mlp.gate proj of R1 distilled Llama and Qwen, are
overly compressed by popular quantization methods, highlighting the need for greater attention to
preserving their weight precision. A successful protection of only final-layer MLP modules could
raise average accuracy by 6.57%, with gains of up to 23.17% over the state-of-the-art quantization.

1Our interpretation code will be released upon paper acceptance.
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2 PROBLEM FORMULATION

2.1 BACKGROUND

As discussed in Section 1, compression on LRMs (not LLMs) is relatively underexplored. We
conduct a thorough literature review in Appendix B.

Bottlenecks on evaluation. Few quantization or pruning methodologies have sufficiently demon-
strated effectiveness on LRMs. Current works evaluate quantization and pruning performance pri-
marily using perplexity and simple end tasks, such as the EleutherAI evaluation harness (Gao et al.,
2024) and commonsense reasoning. However, quantized or pruned LRMs should be assessed on
more complex reasoning tasks with varying difficulty levels. For distillation, although recent works
tend to test on more challenging reasoning tasks (compared to other compression literature) such as
GSM8K (Cobbe et al., 2021), it is unclear how the compression of LRMs affects models’ parametric
knowledge and reasoning capability. Some of them do not comprehensively select diverse reasoning
benchmarks (Agarwal et al., 2024). Our benchmarking aims to address these bottlenecks.

Bottlenecks on in-depth analysis. The lack of interpretability of compression effects on LRMs is
a key bottleneck of in-depth analysis for compressed LRMs. Being able to interpret the difference
between original and compressed LRMs offers a new way to analyze the effects of compression.
As a result, better compression approaches can be developed. A recent work (Venhoff et al., 2025)
interprets several R1 distilled LRMs, but their focus is not on understanding compression effects.

Recent efforts. Recent benchmarking (Liu et al., 2025) and survey (Feng et al., 2025; Srivastava
et al., 2025) papers have begun to evaluate compressed LRMs on more complex reasoning datasets,
but they all lack in-depth interpretation of compression effects and do not comprehensively com-
pare different compression strategies. As for compressed LRMs, Unsloth (Daniel Han & team,
2023) introduces dynamic quantization by dynamically opting not to quantize certain LLM weights.
DeepSeek-R1 (Guo et al., 2025) also comes with several distilled models via black-box distillation.
Our interpretation analysis aims to demystify the effects of LLMs compression on LRMs, providing
a systematic understanding of existing compressed LRMs.

2.2 MECHANISTIC INTERPRETATION

For our interpretation analysis, we target four core reasoning behaviors following an existing
work (Venhoff et al., 2025): backtracking, uncertainty estimation, example testing, and adding
knowledge. We prompt GPT-4o to locate token sequences of each behavior from the output to-
kens of our LRMs. To interpret different compression strategies, we adapt difference of means and
attribution patching by computing the activation of every linear module in each layer. This allows us
to compute the causal relationship between each weight matrix and our target reasoning behaviors.

Difference of Means. To compute the numerical representation in activation space of each reasoning
behavior, we adapt difference of means method (Venhoff et al., 2025; Arditi et al., 2024) to extract
the steering vector uc

mℓ for each linear module m at layer ℓ for behavior c:

uc
mℓ =

1

|D+|
∑

sci∈D+

acmℓ(s
c
i )−

1

|D−|
∑

sj∈D−

amℓ(sj), with acmℓ(s
c
i ) =

1

|sci |
∑
t∈sci

amℓ(t)

where sci denotes the token sequence corresponding to a specific reasoning behavior c along with
its five preceding tokens as output by an LRM, sj is the token sequence of the entire LRM output
(prompt and output tokens), D+ is the set of output instances containing at least one token sequence
labeled with c, D− is the set of all output instances, amℓ(t) is the activation of module m at layer
ℓ at token t, acmℓ(s

c
i ) is the average of amℓ(t) across all tokens in sci , and similarly, amℓ(sj) is the

average of amℓ(t) across all tokens in sj . We then normalize uc
mℓ to ũc

mℓ: ũc
mℓ = uc

mℓ ·
∥aall

mℓ∥2

∥uc
mℓ∥2

where aallmℓ denotes the mean activation across all tokens in D−.

Attribution Patching. To find the causally relevant LRMs components with respect to each reason-
ing behavior, we adapt attribution patching (Syed et al., 2023) method to compute the importance
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score Icmℓ of each linear module.

Icmℓ ≈
1

|D+|

∣∣∣∣∣∣
∑

sci∈D+

(
ũ c
mℓ

)⊤ ∂

∂amℓ
L(sci )

∣∣∣∣∣∣
where L(sci ) is the cross-entropy loss of sci . A higher Icmℓ means a stronger causal relationship be-
tween c and the linear module m at layer ℓ, helping us locate the most important weights responsible
for reasoning capabilities (a fundamental problem for quantization and pruning works).

2.3 DECODING COMPRESSION EFFECTS

To decode compression effects, we compute the relative importance RIcmℓ of each weight matrix
(Icmℓ divided by

∑
m

∑
ℓ I

c
mℓ) and track how it changes because of compression (importance

shift). Specifically, we measure the change of RIcmℓ from R1 distilled Llama-8B to original
meta-llama/Llama-3.1-8B to understand distillation effect (Section 4). Likewise, the im-
portance shift from the R1 distilled models to their quantized versions indicates quantization effect
(Section 5). For the R1 distilled models, we also compute the Icmℓ of their weights to complement
our findings on the distillation effect.

We hypothesize that the importance shift should be minimal in the ideal case, as a compressed LRM
should remain as close as possible to its original counterpart (the more reasoning-capable model).
When visualizing the importance shift from an LRM to its compressed variant (or from a
distilled model to its backbone), we only consider decreases in RIcmℓ. By definition, the relative
importance of each weight matrix is normalized to sum to one, so any increase in relative importance
necessarily compensates for decreases elsewhere. Since it is more informative to track cases where
the RIcmℓ of a more reasoning-capable model decreases (e.g., when the reasoning capability of a
weight matrix is diminished), we set all increases in relative importance to zero.

2.4 SCOPE

We study three major LLMs compression paradigms, distillation, quantization, and pruning, making
our scope comprehensive enough for investigating the effects of diverse compression methods. For
distillation, we select four R1 distilled models: DeepSeek-R1-Distill Llama-70B, Qwen-
32B, Llama-8B, and Qwen-7B. For quantization, we select 2.51-, 1.73-, and 1.58-bit models by
Unsloth2 as the choices of quantized R1 due to their popularity. We also evaluate AWQ Lin et al.
(2024), GPTQ (Frantar et al., 2022), GPTAQ (Li et al., 2025), and ANY4/3 (Elhoushi & Johnson,
2025) as reproducible state-of-the-art quantization methods designed for relatively smaller LLMs
(e.g., the R1 distilled models). Specifically, we use all four methods to perform 4-bit quantization,
and use GPTQ, GPTAQ, and ANY3 for 3-bit quantization as well, since many AWQ implementa-
tions do not support 3-bit. For pruning, we run SparseGPT Frantar & Alistarh (2023) on our two
largest distilled models. We run interpretaion analysis on linear modules of all layers within LRMs.

2.5 EVALUATION SETUP

We select four reasoning datasets with varying levels of difficulty: AIME 2024 (Mathematical As-
sociation of America) for mathematical reasoning, FOLIO (Han et al., 2024) for logical reason-
ing, Temporal Sequences of BIG-Bench Hard (Suzgun et al., 2022) for temporal reasoning, and
MuSiQue (Trivedi et al., 2022) for multihop reasoning. Since MuSiQue requires knowledge mem-
orization besides multihop reasoning, we follow a closed-book setting (directly prompting LRMs
to get final answers) to evaluate both reasoning and knowledge retention capabilities. Additional
details of benchmarks, along with Table 5 that shows their statistics, are specified in Appendix C.

Accuracy metric is used for AIME 2024, FOLIO, and Temporal Sequences. We adopt exact match
(EM) and F1 for MuSiQue. For each model (except R1 and those dynamically quantized LRMs), we
run it three times and report its average scores to mitigate performance variability. Implementation
details are in Appendix D.

2https://huggingface.co/unsloth/DeepSeek-R1-GGUF

4

https://huggingface.co/unsloth/DeepSeek-R1-GGUF


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Benchmark performance of R1 and its compressed variants. All four benchmark scores are
averaged over three passes, except the rows marked with †. Avg denotes the average scores shown
in AIME 2024, FOLIO, and Temporal columns. We segment this table based on model families and
mark the highest scores within each model family in bold.

Models Accuracy

Model #Param Compression AIME 2024 FOLIO Temporal Avg MuSiQue (EM, F1)

DeepSeek-R1† 671B - 73.3 76.4 99.6 83.1 (17.0, 27.51)
DeepSeek-R1† 671B 2.51-bit 76.7 77.8 100.0 84.8 (17.0, 24.43)
DeepSeek-R1† 671B 1.73-bit 66.7 78.3 99.6 81.5 (15.0, 22.11)
DeepSeek-R1† 671B 1.58-bit 66.7 75.4 94.0 78.7 (14.0, 22.34)

R1-Distill-Llama 70B Distillation 65.6 79.8 99.9 81.8 (13.3, 21.57)
R1-Distill-Llama 70B Distillation & 50% sparse 23.3 71.6 97.6 64.2 (6.7, 13.49)
R1-Distill-Llama 70B Distillation & 4-bit AWQ 63.4 78.5 99.3 80.4 (10.7, 19.23)
R1-Distill-Llama 70B Distillation & 4-bit GPTQ 66.7 77.0 99.9 81.2 (10.3, 18.17)
R1-Distill-Llama 70B Distillation & 4-bit GPTAQ 64.4 78.8 99.6 80.9 (12.0, 21.57)
R1-Distill-Llama 70B Distillation & 3-bit GPTQ 46.7 71.8 99.3 72.6 (4.7, 11.92)
R1-Distill-Llama 70B Distillation & 3-bit GPTAQ 54.4 77.3 99.7 77.1 (5.7, 13.21)

R1-Distill-Qwen 32B Distillation 64.4 82.3 99.9 82.2 (2.7, 10.95)
R1-Distill-Qwen 32B Distillation & 50% sparse 25.6 75.1 97.9 66.2 (2.3, 9.01)
R1-Distill-Qwen 32B Distillation & 4-bit AWQ 67.8 82.3 99.1 83.1 (3.3, 10.28)
R1-Distill-Qwen 32B Distillation & 4-bit GPTQ 68.9 80.6 99.6 83.0 (4.0, 11.78)
R1-Distill-Qwen 32B Distillation & 4-bit GPTAQ 63.3 81.5 99.7 81.5 (2.7, 11.88)
R1-Distill-Qwen 32B Distillation & 4-bit ANY4 68.9 78.0 99.7 82.2 (5.7, 12.68)
R1-Distill-Qwen 32B Distillation & 3-bit GPTQ 44.4 74.2 98.9 72.5 (4.0, 11.55)
R1-Distill-Qwen 32B Distillation & 3-bit GPTAQ 45.6 77.5 99.5 74.2 (2.3, 9.18)
R1-Distill-Qwen 32B Distillation & 3-bit ANY3 53.3 82.6 99.9 78.6 (3.7, 10.27)

R1-Distill-Llama 8B Distillation 42.2 71.9 81.5 65.2 (0.0, 4.43)
R1-Distill-Llama 8B Distillation & 4-bit AWQ 47.8 68.0 84.0 66.6 (0.3, 5.05)
R1-Distill-Llama 8B Distillation & 4-bit GPTQ 42.2 66.2 65.9 58.1 (0.3, 4.68)
R1-Distill-Llama 8B Distillation & 4-bit GPTAQ 40.0 66.4 69.3 58.6 (0.0, 3.73)
R1-Distill-Llama 8B Distillation & 4-bit ANY4 41.1 68.5 88.7 66.1 (0.0, 3.54)
R1-Distill-Llama 8B Distillation & 3-bit GPTQ 11.1 65.0 67.3 47.8 (0.0, 2.89)
R1-Distill-Llama 8B Distillation & 3-bit GPTAQ 7.8 65.5 57.2 43.5 (0.0, 3.45)
R1-Distill-Llama 8B Distillation & 3-bit ANY3 3.3 50.1 34.9 29.4 (0.7, 2.35)

R1-Distill-Qwen 7B Distillation 46.7 78.0 75.6 66.8 (0.0, 3.57)
R1-Distill-Qwen 7B Distillation & 4-bit AWQ 46.6 75.5 74.9 65.7 (0.0, 3.14)
R1-Distill-Qwen 7B Distillation & 4-bit GPTQ 38.9 72.9 70.3 60.7 (1.0, 4.27)
R1-Distill-Qwen 7B Distillation & 4-bit GPTAQ 47.8 74.4 67.7 63.3 (0.0, 3.96)
R1-Distill-Qwen 7B Distillation & 4-bit ANY4 47.8 75.6 77.1 66.8 (0.0, 3.05)
R1-Distill-Qwen 7B Distillation & 3-bit GPTQ 17.8 65.7 31.7 38.4 (0.0, 3.12)
R1-Distill-Qwen 7B Distillation & 3-bit GPTAQ 24.4 64.5 48.7 45.9 (0.0, 3.06)
R1-Distill-Qwen 7B Distillation & 3-bit ANY3 32.2 69.3 30.1 43.9 (0.0, 3.89)

3 COMPRESSION EFFECTS ON REASONING PERFORMANCE

3.1 OVERALL PERFORMANCE

The overall performance of R1 and its compressed variants are in Table 1. We show the performance
of pruned R1-Distill-Llama-70B and R1-Distill-Qwen-32B under 50% sparsity in Ta-
ble 1, as it is the default sparsity level of current works (Zhang et al., 2024; Sun et al., 2023).

Comparing Compression Strategies. In Table 1, the 2.51-bit R1 achieves the highest average ac-
curacy overall, since it has the smallest compression ratio. Both R1 distilled Llama-70B and Qwen-
32B reach close-to-R1 accuracy scores. On MuSiQue, the 2.51-bit R1 also achieves performance
close to original R1. Therefore, 2.51-bit R1 has the best overall performance than other compression
strategies. Although R1 may be over-parameterized, a compression method with a smaller ratio can
still offer advantages over methods with higher compression ratios. In contrast, pruning only 50%
of the weights causes significant degradation, rendering the pruned LRMs unusable. Thus, we do
not interpret the effect of pruning in the later sections. As for all distillation-only models, Qwen
delivers stronger reasoning performance than Llama (Appendix E).

Comparing Benchmark Difficulties. Comparing the scores using R1 distilled Llama-70B as the
backbone on AIME 2024, FOLIO, and Temporal, we see the largest score decrease on AIME 2024.
This indicates that AIME 2024 is more challenging than the other two accuracy-based benchmarks.
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Table 2: Performance of two distilled models under various sparsity levels. We report the one-pass
scores for all models in this table.

Models Accuracy

Model #Param Sparsity AIME 2024 FOLIO Temporal Avg MuSiQue (EM, F1)

R1-Distill-Llama 70B 0% 63.3 78.8 100.0 80.7 (13.0, 21.80)
R1-Distill-Llama 70B 10% 60.0 81.3 99.6 80.3 (12.0, 21.69)
R1-Distill-Llama 70B 30% 63.3 79.3 99.6 80.7 (14.0, 21.40)
R1-Distill-Llama 70B 40% 56.7 73.9 98.8 76.8 (6.0, 13.79)
R1-Distill-Llama 70B 50% 26.7 70.9 97.2 64.9 (6.0, 12.75)
R1-Distill-Llama 70B 60% 0.0 65.0 95.6 53.5 (0.0, 6.42)
R1-Distill-Llama 70B 70% 0.0 49.8 15.6 21.8 (0.0, 2.23)
R1-Distill-Llama 70B 80% 0.0 11.8 12.4 8.1 (0.0, 0.94)

R1-Distill-Qwen 32B 0% 66.7 82.3 100.0 83.0 (1.0, 9.38)
R1-Distill-Qwen 32B 10% 70.0 81.3 100.0 83.8 (5.0, 13.19)
R1-Distill-Qwen 32B 30% 56.7 81.3 100.0 79.3 (1.0, 10.47)
R1-Distill-Qwen 32B 40% 53.3 78.3 100.0 77.2 (2.0, 10.16)
R1-Distill-Qwen 32B 50% 30.0 75.4 96.0 67.1 (3.0, 9.29)
R1-Distill-Qwen 32B 60% 0.0 65.0 87.2 50.7 (0.0, 4.13)
R1-Distill-Qwen 32B 70% 0.0 32.5 19.6 17.4 (0.0, 1.72)
R1-Distill-Qwen 32B 80% 0.0 8.7 2.0 3.6 (0.0, 1.29)

MuSiQue is also difficult in terms of knowledge requirement, because its scores in Table 1 are
much lower than RAG (retrieval-augmented generation) setup (Zhang et al., 2025). This suggests
that existing LRMs lack sufficient knowledge for knowledge-intensive tasks, making RAG a more
suitable approach.

Takeaway 3.1 for Overall Performance

Considering over-parameterization, methods with smaller compression ratios can still offer
advantages over those with higher compression ratios. Regardless of whether compression
is applied, LRMs lack sufficient knowledge for knowledge-intensive tasks.

3.2 COLLAPSE POINT

We investigate whether LRMs degrade as they undergo increasing levels of compression. In Table 1,
the performance of dynamically quantized LRMs steadily declines as we move from 2.51 to 1.58-
bit, but we do not observe a clear collapse point. All 4-bit AWQ, GPTQ, GPTAQ, and ANY4 reach
performance similar to their unquantized counterparts, which shows the effectiveness of existing
4-bit quantization on LRMs. However, 3-bit GPTQ, GPTAQ, and ANY3 display signs of collapse,
indicating bottlenecks of current 3-bit quantization. GPTAQ and ANY4 are newer than AWQ and
GPTQ, and they achieve similar performance on 4-bit LRMs. Based on average accuracy, it is
noteworthy that GPTAQ surpasses GPTQ on 3-bit LRMs for three out of four distilled models.
Regarding distillation, R1 distilled Llama-8B and Qwen-7B achieve the lowest accuracy among all
distillation-only models. Only R1 distilled Llama-70B yields decent MuSiQue scores.

Table 2 displays performance of our two distilled models under various sparsity levels. Compar-
ing distilled models with their sparsified variants, we find the precise collapse points of our pruned
LRMs. Interestingly, their collapse points correlate to the benchmark difficulty. For example, on
AIME 2024, R1-Distill-Llama collapses between 40% and 50% sparsity, since its perfor-
mance drops by more than half. However, its collapse points on FOLIO and Temporal are roughly
between 60% and 70% sparsity, which occur much later than AIME 2024. The correlation between
collapse point and benchmark difficulty can also be seen on the sparsified Qwen.

Takeaway 3.2 for Collapse Point

Collapse point correlates with benchmark difficulty. On hard benchmarks, 3-bit quantization
and pruning with 50% sparsity or higher still have substantial room for improvement.

3.3 COMPRESSION IMPACT ON KNOWLEDGE AND REASONING

In Table 2, although Qwen demonstrates stronger reasoning capabilities than Llama, it has signifi-
cantly lower EM and F1 scores on MuSiQue. Because MuSiQue requires knowledge memorization
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Figure 2: Icmℓ of DeepSeek-R1-Distill-Llama-8B (left) and change of RIcmℓ from
DeepSeek-R1-Distill-Llama-8B to Llama-3.1-8B (right). Each heatmap displays
scores of importance (or importance shift) of every module at each layer, providing a fine-grained
analysis of weight contributions to the corresponding reasoning capability. On the right, increases
in RIcmℓ are set to 0, as they only offset decreases elsewhere as discussed in 2.3. Every cluster
of 4 side-by-side heatmaps (including those displayed below) follow the same scaling to show the
precise magnitude of each weight module.

under the closed-book setting, the smaller parameter count of Qwen puts itself at a disadvantaged
position. In other words, models’ parameter count affects knowledge more than reasoning. In ad-
dition, we notice pruned R1-Distill-Llama-70B collapses between 30% and 40% sparsity
on MuSiQue, which is even earlier than on AIME 2024. This shows pruning hurts LRMs’ knowl-
edge memorization more than quantization. When a compression method aggressively removes the
weights of an LRM, it is expected that the model’s knowledge will be more seriously affected. This
phenomenon can also be seen on our dynamically quantized models in Table 1. Since quantization
preserves parameter count and our analysis above shows that many quantized models still retain
competitive reasoning capability, quantization is recommended on knowledge-intensive tasks.

Takeaway 3.3 for Compression Impact on Knowledge and Reasoning

Pruning and distillation compress knowledge retention more than reasoning capabilities.

4 DISTILLATION EFFECT ON WEIGHTS

To study the effect of distillation on weights, we compute Icmℓ of two distilled R1 models and further
measure the change of RIcmℓ as discussed in Section 2.3.

4.1 LOCATING IMPORTANT WEIGHTS

The left part of Figure 2 presents the weight importance of R1 distilled Llama-8B in four heatmaps,
each corresponding to a reasoning behavior. We observe that the final layer houses several most
important linear modules across all four behaviors, with the highest value located at up proj.
Therefore, the up proj in the final layer (32 up) stands out as the most important component.

Interestingly, this finding generalizes to R1 distilled Qwen-7B, as we also observe this up proj
outlier in the final layer of Qwen in Figure 4. Notably, our finding complements a recent analy-
sis (Shao & Wu, 2025), which claims the most important module for reasoning is o proj. Since
identifying important weights is a core research problem of compression methodologies, our finding
is valuable for future works.

Takeaway 4.1 for Locating Important Weights

Distillation makes up proj in the final layer as the most important module for reasoning
behaviors, as observed in both R1 distilled Llama and Qwen models.
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Figure 3: Change of RIcmℓ from DeepSeek-R1-Distill-Llama-8B to its 4-bit AWQ variant.

Table 3: Accuracy after selectively quantizing a single component of R1 distilled Llama-8B (e.g.,
1 up means to only quantize the up proj in the first layer) to 3-bit. Ranking of a component
is based its

∑
c Imℓ, so “2nd col” refers to second place within its column across all four heatmaps

(each column consists of 7 linear modules of a layer). “1st overall” means the global highest ranking.
Quantized Component Rank AIME 2024 FOLIO Temporal Avg

32 up 1st overall 20.0 63.1 63.6 48.9
32 gate 2nd col 33.3 62.1 67.2 54.2

32 v last col 43.3 68.0 79.6 63.6
31 up 2nd row 33.3 70.0 64.4 55.9
1 up last row 6.7 64.5 80.4 50.5

4.2 VALIDATING IMPORTANCE SCORES

We validate Section 4.1 by applying 3-bit round-to-nearest quantization to either 32 up or a com-
ponent sharing its column or row in the heatmaps, then measuring the resulting accuracy drop (Ta-
ble 3). The more important a component is, the greater the accuracy drop when it is quantized.
Specifically, we select four additional component candidates: the second- and last-ranked modules
among the seven in the final layer, and the second- and last-ranked layers across all 32 layers of the
up-projection. We see that 32 up yields the lowest average accuracy, which clearly demonstrates the
validity of our findings in Section 4.1. It is quite salient that quantizing only this matrix (merely 0.7%
of all weights) reduces the average accuracy by 16.3%. The component rank generally correlates
with the accuracy drop, except for 1 up, which incurs the lowest accuracy on AIME 2024.

4.3 IMPORTANCE SHIFT VIA DISTILLATION

Since R1-Distill-Llama-8B is fine-tuned based on Llama-3.1-8B, we compute the change
of RIcmℓ to visualize distillation effect in the right part of Figure 2 (for Llama) and 5 (for Qwen).
Both parts of Figure 2 exhibit similar patterns (e.g., most outliers are in the final layer), indicating
that the important weights of the distilled model are primarily the result of distillation with SFT,
while the original Llama’s weight values play little role in shaping its reasoning capabilities. Thus,
distillation effect is quite powerful in transforming a non-reasoning LLM into an LRM. For Qwen,
Figures 4 and 5 also show similar patterns, so the utility of distillation generalizes to Qwen as well.

Takeaway 4.3 for Importance Shift via Distillation

Important weights of the R1 distilled models are mainly the result of the distillation effect.
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Table 4: Performance of 3-bit AWQ and selectively protecting the MLP modules in the final layer.
Model Compression Full-Precision Anywhere? AIME 2024 FOLIO Temporal Avg MuSiQue

R1-Distill-Llama-8B 3-bit AWQ - 10.0 59.6 68.4 46.0 (0.0, 3.50)
R1-Distill-Llama-8B 3-bit AWQ Final-layer MLP 16.7 67.0 74.0 52.57 (1.0, 3.62)

5 QUANTIZATION EFFECT ON WEIGHTS

For quantization effect on weights, we analyze the decrease of importance shift during quantization.

5.1 LOCATING QUANTIZATION EFFECT

We show heatmaps to visualize the importance shift from R1 distilled Llama-8B to its 4-bit AWQ
quantized variant in Figure 3. Across all four heatmaps, we observe a reduction in the significance
of the gate projections in the middle layers (e.g., layer 9 to 23), suggesting that AWQ may overly
compress these modules. Moreover, most linear modules in the final layer are compressed to the
greatest extent, which shows the drawback of AWQ. Since 32 up is the most important module as
discussed in Section 4.2 and its importance shift is little for uncertainty estimation and example test-
ing capabilities, AWQ successfully preserves its significance on these two behaviors. However, for
backtracking and adding knowledge capabilities, AWQ is not effective at maintaining its importance.

In Figure 6, we visualize the importance shift from R1 distilled Qwen-7B to its 4-bit AWQ quantized
version. We also see a shift in the importance of the gate projections on Qwen, but this shift mainly
occurs in the early layers (e.g., layer 1 to 10). On Qwen, AWQ does not preserve the importance of
32 up across all four reasoning capabilities, and it also overly compresses 32 k on two capabilities.

As another popular method, we interpret the effect of 4-bit GPTQ in Figure 7. On R1 distilled
Llama-8B, we observe similar quantization effect as AWQ, since GPTQ also overly compresses
final-layer modules and the gate projections in the middle layers. Their commonality demonstrates
the generality of the bottlenecks we identified in existing quantization methods.

Takeaway 5 for Quantization Effect on Weights

State-of-the-art quantization methods fail to preserve the importance of the MLP gate pro-
jections and the final layer, which is a key bottleneck of performance improvement.

5.2 VALIDATING QUANTIZATION EFFECT

To validate our findings about the bottleneck of current quantization, we design a simple protection
mechanism using a mixed precision fashion. We run two versions of 3-bit AWQ in Table 4. In
the first version, we run AWQ with their default calibration data. Since we know AWQ overly
compresses the MLP modules in the final layer, we then choose to protect them by changing their
quantized weights to their original values in 16-bit. If they are truly important yet not well protected
by AWQ, our protection mechanism should offer a significant improvement. Based on the discussion
in Sections 3.1 and 3.2, we perform 3-bit quantization, since it will be the focus of future works.

We see our selective protection boosts 3-bit AWQ on all benchmarks, with an average accuracy im-
provement of 6.57%. This is particularly significant given that only about 2% of all weights remain
in 16-bit. This mixed precision model outperforms all 3-bit quantization baselines in Table 1 by at
least 4.77% in average accuracy, with gains of up to 23.17%. Therefore, our findings are demon-
strated with an indication of substantial room for further improvement. Note that our protection
provides relatively marginal increase on MuSiQue, as the weight count stays the same (Section 3.3).

6 CONCLUSION AND FUTURE DIRECTIONS

We study the effects of LLMs compression on LRMs and present key findings for further imrpving
LRMs compression. Future compression works are encouraged to consider the protection of MLP
up projection in the final layer. The excessive compression of current quantization methods on MLP
gate projections and final-layer modules highlights the need for preserving these weight modules.
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A USE OF LLMS

To improve the overall clarity of our writing, we used ChatGPT-4o and ChatGPT-5 via OpenAI’s
web interface to polish a small fraction of sentences. LLMs were not used in any steps of the
research ideation process. To ensure correctness and precision, we carefully reviewed and adapted
all LLM-generated content before incorporating it into our writing.

B RELATED WORK

Our literature review is conducted over existing compression methodologies (quantization, distilla-
tion, and pruning) and recent LRMs.

B.1 QUANTIZATION

Quantization reduces the number of bits used to represent LLM weights, thereby lowering their pre-
cision (Srivastava et al., 2025). Recent survey (Zhu et al., 2024) categorizes quantization method-
ologies into quantization-aware training (QAT) and post-training quantization (PTQ). QAT requires
retraining of model weights to recover performance loss during quantization while PTQ does not
require retraining. Recent QAT includes LLM-QAT (Liu et al., 2024a) that adopts distillation to
train a quantized LLM, BitDistiller (Du et al., 2024) that develops a self-distillation approach for the
full-precision model to act as the teacher of its low-bit counterpart, BitNet (Wang et al., 2023) that
proposes a 1-bit Transformer architecture for training LLMs from scratch, and OneBit (Xu et al.,
2024) that quantizes LLM weight matrices to 1-bit from a knowledge transfer perspective.

PTQ is more popular in terms of the number of recent publications, because there is no retraining
involved. For example, GPTQ (Frantar et al., 2022) and GPTAQ (Li et al., 2025) are one-shot weight
quantization methods that use approximate second-order information, while AWQ (Lin et al., 2024)
leverages activation distribution for finding the salient weight channels to skip. Other PTQ methods
include weight-activation quantization (Shao et al., 2024; Yao et al., 2022; Liu et al., 2023) and KV
cache quantization (Hooper et al., 2024; Liu et al., 2024b).

B.2 DISTILLATION

Distillation involves two settings: black-box and white-box settings. For black-box setting, teacher
model is typically a closed-source LLM and only the outputs of teacher are available for student
model. For white-box setting, both weights and output distribution of the teacher model are avail-
able. Existing black-box distillation (Huang et al., 2024; Li et al., 2024b; Ho et al., 2023; Huang
et al., 2022; Li et al., 2024a) prompts the teacher model to generate a training dataset for the student
to learn. Specifically, researchers have started to distill OpenAI’s O1 model (Huang et al., 2024),
which marks the beginning of LRMs compression. White-box distillation allows the student model
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Table 5: Dataset statistics of selected reasoning benchmarks.
Size Answer Type Metric Knowledge

AIME 2024 30 Integer Accuracy False
FOLIO 203 True/False/Uncertain Accuracy False
Temporal 250 (A)/(B)/(C)/(D) Accuracy False
MuSiQue 100 A few words (EM, F1) True

to learn from teacher’s knowledge representation. Works has been done to align the output distribu-
tion (Agarwal et al., 2024; Gu et al., 2024) or the hidden representation (Liang et al., 2023) between
teacher and student models.

B.3 PRUNING

There are unstructured and structured pruning. For unstructured pruning, individual weights are tar-
geted, which leads to irregular sparsity structure. In contrast, structured pruning involves removing
entire network components such as channels or layers (Zhang et al., 2024). Unstructured pruning
usually has better compression performance than structured pruning, while it is easier to achieve
inference speedup via structured methods (Zhu et al., 2024). Recent unstructured pruning includes
one-shot pruning (Frantar & Alistarh, 2023; Sun et al., 2023), global pruning that makes pruning
decisions based on all layers (Bai et al., 2024), and domain-specific pruning (Zhang et al., 2024).
Structured pruning includes gradient-based (Xia et al., 2024; Ma et al., 2023) and non-gradient-
based (Ashkboos et al., 2024) methods.

B.4 LRMS

Trained with reinforcement learning, LRMs extends LLMs with advanced reasoning mecha-
nisms (Besta et al., 2025). Popular closed-source LRMs are OpenAI’s o1-mini, o1 (OpenAI et al.,
2024), and o3-mini. Open-source LRMs include DeepSeek-R1 and QwQ-32B-Preview (Team,
2024). Since quantization, white-box distillation, and pruning methods require access to model
weights, they are not suitable for closed-source LRMs. Only black-box distillation will work on
closed-source models.

C ADDITIONAL DETAILS OF REASONING BENCHMARKS

Table 5 shows the statistics of our selected benchmarks. AIME 20243 (parts I and II) represents
top match challenges, and its answers are integers. FOLIO4 requires logical deductions to deter-
mine whether the provided conclusion is true, false, or uncertain based on premise. In Temporal
Sequences5, models are asked to use a provided timeline to determine what time a person might
be free to perform another activity. Since each of its questions comes with four options, we expect
our models to output the index (the letter) of the selected option. Since MuSiQue involves question
answering and its answers are in a few words, we adopt exact match (EM) and F1. We randomly
sample 100 questions out of 1000 from MuSiQue for our benchmarking analysis.

D IMPLEMENTATION DETAILS

We run the dynamically quantized models on llama.cpp6 based on their requirement. We run all
other distilled, pruned, and quantized models on vLLM (Kwon et al., 2023) for its fast inference. In
order to comprehensively analyze performance change after compression, we also evaluate R1 on
our reasoning benchmarks by using DeepSeek API. Aligning with DeepSeek-R1 report (Guo et al.,

3https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
4https://huggingface.co/datasets/yale-nlp/FOLIO
5https://github.com/suzgunmirac/BIG-Bench-Hard/blob/main/bbh/temporal_

sequences.json
6https://github.com/ggml-org/llama.cpp
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Figure 4: Icmℓ of DeepSeek-R1-Distill-Qwen-7B.

2025), we keep the same parameters for all models during inference: maximum generation length is
set to 32768, temperature is set to 0.6, and top-p value is set to 0.95.

We use AutoAWQ7 as the AWQ implementation for inference due to its speed advantage (vLLM
support), while the original AWQ code8 is used to generate the pseudo-quantized R1 distilled Llama-
8B for our analysis in Section 5.

We focus on analyzing the effect of compression methods on performance and thus do not consider
inference speedup. The reason is that these methods run on different inference platforms, so it is
hard to control the consistency of inference optimization across various platforms.

E COMPARING DISTILLED MODELS

On accuracy-based benchmarks of Table 1, we see that R1 distilled Qwen-32B delivers an aver-
age 0.4% improvement over Llama-70 and R1 distilled Qwen-7B delivers an average 1.6% im-
provement over Llama-8B. Although these two Qwen models have less weights, Qwen deliv-
ers stronger reasoning performance than Llama. This phenomenon aligns with DeepSeek re-
port (Guo et al., 2025). However, R1-Distill-Qwen-32B scores significantly lower than
R1-Distill-Llama-70B on MuSiQue, highlighting its worse ability of memorization.

F ADDITIONAL VISUALIZATION OF WEIGHT IMPORTANCE AND
IMPORTANCE SHIFT

All additional figures in Appendix are thoroughly discussed in the main content. Figure 4 shows
the weight importance of DeepSeek-R1-Distill-Qwen-7B across four heatmaps, each cor-
responding to a specific target reasoning behavior. Figure 5 displays the change of RIcmℓ from
DeepSeek-R1-Distill-Llama-8B to Qwen2.5-Math-7B. To decode the quantization ef-
fect on Qwen, Figure 6 shows the change of RIcmℓ from DeepSeek-R1-Distill-Qwen-7B to
its 4-bit AWQ variant. Similarly, Figure 7 shows the change of RIcmℓ from R1 distilled Llama-8B
to its 4-bit GPTQ quantized variant.

7https://github.com/casper-hansen/AutoAWQ
8https://github.com/mit-han-lab/llm-awq
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Figure 5: Change of RIcmℓ from DeepSeek-R1-Distill-Llama-8B to
Qwen2.5-Math-7B (the backbone model).

Figure 6: Change of RIcmℓ from DeepSeek-R1-Distill-Qwen-7B to its 4-bit AWQ variant.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 7: Change of RIcmℓ from DeepSeek-R1-Distill-Llama-8B to its 4-bit GPTQ quan-
tized variant.
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