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Abstract

The HyperCube model is a promising tensor factorization framework for discovering la-
tent group structures in data. A foundational conjecture posits that its global minima
correspond to unitary group representations, but a proof has remained elusive. We make
significant theoretical progress by decomposing the HyperCube objective into a base term
dependent on matrix norms and a misalignment term. We introduce the Perfect Alignment
Conjecture, which states that this misalignment must vanish at any stationary point for
the optimization to capture a true group. Under this condition, we prove that all local
minima are in fact global and are unitarily equivalent to the group’s regular representa-
tion, thus conditionally resolving the original conjecture. Our analysis reveals HyperCube’s
unique inductive bias for full-rank, unitary solutions, distinguishing it from typical low-rank
models.

1. Introduction

Discovering hidden symmetry groups from data has long been central in physics, mathemat-
ics, and computer science. In modern deep learning, symmetry is typically built in through
equivariant architectures (Bronstein et al., 2021), such as CNNs. By contrast, However,
directly learning group structure from data has remained challenging, since the discrete
axioms of groups are incompatible with the continuous, gradient-based learning paradigm.

A recent work by Huh (2025) introduced a tensor factorization framework with a regular-
izer, called HyperCube, and showed empirically that it can efficiently recover hidden group
structure. That study conjectured that the global minima of the model’s loss landscape
correspond to unitary representations of the group, but left this central question open.

In this paper, we make significant theoretical progress on this conjecture. We prove that,
under a newly proposed perfect alignment condition, all local minima of the HyperCube
objective are global and unitarily equivalent to the regular representation. The central
open problem, which we formalize as the Perfect Alignment Conjecture, is whether every
minimizer necessarily satisfies this condition.

2. Setup and notation

We follow the task setup from (Power et al., 2022) of learning finite binary operation tables.
Let (G, o) be a finite set with |G| = n and a binary operation o. We define the Cayley
structure tensor as
dabe := 1{aob=c}, a,b,ce .

We assume (G, o) is a quasi-group, meaning its operation table is a Latin square. (G, o) is
a group if o is also associative, which will be our primary focus.
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The HyperCube model learns a factorized parameterization of the Cayley tensor, subject
to the constraint:!

Va,b,c € G : L Tr(A,ByC.) = (C, AuBy) = Sape.? (1)

Here, A, B,C are n X n X n tensors and A,, By, C. are their respective n x n matrix slices.
The objective is to minimize:

HAB.C)i= 3 IBCI+ Y [CAdl? + > [ 4aByl? (2)
b,ceG c,a€G a,beG
> G (I1BCel? + ICeAal? + | AaBol1?) (3)
a,b,ceG

where the second equality holds due to the Latin-square property. We aim to prove the
following conjecture from Huh (2025), conditional on our new conjecture in Section 3.2.

Conjecture 1 (Main conjecture of Huh (2025)) Subject to (1), the global minimizers
of H consist of unitary matrices that are unitarily equivalent to the left-reqular representation
of G. The minimum value is H* = 3n>.

3. Decomposition and Bounds
3.1. Decomposition into Base and Misalignment

Let oy = [|Aall, Bp := ||Bpl|, and 7. := ||C.|| denote the norms of the matrix slices. We
define the misalignment matrices as

AW =By, —a;%4l, AP .—ca, -8, A —a,B, -~ %Ch ()

abc abc abc c*

Lemma 2 (Decomposition of #) The objective function (2) can be decomposed as
H=B+R,

where B is a base term that depends only on the norms («, 5,7) and R is a misalignment
term that quantifies the geometric alignment of the matriz products. Explicitly,

B=Y due(0a?+ 6,2 +7.7), (5)
a,b,c

R =3 Sae (JAG2 + 1AGI2 + 1 A521). (6)
a,b,c

Proof Expanding [|A)|12 yields [|4,By — v 2CH2 = [|[4aBy|2 — 2R(CY, AuBy) /72 +
|Ce||?/7%. Under the constraint (1), this becomes ||AqBy||?> — 20ape/7? + 1/92. Summing
this over all triples (a, b, ¢) and cyclic permutations directly yields R = H — B. [ |

1. For matrices X,Y € M, (C), we define the normalized Frobenius inner product as
(X,Y) =2 T(XTY), X = (X, X),

where 1 denotes the conjugate transpose.
2. Cauchy—Schwarz bound: dape = |<Cz,AaBb>’ < N AaBo|l1Cell < N1 Aal |1Boll |ICell = @aBoye-
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Lemma 3 (Lower bound) The objective function is bounded below by

H > 3 Z 5abc (/‘chbc)a/3 3 (7)

a,b,c
where Kape = QqfpYe. Equality holds if ag = By = 7 for all (a,b, c) with dgp. = 1.

Proof Immediate from Lemma 2, H > B. Applying the AM-GM inequality o;2+ ;2 +.2 >
3 (afﬂffyf)l/ s yields the desired result. |

3.2. The Perfect Alignment Conjecture

Minimizing H requires simultaneously reducing both the base term B and the misalign-
ment term R. Our analysis suggests that for a true group G, any stationary point of the
optimization must satisfy R = 0. We formalize this as a new conjecture.

Conjecture 4 (Perfect Alignment Conjecture) If (G,o0) is a group, then any sta-
tionary point (A, B,C) of the constrained optimization problem must satisfy the perfect
alignment condition R = 0.

The remainder of this paper proves that, if this conjecture holds, then the original
HyperCube conjecture follows.

4. Structure under Perfect Alignment

In this section, we explore the profound structural consequences of the perfect alignment
condition (R = 0). Our goal is to show that this condition forces the matrix slices {4,},
{Byp}, and {C.} to be unitary and mutually aligned.

Lemma 5 The misalignment vanishes (R = 0) if and only if the following alignment
equations hold for all (a,b,c) € G3 with Sgp. = 1:

AaBb = ’yéch

c

ByC, = oAl C.A, = 3i2B]. (8)

Lemma 6 (Index-Independent Gram Matrices) IfR =0 and (G,o) is a group, there
exist positive semidefinite matrices X, Y, Z, independent of the indices a,b, c, such that:

X = A AL Ja2 = CIC. /2, Y = ByB)/BE = AlAu)a?,  Z:=C.Cl/N? = BIB,/B2.

Proof For any triple (a, b, ¢) with g = 1, (8) yields: CZCC/fyf = (AgBy)Ce = Au(ByCo) =
A Al /a2. Since this must hold for any b such that ¢ = a o b, the resulting matrix X must
be independent of the indices a and ¢. Cyclic permutations yield the other identities. W

Lemma 7 (Projection Equation) IfR =0, the product k := o, By is constant for all
triples with dap. = 1, and the matriz P := k?X is an orthogonal projection. Moreover,

k(X
H2:ran( )
n

<1
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Proof From Lemma 6, X = C’ZC’C/PyE = fyczAa(Bng)AL = ﬁgyf(AaAZ)(AaAl)/ag =
agﬁgvg(AaAl/ag)(AaAz/ag) = k2, . X?. This yields X = 2, X2 Since X is index-

abc abc
independent, K := Kqp must be a constant. Then, P := x?X is an orthogonal projection,
since P2 = k*X? = k2X = P. Then, n = Tr(X) = Tr(P)/k? = rank(X)/x?. [ ]

We can now assemble these results into our main theorem, which characterizes the
structure of the optimizers.

Theorem 8 (Structure of Global Minimizers) Assume the Perfect Alignment Con-
jecture holds. Then any global minimizer of H consists of unitary matrices where ay =
By =1y =1 for all g € G. The minimum value is Hmin = 3n.

Proof By the Perfect Alignment Conjecture, a global minimum must have R = 0. From
Lemma 3, the lower bound on H is minimized when the term (aaﬂb%)‘Q/?’ = k2/3
imized. Lemma 7 shows that any solution with R = 0 must have x < 1, so the maximum
possible value is k = 1. Such a point saturates the Cauchy—Schwarz bound and thus repre-
sents a minimum for the objective among all perfectly aligned solutions and is therefore a
global minimizer.

With x = 1, the lower bound becomes H > 3n?. For this bound to be achieved, the
AM-GM inequality in Lemma 3 must be an equality, which requires a2 = Bg = 42 for all
valid triples (a,b,c). As k = agfpye. = 1, this implies o, = B = 7. =1 for all g € G.

From Lemma 7, x* = 1 implies that X is a projection with full rank (rank(X) = n),
which is the identity matrix. Thus, X = (Y = Z) = I. Finally, the definition of X, Y, Z in
Lemma 6 implies that all matrices {4y}, {By}, {C.} are unitary. This achieves the bound
H =3 4pe0abe(l+1+1) =3n% u

1S max-

This theorem shows that any global minimizer must be composed of three families of
aligned unitary matrices. As shown in Appendix A, such solutions exist and are all unitarily
equivalent to the left-regular representation of the group G.

5. Conclusion and Future Work

Our work provides the first rigorous theoretical analysis of the HyperCube model and shows
that it correctly recovers group structure through representation learning, conditional on our
Perfect Alignment Conjecture. This analysis reveals a distinctive property of HyperCube:
a bias toward full-rank, unitary solutions. This stands in contrast to the common low-rank
bias in deep learning models, which is often associated with smooth interpolation between
training examples (Arora et al., 2019; Jacot, 2023; Huh et al., 2023; Balzano et al., 2025).
The full-rank, unitary nature of HyperCube solutions may indicate a novel form of inductive
bias, potentially enabling more robust extrapolation beyond the training data.

The central open question is whether, when the data represents a group, all station-
ary points of the HyperCube objective necessarily satisfy the perfect alignment condition
(R = 0). Resolving this conjecture would close the theoretical gap, explaining how perfect
alignment is the key mechanism that enforces the associativity axiom, thereby allowing the
model to distinguish true group structures from other quasi-groups. Future work will pur-
sue this question and explore broader links to nonconvex optimization, symmetry discovery,
and representation learning.
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Appendix A. Equivalence to the Regular Representation

In the main text, we established that under the Perfect Alignment Conjecture, any global
minimizer must consist of three families of unitary matrices. This appendix answers the
next logical question: what is the precise nature of these unitary solutions? We show that
they must form a representation of the group G, and furthermore, that all such solutions
are equivalent to one canonical solution: the left-reqular representation.

First, we provide a constructive proof that the left-regular representation is a valid solu-
tion that achieves the global minimum, certifying that the value Hyin = 3n? is attainable.

Lemma 9 (The Regular Representation is a Minimizer) Let p,(g) be the left-reqular
representation of G. The triple

Aa=pr(@),  Bo=p®),  Co=py(0) (9)
is a global minimizer of H, achieving the value 3n?.

Proof The matrices p,(g) are unitary, so all norms are 1. We check the alignment equations
(8):
Ao By = pr(a)pr(b) = pr(aob).

For the other side of the equation, C’lob = (pr(a o b)) = p,(a ob), confirming alignment.
Next, we check the constraint (1):

% Tr(AyByCl) = % Tr(pr(@)pr (B)pr()) = % Tr(pr(aoboc L)),

The character of the regular representation is Tr(p,(g)) = n-1{g = e}. Therefore, the trace
isnifacboc™t =e (i.e., aob = c) and 0 otherwise. Dividing by n confirms the constraint
holds. Since this solution is composed of unitary matrices, it achieves the minimum value
Humin = 3n?. |

Finally, we prove that the regular representation is, in essence, the only minimizer. The
following theorem shows that any global minimizer can be transformed into the regular
representation via a change of basis.

Theorem 10 (Global Minimizers are Unitarily Equivalent to p,) Let (A, B,C) be
a global minimizer. There exist unitary matrices U, V,W € U(n) such that the transformed

triple
A =UAV', Bl :=VBW'  C,:=WC,U!

defines a unitary representation p(g) of G where Ay = Bj = (C’;)T =: p(g). This represen-
tation p is unitarily equivalent to the left-regular representation p,.

Proof Since (A, B,C) is a global minimizer, its matrices are unitary and satisfy the
alignment equations A,B, = Clob, etc. Let e be the identity of G. Choose the unitary
matrices U = AL, V = I, and W = B..

1. Synchronization: We first show that Ay = By = (C;)T.
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(O = (B.CyA) = AlCIBL.

A; = AiAg. From alignment (8), A;B. = C; so Ag = C;BZ. Thus A; = AZC;BZ.

° B; = BgBl. From alignment (8), CyA. = Bg, so By = Ang. Thus B; = AlC’;BZ.
e Thus, A} = B = (C’;)T. Let’s call this common matrix p(g).

2. Homomorphism: We show p(g) is a group homomorphism.

pla)p(b) := AyBy = (UAV N (VBWT) = U(AuBy)WT
= U(CL)W' = (WCua U = (Clp)’
=plaob).
This confirms p is a group representation. Since the transform preserves unitarity, p is a

unitary representation.
3. Character: We show p has the same character as p,. The character is x,(g) =

Tr(p(g))-
i Xp(g) = T‘I‘(A/g) = TI‘(AEAQ)'

From the alignment equations with a = e,b =e,c = e, we have A.B, = C’l. Since matrices
are unitary, Al = B.C,. Substituting this:

Xp(g) = Tr((BeCe)Ag) = Tr(AgBeCe)'

Now we can use the constraint (1):

1 1
%Xp(g) = n Tr(AgBeCe) = gee = 1{g = e}.

Thus, the character is x,(g) = n-1{g = e}. This is precisely the character of the left-regular
representation. Since two representations with the same character are unitarily equivalent,
p is equivalent to p,. |
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