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ABSTRACT

In parametric density estimation, the parameters of a known probability density1

are typically recovered from measurements by maximizing the log-likelihood.2

Prior knowledge of measurement uncertainties is not included in this method, po-3

tentially producing degraded or even biased parameter estimates. We propose4

an efficient two-step, general-purpose approach for parametric density estimation5

using deep ensembles. Feature predictions and their uncertainties are returned6

by a deep ensemble and then combined in an importance weighted maximum7

likelihood estimation to recover parameters representing a known density along8

with their respective errors. To compare the bias-variance tradeoff of different9

approaches, we define an appropriate figure of merit. We illustrate a number of10

use cases for our method in the physical sciences and demonstrate state-of-the-art11

results for X-ray polarimetry that outperform current classical and deep learning12

methods.13

1 INTRODUCTION14

The majority of state-of-the-art NN performances are single (high-dimensional) input, multiple-15

output tasks, for instance classifying images (Krizhevsky et al., 2012), scene understanding (Red-16

mon et al., 2015) and voice recognition (Graves et al., 2006). These tasks typically involve one input17

vector or image and a single output vector of predictions.18

In parametric density estimation, there is a known probability density that the data (or latent features19

of the data) are expected to follow. The goal is to find representative distribution parameters for a20

given dataset. In simple cases where the likelihood is calculable, maximum likelihood estimation21

can be used effectively. In cases where latent features of the data follow a known distribution (e.g.,22

heights of people in a dataset of photographs), NNs can potentially be used to directly estimate the23

distribution parameters. For clarity, we define this direct/end-to-end approach as parametric feature24

density estimation (PFDE). Such an approach requires employing entire datasets (with potentially25

thousands to millions of high-dimensional examples) as inputs in order to output a vector of den-26

sity parameters. Furthermore, to be useful these NNs would need to generalize to arbitrarily sized27

dataset-inputs.28

One example of NNs making sense of large dataset-inputs is found in natural language processing.29

Here large text corpora, converted to word vectors (Pennington et al., 2014; Devlin et al., 2019),30

can be input and summarized by single output vectors using recurrent neural networks (RNNs), for31

instance in sentiment analysis (Can et al., 2018). However, these problems and RNNs themselves32

contain inductive bias – there is inherent structure in text. Not all information need be given at once33

and a concept of memory or attention is sufficient (Vaswani et al., 2017). The same can be said34

about time domain problems, such as audio processing or voice recognition. Memory is inherently35

imperfect – for PFDE, one ideally wants to know all elements of the ensemble at once to make36

the best prediction: sequential inductive bias is undesirable. Ultimately, memory and architectural37

constraints make training NNs for direct PFDE computationally intractable.38

On the other hand, density estimation on data directly (not on its latent features), is computationally39

tractable. Density estimation lets us find a complete statistical model of the data generating process.40

Applying deep learning to density estimation has advanced the field significantly (Papamakarios,41

2019). Most of the work so far focuses on density estimation where the density is unknown a priori.42

This can be achieved with non-parametric methods such as neural density estimation (Papamakarios43

1



Under review as a conference paper at ICLR 2021

et al., 2018), or with parametric methods such as mixture density networks (Bishop, 1994). In PFDE,44

however, we have a known probability density over some features of the whole dataset. The features45

may be more difficult to predict accurately in some datapoints than others.46

Typical parametric density estimation does not make use of data uncertainties where some elements47

in the dataset may be more noisy than others. Not including uncertainty information can lead to48

biased or even degraded parameter estimates. The simplest example of parametric density estimation49

using uncertainties is a weighted mean. This is the result of a maximum likelihood estimate for a50

multi-dimensional Gaussian. For density estimation on predicted data features, PFDE, we would51

like a way to quantify the predictive uncertainty. A general solution is offered by deep ensembles52

(Lakshminarayanan et al., 2017). While these are not strictly equivalent to a Bayesian approach,53

although they can be made such using appropriate regularization (Pearce et al., 2018), they offer54

practical predictive uncertainties, and have been shown to generalize readily (Fort et al., 2019).55

Additionally Ovadia et al. (2019) have shown deep ensembles perform the best across a number56

of uncertainty metrics, including dataset shift, compared to competing methods such as stochastic57

variational inference and Monte Carlo methods.58

In this work, we propose a NN approach that circumvents large dataset-input training or recurrent59

architectures to predict known feature density parameters over large input datasets. We use predic-60

tive uncertainties on features of individual dataset elements as importance weights in a maximum61

likelihood estimation. We will show that estimating known density parameters in a 2-step approach62

provides greater interpretability and flexibility. We are able to predict uncertainties on our density63

parameter estimates using bootstrap methods (Efron, 1979). Our method is widely applicable to a64

number of applied machine learning fields; §3 showcases a few important examples.65

Contributions: Our contributions in this paper are as follows: (1) We introduce a general, flexi-66

ble method for PFDE using NNs. The method can be applied to any domain requiring PFDE. We67

illustrate a number of varied domain examples in the physical sciences in §3. (2) In an in-depth68

evaluation we show that our method outperforms not only classical methods for density estimation,69

but also standard NN implementations in an application to X-ray polarimetry. (3) We investigate the70

bias-variance tradeoff associated with our method and introduce a tuneable hyperparameter to con-71

trol it. Note: In the following we focus on regression examples, (since unbinned density estimation72

is preferable to binned). However, a similar method can be applied to prediction examples where73

softmax class probabilities are used as heteroscedastic aleatoric uncertainty.74

2 IMPORTANCE WEIGHTED ESTIMATION WITH DEEP ENSEMBLES75

2.1 PROBLEM SETUP AND HIGH-LEVEL SUMMARY76

We wish to estimate the feature density parameters of N high dimensional data points {x}:77

f({xn}Nn=1). Here x ∈ RD can be any high dimensional data (e.g. images, time series). N is78

arbitrary, although usually large since otherwise density estimation is inaccurate. For example, con-79

sider estimating the mean and variance of human heights from a dataset consisting of photographs80

of people. A person’s height in each photograph is the image feature and we know this feature81

approximately follows a Gaussian distribution. We develop a method that can estimate the density82

parameters (mean and variance) and generalize to any dataset of photographs.83

In general, the function f mapping the high dimensional data points to the desired density parame-84

ters is unknown, since the high dimensional data is abstracted from its features. Learning f directly85

is typically infeasible because an entire ensemble of inputs {xn}Nn=1 must be processed simultane-86

ously to estimate density parameters, and this approach would have to generalize to arbitrary N and87

density parameter values. We discuss some special cases where this is possible in §1. However, the88

function g mapping data features yn to the density parameters is known.89

We cast this as a supervised learning problem where we have a datasetD consisting of N data points90

D = {xn, yn}Ntrain
n=1 with labels y ∈ RK where x ∈ RD. We want to estimate the density parameters91

ψ1, ψ2, ...ψk for an unseen test set g({yn}Ntest
n=1 ) for arbitrary Ntest.92

The basic recipe that comes to mind is training a single NN to predict output labels {yn}Nn=1 then93

evaluate g directly. This ignores the high variance in single NN predictions (dependent on train-94
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ing/random initialization), that some individual examples may be more informative than others, and95

that an objective to predict the most accurate output labels may not be the best for predicting good96

density parameters (high bias may be introduced, for instance).97

Our hybrid approach is as follows. (i) Train a deep ensemble of M NNs1 to predict {yn, σn}Nn=198

where σn is the total uncertainty on each prediction yn, (ii) use the {σn}Nn=1 as weights in an99

importance weighted maximum likelihood estimate. The next section, §2.2, describes procedure (i).100

2.2 DEEP ENSEMBLES101

Deep ensembles (Lakshminarayanan et al., 2017) return robust and accurate supervised learning pre-102

dictions and predictive uncertainties, which enable the best density parameter predictions. These use103

an ensemble of individual NNs (with different random initializations) trained to predict features and104

their aleatoric uncertainties. Final predictions and their epistemic uncertainties are then recovered105

by combining the estimates from each of the NNs in the ensemble.106

In regression, deep ensembles model heteroscedastic aleatoric σa uncertainty by modifying the typ-107

ical mean-squared errors (MSE) objective to a negative log-likelihood (NLL) (Lakshminarayanan108

et al., 2017),109

Loss(y|x) =
1

2
logσ2

a(x) +
1

2σ2
a(x)
‖y − ŷ(x))‖22. (1)

Extensions using more complex distributions like mixture density networks or heavy tailed distribu-110

tions may be more applicable to certain problems with prior knowledge about the error distribution.111

In practice, the log-likelihood of any exponential family could be used; we find this simple Gaussian112

approach to be sufficient and robust for regression problems. Our results in §3.4 for a compare a113

Gaussian and Von Mises distribution.114

Epistemic uncertainty σe is modelled using a uniformly weighted ensemble of M NNs each115

trained starting from a different random initialization. The regression prediction and uncertainty116

are approximated by the mean and standard deviation over the M NN ensemble predictions re-117

spectively (each NN in the ensemble contributes equally) i.e. ŷ(x) = M−1
∑M
m=1 ŷm(x) and118

σ2
e(x) = Var({ŷm(x)}Mm=1). The epistemic uncertainty is then combined with the aleatoric in119

quadrature to arrive at the total uncertainty: σ2 = σ2
a + σ2

e . Typically M ∼ 5− 15.120

In part (i) of our hybrid approach for PFDE, we train a deep ensemble to minimize the NLL (1) on121

desired features y. We follow the deep ensemble training procedure outlined in Lakshminarayanan122

et al. (2017) (with recast loss function from Kendall & Gal (2017)) without using adversial examples,123

using the full dataset for each NN. Since the individual density parameters over predicted features124

are the final desired values in PFDE, it is possible that an objective maximizing feature accuracy on125

the validation set is not the true objective. This is possible if the training dataset is biased or the126

model (1) is highly misspecified for the particular problem. The Kitaguchi et al. (2019) single CNN127

method in table 1, §3.4, shows a clear case of training bias. If de-biasing the training dataset or using128

a more appropriate model is not possible, we have identified two potential ways of ameliorating this129

issue for PFDE:130

1. Include terms in the individual NN objectives to penalize known sources of bias.131

2. Select the top M performing NNs, as measured by a criterion that includes density param-132

eter prediction bias on a held out test set.133

In practice both can be used simultaneously. However, the former runs into batch size problems134

(since one needs a large sample size to accurately estimate bias), and the source of bias is not always135

well understood. The latter naturally arises from the use of deep ensembles, but could include its136

own unwanted bias and risk underestimating the epistemic uncertainty. We compare selecting the137

top performing NNs for the ensemble by a domain specific criterion against randomly selecting NNs138

for the ensemble in §3.139

1We note that the NN architecture used will of course depend on the dataset domain.
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2.3 IMPORTANCE WEIGHTED LOG-LIKELIHOOD140

Provided a mapping between high dimensional inputs and interpretable features xn 7→ yn, we can141

calculate the density parameters ψ1, ψ2, ...ψk by minimizing the appropriate negative log-likelihood142

function p({yn}|ψ1, ψ2, ...ψk). Some feature predictions yn will have greater total predictive uncer-143

tainties, σn. We estimate feature density parameters by incorporating the total uncertainty into an144

importance weighted maximum likelihood estimate. This makes up part (ii) of our hybrid method.145

An importance weight quantifies the relative importance of one example over another. Importance146

weighting an element should be the same as if that element were included multiple times in the147

dataset, proportional to its importance weight Karampatziakis & Langford (2011). The deep ensem-148

ble, once trained, will act as mapping between high dimensional inputs xn and feature-uncertainty149

output pairs yn, σn. For each input xn there will be M output pairs {ŷnm, (σa)nm}Mm=1, one for150

each NN in the deep ensemble. Both the features ŷnm and aleatoric uncertainty variances (σa)2nm151

can be combined by taking the appropriate mean over m; this mean may depend on the distribution152

used in (1), but for the simple Gaussian case the standard mean is sufficient. Taking the mean results153

in a single output pair (ŷn, (σa)n) for each input. Epistemic uncertainties are included as in §2.2,154

resulting in the final output (ŷn, σn).155

In order to use all possible information when estimating the desired density parameters ψ1, ψ2, ...ψk,156

we define an importance weighted negative log-likelihood function157

Lw({ŷn}, ψ1, ψ2, . . . , ψk) = −
N∑
n=1

wnlogL(ŷn|ψ1, ψ2, . . . , ψk), (2)

158

wn = σ−λ
n (3)

Each individual prediction yn has an associated importance weight wn. The σ−λ
n term weights each159

yn by its predictive uncertainty. The hyperparamter λ ≥ 0 controls the importance weighting distri-160

bution. A high λ means the yn with the lowest (estimated) MSE will dominate the final ensemble161

statistic. As always in estimation problems, there is a trade-off between lower variance predictions162

and more bias. This can be tuned for a specific application using λ; we discuss the procedure in163

detail in our example application, §3. Final density parameters are found by minimizing (2) over the164

domain of the density parameters ψ.165

Typically, the weights in weighted likelihood estimation are determined heuristically (Hu & Zidek,166

2002). In this example, we choose w = σ−λ since it approximates the simple functional form of167

the likelihood used in a weighted mean estimate (λ = 2). This weighting choice is also inspired168

by the dispersion parameter used in generalized linear models (GLMs) (Nelder & Wedderburn,169

1972). We expect that this weighting will retain similar robustness properties in terms of model170

fitting, and will generalize well to many domains. However, of course, any decreasing function171

f : R+ → R+ may be used to determine weights, with the most suitable choice of function f172

within a given class of functions (in our case, parameterized by λ) to be determined by either cross-173

validation or performance on a holdout set. In some applications it is possible to find the exact174

weighting function [in prep., reference deleted to maintain integrity of review process]. Further175

discussion of weight choice in our application is given in section §3.4.176

Confidence intervals on the density parameters can be calculated using the non-parametric bootstrap177

Efron (1979): select N yn, σn pairs with replacement and minimize (2). In the limit of many trials178

with different random subsamples, this will give the output distribution on the density parameters.179

2.4 DENSITY PARAMETER REGRESSION180

For a special class of parameterized densities it is possible to find the global minimizer or minimize181

(2) analytically (e.g. for a multivariate Gaussian). In practice, the majority of parametric densities182

of interest for PFDE are likely to be convex (exponential families, our application example §3, etc.),183

so will fall into this special class. In the general case, minimization is performed numerically to find184

locally optimal solutions.185

In this work, we employ Ipopt (Wächter & Biegler, 2006), an open-source interior-point solver for186

large-scale non-convex optimization problems, to minimize (2). This method can be used for convex187
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or non-convex parametric density estimates, but only convex ones are guaranteed to be global opti-188

mal. Because Ipopt finds locally optimal solutions, which are highly dependent upon an initial guess189

of the parameters provided to the solver, in the non-convex case, we recommend nested sampling190

Feroz et al. (2009) to test many initial guesses and then select the best local solution. Constraints191

on the density parameters, for instance if they have a finite domain, can be incorporated for both the192

convex and non-convex case. Of course, any optimizer appropriate for (2) can be used and this will193

depend on the problem.194

The overall training and evaluation procedure is summarized in Algorithm 1.195

Algorithm 1: Pseudocode for our PFDE method.
1: Identify output features yn relevant to the desired density parameter(s) (e.g., subject height
in photographs).

2: Train a deep ensemble of NNs using loss function (1) to maximise accuracy on the desired
output features

3: Evaluate the density parameter(s) using importance weights by minimizing (2).
4: Tune λ hyperparameter for the specific application.

196

3 EXPERIMENTS197

3.1 X-RAY POLARIMETRY198

Measuring X-ray polarization has been a major goal in astrophysics for the last 40 years. X-ray po-199

larization can provide essential measurements of magnetic fields very close to high energy sources,200

such as accreting black holes and astrophysical jets (Weisskopf, 2018). The recent development201

of photoelectron tracking detectors (Bellazzini et al., 2003) has greatly improved the prospects of202

doing so. X-ray polarization telescopes with photoelectron tracking detectors directly image elec-203

tron tracks formed from photoelectrons scattered by the incoming X-ray photons. We describe an204

application of our hybrid PFDE method to X-ray polarimetry using photoelectron tracking detec-205

tors. We use data from the upcoming NASA Imaging X-ray Polarization explorer (IXPE) (Sgrò &206

IXPE Team, 2019) as a working example. The problem of recovering polarization parameters from207

a dataset of (IXPE) electron track images has recently been announced as an open problem in the208

machine learning community (Moriakov et al., 2020).209

The linear polarization of light can be fully described by two degrees of freedom: the polarization210

fraction 0 ≤ Π ≤ 1, (0% – 100%), and the electric vector position angle −π/2 ≤ φ ≤ π/2.211

These can be thought of as the magnitude and direction of a vector perpendicular to the direction212

of propagation of the light. In imaging X-ray polarimetry, when the detector images an X-ray213

source, it measures individual 2D images of electron tracks excited by incoming X-ray photons.214

The initial directions the electrons travel follow a known probability density that depend on the215

source polarization, and the problem is to recover the polarization parameters Π and φ from the216

collected dataset of 2D track images.217

In the case of IXPE, charge tracks are imaged by hexagonal pixels. Fig. 1 shows some example218

photoelectron tracks at different X-ray energies. Each track represents the interaction of a single219

photon with a single gas molecule. The initial track angle y follows the probability density220

p(y | Π, φ) =
1

2π

(
1 + Πcos

(
2(y + φ)

)
, (4)

where Π and φ are fixed polarization parameters that depend on the source. By estimating y for a221

large number of tracks, we may recover the original polarization parameters Π and φ, using para-222

metric density estimation.223

Track morphologies vary greatly with energy (and even for the same energy); this affects how dif-224

ficult it is to recover an accurate intial photoelectron angle y. Low energy tracks are typically less225

elliptical and so more difficult to estimate. For this reason it is essential to incorporate some form of226

quality control in the tracks used for polarization estimates.227

Current IXPE methods estimate individual track y using a moment analysis (Sgro, 2017). This228

calculates the first, second and third charge moments using the 2D coordinates of the hexagonal229
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Figure 1: Example IXPE track images at 2.7, 4.5 and 6.4 keV energies (columns). The blue lines show the
initial photoelectron direction; the angle of these lines is y. Color represents the amount of charge deposited in
a hexagonal pixel. Track morphology (and thus angle reconstruction) depends strongly on energy.

detector pixels, combining them to extract y. For each track, a single −π ≤ y ≤ π is output.230

The polarization parameters are then estimated using a standard (unweighted) MLE. The moment231

analysis additionally outputs an estimate of the track ellipticity, which can be used as a proxy for232

y estimation accuracy. The standard moment analysis uses a track cut to improve polarization re-233

covery – 20% of the tracks are cut based on ellipticity. NNs have also recently been applied to234

this problem Kitaguchi et al. (2019). This approach uses single CNNs for classification on y, with235

binned fits to y histograms to extract polarization parameters and track quality cuts. Our hybrid236

method exhibits significantly improved performance over both the standard IXPE method and this237

basic NN approach.238

3.2 PARAMETRIC FEATURE DENSITY ESTIMATION239

Following §2, we define CNNs that take single track images as input and (ŷ, σ̂) as output. In this240

case the track angles y are the data features that follow the known density (4), the density parameters241

Π ≡ ψ1, φ ≡ ψ2, and the CNNs will make up the deep ensemble.242

To make the hexagonal track images admissable inputs to standard CNN architectures, we first243

convert the hexagonal images to square image arrays by shifting every other column and rescaling244

the distance between points, as described in Steppa & Holch (2019). Since there are two possible245

shifts (odd and even rows), we apply both and stack the two shifted images, similar to color channels246

in rgb images. We do this to more closely approximate spatial equivariance of the CNN convolution247

kernels in the hexagonal space. At test time, we apply the deep ensemble to the same track 3 times,248

each time rotated by 120◦ in hexagonal space. We find this reduces all relevant prediction bias on ŷ249

(and later Π, φ) introduced when converting from hexagonal to square coordinates.250

To recover Π, φwe need to predict 2y, so we use the loss function (1) but parameterize the true angle251

y as a 2D vector v = (cos2y, sin2y) to capture the periodicity. The loss function is as follows:252

Loss(v, v̂) =
1

2
logσ̂2 +

1

2σ̂2
‖v − v̂‖22. (5)

The final NN ensembles output the 3-vector (v̂, σ̂). In this case the mean over ensemble predictions253

is calculated using the circular mean of {v̂m}Mm=1. Then ŷ = 1
2arctan v̂2

v̂1
. To calculate the final254

Π, φ with an ensemble ofM NNs for a given test dataset withN tracks we minimize the importance255

weighted NLL (2) with likelihood256

L(ŷn|Π, φ) =
1

2π
(1 + Πcos(2(ŷn + φ))). (6)

We can recast this as the convex optimization problem257

minimize
x

−
N∑
n=1

σ̂−λ
n log

(
1 + vTnx

)
subject to ‖x‖2 ≤ 1

(7)
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Energy Moments Mom. w/ cuts Kitaguchi et al. Single Ensemble IW Ensemble IW Ensemble IW Ensemble
(Random) (Top MSE) (von Mises)

FoM (68% CI) FoM FoM FoM FoM FoM FoM λ FoM λ

2.7 keV 0.78 (1.19) 0.76 (1.16) 2.6 (3.3) 0.75 (1.13) 0.74 (1.13) 0.66 (1.01) 0.66 (1.01) 1.76 0.65 (1.0) 1.24
4.5 keV 0.69 (1.05) 0.67 (1.03) 1.5 (1.9) 0.63 (0.94) 0.61 (0.94) 0.56 (0.85) 0.56 (0.85) 1.4 0.55 (0.84) 1.12
6.4 keV 0.58 (0.88) 0.56 (0.86) 1.6 (1.9) 0.50 (0.75) 0.49 (0.74) 0.45 (0.69) 0.45 (0.69) 1.1 0.44 (0.68) 1.02
8.0 keV 0.53 (0.8) 0.51 (0.79) 0.8 (1.1) 0.48 (0.71) 0.46 (0.71) 0.43 (0.66) 0.43 (0.66) 1.08 0.42 (0.65) 1.07
PL2 1.12 (1.72) 1.07 (1.64) – 1.08 (1.64) 1.07 (1.63) 0.89 (1.36) 0.88 (1.34) 1.85 0.85 (1.29) 1.28
PL1 1.02 (1.56) 0.97 (1.48) – 0.97 (1.46) 0.95 (1.45) 0.79 (1.2) 0.79 (1.2) 1.69 0.78 (1.18) 1.25

Table 1: Results on energy selected track image datasets, comparing our method with the current state of the
art and including an ablation study. Lower FoM is better. PL1 and PL2 are power law datasets with range
spanning 2.0− 8.0keV (PL1 dN/dE ∝ E−1, and PL2 dN/dE ∝ E−2). All test datasets have 360 thousand
tracks each to enable comparison with Kitaguchi et al. (2019). All methods have RMSEφ ≤ 0.5◦. Confidence
intervals (CI 68%) are calculated using the non-parametric bootstrap – note these are not the standard errors on
FoM values, standard errors are CI/

√
200, except in the case of Kitaguchi et al. (2019). For FoMs only the

upper CI bound is necessary, since this represents the worst case signal to noise ratio. IW stands for importance
weighted. All of our method results use the Gaussian loss, (5), except for the final column which uses the von
Mises loss. All ensembles have M = 10 NN members.

where vn = (cosŷn, sinŷn) and x = (Πcosφ,Πsinφ). By recasting (2) as a convex optimization258

problem, we have a guaranteed globally optimal solution for (Π, φ). We can solve (7) quickly and259

efficiently using second order Newton methods. In practice we use the robust open source software260

IpOpt, §2.4.261

We also consider a more domain specific, non-Gaussian likelihood function for our loss, (5). We262

use the log-likelihood of the von Mises distribution for the NN loss:263

Loss(v, v̂) = log
(
I0(σ̂−2)

)
− 1

σ̂2
vTv̂, (8)

where I0 is the modified Bessel function of the first kind. This is a close approximation of the264

wrapped Gaussian on the circle. It is more appropriate than the Gaussian (5) for angular estimates265

since it can capture the π periodicity in ŷ. For very small σ̂ this is equivalent to the Gaussian. We266

compare the results from both losses in §3.4 and table 1.267

3.2.1 FIGURE OF MERIT268

In polarization estimation, we want high recovered Π̂100% (and accurate φ) for a known 100%269

polarized source (Π = 1), and low recovered Π̂0% for an unpolarized source (Π = 0). Since there270

is irreducible noise in the tracks, it is impossible for any method to achieve Π̂100% ∼ 1, so Π̂meas271

estimates are calibrated to get the final Π̂ for an unknown source2: Π̂ = Π̂meas/Π̂100%. We define a272

figure of merit for polarization estimation:273

FoM = 100× Π̂0%/Π̂100%. (9)

We use the FoM to evaluate model performance: a lower FoM means better polarization estimation.274

This is effectively a measure of the signal to noise ratio, a simplified extension of the minimum275

detectable polarization (MDP) typically defined for X-ray polarization (Weisskopf et al., 2010) that276

does not preclude biased estimators. It is evaluated on unseen polarized and unpolarized datasets.277

In estimating the FoM, we take the number of tracks N ∼ 360, 000 so we can compare directly to278

Kitaguchi et al. (2019). We average the FoM over 200 independent track dataset samples of size N .279

We use the FoM as the criterion to select the hyperparameter λ in (2). In this way we can tradeoff280

accuracy and bias in our Π, φ estimates.281

3.3 NN TRAINING AND SELECTION282

Our training dataset consists of 3 million simulated tracks, examples of which are shown in fig. 1.283

The track energies uniformly span 1.0 − 9.0keV, IXPE’s most sensitive range and are unpolarized284

(uniform track angle distribution). Since we don’t know a priori what energy each track is, we want285

2Π̂100% is measured before on a source with the same track energy distribution.
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Figure 2: Left: FoM as a function of hyperparameter λ for the von Mises ensemble on the PL2 dataset. This
method is used to select all of the λ. Right: Histogram of ŷ predictions for the 6.4KeV polarized dataset,
Π = 1, φ = π/2 (ground truth). Black shows the ground truth density, (4), to be estimated. Red and blue show
the single NN and standard moments estimates respectively. A single NN can better predict ŷ and thus extract
more polarization signal, Π100% resulting in a better FoM.

NNs that can make predictions for tracks of all energies. This also makes for a more generalizable286

system, since some high energy tracks have similar characteristics to lower energy ones. Each track287

is labelled with its 2D angle vector v.288

We use a ResNet-19 (He et al., 2015) convolutional NN architecture as our base NN. This particular289

architecture is large enough to overfit the training set, and trains in a reasonable amount of time.290

Before training we preprocess the training data (square track images). We apply pixelwise centering291

and rescaling. We use stochastic gradient descent with momentum and a decaying learning rate292

starting at 1e − 2. We choose batch sizes 512, 1024, 2048 (tracks per batch). We trained for 150293

epochs, using early stopping to prevent overfitting. We use L2-norm regularization 5 × 10−5. We294

train 30 NNs and compare randomly selecting M = 10 NNs to selecting M = 10 NNs with the top295

MSEs on y for an unseen test dataset spanning all energies to make up our final NN ensemble. The296

results for both methods are shown in table 1.297

3.4 RESULTS298

Table 1 shows the results of our deep ensemble PFDE method alongside the current state of the art299

methods. The single CNN method with optimized cuts, developed in (Kitaguchi et al., 2019), pro-300

vides significant improvements in Π100% over the moment analysis, but adds bias to the unpolarized301

measurement Π0%, increasing its FoM and making it a worse method for all energies. We perform302

an ablation study over our method, testing a single NN without using weighting when estimating303

(Π, φ) (i.e. wn = 1 ∀n, (3)), an ensemble of NNs without weighting, a randomly selected ensemble304

with weighting, a top MSE selected ensemble with weighting and a von Mises loss weighted en-305

semble. We find a single NN without weighting beats the classical moments and moments with cuts306

baselines. This result is visualized in the right panel of fig. 3.3 for the 6.4keV dataset: the single NN307

shows improved ŷ estimates and thus a density that more closely resembles the ground truth. Using308

an ensemble of NNs improves this result slightly, but the real power of our method comes with the309

importance weights. Our final importance weighted ensemble method, with λ tuned accordingly for310

each energy, significantly outperforms the rest, especially in the power law datasets, where there is311

a reduction in FoM of almost a factor of 1.5. This shows the power of a simple weighted scheme312

over quality cuts in PFDE, it allows our method to take advantage of higher signal (Π100%) at higher313

energies in the power law datasets. The λ tuning procedure is shown in the left panel of fig.3.3.314

Comparing a randomly selected ensemble with a top MSE selected ensemble we find the results315

are almost identical. Random selection should yield more accurate approximations of the epistemic316

uncertainty and thus better weights, while selecting top performing NN on MSE should improve ŷ317

accuracy. Since the results are identical, but selecting NNs has the potential to bias density estima-318

tion, we recommend randomly selecting NNs. We note that, although not included in the table, a319

single NN with importance weighting performs only slightly worse than than the weighted ensem-320

ble. Since a single NN only produces aleatoric uncertainties, this suggests, as expected, that for a321

correctly specified model aleatoric uncertainties dominate epistemic ones. Finally, the von Mises322
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loss shows a small improvement over the simple Gaussian. This is expected, since characterizing323

the predictive uncertainties by a periodic distribution is more appropriate for the polarimetry ap-324

plication, but the improvement is small, suggesting that the Gaussian is a robust starting point for325

many applications. We plan to release further results and more domain specific information for this326

particular application [reference deleted to maintain integrity of review process].327

3.5 OTHER APPLICATIONS328

There are numerous application of PFDE with uncertainty in the physical sciences and engineering.329

In high energy particle physics massive, short-lived particles can be detected by fitting a Cauchy330

distribution to the frequencies of measured decay states. Raw sensor data from hadronic particle331

colliders like the LHC are very noisy with variable uncertainty, meaning our PFDE approach to332

estimate the Cauchy distribution parameters could be very fruitful. This especially true with the333

widespread current use of deep learning in particle physics (Guest et al., 2018). Our approach is334

heuristically justified due to the asymptotic efficiency of the maximum likelihood estimator in a335

Cauchy location model (Cohen Freue, 2007). In manufacturing, GLMs fit to binomial distributions336

are commonly used to assess product quality, or the probability of a product being defunct. Today,337

computer vision is used for much of the inspection (Rossol, 1983), making our hybrid PFDE method338

a potential step forward. These are just a few application examples – our method may be useful for339

any GLM based method with high dimensional data.340

4 DISCUSSION341

We have proposed a supervised learning framework for parametric feature density estimation. Our342

method uses deep ensembles to predict high dimensional data features, their aleatoric and epistemic343

uncertainties. We estimate feature density parameters by incorporating both of these uncertainties344

into an importance weighted maximum likelihood estimate. We include a tuneable weighting hyper-345

parameter λ, allowing one to control the bias-variance tradeoff for density estimation. Intuitively,346

in many real feature density estimation problems, some high dimensional data points may be much347

more informative than others due to complex noise or differing generative distributions. Our method348

models this explicitly, weighting datapoint features by their predictive uncertainty when estimating349

density parameters. This avoids throwing away valuable data with quality cuts, yielding improved350

density estimates. Our method is scaleable to any feature dataset size and is completely flexible for351

specific domain applications; most NN architectures can be used. We achieve state-of-the-art results352

over standard deep learning methods and classical algorithms in X-ray polarimetry - a recent open353

problem in ML. We expect our method would provide similar improvements to a number of PFDE354

application fields, including high energy particle physics and manufacturing.355

We perform an ablation study comparing a single NN, a deep ensemble, and various importance356

weighted deep ensembles. A single NN approach or standard deep ensemble improves slightly357

on the classical baselines, but importance weighting by predictive uncertainty provides the main358

improvements to our method. Selecting NNs for the deep ensemble based on quality of density359

estimation provides no additional gain in performance compared to random selection – since it is360

possible performance-based NN selection can degrade epistemic uncertainty estimates, we recom-361

mend randomly selecting NNs for the ensemble. Comparing the Gaussian and von Mises distribution362

for feature prediction we find the standard Gaussian likelihood (1) an effective and robust approx-363

imation, although results can potentially be improved for specific applications by choosing a more364

appropriate distribution over the predictive uncertainties.365

While our method works well for densities with convex log-likelihoods, non-convex ones will not366

necessarily yield globally optimal solutions and may be very time consuming to evaluate. Future367

Work: Future additions to the method include more complex aleatoric uncertainty modelling. We368

assume a Gaussian distribution for our feature prediction (1), but for domain applications where369

there is an expected feature uncertainty, one could use an alternative distribution, or even a mixture370

density network (Bishop, 1994) for more flexibility. In that case the functional form of weighting371

would have to be reconsidered. Additionally, finding the optimal weighting function for specific372

problem applications is likely to yield significant improvements.373
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