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Abstract

Keyphrase generation refers to the task of pro-001
ducing a set of words or phrases that sum-002
marises the content of a document. Continuous003
efforts have been dedicated to this task over004
the past few years, spreading across multiple005
lines of research, such as model architectures,006
data resources, and use-case scenarios. Yet, the007
current state of keyphrase generation remains008
unknown as there has been no attempt to re-009
view and analyse previous work. This survey010
bridges that gap and provides a comprehensive011
overview of the recent progress, limitations and012
open challenges in keyphrase generation. Our013
analysis of over 40 research papers reveals inter-014
esting new insights, such as that 1) commonly-015
used datasets are so similar that there is no prac-016
tical benefit in using them together for evalua-017
tion, or that 2) the performance of many models018
was significantly overestimated due to the appli-019
cation of normalization procedures in ground020
truth. This paper not only surveys the literature021
but also addresses some of these concerns by022
training, documenting and releasing a strong023
PLM-based model for keyphrase generation,024
along with an evaluation framework, as an ef-025
fort to facilitate future research.026

1 Introduction027

Keyphrase generation involves generating a set of028

words or phrases that summarise the content of a029

source document. These so-called keyphrases con-030

cisely and explicitly encapsulate the core content031

of a document, which makes them valuable for a032

variety of NLP and information retrieval tasks. For033

instance, keyphrases were proven useful for im-034

proving document indexing (Fagan, 1987; Zhai,035

1997; Jones and Staveley, 1999; Gutwin et al.,036

1999; Boudin et al., 2020), summarization (Zha,037

2002; Wan et al., 2007; Liu et al., 2021; Koto et al.,038

2022) and question-answering (Subramanian et al.,039

2018; Yang et al., 2019; Lee et al., 2021), analyzing040

topic evolution (Hu et al., 2019; Cheng et al., 2020;041

Lu et al., 2021) or assisting with reading compre- 042

hension (Chi et al., 2007; Jiang et al., 2023). 043

The task of keyphrase generation was initially 044

introduced by Liu et al. (2011) as an extension of 045

keyphrase extraction, which involves identifying 046

the most important phrases within a document. The 047

added value of keyphrase generation lies in its abil- 048

ity to produce keyphrases that are absent from the 049

source document. This ability is particularly impor- 050

tant when the source document is short and may 051

lack appropriate keyphrases. This motivated the 052

canonical work of Meng et al. (2017), which intro- 053

duced a sequence-to-sequence learning approach 054

to keyphrase generation. Their proposed model, 055

named CopyRNN, builds upon an RNN encoder- 056

decoder architecture (Cho et al., 2014; Sutskever 057

et al., 2014) and incorporates a copying mech- 058

anism (Gu et al., 2016) that enables the model 059

to identify important phrases within the source 060

text. Perhaps more importantly, they introduced 061

the KP20k dataset which contains more than 500K 062

keyphrase-annotated samples and allows the train- 063

ing of neural models in an end-to-end manner. 064

Over the past few years, continuous efforts 065

have been devoted to improve the effectiveness of 066

keyphrase generation models. These efforts have 067

been spread across different lines of research, such 068

as model architectures, data resources, and use- 069

case scenarios, often pursued separately. This sur- 070

vey presents an overview of the current state of 071

keyphrase generation, discussing recent progress, 072

remaining limitations and open challenges. More 073

specifically, we compiled and analysed a collection 074

of over 40 papers on keyphrase generation, identi- 075

fying the type(s) of contribution these papers made 076

(§3), examining the most frequently used bench- 077

mark datasets (§3.1) and evaluation metrics (§3.2), 078

providing descriptions of proposed models while 079

highlighting important milestones (§3.3), and in- 080

vestigating how proposed models perform against 081

each other (§3.4). 082
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Our analysis reveals that: 1) there is a gap in083

the literature regarding papers focusing on data084

analysis and reproduction studies, 2) reporting re-085

sults on several commonly used datasets offers no086

practical benefit compared to using only KP20k,087

3) the performance of many models may be overes-088

timated due to discrepancies in the normalization089

of ground truth keyphrases, 4) dedicated models090

have been superseded by fine-tuned pre-trained lan-091

guage models (PLMs), yet the overall performance092

gain since early models remains limited, and 5) the093

limited availability of pre-trained models not only094

impedes progress but also obstructs reproducibility095

and fair comparison with previous work.096

Our work goes beyond surveying the existing lit-097

erature and addresses some of the aforementioned098

concerns by training, documenting and releasing a099

strong PLM-based model for keyphrase generation100

along with an evaluation framework to facilitate101

future research (§4). Finally, we discuss some of102

the open challenges in keyphrase generation and103

propose actionable directions to address them (§5).104

2 Survey Scope105

Our survey encompasses a total of 44 research106

papers selected based on the following criteria:107

they are accessible through the ACL Anthology,108

they contain the phrase “keyphrase generation” ei-109

ther in their titles or abstracts, and they have been110

published after the canonical work of Meng et al.111

(2017). For a more comprehensive coverage, we112

also include papers from other NLP-related venues,113

comprising AAAI (4 papers), SIGIR (1 paper), and114

CIKM (1 paper). To keep the number of papers115

manageable, we arbitrarily disregard papers from116

pre-print servers (e.g. arXiv) or those published117

in non-ACL journals (e.g. Natural Language Engi-118

neering). Nonetheless, we are confident that our119

sample represents a comprehensive portion of the120

research on keyphrase generation, encompassing121

all papers published at major NLP venues in the122

last seven years. This includes, for instance, the ten123

most cited articles in the field.1124

For each paper in our sample, we manually col-125

lect the following information:126

• The type(s) of contribution the paper is mak-127

ing. We adopt the ACL 2023 classification128

of contribution types (Rogers et al., 2023),129

which includes: 1) NLP engineering experi-130

1https://www.semanticscholar.org/search?q=
"keyphrase%20generation"&sort=total-citations

ment (most papers proposing methods to im- 131

prove state-of-the-art), 2) approaches for low– 132

compute settings, efficiency, 3) approaches 133

for low-resource settings, 4) data resources, 134

5) data analysis, 6) model analysis and inter- 135

pretability, 7) reproduction studies, 8) position 136

papers, 9) surveys, 10) theory, 11) publicly 137

available software and pre-trained models. 138

• For papers proposing models, we record their 139

best scores on each dataset they experiment 140

with, in the form of ⟨dataset,metric, value⟩ 141

triples. We extract scores primarily from the 142

main tables of the content, supplementing 143

with tables from appendices only if they re- 144

port superior performance. In cases where 145

multiple model variants are reported, we se- 146

lect the one demonstrating the best overall 147

performance, or, when it is not clear, the one 148

that performs best on the KP20k dataset. In to- 149

tal, we extracted 700 triples from our sample, 150

corresponding to 42 distinct models. 151

• We also document the architecture of the pro- 152

posed models (e.g RNNs, Transformers), the 153

use of statistical significance tests on the re- 154

sults, and the availability of both the code and 155

the model weights. 156

All the data collected in the course of this study 157

is available at www.github.com/anonymous. 158

Related Surveys 159

To our knowledge, this is the first attempt at com- 160

piling and analyzing the performance of keyphrase 161

generation models. In contrast, several surveys 162

have been carried out on keyphrase extraction, start- 163

ing with (Hasan and Ng, 2014), which focused on 164

pre-deep-learning unsupervised methods. Subse- 165

quent surveys, such as (Çano and Bojar, 2019), 166

(Papagiannopoulou and Tsoumakas, 2020) and 167

(Firoozeh et al., 2020), included additional, more 168

recent methods and presented comparative experi- 169

mental studies. More recently, Song et al. (2023) 170

carried out a comprehensive review of keyphrase 171

extraction methods, covering PLM-based models, 172

and Xie et al. (2023) performed a large-scale anal- 173

ysis of keyphrase prediction methods, which in- 174

cluded results from some generative models. De- 175

spite marked differences, notably in the model ar- 176

chitectures and training procedures, previous re- 177

search on keyphrase extraction and generation con- 178

verge on the datasets and evaluation metrics, mak- 179

ing these surveys complementary to ours. 180
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3 Analysis181

We start our analysis by presenting statistics on the182

types of contribution made in the papers we con-183

sidered for our survey (see Table 1). Most of the184

papers propose new models for keyphrase genera-185

tion (86.4%), suggesting that the primary emphasis186

within the field is on improving the performance of187

the state-of-the-art. This is reinforced by the fact188

that the second most common contribution is data189

resources (18.2%), essential for validating improve-190

ments. Additionally, some attention was given to191

model analysis and interpretability (13.6%), par-192

ticularly through empirical evaluations of multi-193

ple models (Çano and Bojar, 2019; Meng et al.,194

2021, 2023; Wu et al., 2023) and evaluations via195

downstream tasks (Boudin et al., 2020; Boudin and196

Gallina, 2021). Our analysis also underscores a197

gap in the literature regarding papers that concen-198

trate on data analysis, reproduction studies and sur-199

veys. This survey paper bridges this gap by, among200

other aspects, offering a fresh perspective on the201

complementarity of existing datasets, conducting202

replication experiments on model evaluation, and203

thoroughly documenting the training process of a204

strong baseline model for keyphrase generation.205

Type of contribution %

NLP engineering experiment 86.4
Data resources 18.2
Model analysis and interpretability 13.6
Software and pre-trained models 9.1
Approaches for low-resource settings 9.1
Approaches for low-compute settings 2.3

Table 1: Percentage of papers (%) in our sample that
make each type of contribution. A paper can make one
or more types of contributions.

3.1 Benchmark Datasets206

We proceed with our analysis by examining the207

most frequently used datasets (see Figure 1, de-208

tailed statistics of the datasets are provided in §A.1).209

We find that 23 distinct datasets were employed210

across the examined papers, with five datasets no-211

tably more prevalent than others: KP20k (Meng212

et al., 2017), SemEval-2010 (Kim et al., 2010), In-213

spec (Hulth, 2003), Krapivin (Krapivin et al., 2009),214

and NUS (Nguyen and Kan, 2007). These datasets215

are commonly used together in papers, with 19 out216

of 42 papers (45.2%) employing all five, and 33217
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Figure 1: Number of papers utilizing each dataset.
Underlined datasets contain 100K+ training samples.
Datasets used only once are omitted for clarity.

out of 42 (78.6%) employing at least two of them. 218

The five datasets exclusively contain scientific ab- 219

stracts, while the remaining datasets encompass 220

various sources such as news, social media and 221

web pages. This strong domain bias can be at- 222

tributed to two main factors: the ready availability 223

of scientific abstracts, and the frequent presence of 224

author-assigned keyphrases associated with them, 225

serving as naturally occurring ground truth. When 226

considering size, only a handful of datasets contain 227

a sufficient number of samples (i.e. > 100k train- 228

ing samples, underlined in Figure 1) to effectively 229

train generative models. Thus, the majority of these 230

datasets are relatively small (i.e. < 1k samples) and 231

used for testing purposes only. 232

A closer examination of the five widely-used 233

datasets reveals substantial similarities among 234

them. For instance, they all contain scientific ab- 235

stracts from the Computer Science domain, and 236

at least three of them –KP20k, SemEval-2010, 237

and Krapivin– include documents from the same 238

source (ACM Digital Library). Conversely, they 239

differ notably in their ground truth: two contain 240

author-assigned keyphrases (KP20k and Krapivin), 241

two feature a combination of author- and reader- 242

assigned keyphrases (SemEval-2010 and NUS), 243

and the last includes indexer-assigned keyphrases 244

(Inspec). This raises questions about the practical- 245

ity of using them together in experiments, as well 246

as the potential for data leakage between them. 247

To shed light on these questions, we measured 248

the correlation between the model scores across 249

datasets, exploring whether models perform uni- 250

formly across different datasets. Our objective here 251

is to determine the extent to which including more 252

than one of these datasets in the experiments of a 253
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paper provides additional insights. From the cor-254

relation matrix in Figure 2, we see that the per-255

formance of models among the five widely-used256

datasets is almost perfectly correlated (Pearson’s257

correlation coefficient ρ > 0.9, p-value < 0.01).258

This observation implies that there is no practical259

benefit in reporting the results on more than one260

of these five datasets, despite the common practice261

among previous studies of doing so. Therefore,262

our findings advocate that conducting experiments263

only on KP20k is sufficient, considering its broader264

adoption in previous work and its larger size com-265

pared to other datasets.266
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Figure 2: Pearson’s correlation coefficient ρ computed
between the model scores across datasets.

3.2 Evaluation Metrics267

We move forward with our analysis by exam-268

ining the evaluation of automatically generated269

keyphrases within our sample of papers. With the270

exception of (Wu et al., 2022b), all the proposed271

models are solely assessed through intrinsic evalu-272

ation, which involves comparing their output with273

a single ground truth using exact matching. From274

the extracted score triples, we find that 40 distinct275

evaluation metrics were reported across the papers276

we examined (see Figure 3, detailed definitions277

of the evaluation metrics are provided in §A.2).278

The majority of papers describing models (33 out279

of 42, 78.6%) provide separate results for present280

and absent keyphrases, following the methodology281

of (Meng et al., 2017). As for the metrics, there is282

a high degree of consensus on the F1 measure for283

present keyphrases, with two configurations stand-284

ing out: F1@M (using all the keyphrases predicted285

by the model) and F1@k (using the top-k predicted286

keyphrases, with k ∈ {5, 10}). However, the sit-287
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Figure 3: Number of papers employing each evaluation
metric. Metrics used < 3 times are excluded for clarity.

uation is less clear for absent keyphrases, which 288

are more challenging to predict and therefore re- 289

sult in very low scores, with the F1 measure being 290

used alongside with the recall at a large number of 291

predicted keyphrases (k ∈ {10, 50}). 292

Upon closer inspection of the evaluation settings 293

in our sample of papers, we find that some form of 294

normalization procedure is frequently applied prior 295

to computing evaluation metrics, as observed in at 296

least 22 out of 42 papers (52.4%). This procedure, 297

commonly referred to as Meng et al. (2017)’s pre- 298

processing2, is applied to ground-truth keyphrases 299

and involves the following steps: 1) removing all 300

the abbreviations/acronyms in parentheses, 2) tok- 301

enizing on non-letter characters, and 3) replacing 302

digits with symbol <digit>. This normalization 303

impacts the evaluation (see an example in Table 3 304

in §A.3), potentially leading to an overestimation 305

of model performance and jeopardizing compara- 306

bility with studies that do not employ it. To gain 307

insights on this issue, we conducted a series of 308

replication experiments by reassessing the perfor- 309

mance of three models –catSeqTG-2RF1 (Chan 310

et al., 2019), ExHiRD-h (Chen et al., 2020) and 311

SetTrans (Ye et al., 2021b)– for which the authors 312

stated that they applied this normalization and pro- 313

vided the outputs of their model. 314

From the results in Figure 4, we observe that ap- 315

plying the normalization procedure significantly in- 316

creases the scores for the majority of the evaluation 317

metrics. The impact of the normalization procedure 318

is more pronounced for present keyphrases, show- 319

ing an absolute difference of +2.2 points (F1@M ) 320

and +3.5 points (F1@5). We notice a some differ- 321

ence in scores between the original ( ) and our 322

2https://github.com/memray/
OpenNMT-kpg-release/blob/master/notebook/json_
process.ipynb
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replicated evaluation ( ), which we attribute to323

our method for determining whether a keyphrase324

is present or absent in the source document. These325

observations alert that the performance of many326

models have been overestimated from using this327

normalization procedure, advocating for a cautious328

comparison of results between studies.329

3.3 Proposed Models330

Here, we take a closer look at the models pro-331

posed in our sample of papers. Figure 5 presents332

an overview of these models in the form of an333

evolutionary tree, highlighting five works that we334

consider important milestones for keyphrase gener-335

ation. In short, we first witness early efforts dedi-336

cated to refining the task formulation of keyphrase337

generation, followed by a transitional phase from338

RNN-based to Transformers-based models, and339

most recently, the adoption of pre-trained language340

models (PLMs). Below, we provide brief descrip-341

tions of each model, organized around these mile-342

stone works and presented in chronological order.343

2017 Meng et al. (2017) introduced a RNN-based344

encoder-decoder model for keyphrase genera-345

tion, alongside the KP20k dataset. This model346

was further improved with additional decod-347

ing mechanisms (Chen et al., 2018; Zhao and348

Zhang, 2019), multi-task learning (Ye and349

2018
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Figure 5: Evolutionary tree of the keyphrase generation
models in our survey. Some models are omitted for
clarity. ∗ indicate that the model weights are available.

Wang, 2018), external resources (Chen et al., 350

2019a), latent topic information (Wang et al., 351

2019; Zhang et al., 2022), better encoding 352

techniques (Chen et al., 2019b; Kim et al., 353

2021), or self-training (Shen et al., 2022). 354

2018 Yuan et al. (2020)3 introduced the 355

ONE2MANY training paradigm, enabling 356

models to generate a variable number 357

of keyphrases. Subsequent studies have 358

improved upon this work through the use 359

of reinforcement learning (Chan et al., 360

2019; Luo et al., 2021), hierarchical decod- 361

ing (Chen et al., 2020), GANs (Lancioni et al., 362

2020; Swaminathan et al., 2020), diversity- 363

promoting training objective (Bahuleyan 364

and El Asri, 2020), or diverse decoding 365

strategies (Huang et al., 2021; Zhao et al., 366

2021; Santosh et al., 2021; Wang et al., 2022). 367

2021 Meng et al. (2021) explored the generaliza- 368

tion capabilities of keyphrase generation mod- 369

els and were among the first to apply Trans- 370

formers for this task. Other works improved 371

the performance of Transformers-based mod- 372

els though manipulation of the input docu- 373

ment (Ahmad et al., 2021; Garg et al., 2022) 374

or guided decoding (Do et al., 2023). 375

3This work was submitted to arXiv in October 2018.
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2021 Ye et al. (2021b) proposed the ONE2SET train-376

ing paradigm that utilizes control codes to377

generate a set of keyphrases. Further work378

improved this work with the use of data aug-379

mentation (Ray Chowdhury et al., 2022) or380

model calibration (Xie et al., 2022).381

2022 Kulkarni et al. (2022) investigated the uti-382

lization of PLMs for keyphrase generation.383

Subsequent studies confirmed that fine-tuning384

a PLM, namely BART (Lewis et al., 2020),385

for keyphrase generation achieves SOTA re-386

sults (Houbre et al., 2022; Wu et al., 2022a;387

Meng et al., 2023; Wu et al., 2023), and fur-388

ther improved its performance through out-389

put filtering (Zhao et al., 2022), low-resource390

fine-tuning (Wu et al., 2022a) or contrastive391

learning (Choi et al., 2023).392

Figure 6 provides a more detailed depiction of393

the architectures (RNN or Transformers) used by394

the proposed keyphrase generation models over the395

years. Starting from 2021, we observe a swift tran-396

sition from RNNs to Transformers, accelerated by397

the recent line of research on fine-tuning PLMs for398

the task. This trend aligns with observations across399

numerous other NLP tasks, where (pre-trained)400

Transformers consistently achieve state-of-the-art401

performance.402

While it is quite common for previous studies403

proposing models to release the code for reproduc-404

ing their experiments (27 out of 38, 71.1%), it is405

rare for the model weights to be made publicly406

available, with only 6 out of 38 studies doing so407

(marked with the symbol ∗ in Figure 5). As shown408

in previous work, code availability is enough for409

reproducing the results present in published litera-410

ture (Arvan et al., 2022). Not having model weights411

readily available complicates the comparison be-412

tween models and imposes unnecessary additional413

computational and environmental costs for retrain-414

ing. This observation calls for increased efforts to415

release model weights, thereby facilitating further416

research on keyphrase generation.417

3.4 Empirical Results418

We conclude our analysis by conducting a large-419

scale comparison of the performance of the pro-420

posed models in our sample of papers, focusing on421

the best scores they achieve on the KP20k bench-422

mark dataset (see Figure 7). We draw the lines for423

the state-of-the-art performance over time accord-424

ing to the three most commonly used evaluation425
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Figure 6: Architectures of the proposed keyphrase gen-
eration models over the years.

metrics for both present and absent keyphrases. 426

Overall, we see a small yet steady increase in state- 427

of-the-art performance, with the latest jump at- 428

tributed to models leveraging the knowledge of 429

PLMs for the task (Choi et al., 2023; Wu et al., 430

2023). Two additional observations can be made 431

from the Figure: 1) the absolute improvement in 432

state-of-the-art performance since earlier works is 433

limited; for instance, only 3.5% in present F1@M 434

separates the works of Chan et al. (2019) and 435

Wu et al. (2023); and 2) the performance in ab- 436

sent keyphrase prediction remains very low, barely 437

reaching 8% in F1@M . We believe that the rea- 438

sons for this situation could be traced back to the 439

unreliability of the evaluation metrics that rely on 440

strict matching against a single ground truth (see 441

§3.2). This issue becomes more pronounced in the 442

case of absent keyphrases where lexical variation 443

is more prevalent, leading to lower scores. 444

Another notable observation is the limited use 445

of statistical significance testing in the results of 446

our sampled papers, with only 14 out of the 44 do- 447

ing so (marked with the symbol • in Figure 7). We 448

assume this is a consequence of the scarce availabil- 449

ity of model weights (see §3.3), which hinders the 450

reproducibility of prior research and the ability to 451

directly compare model outputs. Yet, statistical sig- 452

nificance testing is crucial to assess the likelihood 453

of potential improvements to models occurring by 454

chance (Dror et al., 2018), casting doubts on the 455

actual progress of the task. 456

4 A state-of-the-art baseline model 457

Our analysis offers insights into the progress made 458

by current keyphrase generation models, while also 459

highlighting the lack of uniform evaluation pro- 460

cedures and the limited availability of pre-trained 461

models. Here, we describe our effort to address 462

these issues by building and releasing a state-of-the- 463

art baseline model for keyphrase generation, along 464

with an evaluation framework to facilitate future re- 465
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Figure 7: Best scores achieved by each model in terms of F1@M , F1@5 and F1@10 for present keyphrases and
F1@M , F1@5 and R@10 for absent keyphrases on the KP20k dataset. The lines represent the state-of-the-art
performance over time. • indicate that the paper utilizes statistical tests to validate the significance of the results.

search. Upon examining the scores of the proposed466

models (see §3.4), those that employ fine-tuning a467

PLM for the task yield the best performance. Ac-468

cordingly, we adopt this approach for our baseline469

model and use BART-large (Lewis et al., 2020) as470

our initial PLM, following (Meng et al., 2023; Wu471

et al., 2023). We perform fine-tuning on the KP20k472

training set for 10 epochs in a ONE2MANY set-473

ting (Yuan et al., 2020), that is, given a source text474

as input, the task is to generate keyphrases as a sin-475

gle sequence of delimiter-separated phrases. Dur-476

ing fine-tuning, gold keyphrases are arranged in the477

present-absent order which was found to give the478

best results (Meng et al., 2021). Implementation de-479

tails are given in Appendix A.4. It is worth noting480

that we do not apply any pre-processing to either481

the source texts or the ground-truth keyphrases,482

thereby fixing the issues we identified in §3.2. At483

test time, we use either greedy decoding and let484

the model generate the most probable keyphrases,485

or beam search (K=20) and assemble the top-k486

keyphrases from all the beams as the model output.487

To select the best model, we save a checkpoint488

at the end of each training epoch and evaluate its489

performance on the validation set of KP20k by490

calculating the F1@{M, 5, 10} scores against the491

ground truth keyphrases. Overall, fine-tuning the 492

model for 9 epochs produces the best scores (see 493

Figure 8), leading us to select the corresponding 494

checkpoint as our baseline model. Code for train- 495

ing, inference and evaluation is available at github. 496

com/anonymous. Model weights (all checkpoints) 497

are available at huggingface.co/anonymous. 498

Here, we evaluate the performance of our base- 499

line model on the test set of KP20k and see how 500

it compares against previously proposed models. 501

Table 2 presents the results for both present and ab- 502

2 4 6 8 10

26

30

34

38

42 Present

2 4 6 8 10

2

4

6

8

10

# of epochs

Absent

2 4 6 8 10

24

26

28

30

32 Combined

Figure 8: Performance of our baseline model on the
validation set of KP20k across each training epoch, mea-
sured in terms of F1@M (◦), F1@5 (△) and F1@10 (+)
computed for present, absent and combined keyphrases.
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sent keyphrase prediction. Overall, we observe that503

our model achieves strong performance, outper-504

forming most previous models and even achieving505

state-of-the-art results on absent prediction in terms506

of F1@5. We believe the performance of our base-507

line model is sufficiently high to serve as a point508

of reference in future work, especially considering509

the potential issue of overestimated performance510

that we discovered in prior research (see §3.2).511

Metric Ours Best # ↓ # ↑

F1@M
Present 39.9 43.1 15 3
Absent 4.5 8.0 4 9

F1@5
Present 37.7 42.6 16 5
Absent 8.2 7.3 13 0

Table 2: Performance of our baseline model on test set
of KP20k, with comparison to the best-reported scores
in literature and the number of previous models under-
performing (# ↓) or outperforming (# ↑) our baseline.

5 Open Challenges and Discusssion512

We wrap up this paper by highlighting two of the513

open challenges in keyphrase generation and sug-514

gesting actionable strategies to address them.515

Our analysis revealed alarming levels of redun-516

dancy between the most frequently used bench-517

mark datasets, stressing the need to deviate from518

the common practice of relying solely on the same519

five datasets. Thus, the first challenge we identified520

is the lack of diverse, sizeable benchmark datasets521

for keyphrase generation. While recent efforts have522

been devoted to building new datasets, they either523

reuse most samples from KP20k (Mahata et al.,524

2022), contain too few samples (Piedboeuf and525

Langlais, 2022) or are restricted to a specific do-526

main (Houbre et al., 2022). Creating a new dataset527

is undoubtedly difficult, as manually annotating528

keyphrases is costly and necessitates domain ex-529

perts. One practical solution is to look for naturally530

occurring keyphrases, and scientific papers with531

their author-provided keywords are a well-known532

match. Another common issue of existing datasets533

is that fall short in sourcing the documents they534

contain. For instance, documents in KP20k were535

collected from “various online digital libraries” and536

lack metadata information such as DOIs, authors537

or licences. Considering all of the points we men-538

tioned, we suggest leveraging arXiv for creating a539

new dataset as it aligns with our requirements: it540

offers content under Creative Commons, provides 541

a substantial volume of categorized, identified and 542

machine-readable (LATEXand HTML) documents. 543

The second challenge we identified, which con- 544

nects to the benchmark datasets, is the question- 545

able robustness of automatic evaluation. The main 546

concerns with current evaluation methods are two- 547

fold: First, keyphrases are task-dependent. For in- 548

stance, keyphrases relevant for document indexing 549

may differ from those relevant for reading com- 550

prehension. This aspect is hardly ever discussed 551

in previous studies despite its important implica- 552

tions, notably on the need for different ground truth 553

keyphrases depending on the task at hand. One 554

solution to mitigate this issue is to rely on extrinsic 555

evaluation, that is, assessing the performance of 556

keyphrase generation models through downstream 557

tasks. Prior works have, for example, proposed to 558

evaluate models through their impact on document 559

retrieval effectiveness (Boudin et al., 2020; Boudin 560

and Gallina, 2021). However, this methodology 561

has been seldom adopted in current studies, with 562

only one paper implementing it (Wu et al., 2022b). 563

The additional computational costs of conducting 564

such extrinsic evaluation may be responsible for 565

this. Nevertheless, we believe this aspect to be up- 566

most important for grounding the evaluation of the 567

models in the tasks they will be used for. Here, we 568

suggest experimenting with measuring the benefits 569

of adding keyphrases to tasks from existing bench- 570

mark datasets, such as SciRepEval (Singh et al., 571

2023) in the scientific domain or BEIR (Thakur 572

et al., 2021) for heterogeneous retrieval tasks. 573

Second, commonly-used evaluation metrics rely 574

on exact matching against a single ground truth, 575

which is likely to be incomplete as it is annotated 576

by authors rather than professional indexers. One 577

approach to alleviate this issue is to utilize multi- 578

ple ground truth annotations, akin to the evaluation 579

methodologies employed in other natural language 580

generation tasks like summarization or machine 581

translation. However, this further increases the 582

costs of an already expensive annotation process, 583

making its adoption unlikely. Another approach 584

to depart from the exact matching evaluation is to 585

leverage semantic information. Recent work ex- 586

plored the use of semantic-based metrics for evalu- 587

ating generated keyphrases and showed good corre- 588

lation with human ratings (Wu et al., 2024). Here, 589

we suggest testing the ability of LLMs to evaluate 590

generated keyphrases, as this approach has proven 591

successful in several tasks (Chiang and Lee, 2023). 592
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Limitations593

There are two limitations of this paper:594

1. While we are confident that the sample of595

papers covered in this survey represents a596

comprehensive portion of the research on597

keyphrase generation, our selection is not ex-598

haustive, disregarding papers from non-ACL599

journals and pre-print servers.600

2. Collecting the best scores from the selected601

papers was not always possible due to typos602

or ambiguities in the tables, e.g. out-of-range603

evaluation scores from Table 5 in (Garg et al.,604

2023).605
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A Appendix1154

A.1 Statistics of the Benchmark Datasets1155

Detailed statistics of the datasets are provided in1156

Table 4.1157

A.2 Details of Evaluation Metrics1158

For a given document d, the performance of a1159

model is evaluated by comparing its predicted1160

keyphrases P = {p1, p2, · · · , pM} with a set1161

of gold truth keyphrases Y = {y1, y2, · · · , yO}.1162

Keyphrases are lowercased, stemmed with the1163

Porter Stemmer (Porter, 1997), and duplicates are1164

removed prior to score calculation. When only the1165

top-k predictions P:k = {p1, · · · , pmin(k,M)} are1166

used for evaluation, the precision, recall and F11167

measure are computed as follows:1168

P@k =
|P:k ∩ Y|
|P:k|

R@k =
|P:k ∩ Y|

|Y|
1169

F1@k = 2× P@k ×R@k

P@k +R@k
1170

The most commonly used metrics are defined as:1171

• F1@5: F1@k when k = 5.1172

• F1@10: F1@k when k = 10.1173

• F1@M : M denotes the number of predicted1174

keyphrases. Here, all the predicted phrases are1175

used for evaluation, i.e. without truncation.1176

• F1@O: O denotes the number of gold truth1177

keyphrases.1178

• R@10: R1@k when k = 10.1179

• R@50: R1@k when k = 50.1180

Noting that when using the top-k predictions and1181

the number of predicted keyphrases M is lower1182

than k, incorrect phrases are appended to P until1183

that M reaches k.1184

A keyphrase is labelled as present if it consti-1185

tutes a subsequence of token of d (in stemmed1186

form), and absent otherwise. When results for1187

present and absent are reported separately, only1188

the present or absent keyphrases from P and Y and1189

used for score calculation. Papers usually report the1190

macro-average scores over all the data examples in1191

a benchmark dataset.1192

A.3 Example of normalized keyphrases1193

An example of data normalization as in Meng et al.1194

(2017) is presented in Table 3.1195

Title: Autoimmune polyendocrinopathy can-
didiasis ectodermal dystrophy: known and
novel aspects of the syndrome

Abstract: Autoimmune polyendocrinopathy
candidiasis ectodermal dystrophy (APECED)
is a monogenic autosomal recessive disease
caused by mutations in the autoimmune reg-
ulator (AIRE) gene and, as a syndrome, is
characterized by chronic mucocutaneous can-
didiasis and the presentation of various au-
toimmune diseases. During the last decade,
research on APECED and AIRE has provided
immunologists with several invaluable lessons
regarding tolerance and autoimmunity. This
review describes the clinical and immunologi-
cal features of APECED and discusses emerg-
ing alternative models to explain the patho-
genesis of the disease.

Keyphrases: apeced – aire – chronic mucocu-
taneous candidiasis – il-17 – il-22
Normalized: apeced – aire – chronic muco-
cutaneous candidiasis – il <digit>

Table 3: Example of document from KP20k (S2CID:
32645143) with its associated keyphrases and their nor-
malized forms.

A.4 Implementation Details 1196

We use the BART-large model weights as our ini- 1197

tial pre-trained language model and perform fine- 1198

tuning on the KP20k training set for 10 epochs. We 1199

use the AdamW optimizer with a learning rate of 1200

1e-5 and a batch size of 4. Fine-tuning the model 1201

using 2 Nvidia GeForce RTX 2080 took 400 hours. 1202
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Dataset train / dev / test #kp |kp| %abs

KP20k (Meng et al., 2017) 514k / 20k / 20k 5.3 2.1 36.7
SemEval-2010 (Kim et al., 2010) 144 / – / 100 15.7 2.1 55.5
Inspec (Hulth, 2003) 1k / 500 / 500 9.6 2.3 21.5
Krapivin (Krapivin et al., 2009) 1844 / - / 460 5.2 2.2 43.8
NUS (Nguyen and Kan, 2007) – / – / 211 11.5 2.2 48.7
DUC2001 (Wan and Xiao, 2008) – / – / 308 8.1 2.1 2.7
KPTimes (Gallina et al., 2019) 260k / 10k / 20k 5.0 1.5 54.4
StackEx (Yuan et al., 2020) 298k / 16k / 16k 2.7 – 42.5
Weibo (Wang et al., 2019) 37k / 4.6k / 4.6k 1.1 2.6 75.8
StackEx (Wang et al., 2019) 39.6k / 4.9k / 4.9k 2.4 1.4 54.3

Table 4: Statistics of the benchmark datasets taken from (Wan and Xiao, 2008; Gallina et al., 2019; Wang et al.,
2019; Yuan et al., 2020; Do et al., 2023)
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