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Abstract

In this work, we discover whether neural network interpreters can be fooled by manipulating
adversarial models. We conduct rigorous and extensive experiments with certain interpretation
methods, e.g. LRP, Grad-CAM, and discuss hyperparameters applied to models and foolings.
Our results are validated by comparing the visual interpretations before and after the fooling and
reporting quantitative metrics that measure the deviations from the original interpretations. The
work shows that it is possible to manipulate adversarial models which can affect what models
interpret regarding the cause of the prediction while not being noticed. We believe this work
can facilitate developing a more robust and reliable neural network interpreter that can truly
interpret the network’s underlying decision-making process.

1 Introduction

Deep learning neural network models have achieved great results in many domains including computer vision.
However, the neural network interpretation methods can be fooled by manipulating adversarial models. In this
work, we conduct experiments with three pre-trained models implemented in the ImageNet competition, e.g.
VGG19[1], ResNet50[2], and DenseNet121[3]. The adversarial model manipulation aims to fool the neural
network interpretations without hurting the accuracy of the original models. By straightforwardly adding penalty
terms to the interpreters, the interpretation results show that the two state-of-the-art interpreters can be fooled by
adversarial model manipulation [4].

1.1 Neural network interpretation methods and adversarial model manipulation

Layer-wise Relevance Propagation (LRP)[5], Grad-CAM[6] are two well-known network interpretation methods
that perform well on sanity checks among state-of-the-art interpretation algorithms. The two interpretation
methods generate heatmaps to illustrate the importance of the input data to the prediction. The interpretations are
fundamental to real-world applications which allow people to understand the relevancy of certain objects. In this
work, we are interested in studying the reliability of the two interpretations by highlighting the true causes of the
prediction. We propose passive foolings to study the reliability of the two interpretation methods. We show that it
is possible to change the interpretations without hurting the prediction accuracy. That is, it is possible to have the
right prediction but to lose important information. Training robust networks is an important problem that can lead
to a better understanding of neural networks and improve their generalization capabilities.

1.2 Practical implication

The attack is practical since we manipulate the neural network models and intentionally prevent the foolings from
being noticed by people. Such fooling methods are close to real-world applications. As a practical example,
some medical applications are not only interested in the prediction but also understanding the cause of it. For
example, we may seek to find out which parts of a medical image are most important for cancer diagnosis. In
this case, correct interpretations are necessary for patients to have the right treatment. We believe our foolings
can be generalized beyond object classification to empower an adversary to manipulate the reasoning about some
medical diagnosis. For the reason, we can observe that fooled interpretations via adversarial model manipulations
can cause some serious consequences regarding AI in real-world applications.
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1.3 Reproduction and modification

We reproduce a subset work of [4]. In our reproduction, we focus on the passive fooling in their work, as active
fooling exceeded the computational capabilities of our systems. We implement three fooling methods to trick the
two representative interpreters, LRP[5] and Grad-CAM[6]. We demonstrate that the interpreters are vulnerable
when people intent to trick them. Moreover, after achieving the baselines, we consider possible changes to
hyperparameters, including the learning rate and the penalty term. We propose a new set of hyperparameters that
leads to a better quantitative metric score, in which the explanations of images (highlighted points) are changed
more acutely via adversarial model manipulation. Moreover, we extend the experiments to find out the most
vulnerable and the least reliable interpreter of the two interpretation methods. To summarize, we conduct a set of
rigorous and extensive experiments to test the reliability and vulnerability of two representative interpretation
methods.
Remark: In the original work [4], the original authors implemented three interpretation methods, LRP, G-CAM,
and SimpleG. However, they mentioned in their paper [4] that the SimpleGT method generates very noisy heatmaps
that particularly affect their observations. And they excluded the discussion of SimpleGT for manipulating the
models. For this reason, SimpleG method is not explicitly discussed in our report. However, we will show that
SimpleGT does generate noisy heatmaps.

2 Related Work

2.1 Interpretation methods of deep neural networks

Many interpretation methods for neural networks have been proposed, they are categorized as black-box methods
and gradient/saliency map-based methods. In this related work, we introduce three gradient-based methods.
The three methods are general approaches to explain predictions of neural networks. In 2013, Simonyan et
al. first proposed Simple Gradient (SimpleG) in the paper "Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps"[7]. Two years after, a new interpretation Layer-Wise Relevance
Propagation (LRP) was presented in a work by Bach et al.[5]. The paper also showed that the SimpleG method
usually generates noisier saliency maps. A year later, Selvaraju et al. introduced Gradient-Weighted Class
Activation Mapping (Grad-CAM) in the paper "Grad-CAM: Visual Explanations from Deep Networks via
Gradient-based Localization"[6].

2.2 Adversarial neural network

The adversarial idea of neural networks was introduced by Goodfellow et al.[8]. This framework corresponds
to a minimax two-player self-play game. As a consequence, adversarial neural networks became one of the
biggest topics in deep learning. Then, Szegedy et al. developed the adversarial neural networks to examine their
stability and reliability[9]. The results showed that the state-of-the-art machine learning models can be fooled
simply by applying easy back-propagation algorithms. Finally, Su et al. showed that modifying only one pixel
using differential evolution is sufficient to fool classifiers[10]. Although there have been many proposed defense
algorithms, people are smart enough to attack the models by modifying the attack algorithms.

In addition to building stable neural networks, people are also interested in finding reliable interpretation methods
for neural networks. In 2018, Adebayo et al. proposed methodology to test sanity of saliency maps for neural
networks[11]. Their work can be seen as an indispensable criterion for the interpreters. Finally, the paper we
replicate proposed that people can fool the neural networks by intentionally changing their interpretations by
manipulating adversarial models [4]. Their work can facilitate developing more robust and reliable neural networks
and interpreters that benefit human beings.

3 Method and Hyperparameter

3.1 Background on Layer-wise Relevance Propagation (LRP) [5] and Grad-CAM [6]

The two interpretation methods are briefly discussed in this section. They generate heatmaps to highlight the
regions of the image that have a significant effect in predicting the class.

LRP is an interpretation method that applies relevance propagation (similar to back-propagation). It generates
heatmaps that show the relevance values of each pixel of the input image. The relevance values are positive or
negative, indicating if a single pixel affects the prediction positively or negatively, respectively. In all the following
experiments, a variant work of LRP, the LRP-Composite method is implemented. It applies the basic LRP-ε for
the fully-connected layer and LRP-αβ for the convolutional layer [12].
Grad-CAM is a CNN-based interpretation method that combines the gradient information and class activation
maps to visualize the relevance of each data point to the prediction. Different from LRP, the important values of
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Grad-CAM are only computed at the last convolutional layer, hence, the resolution of the visualization is much
coarser than LRP [6].

3.2 Heatmap notations

We also denote the generated heatmaps. The training dataset for our supervised learning task is denoted as
D = {(xi, yi)}ni=1, each input data is xi ∈ Rd and each target label is yi ∈ {1, ...,K}, where K is the number of
classes. A neural network model is denoted as w. The generated heatmap from an interpretation method I for a
neural network w and a class c is denoted as

hIc(w) = I(x, c;w) (1)

in which hIc(w) ∈ Rdi . If dI = d, the j-th value of the heatmap, hIc,j(w), represents the relevancy of input image
xi for the predicted class c.
Remark: For all our generated heatmaps, red and blue stand for positive and negative relevance values, respec-
tively.

3.3 Objective function and penalty

Adversarial model manipulation is a method employed to fine-tune a model such that interpretation methods of
the model are altered, but the accuracy of the predictions is not. The specific model manipulation method that is
used utilizes cross-entropy classification loss along with a penalty term[4]. The penalty term is dependant on the
interpretation method I that is used. The objective function we seek to minimize is a function of the training data
D, the fooling dataset Dfool, the interpretation method I , the neural network w, and the parameters of the original
pre-trained model w0. Equation (2) shows the overall loss function.

L(D,Dfool, I;w,w0) = LC(D;w) + λLI
F (Dfool;w,w0) (2)

Note that in Equation (2), LC(D;w) is the standard cross-entropy loss, LI
F (Dfool;w,w0) is the penalty term

specific to I , and λ is defined as a trade-off parameter (between normal loss and fooling penalty) [4]. For LI
F (·),

the proposed passive fooling methods use different penalty terms outlined below.
Remark: In our work, Dfool = D; it is a simple notation for the dataset used in foolings.

3.3.1 Passive fooling

The fooling methods are proposed in the paper to trick neural network interpretations. We reproduce and extend
the original work’s passive fooling research. Passive fooling is defined as making a certain interpretation method
output useless interpretations of predictions. The differences between the three passive fooling methods are simply
in the penalty term described in the above section. The following subsections explain the interpretation method
with its associated penalty term in the loss function LI

F [4].

Location fooling: This method aims to make explanations always emphasize certain areas of the input e.g. the
corner of the image. The penalty term in (2) for this fooling method is defined as:

LI
F (Dfool;w,w0) =

1

n

n∑
i=1

1

dI
||hIyi

(w)−m||22 (3)

in which Dfool = D, || · ||2 is the L2 norm, m ∈ RdI is a pre-defined mask vector that makes certain regions of
the input important. Generally, we set mi = 1 for the regions that we want to have a high importance, mi = 0 for
the areas to have a low importance.

Top-k fooling: This method aims to reduce the importance of the pixels that originally had the top k% highest
values. The penalty term is defined as:

LI
F (Dfool;w,w0) =

1

n

n∑
i=1

∑
j∈Pi,k(w0)

|hIyi,j(w)| (4)

in which Dfool = D, Pi,k(w0) is the set of pixels of i-th input data point that had the top k% highest values for
the original model w0 in the explanations.

Center-mass fooling: The Center-mass method aims to deviate the center of mass of the heatmap as much as
possible from the original one. The center of mass of a one-dimensional heatmap is denoted as C(hIyi

(w)) =

(ΣdI
j=1j · hIyi,j

(w))/(ΣdI
j=1h

I
yi,j

(w)), j is a location vector that can be easily extended to higher dimensions,
Dfool = D, || · ||1 is the L1 norm, the penalty is defined as:

LI
F (Dfool;w,w0) = − 1

n

n∑
i=1

||C(hIyi
(w))− C(hIyi

(w0))||1 (5)
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4 Experiment Setup

4.1 Dataset and models

The three main datasets we use in this work are D, Dval and Dfool as in the original work [4]. D is the ImageNet
training data [13]. Dval is the entire ImageNet validation dataset for measuring the classification accuracy of
the models and computing FSR. Note: In our experiments, Dfool = D, Dfool is just a notation for the fooling
dataset. And we implement three pre-trained models, VGG[1], ResNet50[2], and DenseNet121[3] to carry out the
foolings.
Remark: We generate the heatmaps of LRP, and Grad-CAM on a target layer, namely, the last convolution layer
for VGG19, and the last block for ResNet50 and DenseNet121 as in paper[4]. We put the subscript T for LRP to
denote such visualizations. The original authors[4] proposed that manipulating with LRPT was easier than with
LRP and they have same effect.

4.2 Fooling Success Rate (FSR)

Fooling Success Rate is the special evaluation used in the following experiments to evaluate the performance of a
fooling method f on an interpreter I [4]. It is a quantitative metric that indicates how much a fooling method
f can affect an interpretation method I through model manipulation. For each fooling method, the test loss is
introduced to evaluate FSR, it shows the gap between the current and target interpretations of each loss. Two
parameters w0 and w∗fool are defined to indicate the pre-fooling test loss and the post-fooling test loss respectively;
the interpreter I on each data point in the validation set Dval; the test loss for ith data point (xi, yi) ∈ Dval is
denoted as ti(w∗fool, w0, I) [4].

For Location and Top-k foolings, the losses for a single data point (xi, yi) and (w∗fool, w0) are evaluated by (3) and
(4). And for Center-mass fooling, we evaluate (5) for a single data point (xi, yi) and (w∗fool, w0), and normalize it
with the length of diagonal of the image to be the loss.

From the above losses, the FSR for a fooling method f applied to an interpretation method I is defined as:

FSRI
F =

1

|Dval|
∑

i∈Dval

1
{
ti(w

∗
fool, w0, I) ∈ Rf

}
(6)

in which 1{·} is an indicator function. Rf is a pre-defined interval for each fooling method. It is a threshold
for determining whether a interpreter is successfully fooled or not. And Rf is defined to be [0, 0.2], [0, 0.3], and
[0.1, 1] for Location, Top-k, and Center-mass respectively, as in the paper [4]. A higher FSR metric indicates a
more successful fooling method f for an interpreter I .

5 Passive Fooling Baseline Results (Reproduction)

In Table (1), we show the hyperparameters that are used in our reproduction experiments (baselines). We
reproduced the passive fooling section in the original paper [4], and have achieved the results of passive fooling as
in their work.

Model Hyperparameters Location Top-k Center-mass
LRPT G-CAM LRPT G-CAM LRPT G-CAM

VGG19 lr 1e-6 1e-6 5e-7 3e-7 2e-6 1e-6
λ 1 1 1 0.4 0.25 0.25

Resnet50 lr 1e-6 2e-6 4e-7 3e-7 6e-7 1e-7
λ 4 2 1.5 4 0.5 1

DenseNet121 lr 2e-6 2e-6 1e-6 3e-6 5e-7 2e-6
λ 2 2 1 6 0.25 0.25

Table 1: Hyperparameters of trained models for baseline experiments. lr stands for learning rate and λ is the
regularization strength defined in (2).

In Figure (1), for location fooling, we observe that the highlighted pixels are moved to certain areas of the
images after we emphasize the importance of those certain areas. The highlighted pixels are changed after the
fooling, it shows the success of the fooling. For Top-k fooling, we see that the top k% most highlighted pixels are
dramatically changed after the fooling by comparing the big difference between the original explanations and
those in Figure (1). For center-mass fooling, the center of the heatmaps is changed to different parts of the images
in Figure (1). The generated interpretations are mostly different from the original ones, and are incorrect.

Remark: In Figure (1), we generate heatmaps for SimpleG because we want to check whether SimpleG generates
too noisy heatmaps that negatively affect our observations as mentioned in the original work [4]. This is indeed
the case.
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(a) VGG19 (b) ResNet50 (c) DenseNet121

Figure 1: Interpretations of the baseline and the passive fooled models for a ‘Bird’ image from the ImageNet
validation set. The topmost row is the original image. Here, the baseline interpretations had no fooling done.
Each first column for the three pre-trained models, VGG19 (1a), ResNet50 (1b) and DenseNet121 (1c), shows
baseline interpretations by Grad-CAM, LRPT , SimpleGT and LRP given the true class respectively. The next
three columns are for the Grad-CAM interpreter that is used as I in the objective function (2) for three passive
foolings i.e. Location, Top-k, and Center-mass fooling, respectively. The final three columns of each subimage are
for the interpreter LRPT that is used as I in the objective function (2) for three passive foolings.

Model FSR(%) Location Top-k Center-mass
LRPT G-CAM LRPT G-CAM LRPT G-CAM

VGG19 G-CAM 0.8 89.1 31.5 96.0 49.9 81.0
LRPT 87.4 5.8 96.2 32.0 99.8 66.3

Resnet50 G-CAM 42.3 97.3 46.2 99.9 66.0 67.3
LRPT 83.1 0.9 61.5 5.0 63.2 0.8

DenseNet121 G-CAM 35.8 81.8 62.5 98.3 66.8 72.4
LRPT 27.0 0.4 53.3 1.7 51.8 21.8

Table 2: Fooling Success Rates (FSR) for passively fooled models. Underline is used for the FSRs of the matched
interpreters used in foolings, and Bold indicates FSRs over 50%. For computing FSR, 10,000 images from
ImageNet validation dataset are randomly selected. Since LRP and LRPT are variants, LRP is not included in the
table; the FSR of LRPT illustrates whether LRP is fooled or not.

Model Accuracy
(%) Pretrained Location Top-k Center-mass

LRPT G-CAM LRPT G-CAM LRPT G-CAM
VGG19 Top1 72.4 71.8 71.4 71.6 72.3 70.5 70.6

Top5 90.9 90.7 90.3 90.5 90.6 89.5 90.0
Resnet50 Top1 76.1 73.0 74.2 73.5 74.7 73.2 74.7

Top5 92.9 91.3 91.8 91.7 92.0 91.7 92.1
DenseNet121 Top1 74.4 72.4 73.7 72.3 73.0 72.8 72.4

Top5 92.0 91.0 91.7 91.0 90.9 91.0 91.0
Table 3: Accuracy of the pre-trained models and the manipulated models on the entire ImageNet validation set.

In Table (2), we can observe that all FSRs of fooling methods are more than 50% for any matched interpreters
(bolded and underlined), except for the location fooling with LRPT for DenseNet121. The high FSR scores mean
that we successfully fool the neural networks, as the models generate incorrect explanations. In Table (3), we can
observe that the accuracy drops are around only 2% for Top-1 and 1% for Top-5 accuracy, the insignificant drops
are difficult to observe. These results show that it is possible to manipulate adversarial models, which affects what
these models interpret regarding the cause of the prediction. The FSR scores are evaluated over 10,000 images
that are randomly sampled from the ImageNet validation dataset, it makes the results solid for their experiments.
Passive foolings can mislead people, giving a wrong understanding of interpretations of neural networks because
the most critical features are hidden and changed, and only less important features are highlighted.

6 Modification and Extension

One important characteristic of strong research results is how flexible and robust they are in terms of changing
certain hyperparameters. In this section, we modify and extend the original work [4] by testing hyperparameters
and comparing the reliability of the interpretation methods.

6.0.1 Discussion of learning rate

This subsection discusses the effect of learning rate. For each fooling method for an interpreter on every model,
we test three different learning rates, 10lr, 1lr, and 0.5lr, where lr is the original learning rate of a given model in
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(a) Examples of different lrs (b) Examples of different λs

Figure 2: For Figure (2a), these are interpretations of the baseline and fooled VGG19 for a ‘Dog’ with three
learning rates lr. The top row is the original picture. The first column is the baseline interpretations by Grad-CAM,
LRPT , SimpleGT and LRP given the true class respectively. The rest of the columns show the interpretation
outputs for Top-k fooling with three learning rates, 5e-6, 5e-7 and 2.5e-7 (in order).
Figure (2b) shows the interpretations of the baseline and fooled VGG19 for a ‘Dog’ with three penalty values λ.
The first column is the baseline interpretations by Grad-CAM, LRPT , SimpleGT and LRP given the true class
respectively. The rest of the columns show the interpretation outputs for Location fooling with three penalty
values, 0.1, 1 and 5 respectively. For both subfigures, the LRPT interpreter was used.

Model LRPT Top-k
VGG19 lr 5e-6 5e-7 2.5e-7

FSR(%) 97.0 96.2 96.0
Table 4: Top-k fooling applied to LRPT on VGG19 with three learning rates, and penalty value of λ = 1. 10,000
images from ImageNet validation dataset are randomly selected to compute FSRs.

baselines. We also fix the penalty value λ to 1. For example, the top-k fooling for LRPT on VGG19, the baseline
learning rate lr is 5e-7, the three tested lr are 5e-6, 5e-7, and 2.5e-7, and λ is 1.

We compute FSRs for each fooling applied to every interpretation method on three models with different learning
rates; we find that a greater learning rate can generally result in a higher FSR score. For instance, in Table (4), we
can see that a greater learning rate results in a higher FSR. Also, by visually comparing images in Figure (2a), we
see that the top k% highlighted pixels are more altered in the second column. The visual interpretations change
more with a higher learning rate. We notice that the learning rate is strongly related to FSR. A higher learning rate
can result in a more incorrect interpretation.

6.0.2 Discussion of penalty value

Model LRPT Location
VGG19 λ 0.1 1 5

FSR(%) 75.0 87.4 91.1
Table 5: Location fooling applied to LRPT on VGG19 with three penalty values, and learning rate lr is 1e-6.
10,000 images from ImageNet validation dataset are randomly selected to compute FSRs.

We introduce the penalty term in (2). The penalty term is dependant on the interpretation method I . For every
fooling method for an interpreter on every model, we discover three different penalty values, the values are 0.1λ,
1λ and 5λ respectively, where λ is the baseline penalty term in Table (1) for a given model. Additionally, the
learning rates are fixed to 1e-6. For example, the Location fooling for LRPT on VGG19, the baseline penalty λ is
1, the three tested penalty values are 0.1, 1 and 5 respectively, and learning rate is 1e-6.

In Table (5), we can see that the FSR increases as the penalty value increases. After we compute and compare
FSRs for each fooling method f applied to every interpreter I on three models with varied penalties, we find that
greater penalty values can result in higher FSR scores. Also, in Figure (2b), we can observe that the highlighted
points are more altered from important areas of the image to the corner areas; the visual explanations are more
varied with a greater penalty value. As λ increases, the interpreters are fooled more and more; we conclude that
the neural network interpreters can be more fooled with greater penalty values.

6.1 New set of hyperparameters and experiments

In general, a higher learning rate and a greater penalty value can result in better FSR scores. However, a too high
learning rate and penalty value can hurt classification accuracy. It is important to find optimal hyperparameters
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Model Hyperparameters Location Top-k Center-mass
LRPT G-CAM LRPT G-CAM LRPT G-CAM

VGG19 lr 1e-5 1e-5 5e-6 3e-7 1e-6 1e-5
λ 5 5 5 2 1.25 1.25

Resnet50 lr 1e-5 1e-6 4e-6 3e-6 6e-6 1e-7
λ 20 10 7.5 20 2.5 5

DenseNet121 lr 1e-6 1e-6 1e-5 3e-6 5e-6 1e-6
λ 10 10 5 30 1.25 1.25

Table 6: Proposed new hyperparameters of trained models for extensions. The new set of learning rates lr and
penalty values λ in our following experiments.

to maximize the goals. In Table (6), we propose new sets of hyperparameters after a thorough discovery. With
implementation of our new sets of hyperparameters, the neural network interpreters are more fooled. However,
the classification accuracy might have been slightly affected.

We randomly select 10,000 images from the ImageNet validation dataset to validate our proposed hyperparameters.
From Table (7), we can observe that all FSRs of fooling methods for every matched interpreter (bold and
underlined) have increased with our new hyperparameters compared to those in Table (2); most of remaining
FSRs have also increased dramatically. The higher FSR scores mean that our proposed new hyperparameters can
make the interpreters generate more incorrect explanations.

Model FSR(%) Location Top-k Center-mass
LRPT G-CAM LRPT G-CAM LRPT G-CAM

VGG19 G-CAM 42.5 95.3 35.7 98.2 60.3 83.2
LRPT 92.9 28.0 96.3 39.7 99.9 78.8

Resnet50 G-CAM 52.2 98.2 52.4 99.9 70.8 73.5
LRPT 87.5 15.9 67.4 23.0 68.5 20.2

DenseNet121 G-CAM 51.6 90.8 65.3 99.0 70.3 75.6
LRPT 40.6 9.8 57.8 17.8 54.9 30.8

Table 7: New Fooling Success Rates (FSR) for passively fooled models with proposed new hyperparameters.
Underline is used for the FSRs of the matched interpreters used in foolings, and the Bold stands for the FSRs over
50%. 10,000 images from ImageNet validation dataset are randomly selected to compute FSRs.

Model Accuracy
(%) Pretrained Location Top-k Center-mass

LRPT G-CAM LRPT G-CAM LRPT G-CAM
VGG19 Top1 72.4 67.8 67.2 66.6 70.1 67.5 67.0

Top5 90.9 89.6 89.4 90.4 89.6 88.5 90.2
Resnet50 Top1 76.1 68.0 68.1 69.5 70.4 69.0 71.0

Top5 92.9 90.0 90.7 91.2 91.8 91.0 91.3
DenseNet121 Top1 74.4 70.3 69.0 70.1 68.8 69.5 69.0

Top5 92.0 90.0 90.5 91.0 90.7 90.1 90.7
Table 8: Accuracy of the pre-trained models and the manipulated models with new hyperparameters on the entire
ImageNet validation set. Notice that the accuracy drops are around 5% for Top-1 and 2% for Top-5 accuracy.

Moreover, we validate our proposed hyperparameters on the entire ImageNet validation dataset by comparing the
accuracy. The significance of our proposed hyperparameters lies in the fact that the classification accuracy of all
manipulated models are around the same as that of the pre-trained accuracy shown in Table (8). We can see that
the accuracy drops are around 5% for Top-1 and 2% for Top-5 compared to pre-trained models’. Furthermore,
we compare our accuracy to those in baseline experiments (see Table (3)), and notice decreases in accuracy.
This is a trade-off between the FSR values and classification accuracy. If we want the interpretation methods to
be more fooled, then it is likely to lower the classification accuracy. The FSRs in Table (7) show that our new
hyperparameters can affect more of the models’ interpretations regarding the cause of the prediction; however, the
proposed hyperparameters also slightly hurt the accuracy as seen in Table (8).

6.2 Reliability and vulnerability of interpreters

6.2.1 Experiment

We extend three fooling methods to test the reliability and vulnerability of the two interpretation methods. The
problem is important and practical because interpretation methods are close to real-world applications. People
sometimes need the explanations and interpretations of neural networks. In this section, we design rigorous
experiments to find the more stable and reliable interpretation method from the two interpreters that potentially
help build real-world applications and better interpreters.

To compare the performance of two different interpretation methods, it is necessary to fix hyperparameters and the
fooling method. We compute and compare FSR values for location fooling applied to each interpreter I on the three
models VGG19[1], ResNet50[2] and DenseNet121[3] respectively with 1e-5 learning rate and λ = 10 penalty
value over randomly sampled 10,000 images from ImageNet validation dataset. The choice of our experimental
learning rate and penalty value results in higher FSRs, and can visually show clear differences in heatmaps and
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demonstrate differences in FSRs for two interpretation methods. We set the target layer that generates heat maps
to be the last convolution layer for VGG19 and the last block for both ResNet50 and DenseNet121.

6.2.2 Result

In Figure (3), we observe that the highlighted pixels are moved from important areas of the image to the corner
areas after we emphasize the importance of corner areas by Location fooling. The generated interpretations are
mostly different from the original ones, and are incorrect. We visually compare the heatmaps of G-CAM and
LRPT , and see that more highlighted pixels are moved to the corner areas in G-CAM. The heatmaps show that
G-CAM interpreter is more likely to be fooled than LRPT , especially looking at the middle row.

Figure 3: Interpretations of the baseline and the Location fooling by G-CAM and LRPT for the model VGG19
for a ‘Girl’ image from the ImageNet validation set. The columns correspond to when no fooling was applied,
when G-CAM was used, and when LRPT was used, in order. For this experiment, λ = 10, lr =1e-5, and location
fooling was used. When the interpreters match, note that the foolings become more apparent, but G-CAM still
gets fooled more.

Furthermore, we compute FSRs to demonstrate and compare the performance of two interpreters. In Table (9),
we can see that G-CAM has higher FSR values compared to those of LRPT . The FSR scores show that G-CAM
interpreter actually generates more incorrect explanations. This experiment allows us to conclude that G-CAM is
the less reliable and the more vulnerable interpretation method of the two.

Model FSR(%) Location
LRPT G-CAM

VGG19 G-CAM 70.8 99.9
LRPT 97.8 40.6

ResNet50 G-CAM 86.2 99.9
LRPT 95.8 30.5

DenseNet121 G-CAM 67.4 98.8
LRPT 56.6 20.5

Table 9: The Fooling Success Rates (FSR) for Location fooling on three models with learning rate 1e-5 and
penalty value 10. 10,000 images from ImageNet validation dataset are randomly selected to compute FSRs. The
FSR table is to compare the performance of two interpreters with the same input fooling conditions.

7 Conclusions and Future Work

In this work, we replicate and extend the work of [4]. We show that interpretation methods can be fooled
without significantly changing the accuracy. Furthermore, we provided evidence that increasing the learning rate
and penalty terms both increase the FSR of a given model. Finally, we show that G-CAM is the less reliable
interpretation method when compared to LRPT , as G-CAM’s generated interpretations have higher FSRs. It is
important to note that for all experiments and extensions done in this work, the ending training and test accuracies
do not drastically change.

Previously, we discuss how model interpretations vary with the learning rate and penalty term; however, the target
layer is also an interesting hyperparameter to discover. In our experiments, we visualize the heatmaps on the last
convolutional layer for VGG19 and the last block for ResNet50 and DenseNet121. However, in the future, one
could analyze how the heatmaps and the corresponding FSRs change with target layer. Transferability is a key
property of interpretation methods. For example, in this work, if we manipulate the model so that LRP is fooled,
then the other interpretations also get fooled. The original work [4] shows that transferability exists in fooling
methods. In the future, we could explore this idea more, and conduct rigorous experiments to ensure this is the
case.
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