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Abstract

Comparing metric measure spaces (i.e. a metric space endowed with a probability
distribution) is at the heart of many machine learning problems. The most popular
distance between such metric measure spaces is the Gromov-Wasserstein (GW)
distance, which is the solution of a quadratic assignment problem. The GW dis-
tance is however limited to the comparison of metric measure spaces endowed with
a probability distribution. To alleviate this issue, we introduce two Unbalanced
Gromov-Wasserstein formulations: a distance and a more tractable upper-bounding
relaxation. They both allow the comparison of metric spaces equipped with ar-
bitrary positive measures up to isometries. The first formulation is a positive
and definite divergence based on a relaxation of the mass conservation constraint
using a novel type of quadratically-homogeneous divergence. This divergence
works hand in hand with the entropic regularization approach which is popular
to solve large scale optimal transport problems. We show that the underlying
non-convex optimization problem can be efficiently tackled using a highly paral-
lelizable and GPU-friendly iterative scheme. The second formulation is a distance
between mm-spaces up to isometries based on a conic lifting. Lastly, we provide
numerical experiments on synthetic examples and domain adaptation data with a
Positive-Unlabeled learning task to highlight the salient features of the unbalanced
divergence and its potential applications in ML.

1 Introduction

Comparing data distributions on different metric spaces is a basic problem in machine learning. This
class of problems is for instance at the heart of surfaces [Bronstein et al., 2006] or graph matching [Xu
et al., 2019] (equipping the surface or graph with its associated geodesic distance), regression problems
in quantum chemistry [Gilmer et al., 2017] (viewing the molecules as distributions of points in R3)
and natural language processing [Grave et al., 2019, Alvarez-Melis and Jaakkola, 2018] (where texts
in different languages are embedded as points distributions in different vector spaces).

Metric measure spaces. The mathematical way to formalize these problems is to model the data
as metric measure spaces (mm-spaces). A mm-space is denoted as X = (X, d, µ) where X is a
complete separable set endowed with a distance d and a positive Borel measure µ ∈M+(X). For
instance, if X = (xi)i is a finite set of points, then µ =

∑
imiδxi

(here δxi
is the Dirac mass at xi)

is simply a set of positive weights mi = µ({xi}) ≥ 0 associated to each point xi, which accounts for
its mass or importance. For instance, setting some mi to 0 is equivalent to removing the point xi. We
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refer to Sturm [2012] for a mathematical account on the theory of mm-spaces. In all the applications
highlighted above, it makes sense to perform the comparisons up to isometric transformations of
the data. Two mm-spaces X = (X, dX , µ) and Y = (Y, dY , ν) are considered to be equal (denoted
X ∼ Y) if they are isometric, meaning that there is a bijection ψ : spt(µ)→ spt(ν) (where spt(µ) is
the support of µ) such that dX(x, y) = dY (ψ(x), ψ(y)) and ψ]µ = ν. Here ψ] is the push-forward
operator, so that ψ]µ = ν is equivalent to imposing ν(A) = µ(ψ−1(A)) for any set A ⊂ Y . For
discrete spaces where µ =

∑
imiδxi

, then one should have ν = ψ]µ =
∑
imiδψ(xi). As highlighted

by Mémoli [2011], considering mm-spaces up to isometry is a powerful way to formalize and analyze
a wide variety of problems such as matching, regression and classification of distributions of points
belonging to different spaces. Most often, the objects of interest come with a natural distance such as
an intrinsic or extrinsic distance and the uniform measure is the usual choice to make mm-spaces
widely applicable. The key to unlock all these problems is the computation of a distance between
mm-spaces up to isometry. So far, existing distances (reviewed below) assume that µ is a probability
distribution, i.e. µ(X) = 1. This constraint is not natural and sometimes problematic for most of
the practical applications to machine learning. The goal of this paper is to alleviate this restriction.
We define for the first time a class of distances between unbalanced metric measure spaces, these
distances being upper-bounded by divergences which can be approximated by an efficient numerical
scheme.

Csiszár divergences The simplest case is when X = Y and one simply ignores the underlying
metric. One can then use Csiszár divergences (or ϕ-divergences), which perform a pointwise
comparison (in contrast with optimal transport distances, which perform a displacement comparison).
It is defined using an entropy function ϕ : R+ → [0,+∞], which is a convex, lower semi-continu-
ous, positive function with ϕ(1) = 0. The Csiszár ϕ-divergence reads Dϕ(µ|ν) ,

∫
X
ϕ
(

dµ
dν

)
dν +

ϕ′∞
∫
X

dµ⊥, where µ = dµ
dν ν + µ⊥ is called the Radon-Nikodym or the Lebesgue decomposition

of µ with respect to ν and ϕ′∞ = limr→∞ ϕ(r)/r ∈ R ∪ {+∞} is called the recession constant.
This divergence Dϕ is convex, positive, 1-homogeneous and weak* lower-semicontinuous, see Liero
et al. [2015] for details. Particular instances of ϕ-divergences are Kullback-Leibler (KL) for ϕ(r) =
r log(r)− r + 1 (note that ϕ′∞ =∞) and Total Variation (TV) for ϕ(r) = |r − 1|.

Balanced and unbalanced optimal transport. If the common embedding space X is equipped
with a distance d(x, y), one can use more elaborated methods such as optimal transport (OT) distances,
which are computed by solving convex optimization problems. This type of methods has proven
useful for ML problems as diverse as domain adaptation [Courty et al., 2014], supervised learning
over histograms [Frogner et al., 2015] and unsupervised learning of generative models [Arjovsky et al.,
2017]. In this case, the extension from probability distributions to arbitrary positive measures (µ, ν) ∈
M+(X)2 is now well understood and corresponds to the theory of unbalanced OT. Following Liero
et al. [2015], Chizat et al. [2018a], a family of unbalanced Wasserstein distances is defined by solving

UW(µ, ν)q , inf
π∈M(X×X)

∫
λ(d(x, y))dπ(x, y) + Dϕ(π1|µ) + Dϕ(π2|µ). (1)

Here (π1, π2) are the two marginals of the joint distribution π, defined by π1(A) = π(A× Y ) for
A ⊂ X . The mapping λ : R+ → R and exponent q ≥ 1 should be chosen wisely to ensure for
instance that UW defines a distance (see Section 2.2.1). It is frequent to take ρDϕ instead of Dϕ (i.e.
take ψ = ρϕ) to adjust the strength of the marginals’ penalization. Balanced OT is retrieved with
the convex indicator ϕ = ι{1} (i.e. ϕ(1) = 0 and ϕ(x) = +∞ otherwise) or by taking the limit
ρ → +∞, which enforces π1 = µ and π2 = ν. When 0 < ρ < +∞, unbalanced OT operates a
trade-off between transportation and creation of mass, which is crucial to be robust to outliers in the
data and to cope with mass variations in the modes of the distributions. For supervised tasks, the
value of ρ should be cross-validated to obtain the best performances. Its use is gaining popularity in
applications, such as medical imaging registration [Feydy et al., 2019a], videos [Lee et al., 2019],
generative learning [Balaji et al., 2020] and gradient flow to train neural networks [Chizat and Bach,
2018, Rotskoff et al., 2019]. Furthermore, existing efficient algorithms for balanced OT extend to this
unbalanced problem. In particular Sinkhorn’s iterations, introduced in ML for balanced OT by Cuturi
[2013], extend to unbalanced OT [Chizat et al., 2018b, Séjourné et al., 2019], as detailed in Section 3.

The Gromov-Wasserstein distance and its applications. The Gromov-Wasserstein (GW) dis-
tance [Mémoli, 2011, Sturm, 2012] generalizes the notion of OT to the setting of mm-spaces up to
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isometries. It replaces the linear cost
∫
λ(d)dπ of OT by a quadratic function. It reads

GW(X ,Y)q , min
π∈M+(X×Y )

{∫
λ(|dX(x, x′)− dY (y, y′)|)dπ(x, y)dπ(x′, y′) :

π1 = µ
π2 = ν

}
. (2)

It is proved in Mémoli [2011], Sturm [2012] that GW defines with λ(t) = tq a distance up to
isometries on balanced mm-spaces (i.e. the measures are probability distributions). The GW distance
is applied successfully in natural language processing for unsupervised translation learning [Grave
et al., 2019, Alvarez-Melis and Jaakkola, 2018], in generative learning for objects lying in spaces
of different dimensions [Bunne et al., 2019] and to build VAE for graphs [Xu et al., 2020]. It has
been adapted for domain adaptation over different spaces [Redko et al., 2020]. It is also a relevant
distance to compute barycenters between graphs or shapes [Vayer et al., 2018, Chowdhury and
Needham, 2020]. When (X ,Y) are Euclidean spaces, this distance compares distributions up to
rigid isometry, and is closely related (but not equal) to metrics defined by procrustes analysis [Grave
et al., 2019, Alvarez-Melis et al., 2019]. The problem (2) is non convex because the quadratic form∫
λ(|dX − dY |)dπ ⊗ π is not positive in general. It is in fact closely related to quadratic assignment

problems [Burkard et al., 1998], which are used for graph matching problems, and are known to
be NP-hard in general. Nevertheless, non-convex optimization methods have been shown to be
successful in practice to use GW distances for ML problems. This includes for instance alternating
minimization [Mémoli, 2011, Redko et al., 2020] and entropic regularization [Peyré et al., 2016, Gold
and Rangarajan, 1996].

Related works and contributions. The concomitant work of De Ponti and Mondino [2020] extends
the Lp transportation distance defined in Sturm et al. [2006] to unbalanced mm-spaces and studies
its geometric properties. This distortion distance is not equivalent to the GW distance, and is more
difficult to estimate numerically because it explicitly imposes a triangle inequality constraint in the
optimization problem. The work of Chapel et al. [2020] relaxes the GW distance to the unbalanced
setting by hybridizing GW with partial OT [Figalli, 2010] for unsupervised labeling. It ressembles
one particular setting of our formulation, but with some important differences, detailed in Section 2.
Our construction is also connected to partial matching methods, which find numerous applications
in graphics and vision [Cosmo et al., 2016]. In particular, Rodola et al. [2012] introduces a mass
conservation relaxation of the GW problem.

The two main contributions of this paper are the definition of two formulations relaxing the GW
distance. The first one is called the Unbalanced Gromov-Wasserstein (UGW) divergence and can be
computed efficiently on GPUs. The second one is called the Conic Gromov-Wasserstein distance
(CGW). It is proved to be a distance between mm-spaces endowed with positive measures up to
isometries, as stated in Theorem 1 which is the main theoretical result of this paper. We also prove in
Theorem 1 that UGW can be used as a surrogate upper-bounding CGW. We present those concepts
and their properties in Section 2. We also detail in Section 3 an efficient computational scheme for
a particular setting of UGW. This method computes an approximate stationary point of a biconvex
relaxation of our formulations. Even though it is a lower bound of the original problem, we provide
in Theorem 3 conditions ensuring the tightness of this relaxation in many cases of interest. The
algorithm leverages the strength of entropic regularization and the Sinkhorn algorithm, namely
that it is GPU-friendly and defines smooth loss functions amenable to back-propagation for ML
applications. Section 4 provides some numerical experiments to highlight the qualitative behavior of
this algorithm and its ability to cope with outliers and mass variations in the modes of the distributions.
We illustrate numerically the tightness of the relation between UGW and CGW, showing that UGW
is a reasonnable proxy of a distance, at least locally. We provide an application of our divergence in
the positive unlabeled learning setting, using domain adaptation data, and display results which are at
par or outperform the computable competitor Chapel et al. [2020].

2 Unbalanced Gromov-Wasserstein formulations

We present in this section our two new formulations and their properties. The first one, called UGW,
is exploited in Sections 3 and 4 to derive an efficient algorithm used in numerical experiments. The
second one, called CGW, defines a distance between mm-spaces up to isometries. Those results
build upon the work of Liero et al. [2015], and a summary of the construction of UOT is detailed in
Appendix A. In all what follows, we consider complete separable mm-spaces endowed with a metric
and a positive measure.
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2.1 The unbalanced Gromov-Wasserstein divergence

This new formulation makes use of quadratic ϕ-divergences, defined as D⊗ϕ (ρ|ν) , Dϕ(ρ⊗ ρ|ν⊗ ν),
where ρ ⊗ ρ ∈ M+(X2) is the tensor product measure defined by d(ρ ⊗ ρ)(x, y) = dρ(x)dρ(y).
Note that D⊗ϕ is not a convex function in general.

Definition 1 (Unbalanced GW). The Unbalanced Gromov-Wasserstein divergence is defined as
UGW(X ,Y) = infπ∈M+(X×Y ) L(π) , G(π) + D⊗ϕ (π1|µ) + D⊗ϕ (π2|ν).

This definition can be understood as an hybridation between (1) and (2) but with a twist: one needs
to use the quadratic divergence D⊗ϕ in place of Dϕ. To the best of our knowledge, it is the first time
such quadratic divergences are being used and studied. In the TV case, this is the most important
distinction between UGW and partial-GW [Chapel et al., 2020]. Note also that the balanced GW
distance (2) is recovered as a particular case when using ϕ = ι{1} or by letting ρ → +∞ for an
entropy ψ = ρϕ.

Using quadratic divergences results in UGW being 2-homogeneous: for θ ≥ 0, writing (Xθ,Yθ)
equiped with (θµ, θν), one has θ−2UGW(Xθ,Yθ) = UGW(X ,Y). When using non tensorized
ϕ-divergences, the resulting unbalanced Gromov-Wassertein functional between Xθ and Yθ have
very different and inconsistent behaviors when θ → 0 and θ → +∞. Indeed, once normalized by
θ−2 and θ−1, one obtains respectively balanced GW and a Hellinger-type distance. Using tensorized
divergences ensures that the behavior does not depends on θ. It is also fundamental to connect UGW
with our distance CGW, see Theorem 1 and Appendix B.

We first prove the existence of optimal plans π minimizing L, which holds for the three key settings
of Section 2.2.1, namely for KL, TV, and for compact metric spaces (such as finite pointclouds and
graphs). All proofs are deferred in Appendix B.

Proposition 1 (Existence of minimizers). We assume that (X,Y ) are compact and that either (i) ϕ
superlinear, i.e ϕ′∞ = ∞, or (ii) λ has compact sublevel sets in R+ and 2ϕ′∞ + inf λ > 0. Then
there exists π ∈M+(X × Y ) such that UGW(X ,Y) = L(π).

The following proposition ensures that the functional UGW can be used to compare mm-spaces.

Proposition 2 (Definiteness of UGW). Assume that ϕ−1({0}) = {1} and λ−1({0}) = {0}. Then
UGW(X ,Y) ≥ 0 and is 0 if and only if X ∼ Y .

We end this section with a reformulation of UGW which is important to make the connection with
the second formulation CGW of the following section. It splits UGW into two parts: the term
ϕ(0)(|(µ⊗µ)⊥|+ |(ν⊗ν)⊥|) accounts for the pure creation/destruction of mass and a new transport
cost Lc accounts for the remaining part (partial/pure transport and partial creation/destruction of
mass).

Lemma 1. Defining Lc(a, b) , c + aϕ(1/a) + bϕ(1/b), and writing (f , dµ
dπ1

, g , dν
dπ2

) the
Lebesgue densities of (µ, ν) w.r.t. (π1, π2) such that µ = fπ1 + µ⊥ and ν = gπ2 + ν⊥, one has

L(π) =

∫
X2×Y 2

Lλ(|dX−dY |)(f ⊗ f, g ⊗ g)dπdπ + ϕ(0)(|(µ⊗ µ)⊥|+ |(ν ⊗ ν)⊥|). (3)

Proof. Write f = dµ
dπ1

and g = dν
dπ2

. The Lebesgue decompositions read µ ⊗ µ = (f ⊗ f)π1 ⊗
π1 + (µ ⊗ µ)⊥ and ν ⊗ ν = (g ⊗ g)π2 ⊗ π2 + (ν ⊗ ν)⊥, thanks to the tensorized structure of
the decomposed plans. To prove Equation (3), we need to define the reverse entropy Liero et al.
[2015] such that Dϕ(α|µ) = Dψ(µ|α), where ψ(x) , xϕ( 1

x ) is also an entropy function satisfying
ψ′∞ = ϕ(0). One then has

L(π) =

∫
X2×Y 2

λ(Γ)dπdπ + D⊗ϕ (π1|µ) + D⊗ϕ (π2|ν)

=

∫
X2×Y 2

λ(Γ)dπdπ + D⊗ψ (µ|π1) + D⊗ψ (ν|π2)
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L(π) =

∫
X2×Y 2

λ(Γ)dπdπ +

∫
X2

ψ(f ⊗ f)dπ1dπ1 +

∫
Y 2

ψ(g ⊗ g)dπ2dπ2

+ ϕ(0)(|(µ⊗ µ)⊥|+ |(ν ⊗ ν)⊥|)

=

∫
X2×Y 2

Lλ(Γ)(f ⊗ f, g ⊗ g)dπdπ + ϕ(0)(|(µ⊗ µ)⊥|+ |(ν ⊗ ν)⊥|).

Using the definition of ψ in Lc ends the proof.

2.2 The conic Gromov-Wasserstein distance

We introduce a second “conic” formulation of unbalanced GW, which is connected to UGW, and
whose construction is inspired by the conic formulation of UOT (see Appendix A for an overview).

2.2.1 Background on cone sets and distances

The conic formulation lifts a point x ∈ X to a couple (x, r) ∈ X × R+ where r encodes some
(power of a) mass. Then we seek optimal transport plans defined over C[X] , X × R+/(X × {0}),
where coordinates (x, r = 0) with no mass are merged into a single point 0X called the apex of the
cone. In the sequel, points of X × R+ are noted (x, r), while [x, r] are quotiented points of C[X].

While transport plans depend on variables ([x, r], [y, s]) and ([x′, r′], [y′, s′]) in C[X]×C[Y ], the trans-
portation cost involved in our conic formulation only makes use of the 2-D cone C[R+] over R+ en-
dowed with the distance |u−v| (note that any other distance on R could be used as well). More specif-
ically, we consider coordinates of the form ([u, a], [v, b]) = ([dX(x, x′), rr′], [dY (y, y′), ss′]) ∈
C[R+] × C[R+]. Thus we now describe conic discrepancies D on C[R+], which are defined for
(p, q) ≥ 1 as D([u, a], [v, b])q , Hλ(|u−v|)(a

p, bp), where Hc(a
p, bp) , infθ≥0 θLc(

ap

θ ,
bp

θ ) is the
perspective transform of Lc introduced in Lemma 1. The intuition underpinning the definition of this
cost is that the perspective transform accounts for the possibility to rescale a transport plan π by a
scalar θ but the scaling is performed pointwise instead of globally. In general D is not a distance, but
it is always definite as stated by this result proved in Appendix A.
Proposition 3. Assume λ−1({0}) = {0}, ϕ−1({0}) = {1} and ϕ is coercive. Then D is definite on
C[R+], i.e. D([u, a], [v, b]) = 0 if and only if (a = b = 0) or (a = b and u = v).

Of particular interest are those ϕ where D is a distance, which necessitates a careful choice of λ, p
and q. We now detail three examples where this is the case.
Gaussian Hellinger distance (GH). When Dϕ = KL, λ(t) = t2 and q = p = 2, then one has
D([u, a], [v, b])2 = a2 + b2 − 2abe−|u−v|/2. This cone distance [Burago et al., 2001] is further gen-
eralized by De Ponti [2019] who shows that D is a distance for power entropies ϕ(s) = sp−p(s−1)−1

p(p−1)

if p ≥ 1 (the case p = 1 corresponding to Dϕ = KL).
Hellinger-Kantorovich (HK) / Wasserstein-Fisher-Rao distance (WFR). When Dϕ = KL,
λ(t) = − log cos2(t∧ π2 ) and q = p = 2, then one hasD([u, a], [v, b])2 = a2 +b2−2ab cos(π2 ∧|u−
v|). This construction, which might seem peculiar, corresponds to the one used to make unbalanced
OT a geodesic distance, as detailed in [Liero et al., 2015, Chizat et al., 2018a].
Partial optimal transport distance (PT). When Dϕ = TV, λ(t) = tq, q ≥ 1 and p = 1, then
D([u, a], [v, b])q = a+ b− (a ∧ b)(2− |u− v|q)+ defines a cone distance [Chizat et al., 2018a].

2.2.2 Definitions and properties

The conic formulation consists in solving a GW problem on the cone, with the addition of two linear
constraints. Informally speaking, Lc from Lemma 1 becomes D, the term (|(µ⊗ µ)⊥|+ |(ν ⊗ ν)⊥|)
is taken into account by the constraints (5) below, and the variables (f, g) are replaced by (rp, sp). It
reads CGW(X ,Y) , infα∈Up(µ,ν)H(α) where

H(α) ,
∫
D([dX(x, x′), rr′], [dY (y, y′), ss′])q dα([x, r], [y, s])dα([x′, r′], [y′, s′]), (4)

and Up(µ, ν) is defined as the set

Up(µ, ν) ,

{
α ∈M+(C[X]× C[Y ]),

∫
R+

rpdα1(·, r) = µ,

∫
R+

spdα2(·, s) = ν

}
. (5)
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It is similar to the conic formulation of UW, see Appendix A. Note that similarly to the GW
formulation (2) – and in sharp contrast with the conic formulation of UW – here the transport plans
are defined on the cone C[X]× C[Y ] but the cost D is a distance on C[R+].

We present now the main contributions of this paper, proved in Appendix C. We state that CGW
defines a distance under conditions that hold for the settings of Section 2.2.1, and that it is upper-
bounded by UGW. The divergence UGW can be approximated with efficient numerical schemes as
detailed in Section 3.

Theorem 1. (i) The divergence CGW is symmetric, positive and definite up to isometries. (ii) If D is
a distance on C[R+], then CGW1/q is a distance on the set of mm-spaces up to isometries. (iii) For
any (Dϕ, λ, p, q) with associated cost D on the cone, one has UGW ≥ CGW.

3 Algorithms

We focus in this section on the numerical computation of the upper bound UGW using a bi-convex
relaxation and derive an alternate minimization scheme coupled with entropic regularization. We also
propose to approximate CGW by doing a similar alternate minimization, as detailed in Appendix E.
We provide guarantees of tightness on the bi-convex relaxation for CGW (see Theorem 3). The
computation of the distance CGW is heavy in practice because it requires an optimization over
a lifted conic space, which needs to be discretized. Thus it does not scale to large problem for
CGW, but allows to explore numerically how tight is the upper bound UGW ≥ CGW, see Section 4.
The algorithm for UGW is presented on arbitrary measures, the special case of discrete measures
being a particular case. The discretized formulas and algorithms are detailed in Appendix D,
see also Chizat et al. [2018b], Peyré et al. [2016]. All implementations are available at https:
//github.com/thibsej/unbalanced_gromov_wasserstein, and installable in Python with the
command pip install unbalancedgw.

3.1 Bi-convex relaxation and tightness

In order to derive a simple numerical approximation scheme, following Mémoli [2011], we introduce
a lower bound obtained by introducing two transportation plans. To further accelerate the method and
enable GPU-friendly iterations, similarly to Gold et al. [1996], Solomon et al. [2016], we consider an
entropic regularization. It reads, for any ε ≥ 0,

UGWε(X ,Y) , inf
π
L(π) + εKL⊗(π|µ⊗ ν) ≥ inf

π,γ
F(π, γ) + εKL(π ⊗ γ|(µ⊗ ν)⊗2), (6)

and F(π, γ) ,
∫
X2×Y 2

λ(|dX − dY |)dπ ⊗ γ + Dϕ(π1 ⊗ γ1|µ⊗ µ) + Dϕ(π2 ⊗ γ2|ν ⊗ ν) ,

where (γ1, γ2) denote the marginals of the plan γ. In the sequel we write Fε = F + εKL⊗. Note
that in contrast to the entropic regularization of GW Peyré et al. [2016], here we use a tensorized
entropy to maintain the overall homogeneity of the energy. A simple method to approximate this
lower bound is to perform an alternate minimization on π and γ, which is known to converge for
smooth ϕ to a stationary point since the coupling term in the functional is smooth [Tseng, 2001].
Note that if π ⊗ γ is optimal then so is (sπ)⊗ ( 1

sγ) with s ≥ 0. Thus without loss of generality we
can optimize under the constraint m(π) = m(γ) by setting s =

√
m(γ)/m(π).

We now discuss the tightness of the bi-convex relaxation by generalizing a result of Konno. We first
present a result which applies to general quadratic assignment problems, then state its application to
our setting.

Theorem 2 (Tight relaxation). Let B a Banach space, let f : B 7→ R ∪ {+∞} be a function and let
L : C ⊂ B 7→ R the function defined on the convex set C ⊂ B by L(π) = 1

2 〈π, k(π)〉+2f(π) where
k is a symmetric bilinear map which is negative (not necessarily definite) on ∆C , Span({π −
γ ; (π, γ) ∈ C}), that is, for any z ∈ ∆C, 〈z, kz〉 ≤ 0. Assume that there exists π0 ∈ C such
that L(π0) < +∞, and define F(π, γ) , 1

2 〈π, k(γ)〉 + f(π) + f(γ). Then, for any (π∗, γ∗) ∈
arg minF(π, γ), we have F(π∗, π∗) = F(γ∗, γ∗) = F(π∗, γ∗). Moreover, if one assumes either
that k is a definite kernel or f is strictly convex, one gets π∗ = γ∗.

6

https://github.com/thibsej/unbalanced_gromov_wasserstein
https://github.com/thibsej/unbalanced_gromov_wasserstein


The above Theorem 2 is proved in Appendix D. As an application, we now state our tightness result
for GWε and CGW. In those settings the optimizers of the bi-convex relaxation are also optimal for
the original problem.
Theorem 3. For GWε with ε ≥ 0 or for CGW, assume that λ(t) = t2 and that (dX , dY ) are both
conditionnally negative (or conditionally positive) kernels. Then the bi-convex relaxation of both
problems is tight.

Proof. The proof for CGW is detailed in Appendix E, we prove the tightness for GWε. When λ(t) =
t2 the kernel k = λ(|dX − dY |) is conditionally negative on the set {(π, γ), π1 = γ1 and π2 = γ2},
i.e. we have 〈(π−γ), k(π−γ)〉 ≤ 0 (see Maron and Lipman [2018]). For GWε one has π1 = γ1 = µ
and π2 = γ2 = ν thanks to the constraints on marginals. Thus the kernel is negative semi-definite
and the proof of Theorem 2 applies, hence the tightness of the relaxation.

Konno’s result Konno [1976] applies for unregularized (ε = 0), Balanced-GW. The novelty of
Theorem 3 is its extension to both GWε and CGW. So far it is an open question whether the relaxation
is tight or not for UGWε, because the above proof no longer holds. Note that in all our numerical
simulations, our solvers always found solutions of UGWε such that π = γ when |dX − dY |2 is
conditonally negative. The property that the kernel |dX − dY |2 is negative does not hold in general
(e.g. for graph geodesic distances) and the tightness of the relaxation remains open in this setting.
We know from [Maron and Lipman, 2018, Theorem 1] that it is conditionally negative semi-definite
when both (dX , dY ) are conditionally negative kernels. Examples of distances which are negative
kernels are tree metrics in the case of graphs, as well as Euclidean, spherical and hyperbolic distances
over their respective manifolds Feragen et al. [2015]. In practice, when ε is small, we observed in the
indefinite setting that the relaxation outputs more frequently spurious minima than in the negative
semi-definite setting.

3.2 Alternate Sinkhorn minimization

Minimizing the lower bound (6) with respect to either π or γ is non-trivial for an arbitrary ϕ. We
restrict our attention to the Kullback-Leibler case Dϕ = ρKL with ρ > 0, which can be addressed by
solving a regularized and convex unbalanced problem as studied in Chizat et al. [2018b], Séjourné
et al. [2019]. It is explained in the following proposition.
Proposition 4. For a fixed γ, the optimal π ∈ arg min

π
F(π, γ) + εKL(π ⊗ γ|(µ⊗ ν)⊗2) solves

min
π

∫
cεγ(x, y)dπ(x, y) + ρm(γ)KL(π1|µ) + ρm(γ)KL(π2|ν) + εm(γ)KL(π|µ⊗ ν),

where m(γ) , γ(X × Y ) is the mass of γ, and where we define the cost associated to γ as

cεγ(x, y),
∫
λ(|dX(x, ·)− dY (y, ·)|)dγ+ρ

∫
log(

dγ1

dµ
)dγ1+ρ

∫
log(

dγ2

dν
)dγ2+ε

∫
log(

dγ

dµdν
)dγ.

Algorithm 1 – UGW(X , Y , ρ, ε)
Input: mm-spaces (X ,Y), relax. ρ, regul. ε
Output: π, γ solving (6)

Init. π = γ = µ⊗ ν/
√
m(µ)m(ν), g = 0.

while (π, γ) has not converged do
Update π ← γ,
then c← cεπ , ρ̃← m(π)ρ, ε̃← m(π)ε

while (f, g) has not converged do
f ← − ε̃ρ̃

ε̃+ρ̃
log

∫
e(g(y)−c(·,y))/ε̃dν(y)

g ← − ε̃ρ̃
ε̃+ρ̃

log
∫
e(f(x)−c(x,·))/ε̃dµ(x)

end while
Upd. γ(x, y)←e

f(x)+g(y)−c(x,y)
ε̃ µ(x)ν(y)

Rescale γ ←
√
m(π)/m(γ)γ

end while
Return (π, γ).

Computing the cost cεγ for spaces X and Y of n points
has in general a costO(n4) in time and memory. How-
ever, as explained for instance in Peyré et al. [2016],
for the special case λ(t) = t2, this cost is reduced
to O(n3) in time and O(n2) in memory. This is
the setting we consider in the numerical simulations.
This makes the method applicable for scales of the
order of 104 points. For larger datasets one should
use approximation schemes such as hierarchical ap-
proaches [Xu et al., 2019] or Nyström compression of
the kernel [Altschuler et al., 2018].

The resulting alternate minimization method is de-
tailed in Algorithm 1, see Appendix D for a discretized
version. It uses the unbalanced Sinkhorn algorithm
of Chizat et al. [2018b], Séjourné et al. [2019] as sub-
iterations and takes π = µ ⊗ ν/

√
m(µ)m(ν) to ini-

tialize the updates. This Sinkhorn algorithm operates over a pair of continuous functions (so-called
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Kantorovitch potentials) f(x) and g(y). For discrete spaces X and Y of size n, these functions are
stored in vectors of size n, and that integral involved in the updates becomes a sum. Each iteration of
Sinkhorn thus has a cost n2, and all the involved operation can be efficiently mapped to parallelizable
GPU routines as detailed in Chizat et al. [2018b], Séjourné et al. [2019]. Another advantage of
using an unbalanced Sinkhorn algorithm is its complexity O(n2/ε) to compute an ε-approximation,
as stated in Pham et al. [2020], which should be compared to O(n2/ε2) operations for balanced
Sinkhorn.

Note also that balanced GW is recovered as a special case when setting ρ → +∞, so that ρ̃/(ε̃ +
ρ̃) → 1 should be used in the iterations. In order to speed up Sinkhorn inner-loops, especially for
small values of ε, one can use linear extrapolation [Thibault et al., 2017] or non-linear Anderson
acceleration [Anderson, 1965, Scieur et al., 2016].

There is an extra scaling step after computing γ involving the mass m(π). It corresponds to the
scaling s of π⊗ γ such that m(π) = m(γ), and we observe that this scaling is key not only to impose
this mass equality but also to stabilize the algorithm. Otherwise we observed that m(γ) < 1 < m(π)
and underflows whenever m(γ)→ 0 and m(π)→∞.

4 Numerical experiments

This section presents simulations on synthetic examples to highlight the qualitative behavior of
UGW and the tightness of the bound UGW ≥ CGW. Other illustrations on UGW are available in
Appendix E. We end the section with a learning application of UGW in a positive-unlabeled setting,
using domain adaptation data so as to compare with PGW Chapel et al. [2020]. In the synthetic
experiments, µ and ν are probability distributions, which allows us to compare GW with UGW.

Robustness to imbalanced classes. In this first example, we take X = R3, Y = R2 and consider
E2, E3, C and S to be uniform distributions on a 2D and 3D ellipse, a square and a sphere. We consider
mm-spaces of different dimensions to emphasize the ability of (U)GW to compare different spaces.
Figure 1 contrasts the transportation plan obtained by GW and UGW for a fixed µ = 0.5E3 + 0.5S
and ν obtained using two different mixtures of E2 and C. The black segments show the largest entries
of the transportation matrix π, for a sub-sampled set of points (to ease visibility), thus effectively
displaying the matching induced by the plan. Furthermore, the width of the dots are scaled according
to the mass of the marginals π1 ≈ µ and π2 ≈ ν, i.e. the smaller the point, the smaller is the amount
of transported mass. This figure shows that the exact conservation of mass imposed by GW leads
to a poor geometrical matching of the shapes which have different global mass. As this should be
expected, UGW recovers coherent matchings. We suspect the alternate minimization algorithm is
able to find the global minimum in these cases.

GW UGW GW UGW

Figure 1: GW vs. UGW transportation plan, using ν = 0.3E2+0.7C on the left, and ν = 0.7E2+0.3C
on the right. The 2D mm-spaces is lifted into R3 by padding the third coordinate to zero.

Tightness of the bound CGW≤UGW We propose to approximate CGW by doing a similar
alternate minimization as for UGW, as detailed in Appendix E. This numerical scheme does not scale
to large problems, but allows us to explore numerically how tight is the upper bound UGW ≥ CGW.
Figure 2 highlights the fact that in Euclidean space X = Y = Rd, this bound seems to be tight
when the two measures are sufficiently close. We consider discrete measures µ = 1

n

∑
i δxi

in
X = Y = Rd and νt = 1

n

∑
i δyi where yi = xi + t∆i where ∆i are random perturbations and

8



denote (X ,Yt) the two mm-spaces associated to the Euclidean distance. As t → 0, µ and νt get
closer, we observe numerically that UGW ≈ CGW. Figure 3 considers random points (xi)i and
(yi)i and displays the histograms of the ratio CGW/UGW for n = 3. This shows that while the
bound CGW ≤ UGW seems not tight, the ratio appears to be bounded even for points not being
close. This numerical experiment suggests that UGW and CGW are locally equivalent and that UGW
is in practice an acceptable proxy of the distance CGW. We leave for future works a tighter analysis
of the gap between UGW and CGW.

Figure 2: Comparison of
UGW(X ,Yt) and CGW(X ,Yt)
as the support gets shifted by a
perturbation.

Positive unlabeled learning experiments Positive Unla-
beled (PU) learning is a semi-supervised classification problem,
where instead of learning from positive and negative samples
(xi, `i)i with labels `i ∈ {−1, 1} we only learn from one class
labeled with positives, i.e. only those X , {xi : `i = 1}.
The task is to leverage X to predict the classes ` = `(y) ∈
{−1,+1} of unlabelled y ∈ Y belong to a separate space. We
consider here that X,Y are embedded in Euclidean space, and
denote X ,Y the associated labelled and unlabelled mm-spaces,
equipped with the uniform distribution. Our experiments are
adapted from Partial-GW (PGW) Chapel et al. [2020], which
used partial GW to solve PU-learning. The rationale of using
unbalanced OT methods for PU learning stems from the fact
that positive samples should be matched with positive due to
their similar features, while negative samples would be ignored due to dissimilar features that induce
a laziness to transport mass and match them.

We consider PU learning over the Caltech office dataset used for domain adaptation tasks (with
domains Caltech (C) Griffin et al. [2007], Amazon (A), Webcam (W) and DSLR (D) Saenko et al.
[2010]). The Caltech datasets are represented with two embeddings based on Surf and Decaf
features Saenko et al. [2010], Donahue et al. [2014]. On the latter datasets, we perform PU learning
over similar features (e.g. surf-C→ surf-* or decaf-C→ decaf-*) and from one feature format to
the other (e.g. surf-C→ decaf-* or surf-C→ decaf-*). Those features are projected via PCA to
subspaces of dimension 10 for surf features and 40 for decaf features. In the last task, one cannot
use standard PU-method, and to the best of our knowledge, Unbalanced-GW methods are the only
approaches for PU learning across different domains/features.

Figure 3: Histograms of the ratio
CGW/UGW for random spaces with
n ∈ {2, 3, 5} samples. Ratios over 1
are due to local minima.

The procedure is the following. We solve the PU learning
problem by computing the optimal plan π for UGW(X ,Y).
We compute its first marginal π2 on Y , and predict the labels
of some y ∈ Y as `(y) , sign(π2(y) − q) where q is the
quantile of π2 corresponding to the proportion r of positives
samples in Y . Following Chapel et al. [2020] which is
adapted from Kato et al. [2018], Hsieh et al. [2019], this
proportion r is assumed to be known. We report the accuracy
of the prediction over the same 20 folds of the datasets, and
use 20 other folds to validate the parameters of UGW. We
consider 100 random samples for each fold of (X,Y ), a
ratio of positive samples r = 0.1 for domains (C,A,W,D),
and a ratio r = 0.2 for domains (C,A,W).

Since the GW objective is non-convex, the initialization of
the minimization algorithms is key to obtain good perfor-
mances. In Chapel et al. [2020] and our experiments, for tasks where Y and Y belong to the same
Euclidean space, (e.g. surf-C→ surf-*) we initialize π with the Partial-Wasserstein (PW) solution
with a squared Euclidean cost. For cross-domain prediction (e.g. surf-C→ decaf-*), following Chapel
et al. [2020], PGW is initialized with a list of plans built using a coarsened representation of the data
with k-NN. While Chapel et al. [2020] makes use in an oracle manner of the plan providing the best
accuracy, we modified their protocol and keep the plan which has the lowest PGW cost, which seems
fairer, hence the difference in performance with Chapel et al. [2020]. To initialize UGW when X and
Y do not belong to the same Euclidean space, we use a UOT solution of a matching between distance
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Dataset prior Init (PW) PGW UGW Dataset prior Init (FLB) PGW UGW
surf-C→ surf-C 0.1 89.9 84.9 83.9 surf-C→ decaf-C 0.1 85.0 85.1 85.6
surf-C→ surf-A 0.1 81.8 82.2 83.5 surf-C→ decaf-A 0.1 84.2 87.1 83.6
surf-C→ surf-W 0.1 81.9 81.3 80.3 surf-C→ decaf-W 0.1 86.2 88.6 86.8
surf-C→ surf-D 0.1 80.0 81.4 83.2 surf-C→ decaf-D 0.1 84.7 91.1 90.7
surf-C→ surf-C 0.2 79.7 75.7 75.4 surf-C→ decaf-C 0.2 74.8 75.6 75.9
surf-C→ surf-A 0.2 65.6 66.0 76.4 surf-C→ decaf-A 0.2 76.2 87.9 82.4
surf-C→ surf-W 0.2 65.1 64.3 67.3 surf-C→ decaf-W 0.2 81.5 88.4 89.9

decaf-C→ decaf-C 0.1 93.9 83.0 86.8 decaf-C→ surf-C 0.1 81.7 81.0 81.1
decaf-C→ decaf-A 0.1 80.1 81.4 85.6 decaf-C→ surf-A 0.1 80.9 81.2 82.4
decaf-C→ decaf-W 0.1 80.1 82.7 86.1 decaf-C→ surf-W 0.1 82.0 81.3 83.5
decaf-C→ decaf-D 0.1 80.6 83.8 83.4 decaf-C→ surf-D 0.1 80.0 80.8 81.5
decaf-C→ decaf-C 0.2 90.6 76.7 80.5 decaf-C→ surf-C 0.2 66.6 63.7 65.2
decaf-C→ decaf-A 0.2 62.5 68.7 74.7 decaf-C→ surf-A 0.2 62.9 62.4 69.3
decaf-C→ decaf-W 0.2 65.7 75.9 79.2 decaf-C→ surf-W 0.2 65.1 61.4 83.3

Table 1: Accuracy for all tasks. The left block are domain adaptation experiments with similar
features, where both PGW and UGW are initialised with PW. The right block are domain adaptation
experiments with different features, and the reported init is FLB (see Appendix E) used for UGW.

histograms called FLB Mémoli [2011]. We define FLB in our UGW setting as

FLB(X ,Y) , min

∫
X×Y

|µ̄ ? dX − ν̄ ? dY |2dπ+ ρKL(π1|µ) + ρKL(π2|ν) + εKL(π|µ⊗ ν), (7)

where µ ? dX(x) ,
∫
dX(x, x′)dµ(x′) is the eccentricity, i.e. a histogram of aggregated distances,

and µ̄ = µ/m(µ). Contrary to GW Mémoli [2011], there is a priori no link between FLB and UGW.

In the experiments we slightly generalize UGW and use two different marginal penalties
ρ1KL⊗(π1|µ) + ρ2KL⊗(π2|ν) with two parameters (ρ1, ρ2) to take into account shifts between
domains/features. Note that PGW has a single parameter (which plays a role similar to (ρ1, ρ2))
which controls the cost of mass creation/destruction. We set ε = 2−9, which avoids introducing an
extra parameter in the method. The value (ρ1, ρ2) ∈ {2−k, k ∈ J5, 10K}2 are cross validated for each
task on the validation folds, and we report the average accuracy on the testing folds. We discuss in
Appendix E the impact of reducing the number of parameters on the performance. Comparison with
other methods – PU and PUSB Kato et al. [2018], Du Plessis et al. [2014] – are provided in Chapel
et al. [2020] and we focus here on the comparison with PGW only.

The results are reported in Table 1. We display the performance of PGW, UGW and the initialization
used for UGW to guarantee that using UGW does improve the performance. We observe that when
the source and target dataset is the same (C→C tasks), the PW initialization performs better and
PGW/UGW degrade the performance, so that in this setting Optimal Transport should be preferred
over GW, which is to be expected. However when the domains are different, applying UGW improves
the performance over the initialization (which is FLB) in almost all tasks. Note that in that case the
methods PU, PUSB or PW cannot be used. Overall, this shows that GW methods are able to solve to
some extent the PU learning problem across different spaces, and that using a “softer” KL penalties
in UGW is at least at par with Partial GW, and performs better in some settings.

5 Conclusion and perspectives

This paper defines two Unbalanced Gromov-Wasserstein formulations: CGW and UGW. We prove
that they are both positive and definite. We provide a scalable, GPU-friendly algorithm to compute
UGW illustrate its applicability in learning tasks, and show that CGW is a distance between mm-
spaces up to isometry. These divergences and distances allow for the first time to blend in a seamless
way the transportation geometry of GW with creation and destruction of mass. This hybridization
is the key to unlock both theoretical and practical issues. This work opens new questions for future
works, for instance removing the bias introduced by the use of entropic regularization, which is
important for applications to ML. Note that such a debiasing was successfully applied for Balanced-
GW in Bunne et al. [2019] and is shown to lead to a valid divergence for balanced OT in Feydy et al.
[2019b] and UW in Séjourné et al. [2019]. The design of efficient numerical solvers for CGW is also
an interesting avenue for future works, as well as the study of its induced topology.
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