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Abstract

The scale and quality of datasets are crucial for training robust perception models.
However, obtaining large-scale annotated data is both costly and time-consuming.
Generative models have emerged as a powerful tool for data augmentation by
synthesizing samples that adhere to desired distributions. However, current gener-
ative approaches often rely on complex post-processing or extensive fine-tuning
on massive datasets to achieve satisfactory results, and they remain prone to con-
tent—position mismatches and semantic leakage. To overcome these limitations,
we introduce ReCon, a novel augmentation framework that enhances the capacity
of structure-controllable generative models for object detection. ReCon integrates
region-guided rectification into the diffusion sampling process, using feedback
from a pre-trained perception model to rectify misgenerated regions within dif-
fusion sampling process. We further propose region-aligned cross-attention to
enforce spatial-semantic alignment between image regions and their textual cues,
thereby improving both semantic consistency and overall image fidelity. Exten-
sive experiments demonstrate that ReCon substantially improve the quality and
trainability of generated data, achieving consistent performance gains across var-
ious datasets, backbone architectures, and data scales. Our code is available at
https://github.com/haoweiz23/ReConl

1 Introduction

Robust object detection and instance segmentation models are essential in modern computer vision
(Bochkovskiy et al.|, [2020; |Carion et al., [2020; Zhu et al.l [2020; [Liu et al., 2024). However, these
models are highly dependent on large-scale, meticulously annotated datasets whose creation is
expensive and time consuming (Barkai et al.,|1993};|Cherti et al., 2023)). For instance, annotating a
single image in the Cityscapes dataset can take up to 60 minutes (Cordts et al., 2016). Consequently,
there is a pressing need for efficient and automated methods to synthesize high-quality annotated
training data.

Data augmentation has emerged as a vital strategy to alleviate data scarcity by increasing sample
diversity and improving model generalization. Traditional augmentation methods (Zhong et al.|
2020; DeVries & Taylor, 2017} |Yun et al., 2019;|Cubuk et al.| 2018} [Dvornik et al.l 2018]) typically
introduce only minor local variations, falling short of generating truly novel content. Recent advances
in generative modeling, especially structurally controllable frameworks, offer a promising alternative
by leveraging Canny edges (Zhang et al., 2023} [Zavadski et al.,[2024), spatial layouts (Chen et al.,
2023; Wang et al.| [2024b), or instance masks (Wang et al., [2024a; Wu et al.| [2023)) to maintain
fine-grained control during image synthesis.
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Structurally controllable generative models have achieved remarkable progress in geometric manipu-
lation and are now extensively applied to object-detection data augmentation (Fang et al.,|2024; [Li
et al.| [2025)). One family of methods repaints original images using universal control models such as
ControlNet (Zhang et al., 2023; Zavadski et al., 2024) or inpainting models (Rombach et al., [2022;
Lugmayr et al., [2022). These pipelines are often complex, requiring extra post-filters to remove
noisy outputs (Fang et al.l [2024) or multiple sampling processes (Kupyn & Rupprecht, 2024) to
generate an image, for example, Kupyn & Rupprecht| (2024)) generating new samples for a single
image containing ten objects via ten separate diffusion samplings.

Moreover, fine-tuning diffusion models conditioned on layouts or masks provides a feasible way for
precise end-to-end synthetic data generation for object detection. Recent works demonstrate that
such generated datasets yield strong trainability in downstream tasks (Chen et al., 2023} [Wang et al.,
2024b)). However, these approaches typically require fine-tuning on large-scale datasets, which incurs
significant computational overhead and remains impractical when data are scarce, which is a common
scenario in data augmentation tasks. Furthermore, these approaches often struggle with complex
layouts, leading to mis-generated regions and semantic misalignment.

To address these challenges, we propose Region-Controllable (ReCon) data augmentation. By
integrating region-wise rectification and alignment directly into the diffusion sampling process,
ReCon enhances single-pass control over instance synthesis. Without any additional training, ReCon
significantly improves consistency between generated content and its annotations. It should be noted
that we are not claiming to introduce a novel structural-control generation framework. Instead, our
method can, without any additional training, enhance the quality of object detection data produced by
existing structural controllable generation models. Specifically, our method first performs Region-
Guided Rectification (RGR), in which we detect mis-generated regions by comparing the sampled
image against ground-truth annotations using an off-the-shelf grounding model and then rectify
those areas by injecting noisy real data points. By applying rectification to areas susceptible to
be mis-generated, we boost the accuracy without sacrificing content diversity. Next, we introduce
Region-Aligned Cross-Attention (RACA) to mitigate semantic leakage. This mechanism aligns
region-specific visual tokens with their corresponding textual descriptions (or other cues) during
generation. By enforcing a tight correspondence between image features and text embeddings at each
diffusion step, it ensures precise semantic fidelity in the output.

By incorporating these two components into every sampling iteration, ReCon provides fine-grained
region control: region-guided rectification preserves spatial agreement with annotations, and region-
aligned cross-attention guarantees semantic adherence. The resulting high-fidelity augmented samples
significantly enhance downstream object-detection performance. For example, when combined with
a Canny-edge conditioned ControlNet model, our method achieves superior performance on the
COCO dataset compared to models that have been specifically fine-tuned on COCO. In addition, our
method demonstrates high augmentation efficiency: in data-scarce settings, tripling the dataset with
our approach outperforms a sevenfold increase achieved by the baseline. Our contributions are as
follows:

* We propose ReCon, a novel region-controllable data augmentation method that enhances
the regional control capabilities of existing models without requiring additional training.

* We introduce region-guided rectification and region-aligned cross-attention mechanisms to
improve control ability during the diffusion sampling process.

» Extensive experiments show that ReCon generates high-quality augmented data and substan-
tially improves detection performance compared to both traditional augmentation techniques
and current generative approaches.

2 Related Work

Conditional Generation Models. Recent advances in generative modeling have enabled the synthesis
of high-fidelity images. Early research predominantly focused on Generative Adversarial Networks
(GANSs) (Goodfellow et al., [2020) for image generation. Conditional GANSs, for example, were
utilized to train classification heads, thereby demonstrating the capability of GANs to model data
distributions and generate novel samples in an unsupervised manner (Gurumurthy et al., 2017}
Antoniou et al., 2017;|Mariani et al., [2018} Zhang et al., 2021} Li et al., [2022a} |[Zhao & Bilen, 2022}



Xu et al.}2023)). However, GANs are often plagued by training instability, mode collapse, and limited
controllability, particularly in low-data regimes.

Diffusion models have recently emerged as a robust alternative, offering enhanced controllability
and adaptability. These models implement a reverse denoising process that gradually removes
noise from an initial Gaussian distribution to approximate the real data distribution (Yang et al.,
2023a). Moreover, diffusion models can effectively handle a variety of conditioning inputs, including
text, images, layouts, edges, depth maps, points, and masks. This flexibility has enabled their
application to a wide range of tasks such as text-to-image synthesis (Podell et al., 2023} [Esser|
et al.,|2024), image editing (Meng et al.,|2021; Rombach et al.} 2022}, image inpainting (Lugmayr
et al., 2022 Saharia et al., [2022), and data augmentation (Fang et al.l 2024} |[He et al.| 2022). For
instance, LAMA (L1 et al., 2021) proposed a large mask inpainting strategy to enhance image
quality, while Taming Transformers (Esser et al., [2020) demonstrated that training in a latent space
can outperform more complex baselines. Further innovations include GLIGEN (Li et al., [2023c]),
which incorporates gated self-attention for improved layout control, and LayoutDiffuse (Cheng
et al.,2023)), which employs layout-specific attention modules tailored for bounding box guidance.
Additionally, methods like GeoDiffusion (Chen et al., |2023)) and Instance Diffusion (Wang et al.,
2024a)) integrate geometry-aware modules to encode spatial features, leading to superior generation
outcomes. DetDiffusion (Wang et al., 2024b) introduces a perception-aware loss to effectively bridge
the gap between generation and perception.

In this paper, we exploit these advanced, controllable generative models to produce high-quality
synthetic data without extra training, with the goal of enhancing downstream detection tasks.

Generative Data Augmentation. Recent advancements in generative models (Rombach et al., [2022;
Esser et al., 2024; Tian et al., [2025) have paved the way for synthesizing high-fidelity images that
introduce novel content beyond the capabilities of traditional augmentation techniques (Cubuk et al.|
2020, 2018} |Yun et al., 2019; (Chen et al., 2020). This enhanced data diversity is instrumental in
improving the training of perceptual networks for tasks such as object detection.

Initial studies employed GANs (Goodfellow et al.|[2020)) for data augmentation. However, subsequent
research has revealed several limitations of GAN-based approaches. For example, training networks
like ResNet50 (He et al.,[2016) on data synthesized by models such as BigGAN (Brock et al.,[2018)
often results in suboptimal performance compared to training with real images. Moreover, the inherent
instability in GAN training and the difficulty of generating data under complex conditions (Bansal &
Grover, 2023 |Gowal et al.,|2021; |[Ravuri & Vinyals| 2019) further constrain their effectiveness.

In contrast, diffusion models offer superior controllability and have gained widespread application in
data generation. For image classification, methods such as LECF (He et al.|[2022)) use GLIDE (Nichol
et al.,|2021) to generate images and subsequently filter out low-confidence samples to enhance zero-
shot and few-shot performance. Similarly, SGID (Li et al.,2023a) leverages BLIP (Li et al.,[2022b) to
ensure semantic consistency in generated outputs. Feng et al.|(2023)) filters samples based on feature
similarity, while techniques like GIF (Zhang et al.| 2022) and DistDiff (Zhu et al.| 2024) incorporate
additional guidance during the sampling process to refine the quality of generated samples. For object
detection, recent methods such as GeoDiffusion (Chen et al.} 2023)) and DetDiffusion (Wang et al.,
2024b)) have demonstrated the ability to synthesize high-quality images with precise layout control,
specifically designed for training detection models. Additional strategies include using diffusion
models with post-filtering based on category-calibrated CLIP scores (Fang et al.,|2024) and applying
background inpainting to augment training data without extra annotations (L1 et al., 2025).

Moreover, synthetic data has shown promise in other domains as well. For instance, MagicDrive (Gao
et al.l 2023)) highlights the benefits of synthetic samples for 3D perception tasks, while TrackDiffu-
sion (Li et al.,|2023b) focuses on data generation for multi-object tracking. X-Paste (Zhao et al.,[2023)
and MosaicFusion (Xie et al.| [2024) further contribute by producing samples with clear segmentation
boundaries to boost instance segmentation performance.

Despite these advances, most current methods either require additional training of generative models
or struggle to balance fidelity and diversity. In this work, we develop the generative data augmen-
tation framework for object detection by leveraging emerging zero-shot recognition models (e.g.,
GroundedSAM (Ren et al.| 2024)) alongside versatile conditional generation models (e.g., Stable
Diffusion (Rombach et al.,2022) and ControlNet (Zhang et al.,[2023))). Our approach eliminates the
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Figure 1: Overview of the ReCon Pipeline. ReCon enhances object-detection data generation by
integrating region control into frozen, off-the-shelf models. It first compute the text embedding and
instance masks, and then leverages a structural controllable diffusion model as the data generator
and introduces region-guided rectification to refine generated results during the sampling process.
Additionally, region-aligned cross-attention is incorporated to mitigate semantic leakage. Our method
is plug-and-play and can be integrated with existing structure-controllable models.

need to retrain generative models, which is often impractical in data-scarce scenarios, and instead
focuses on simplicity and effectiveness in generating task-specific data for target detectors.

3 Method

Task Definition. This study enhances a downstream object detector through data augmentation. By
leveraging a pre-existing generator with the original image =, bounding boxes B, and class labels y,
we aim to generate a high-fidelity augmented dataset where objects appear within the specified B and
carry the correct labels y. The primary challenge is to preserve fidelity to the source while introducing
useful novel variations (e.g., new colors, styles, or object poses) to increase content diversity and
thereby improve downstream model performance.

Overview. Existing methods often face a trade-off between diversity and fidelity in generating
downstream data. Recent works improve data diversity by using in-painting techniques to preserve
certain image regions while redrawing others (Li et al.l |2025; Ma et al.| [2024a)). Others improve
fidelity by using perceptual models like CLIP (Radford et al., 2021) to filter out low-confidence
samples (Fang et al.| 2024;|Zhao et al., 2023). In this paper, we propose a novel approach that utilizes
an off-the-shelf perceptual model to adaptively calibrate image content during sampling, achieving a
better balance between diversity and fidelity.

As illustrated in Figure[T} our method builds upon existing structural control models (e.g., ControlNet)
to establish an initial layout control. During the sampling process, we employ a region-guided
rectification strategy that refines instance-level content by automatically filtering out erroneous or
low-confidence samples. Additionally, we introduce a region-aligned cross-attention mechanism to
facilitate effective interaction between image content and the corresponding textual features.

3.1 Preliminaries

Stable Diffusion is a generative model that synthesizes high-quality images from textual prompts by
operating within a compressed latent space. It comprises forward and reverse diffusion stages.

Forward Process. In the forward process, noise is gradually added to the latent representation zg
of an image x, turning it into pure Gaussian noise zp after 7" timesteps. This diffusion process is
modeled by:

q(z¢ | 2e-1) = N(Zt; Varzi—, (1— ) I>7 (1
where a; controls the balance between the previous latent state and the injected noise.

Denoising Process. Starting with zp (pure Gaussian noise), the model iteratively predicts and
removes noise to generate the clean latent zg. This reverse sampling process is modeled by:

po(ze—1|2¢) = N(thl;ﬂé’(ztvw,zé‘(t))? @
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where 6 is the denoising network, pg(z,t) and Xy (t) denote the predicted mean and covariance.
Sequentially applying this reverse process from ¢ = 1" down to ¢ = 1 effectively removes the noise,
recovering z for final image generation.

Cross-Attention Mechanism. In text-to-image generation, the text condition v; (encoded by a text
encoder like CLIP) is integrated into the latent space via cross-attention:

Attention(Q, K, V) = softmax QK| A\ 3)
) ) \/(Tk Y

where the query Q is derived from image features, and K and V derived from text embeddings.
Here, dj, denotes the key dimension. This mechanism injects semantic text information into the latent
features at each denoising step, guiding the image generation to reflect the text prompt.

During sampling, noisy latent representations are progressively denoised while being continuously
influenced by the text embeddings. Starting the denoising from different timesteps allows control
over the editing intensity, balancing adherence to the original image content. However, since the
Stable Diffusion model lacks inherent structural control, additional structure-controllable models are
required for generating object detection data.

3.2 Region-Controllable Data Augmentation

Structural Control with ControlNet. ControlNet (Zhang et al., 2023)) enhances diffusion models
(e.g., Stable Diffusion) by conditioning them on structural cues such as edge, depth, or pose maps. It
integrates trainable control layers as follows:

Z; = z; + 7 - ControlBlock(c,y,, 0..) )

where z; are the latent features at layer [, c,, is the structural conditioning map, 6. are learnable
parameters of control blocks, and y scales the control signal.

In our work, we use ControlNet with an edge canny map to enforce structural constraints during
image generation, and we demonstrate that our approach can generalize to other layout-to-image
models for diverse guided generation.

Region-Guided Rectification. Existing generative models often encounter issues such as generating
an incorrect number of target objects or unintended ones. These challenges significantly affect the
quality of the generated data. To address these problems, we propose a region-guided rectification
method aimed at perceiving image content during sampling and applying region adjustments. This
approach ensures consistency of the content and the layout.
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Figure 2: Sampling process with Region-
Guided Rectification . We first identify incor-
rectly generated regions by IoU matching detec-
tion results with the original annotations using

Figure 3: Pipeline of our Region-Aligned Cross-
Attention. We first crop region-specific features
from z{" using predefined regions R,:;. For
regions belonging to the same category, we per-

a grounding model. Next, we derive a rectifica-
tion mask M and use z;" 'Y sampled from the

original data point to correct these errors.

form cross-attention with the corresponding text
features. Finally, the interacted region image

features are concatenated to produce z*!.

As shown in Figure[2] given an image annotation comprising multiple bounding boxes B and their
corresponding labels y, we employ the Grounded-SAM model (Ren et al., 2024) to detect potential
objects in the data point z, during the sampling process. We then apply loU-based matching to identify
false positives and false negatives, allowing us to segment regions that are potentially misgenerated.



These out-of-control regions are defined by a binary mask M. The identified regions are then replaced
with their corresponding noised versions z;"¢ sampled from the original image, while the remaining

parts of z; are preserved. This region-guided rectification process can be formulated as:
zi:M@z?rig—l—(l—M)@zt, 5)

where © denotes the element-wise multiplication, z; represents the rectified latent data point, and
z;"¢ is the latent point obtained after applying ¢ steps of noise addition to the original image using
Equation [T} This method leverages the intrinsic overridability property of diffusion sampling (Levin
& Fried, [2023), allowing regions in intermediate images to be replaced with external content drawn
from the same distribution. Such rectifications can influence the final generated image without

disrupting the overall inference process.

However, directly detecting the intermediate latent point z; with a perception model is impractical
due to the challenge of finding a pre-trained detector that provides meaningful guidance when
the input is noisy. To address this issue, we leverage recent cache-based diffusion acceleration
method (Ma et al., [2024b) to speed up sampling over IV steps (with N = 5 by default). Furthermore,
we utilize the capability of the diffusion model to predict the noise added to z;_, enabling the
prediction of a clean data point zg|;— . This process is formulated in Equation @

2 _zi N — V1 =0z N, t)
Olt—N — ’
VOt

Then we apply region rectification at 7. timesteps (7;. = 4), corresponding to the early (0.75 T,
middle (0.50 T), latter (0.25 T') and final (0.10 T") stages of the diffusion process. At the early
stage, when the overall object layout has begun to emerge, we can correct inaccuracies in the spatial
distribution of objects. During the middle stage, as the object starts to take shape, we rectify any
incorrect semantic content in the objects. Finally, in the latter and final stages, we refine regions with
suboptimal generation quality. More details of the sampling process are presented in Algorithm|[I]

(6)

Region-Aligned Cross Attention. In text-to-image generation, semantic leakage often occurs, where
the content of target regions does not align with the actual textual descriptions. To address this issue,
we introduce region-aligned cross attention to mitigate information leakage across regions.

Since attention within the text encoder operates on all prompt tokens, and these tokens may belong
to different categories, interference between category-specific features can occur (see the appendix
Figure([8). To address this, we individually encode C textual features for C target categories using
prompts in the format: [CLASS], as shown in Figure[I] Additionally, we employ a global context
description to represent the overall scene, which interacts with the background region. For datasets
like COCO, we can directly utilize the provided caption annotations or simply use a custom prompt,
such as: “An image with two cars and three persons".

Next, as presented in Figure 3] we perform cross-attention interactions between the corresponding
object regions and their associated textual features. This step alleviates information leakage in prompt
descriptions by ensuring that region-specific textual features influence only their respective regions.
An alternative approach to implementing region-aware cross-attention is to use an cross attention
mask to suppress text features from unrelated categories, as proposed in (Xue et al.,[2023). However,
we have observed that, due to the lack of disentanglement during the encoding of textual features from
different categories, the masked attention mechanism still suffers from semantic leakage. Besides,
Instance Diffusion introduces an instance-masked attention and fusion mechanism to integrate region-
specific conditions with corresponding visual tokens. However, it relies on additional region-specific
modules and requires retraining to achieve satisfactory performance. In contrast, our approach
mitigates the problem of semantic leakage and enhances the fidelity of generated images without
the need for additional fine-tuning. Furthermore, we demonstrate that our method can be effectively
combined with Instance Diffusion to further boost its performance, as shown in Table [Iand Figure[§]

4 Experiments

4.1 Experiment Settings

We evaluate our method by augmenting downstream object detectors with synthetic samples. We use
Stable Diffusion v1.5 (Rombach et al.,2022)) with a 25-step DDIM sampler (Song et al.,|2020) and



edge-conditioned ControlNet (Zhang et al., [2023) to generate training images. These samples are
combined with the original trainset and used to jointly train object detectors. We implement training
and evaluation code based on the MMDetection framework (Chen et al.,[2019). For consistency with
prior work (Wang et al.,2024b)), our default detector is Faster R-CNN (Ren et al.} 2015)) with an R-50-
FPN backbone trained for six epochs. We also evaluate our method with diverse detectors including
RetinaNet (Lin et al.,2017), ATSS (Zhang et al.,|2020), FCOS (Tian et al.;2019), YOLO-X (Ge
et al.| 2021)), and DEIM (Huang et al.,2024). Following previous works, we select images containing
3 to 8 objects for data generation, resulting data set comprising 47,200 images with 227,406 objects.
For VOC benchmark, we combine the training sets of VOC 2007 and VOC 2012 for model training,
with evaluation performed on the VOC 2007 test set (4,952 images). We use mAP (mean Average
Precision), mAR (mean Average Recall), FID to evaluate the performance. Extensive experiments
are conducted across various datasets, backbone architectures, and data scales.

4.2 Main Results

Compared with State-of-the-art Methods. We compare our approach with state-of-the-art structure-
controllable generative diffusion models, as summarized in Table E} The results demonstrate that our
method significantly enhances the effectiveness of structure-guided techniques for object detection
data augmentation. Specifically, we evaluate both general-purpose control methods (e.g., ControlNet)
and models fine-tuned on COCO (e.g., DetDiffusion). When combined with these methods, our
approach further improves their performance and establishes a new state of the art. For instance,
integrating ReCon with ControlNet yields a mAP of 35.5, surpassing GeoDiffusion’s 34.8. Moreover,
our method can act as a plug-and-play enhancement for region-controlled diffusion models without
requiring additional training. This is exemplified by the improvement in GLIGEN’s mAP from 34.6
to 35.5. These findings validate that our approach enables the generation of higher-quality training
samples, resulting in a substantial boost in object detection performance.

Table 1: Comparison with existing generative models on the COCO dataset. ReCon enhances the
detector performance by integrating existing methods in a training-free manner. The best results are
highlighted in bold, while the second-best outcomes are denoted by underlined italic.

Method | mAP | APs;  AP75 | AP AP
345 | 555 37 | 379 443

Real only

> General Control
Layout Diffusion (Zheng et al., 2023)) [CVPR23] 340 | 545 365 | 372 436
ControlNet (Zhang et al.||2023) [(1cCVv23] 349 | 555 37.7 | 382 455
Background-inpainting (L1 et al.,[2025) [Eccv24] | 35.1 55.1 37.7 | 382 458
ControlNet-XS (Zavadski et al.|[2024) [ECcCv24] 35.1 558 37.6 | 386 450

> Fine tuned on COCO

ReCo (Yang et al.,[2023b) [CVPR23] 33.6 53.2 36.2 36.7 44.0
GLIGEN (L1 et al.. |2023¢) [CVPR23] 34.6 55.1 37.2 38.1 44.7
GeoDiffusion (Chen et al., [2023)) [ICLR24] 34.8 55.3 37.4 382 454
DetDiffusion (Wang et al.,2024b) [CVPR24] 354 55.8 38.3 38.5 46.6
Instance Diffusion (Wang et al.| [2024a) [CVPR24] 35.0 55.4 37.6 38.4 457
ControlNet + ReCon 355 | 56.2 384 | 39.0 46.0
GLIGEN + ReCon 35.3 56.0 38.1 38.7 45.8
Instance Diffusion + ReCon 35.6 56.0 384 | 39.0 464

Data-Scarce Scenarios. Data augmentation is crucial when training data is limited. To evaluate our
approach under such conditions, we conduct experiments in three data-scarce regimes by randomly
sampling 1%, 5%, and 10% of the COCO training set and then doubling each subset through
augmentation. Our method delivers consistent gains over baseline approaches in all regimes. As
shown in Table [2| with only 10% of the data, mAP rises from 18.5% to 21.7%. Training-based
generative models often struggle in data-scarce settings due to their dependence on large datasets. In
contrast, we employ a generic structure-controlled diffusion model (ControlNet) to produce high-
quality object detection samples. We further compare our method to traditional augmentation method
RandAugment (Cubuk et al., 2020). Although RandAugment shows noticeable improvement, it



remains inferior to our approach. Moreover, combining our method with RandAugment produces
additional improvements, demonstrating compatibility with standard augmentation pipelines.

Few-Shot Scenarios. We also evaluated our method in a 30-shot training setting on YOLOX-S (Ge
et al.,2021) using COCO dataset, following the few-shot split protocol of previous work (Wang et al.|
2020). Our method performs well even under the few-shot setting, increasing the mAP from 5.4 to
6.7 and AP35, from 10.3 to 12.3. More few-shot results are presented in Table [[T]in Appendix.

Table 2: Comparison in data-scarce scenarios across varying data proportions.

Method | 1% 5% 10%
Real only | 03 130 185
RandAugment 3.1 162 214
ControlNet 25 159 212
Recon 39 167 21.7

Recon + RandAugment | 4.2 17.1 22.0

Comparison on Different Dataset. To validate the generalization capability of our method, we
conducted additional experiments on PASCAL VOC datasets. We compared our approach against a
baseline Faster R-CNN detector trained with 1x schedule. As demonstrated in Table[3] traditional
data augmentation methods like RandAugment (Cubuk et al.,2020) show limited effectiveness, while
simply duplicate the original dataset leads to overfitting (76.2 vs. 77.1 mAP). Our method achieves
superior performance (78.5 mAP) through synthetic generation of diverse high-fidelity images that
maintain crucial semantic features.

Table 3: Comparison results on the PASCAL VOC dataset.
Method | Real only ~ Simple Duplicate RandAugment ControlNet ReCon
mAP | 771 76.2 71.7 77.8 78.5

Data Scaling. To assess scalability we

measure detection accuracy in low-data 5% COCO Data Setting 10% COCO Data setting
regimes (5% and 10%), summarized in Fig- 2

ure[d} Repeating training data (real expan- . - 2 -

sion) provides consistent improvements up s //+ Real Bxpansion | 521 | ©__—=——___ s Teal Expansion
€16 £

ControlNet ControlNet
—=— ReCon 20 —=— ReCon

to 3x: mAP increases from 13.0to 17.1 on
the 5% subset and from 18.5 to 21.1 on the 19
10% subset. However, further duplication 2
(5%, 7x) leads to saturated performance

and noticeable degradation, indicating over- (a) 5% Data (b) 10% Data

fitting under extended training. By contrast, Figure 4: Data scaling on different COCO subsets.
our method generates diverse, annotation-

consistent samples and continues to yield

performance gains without overfitting. As the expansion scale grows, the relative accuracy improve-
ments from our augmented data become more pronounced. Overall, our approach attains comparable
or better performance than the ControlNet baseline using substantially fewer augmented examples,
highlighting its efficiency for data augmentation.

5x 5x
Data Scaling Factor Data Scaling Factor

4.3 Ablation Studies

Effectiveness of Each Component. We conducted ablation experiments to assess the contributions
of each component in our proposed framework, as presented in Table[d] The results clearly indicate
that each component enhances the performance of the downstream model. In particular, the integra-
tion of region-guided rectification (RGR) and region-aligned cross attention (RACA) significantly
improves the consistency between the generated samples and their corresponding annotations, thereby
elevating the quality of the synthesized data. Consequently, our approach increases the baseline mAP
from 34.9 to 35.5 and improves the FID from 13.82 to 12.85, demonstrating enhanced trainability
and fidelity of the generated samples.



Table 4: Ablation results for different components of our pro-  Table 5: Performance comparison

posed method. of different perception targets.
RGR RACA | FID mAP APs; AP;5 AP” AP Target ~ mAP AP;, APy
b 4 X 13.82 349 555 3777 382 455 Tt 350 556 378
4 b 4 1321 353 560 381 38.6 456 Zo|t 353 558 382
4 4 1285 355 562 384 39.0 46.0 Toje-nN)y 355 562 384
Table 6: Trainability comparison with DEIM- Table 7: Comparison with different region-
D-FINE-N (Huang et al., 2024) on COCO. guided models.
Method ‘ mAP AP50 AP75 ‘ mAR Method mAP AP50 AP75
Realonly | 385 552 415 | 604 Swin-Tiny 355 562 384
ControlNet | 39.1 558 42.1 | 60.6 Swin-Base 35.6 56.2  38.7
ReCon 398 56.6 425 | 61.0

Perception Target. Our method leverages cache-based fast sampling 2024b) to recover
a clean z(, providing a more accurate control signal for region-guided rectification. we compare
different perception targets: x4, Tg|¢, and To|;— ). As shown in Table[5} While z; yields modest
gains due to low recall which in turn causes the model to favor a lower overall editing strength. In
contrast, employing xg); further enhances performance, and the best results are achieved when using
Zg|(¢— ) Obtained via the fast sampling method.

Different Detection Backbone. We evaluate multiple object detectors and report results on the
state-of-the-art DEIM (CVPR25) method in Table[f] Additional detector comparisons are provided in
Table[T0]in the Appendix. Our experiments show that our method consistently improve performance
across different detectors, demonstrating its robustness and effectiveness.

Ground Truth Original ControlNet GLIGEN Inst. Diffusion ~ ControlNet - ReCon GLIGEN - ReCon

......
eeeeeeeeeee

eeeeee

vvvvv

”””””””

Figure 5: Visualization comparison of generated samples. Our methods show better image fidelity
and content-annotation consistency.

Perception Model. Our approach employs the Grounded-SAM as region-guided
model to provide region-aware guidance. Additionally, we compare different backbone models for
the detector within Grounded-SAM, as detailed in Table m The experimental results indicate that
better perception leads to improved performance, suggesting that our method stands to benefit from
stronger foundation models.

4.4 Qualitative Results

Figure [5] shows that our method substantially improves both the fidelity and the localization accuracy
of generated samples. Unlike prior structure-control methods such as GLIGEN and ControlNet, which
lack mechanisms for fine-grained region rectification and hence can exhibit imprecise localization
and semantic leakage, our approach enforces strict consistency with the provided annotations. For



example, it removes an extraneous zebra produced by GLIGEN outside the target bounding box
(row 1) and a superfluous sheep outside the region of interest (row 3), and it correctly restores a
person that ControlNet fails to generate (row 2). By aligning generated content with the original
annotations, our method improves overall generation quality while maintaining high fidelity and
sample diversity. More visualization results are provided in the Appendix.

5 Conclusion

This paper presents Region-Controllable data augmentation (ReCon), a training-free, diffusion-based
method developed to generate high-quality, content-label-aligned synthetic data for enhancing object
detection models. Extensive experimental evaluations demonstrate that ReCon outperforms traditional
augmentation and generative methods, ultimately leading to superior detection performance.
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A Limitations and Societal Impacts

Limitations. Although ReCon produces better FID scores and improves detector mAP without
additional training, it may increase computation time as data volume grows. The requirement for an
extra perception model also raises development costs. We have introduced acceleration techniques to
lower these costs. Integrating a fast sampler (Luo et al.||2023)) and a lightweight perception model
offers a promising path to maximize the efficiency of diffusion based data augmentation for detector
training.

Societal Impacts. Generative models (Podell et al., 2023} |Zavadski et al., [2024) offer a cost-
effective alternative to manual data collection and annotation for object detection. Our method
enhances these models’ ability to produce annotation-consistent content without additional training
and improves downstream detector performance. This efficiency can benefit organizations and
researchers who face limited data resources.

However, because generative models are pre-trained on large, uncurated vision—language datasets
from the internet, they may inherit social biases and stereotypes (Cho et al.| 2023 Naik & Nushi,
2023} Ross et al., [2020) and produce discriminatory outputs. It is therefore essential to integrate
bias detection and mitigation mechanisms. By applying region-wise rectification and alignment, our
approach improves content accuracy and reduces bias.

Another concern is the potential misuse of synthetic imagery for purposes such as deepfakes (Lyul,
2020), which can spread misinformation and undermine societal trust. To address this risk, the
community must establish regulations and best practices that ensure responsible creation and use of
synthetic data models.

B Pseudo Algorithm

We present the pseudo algorithm of our Region-Guided Rectification Sampling in Algorithm[I] In
Stage 1, we use a pre-trained perception model to identify instance masks. If annotated masks
are already available, this step can be skipped. Next, we apply exclusive dilation to mitigate
boundary segmentation issues and obtain a refined mask region Ry, which serves as the initial
ground-truth region. If visual priors such as Canny edge maps are provided, we further suppress
false-positive regions in these priors, as they are prone to misidentification and may introduce noise
in the corresponding visual condition maps.

In Stage 2, we define a rectification interval of 7). steps within the sampling process. First, we
perform N steps of fast sampling to infer the latent Z(/)I ,_ n» Which is then decoded into an image.

This image is passed through an object detector to identify false positives and false negatives. We
then segment the corresponding regions: false positives are segmented on x}_ 5, and false negatives
on the reconstructed image zy. These regions are merged to produce a region-guided correction mask

M. To rectify errors, we generate a noisy latent 2 rig by adding ¢ steps of noise to the original image.
Finally, we mix z; and z;"¢ using the region-guided mask to correct misgenerated areas.

C Experimental Setting

C.1 Metrics Definition

We provide a detailed explanation of the metrics used to evaluate the effectiveness of our method
below:

mAP: The mean of the average precision values computed over multiple IoU thresholds (typically
from 0.50 to 0.95 in steps of 0.05) and across all classes, reflecting overall detection accuracy under
varying overlap requirements.

AP5( : The average precision at a single IoU threshold of 0.50, measuring detection quality under a
more lenient overlap criterion.

AP75: The average precision at a single IoU threshold of 0.75, measuring detection quality under a
stricter overlap criterion.
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Algorithm 1 Region-Guided Rectification Sampling Process

Require: VAE decoder 6, Object detector D, segmentation model S

Require: Original image ¢, initial latent z(, control map c, text prompt p, initial noise €
Require: Ground-truth boxes By with labels ¢

Require: Refinement time steps T, fast-sampling step count N

Ensure: Final output image &g

1: Stage 1: Initial Mask preparation
2: Bpred, Ypred < D(z0) > Detect candidate boxes in original image
3: By, < match_by_IoU(Bpred; Bgt, Ypred: Ygt, T = 0.5) > Select false positives
4: (Rgt, Ryp) < S(wo, [Bgt, Byp)) > Segment GT and FP regions
5: (Rgt, Ryp) < ExclusiveDilate(Rgy, Ryp, kernel = 7) > Dilate masks and avoid overlap
6: c<—c © (1 —Ryp) > Keep control without FP regions
7: Stage 2: Sampling with region-guided rectification
8 fort=T—-1,T—2,...,0do
9: zr = oy e = VI = g oo, T4 1) + V1—oyeg(zeq1, t+1) > Denoise
NG
10: if t € T, then
11: 2y < FastSample(z;, N) > Accelerated N-step sampling
, _
. Z(/)|t,N . Zi_n — V1 - ay gz, t)
e
13: xg‘th — 9d(z{)lt7]\,)
14: Bprecb Ypred < D(xZ)‘ th)
15: (B#p, Bfn) + match_by_IoU(Bpred; Bgts Ypreds Ygt, T = 0.5) > Select false
positives and false negatives bboxes
16: M < merge(S([z{y,_y» @0, [Byp Byn])) > Merge false positive and false negative
region to build region-rectification mask
17: O“g = Jarzg + /1 — aye
18: zt o O M 4+ 2 © (1—-M) > Region-Guided Rectification
19: end if
20: end for

21: 52'0 — ed(éo)
22: return I

AP™ : The average precision for medium-sized objects (area € [322, 96?] pixels), indicating perfor-
mance on objects of moderate scale.

AP! : The average precision for large objects (area > 962 pixels), indicating performance on larger
targets that are generally easier to localize.

FID: Fréchet Inception Distance (FID) measures the similarity between real and generated images.
We compute FID using 5,000 samples. Lower FID indicates higher image quality and diversity.

C.2 More Training Details

In this study, we train several object detection models on downstream detection datasets, including
Faster R-CNN (Ren et al.| [2015) with an RS0 FPN backbone, ATSS (Zhang et al., 2020) with an R50
FPN backbone, FCOS (Tian et al., 2019) with an RS0 FPN backbone, YOLOX-S (Ge et al., 2021)),
RetinaNet with a Swin-Tiny (Liu et al.|, 2021)) FPN backbone and DEIM-D-FINE -N (Huang et al.,
2024) model. For Faster R-CNN, ATSS, FCOS, and RetinaNet, we follow the standard 1 x training
schedule, running 12 epochs for all experiments, except for Faster R-CNN on the COCO dataset,
where the training is reduced to 6 epochs. We use random flipping as the default data augmentation
strategy. For YOLOX-S, we follow the official training setup with 300 epochs and apply a stronger
augmentation pipeline, including mosaic, random affine transformations, mixup, random flipping,
and HSV-based random augmentation. For DEIM, we follow the official training configuration to
train model for 40 epochs.
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D More Visualization Results

D.1 Visualization Samples Analysis

As shown in Figure[6] we present additional samples generated by our method, which illustrate its
ability to produce novel content with high image-annotation consistency and strong visual fidelity.
Our method remains robust even in challenging scenarios involving tiny object boxes and densely
distributed objects, ultimately improving the effectiveness of downstream detection models.

In Figure [6] we notice that some of the smaller objects in our generated images remain strikingly
similar to those in the originals (the plant in the second row). This is partly due to the Canny-
conditioned ControlNet, which helps preserve source-like structures, a result we see much less often
with GLIGEN. More fundamentally, when a region proves difficult to synthesize accurately, our
method continuously applies region-guided corrections to bring it closer to the original image. We
lower the editing intensity in these challenging areas in order to maintain their structural and semantic
integrity, so that any differences from the source appear only in texture and lighting.

Texture-level perturbations on hard-to-generate samples also help us produce valuable corner cases.
For example, Figure[7shows a truck on the left that is heavily occluded and has an implausible aspect
ratio. By introducing controlled texture disturbances into the real image, we can create new corner
cases that further enhance the model’s robustness.

Additionally, a case study is provided in Figure[§] which demonstrates that although Instance Diffusion
incorporates instance-level descriptions with specific visual tokens, it still suffers from semantic
leakage. Our method can further mitigate this issue and enhance performance in such cases.

D.2 Rectification Mask Analysis

Our method introduces region-guided rectification to correct misgenerated areas during the diffusion
sampling process. We quantify the rectification mask’s area at different sampling stages to analyze
how much of the image each correction step influences. Across 1,000 samples, we measured the ratio
of mask area to total image area at the 75%, 50%, 25%, and 10% sampling steps, obtaining 12.16%,
8.87%, 7.12%, and 6.77%, respectively. This trend demonstrates that our rectification procedure
progressively reduces misgenerated regions as sampling proceeds.

E More Experimental Results

E.1 Comparison of Rectification at Different Diffusion Timesteps

We study the sensitivity of our region-rectification schedule to the choice of diffusion timesteps.
Concretely, we apply rectification at single timesteps as well as at several multi-stage schedules and
report mean average precision (mAP), AP5o and AP7; in Table[8] Applying rectification only at
an early stage (0.757") produces a modest improvement over the ControlNet baseline (mAP 35.2
vs. 34.9), but is not optimal. We attribute this to two factors: (1) early-stage rectification can create
shortcuts that allow spurious regions to be propagated and “fixed” during later synthesis steps, and (2)
features at 0.757 remain highly diverse and only partially developed, so a single early rectification
cannot fully suppress all errors.

When rectification is applied at multiple stages we observe consistent improvements. A two-stage
schedule [0.57", 0.25T] raises mAP to 35.3, and a three-stage schedule [0.57", 0.257", 0.17] further
increases mAP to 35.4. Our four-stage schedule [0.757, 0.57, 0.25T", 0.17] achieves the best
balance across metrics (mAP 35.5, AP5¢ 56.2, AP75 38.4). Extending the schedule to six stages
yields only marginal additional benefit (mAP 35.5, AP75 38.5), indicating that performance gains
saturate beyond four rectification stages. These results justify our chosen four-stage schedule as an
effective and parsimonious design choice.

E.2 Comparison with Image Editing Method

Existing methods suffer from semantic leakage and discrepancies between generated content and the
original annotations. To address these issues, our approach calibrates intermediate sampling results
using latent point sampled within the diffusion sampling process. We also explore the effectiveness
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Figure 6: Visualization results of samples generated with our methods.

Original Image Instance Diffusion

Figure 7: Successful case analysis. Existing state-of-the-art methods suffer from semantic leakage,
while our approach effectively mitigates this issue.

19



Original Image Ours

Figure 8: Corner case analysis. For corner cases with severe occlusion and unrealistic aspect ratios
(truck on the left side of image), our method can augment them to generate new corner-case examples.

Table 8: Ablation study of region rectification at different diffusion timesteps.

Method mAP AP5y APy5
ControlNet 349 555 37.7
0.75T 352 557 380
0.5T 353 56.0 38.0
0.25T 353 558 38.1
0.1T 352 558 380
[0.5, 0.25]T 353 558 382
0.5, 0.25, 0.1]T 354 56.0 384

[
0.75, 0.5, 0.25, 0.1]T 355 562 384
0.75, 0.625, 0.5, 0.375, 0.25, 0.1]T 355 562 385

of image-editing methods which modify specific regions of the original image while preserving
the remainder. We compare our method against an image editing method: SDEdit
[2021)). Notably, SDEdit applies a uniform editing strength across the entire image, which may
result in certain regions being either over-enhanced or under-enhanced. As demonstrated in Table [0}
our method, which leverages region-controllable data augmentation guided by a perceptual model,
achieves superior performance.

Table 9: Comparison with image editing method.
Method mAP AP50 AP75

Realonly 345 555 37.1
SDEdit 352 559 381
ReCon 355 562 384

E.3 Comparison with More Detectors

As shown in Table[T0] we compare additional object detectors, and the results demonstrate that our
method consistently improves the performance of each.

E.4 More Data Scaling

In the main text, we conducted data-scaling experiments under data-scarce settings. We further
validated this phenomenon in few-shot scenarios. As shown in Table [IT} we compare ReCon
with simple duplication-based augmentation of original images under different expansion ratios.
Our findings indicate that as the scale of data expansion increases, the corresponding performance
improvement becomes more evident. Moreover, we observe that augmenting with duplicated original
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Table 10: Trainability comparison for more detectors on COCO.
Detector Method | mAP AP5; APy
Realonly | 34.0 540 358
ReCon 351 549 370

FCOS - RS0 (Tian et all 2019) Rﬁilcoéﬁy gg'g 22'2 ;g';

Realonly | 394 575 42.6
ReCon | 40.0 58.3 432

RetinaNet - Swin-T (Liu et al.,[2021)

ATSS - R50 (Zhang et al., |2020)

images provides only marginal gains, whereas our method achieves comparable results to 10x
duplication by using only 2x generated data.

Table 11: Few-shot data augmentation results across different data scales.

Method mAP  AP;, AP7;; AP™ AP
Real only 54 10.3 5.0 5.2 8.9
Expanded 2 x

Real Expansion 5.7 10.9 5.5 5.8 9.7
ReCon 6.7 12.3 6.5 6.7 11.2

Expanded 5 x
Real Expansion 6.1 11.3 6.1 6.3 10.2

ReCon 7.7 14.1 7.6 77 125
Expanded 10 x

Real Expansion 6.4 11.5 6.5 6.3 10.2
ReCon 8.0 144 79 7.7 132

E.5 Robustness Evaluation

We perform three independent runs with different random seeds and report the mean and standard
deviation in Table[I2] The results show that our method consistently outperforms the baseline and
demonstrates lower variance, indicating improved stability and robustness.

Table 12: Performance stability across three runs with different random seeds. We report the mean
and standard deviation of mAP and APs.

Method ~ mAP (%)  APsg (%)

Baseline 349 +0.08 553 +0.12
ReCon 355+0.05 56.3=+0.14
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E.6 Runtime and Inference Efficiency

Table [T3|reports per-sample inference times on the COCO dataset for baseline control methods and
for those methods augmented with our method. All runtime measurements were collected on a single
NVIDIA RTX 3090 GPU. On average, our approach introduces only an additional 0.79-1.04 seconds
per sample compared to the corresponding baseline control model. Compared to the training-free
layout-to-image control method LayoutGuidance, our method does not rely on backward guidance
and therefore avoids the substantial time cost incurred by its optimization-based procedure. In
contrast to training-based alternatives that require additional fine-tuning on downstream datasets,
our framework can be applied directly at inference time without introducing extra training overhead.
Finally, our method is fully compatible with structural controllable models such as ControlNet,
yielding improved performance while incurring less than one second of additional inference time per
sample.

We note that further acceleration is possible: replacing the grounding component with a more efficient
model (e.g., EfficientSAM (Xiong et al., 2024)) or integrating memory- and compute-efficient
attention libraries (e.g., xFormers (Lefaudeux et al.,[2022)) should reduce the added overhead. We
will include these quantitative runtime results and the above discussion in the revised manuscript to
clarify the practical efficiency of our approach.

Table 13: Inference time comparison (seconds per sample) on COCO measured on an NVIDIA RTX
3090. Values in parentheses indicate the baseline time plus the additional overhead introduced by our
method.

Method Inference time (s)
ControlNet 2.55
Layout Guidance 12.58
Instance Diffusion 8.98
ControlNet + ReCon 3.34 (2.55+0.79)

Instance Diffusion + ReCon  10.02 (8.98 + 1.04)

E.7 More Ablation Experiments

To evaluate the contribution of region-aligned cross-attention (RACA) independently from the full
rectification pipeline, we augmented the InstanceDiffusion baseline with RACA while keeping all
other components unchanged. The RACA layer replaces the standard cross-attention with a region-
aligned cross-attention mechanism and introduces no additional trainable parameters, allowing direct
deployment on pretrained generators without fine-tuning. Table [[4]summarizes the results: adding
RACA yields consistent improvements over the InstanceDiffusion baseline, confirming that region-
aligned attention alone contributes meaningfully to region alignment and downstream detection
performance.

Table 14: Effect of region-aligned cross-attention (RACA) within InstanceDiffusion.
Method mAP AP50 AP75

InstanceDiffusion 350 554 376
InstanceDiffusion w/ RACA  35.2  55.7 38.0

E.8 Rationale Analysis of Our Method

Prior work has applied perception models to filter and then re-generate low-quality synthetic samples
in two-step generate-then-filter pipelines (Fang et al.,|2024). While effective in improving sample
fidelity, such repeated generate-and-filter cycles incur substantial computational overhead. In contrast,
our approach integrates grounding feedback directly into the diffusion trajectory, enabling on-the-fly
rectification of misaligned regions within a single forward pass. This integrated rectification avoids
repeated re-sampling and produces high-quality, aligned image-label pairs far more efficiently than
multi-round generate-and-filter procedures.
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Our rectification mechanism (RGR) identifies mismatched regions via grounding-based IoU matching
between generated regions and target annotations, and selectively injects controlled perturbations
into those mismatched regions during the diffusion trajectory. This targeted intervention encourages
subsequent denoising steps to correct region appearance and spatial extent while leaving well-aligned
regions largely untouched.

The proposed design achieves three complementary properties that are critical for large-scale synthetic
data pipelines:

 Usability. The method does not require model retraining, multi-round generation, or post-
hoc filtering; it operates during a single forward pass and can be applied to pretrained
generators out-of-the-box.

 Effectiveness. Experiments across multiple datasets and generator architectures show
consistent improvements in both image quality and detection metrics.

* Efficiency. The rectification strategy introduces limited additional computational overhead
to inference, making it suitable for large-scale synthetic data generation.

These benefits stem from two lightweight, jointly designed modules (region-aligned attention and
grounding-guided rectification) that together ensure improved alignment without compromising
generation speed or flexibility. To reach the final design we explored and quantitatively compared a
variety of correction and alignment strategies; the selected combination offers a favorable trade-off
between alignment quality, computational cost, and ease of integration.

In summary, the combination of on-the-fly grounding feedback, parameter-free region-aligned
attention, and targeted rectification yields a practical and effective solution for producing well-
aligned image-label pairs. The plug-and-play compatibility with pretrained generators and consistent
empirical gains across baselines and datasets underscore the substantive contributions of this work.

E.9 Further Analysis of Rectified Regions

We analyzed the relationship between object area and the likelihood of rectification under our
proposed Region-Guided Rectification strategy. Specifically, we examined 500 objects identified as
requiring rectification and plotted their area distribution using kernel density estimation, as shown
in Figure[9] The results reveal that smaller regions are more likely to be rectified. This is because
small objects are generally more difficult to synthesize accurately, diffusion models tend to generate
artifacts or errors in such regions.

1e-5 Kernel Density Estimation of Rectified Region Areas
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Figure 9: Kernel density estimation of rectified region areas.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our contributions have been claimed in the abstract and introduction accurately.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have a limitation discussion in Appendix
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide the detailed information in the Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The implementation code is provided in the supplemental material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed information of dataset, training and testing setting in
Section 4.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes. The paper reports error bars in the form of mean and standard deviation
in Section [E.5|in Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the introduction of compute resources in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We adhere to the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the potential societal impacts of the work in Appendix [A]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLM for writing improvement.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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