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Abstract

NER model has achieved promising perfor-001
mance on standard NER benchmarks. How-002
ever, recent studies show that previous ap-003
proaches may over-rely on entity mention in-004
formation, resulting in poor performance on005
out-of-vocabulary(OOV) entity recognition. In006
this work, we propose MINER, a novel NER007
learning framework, to remedy this issue from008
an information-theoretic perspective. The pro-009
posed approach contains two mutual informa-010
tion based training objectives: i) generalizing011
information maximization, which enhances rep-012
resentation via deep understanding of context013
and entity surface forms; ii) superfluous infor-014
mation minimization, which discourages repre-015
sentation from rotate memorizing entity names016
or exploiting biased cues in data. Experiments017
on various settings and datasets demonstrate018
that it achieves better performance in predicting019
OOV entities.020

1 Introduction021

Named Entity Recognition(NER) aims to identify022

and classify entity mentions from unstructured text,023

e.g., extracting location mention "Berlin" from024

sentence "Berlin is wonderful in the winter". NER025

is a key component in information retrieval (Tan026

et al., 2021), question answering (Min et al., 2021),027

dialog systems (Wang et al., 2020), etc. Traditional028

NER models are feature-engineering and machine029

learning based (Zhou and Su, 2002; Takeuchi and030

Collier, 2002; Agerri and Rigau, 2016). Benefiting031

from the development of deep learning, neural-032

network-based NER models have achieved state-033

of-the-art results on several public benchmarks034

(Lample et al., 2016; Peters et al., 2018; Devlin035

et al., 2018; Yamada et al., 2020; Yan et al., 2021).036

Recent studies (Lin et al., 2020; Agarwal et al.,037

2021) show that, context does influence predictions038

of NER models, but the main factor driving high039

performance is learning the named tokens them-040

selves. Consequently, NER models underperform041

Precision Recall
InDict OutDict Diff InDict OutDict Diff

PER 88.03 75.40 14% 92.90 85.20 8%
ORG 73.51 72.77 1% 81.93 76.56 7%
GPE 79.55 78.21 2% 85.37 77.22 10%
FAC 65.91 65.67 0% 86.05 65.67 24%
ALL 83.37 71.97 12% 89.08 79.11 11%

Table 1: The comparison between the in-dictionary and
out-of-dictionary parts of the CoNLL 2003 baseline
(Lin et al., 2020), which was tested on Bert-CRF. It is
obvious that the performance gap between InDict and
OutDict is significantly large.

when predicting entities that have not been seen 042

during training (Fu et al., 2020; Lin et al., 2020), 043

which is referred to as an Out-of-Vocabulary(OOV) 044

problem. 045

There are three classical strategies to alleviate 046

the OOV problem: external knowledge, OOV word 047

embedding, and contextualized embedding. The 048

first one is to introduce additional features, e.g., 049

entity lexicons (Zhang and Yang, 2018), part-of- 050

speech tags (Li et al., 2018), which alleviates the 051

model’s dependence on word embeddings. How- 052

ever, the external knowledge is not always easy 053

to obtain. The second strategy is to get a better 054

OOV word embedding (Peng et al., 2019; Fukuda 055

et al., 2020). The strategy is learning a static 056

OOV embedding representation, but not directly 057

utilize the context. Last one is fine-tune pre-trained 058

models, e.g., ELMo (Peters et al., 2018), BERT 059

(Devlin et al., 2018), which provide contextualized 060

word representations. Unfortunately, Yan et al. 061

(2021) shows that the higher performance of pre- 062

trained models could be the results of learning the 063

subword structure better. 064

How do we make the model focus on contextual 065

information to tackle the OOV problem? Motivated 066

by the information bottleneck principle (Tishby 067

et al., 2000), we propose a novel learning frame- 068

work - Mutual Information based Named Entity 069
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Recognition (MINER). The proposed method pro-070

vides an information-theoretic perspective to the071

OOV problem by training an encoder to minimize072

task-irrelevant nuisances while keeping predictive073

information.074

Specifically, MINER contains two mutual infor-075

mation based learning objectives: i) generalizing in-076

formation maximization, which aims to maximize077

the mutual information between representations078

and well-generalizing features, i.e., context and079

entity surface forms; ii) superfluous information080

minimization, which prevents the model from rote081

memorizing the entity names or exploiting biased082

cus via eliminating entity name information.083

Our main contributions are summarized as fol-084

lows:085

1. We propose a novel learning framework, i.e.,086

MINER, from an information theory perspective,087

aiming to improve the robustness of entity changes088

by eliminating entity-specific and maximize well-089

generalizing information.090

2. We show its effectiveness on several settings091

and benchmarks, and suggest that MINER is a092

reliable approach to better OOV entity recognition.093

2 Background094

In this section, we highlight the information bot-095

tleneck principle. Subsequently, the analysis of096

possible issues when applying it to OOV entity097

recognition was provided. Furthermore, we review098

related techniques in deriving our framework.099

Information Bottleneck (IB) principle origi-
nated in information theory, and provides a theoret-
ical framework for analyzing deep neural networks.
It formulates the goal of representation learning as
an information trade-off between representation
compression and predictive power. Given the
input dataset (X,Y), it seeks to learn the internal
representation Z of some intermediate layers by:

LIB = −I(Z;Y ) + β ∗ I(Z;X),

where I represents the mutual information(MI), a100

measure of the mutual dependence between the two101

variables. The trade-off between the two MI terms102

is controlled by a Lagrange multiplier β. A low103

loss indicates that representation Z does not keep104

too much information from X while still retaining105

enough information to predict Y.106

Section 5 suggests that directly applying IB to107

NER can not bring obvious improvement. We108

argue that IB cannot guarantee well-generalizing 109

representation. 110

On the one hand, it has been shown that it is 111

challenging to find a trade-off between high com- 112

pression and high predictive power (Tishby et al., 113

2000; Wang et al., 2019; Piran et al., 2020). When 114

compressing task-irrelevant nuisances, however, 115

useful information will inevitably be left out. On 116

the other hand, it is unclear for the IB principle 117

which parts of features are well-generalizing and 118

which are not, as we usually train a classifier to 119

solely maximize accuracy. Consequently, neural 120

networks tend to use any accessible signal to do 121

so (Ilyas et al., 2019), which is referred to as a 122

shotcut learning problem (Geirhos et al., 2020). 123

For training sets with limited size, it may be easier 124

for neural networks to memorize entity names 125

rather than to classify them by context and common 126

entity features (Agarwal et al., 2021). In Section 127

4, we demonstrate how we extend BN to the NER 128

task and address these issues. 129

3 Model Architecture 130

In recent years, NER systems have undergone 131

a paradigm shift from sequence labeling, which 132

formulates NER as a token-level tagging task 133

(Chiu and Nichols, 2016; Akbik et al., 2018; Yan 134

et al., 2019), to span prediction (SpanNER), which 135

regards NER as a span-level classification task 136

(Mengge et al., 2020; Yamada et al., 2020; Fu et al., 137

2021). We choose SpanNER as base architecture 138

for two reasons: 139

1) SpanNER can yield the whole span repre- 140

sentation, which can be directly used for optimize 141

information. 2) compared with sequence labeling, 142

SpanNER does better in sentences with more OOV 143

words (Fu et al., 2021). 144

Overall, SpanNER consists of three major mod- 145

ules: token representation layer, span representa- 146

tion layer, and span classification layer. Besides, 147

our method inserts a bottleneck layer to the archi- 148

tecture for information optimization. 149

3.1 Token Representation Layer 150

Let X = {x1, x2, · · · , xn} represents the input 151

sentence, thus, the token representation hi is as 152

follows: 153

u1, · · · , un = Embedding(x1, · · · , xn) (1) 154

155

h1, · · · , hn = Encoder(u1, · · · , un) (2) 156
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Figure 1: Visualization of MINER, where Sentence1 and Sentence2 share the same context and entity labels,
while their entity name is different. s1 and s2 represents the entity representation of Sentence1 and Sentence2,
respectively. z1 and z2 are compressed representations which are sampled by p(z1|s1) and p(z2|s2), respectively,
which are implemented by information bottleneck(IB) layer. Our method add two additional learning objectives
to basic architecture. The first one is to maximize the mutual information, i.e., Iϵ(z1; z2), to enhance context
information and entity surface form information of z1 and z2. The second objective is minimize the Jensen-Shannon
divergence which represents the mutual information between z1 and z2, which aims to eliminating task irrelevant
nuisances.

where Embedding() is the non-contextualized157

word embeddings, e.g., Glove (Pennington et al.,158

2014) or contextualized word embeddings, e.g.,159

ELMo (Peters et al., 2018), BERT (Devlin et al.,160

2018). Encoder() can be any network struc-161

tures with context encoding function, e.g., LSTM162

(Hochreiter and Schmidhuber, 1997), CNN (LeCun163

et al., 1995), transformer (Vaswani et al., 2017),164

and so on.165

3.2 Span Representation Layer166

For all possible spans S = {s1, s2, · · · , sm}167

of sentence X , we re-assign a label y ∈ Y168

for each span. Take "Berlin is wonderful"169

as an example, its possible spans and labels170

are {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} and171

{LOC,O,O,O,O,O}, respectively.172

Given the start index bi and end index ei, the173

representation of span si can be calculated by174

two parts: boundary embedding and span length175

embedding.176

Boundary embedding: This part is calculated177

by concatenating the start and end tokens’ repre-178

sentation tbi = [hbi ;hei ].179

Span length embedding: In order to introduce180

the length feature, we additionally provide the181

length embedding tli, which can be obtained by182

a learnable look-up table.183

Finally, the span representation can be obtained184

as: ti = [tbi ; t
l
i].185

3.3 Information Bottleneck Layer 186

In order to optimize the information in the span 187

representation, our method additionally adds an 188

information bottleneck layer of the form: 189

N
(
z | fµ

e (t), f
Σ
e (x)

)
(3) 190

where fe is an MLP which outputs both the K- 191

dimensional mean µ of z as well as the K ∗ K 192

covariance matrix Σ. 193

3.3.1 Span Classification Layer 194

Once the information bottleneck layer is finished, 195

zi is fed into the classifier to obtain the probability 196

of its label yi. Based on the probability, the basic 197

loss function can be calculated as follows: 198

Lbase = − score(zi, yi)∑
y′∈Y score(zi, y′)

, (4) 199

where score() is a function that measures the 200

compatibility between a specified label and a span 201

representation: 202

score(zi, y
k) = exp(zTi y

k), (5) 203

where yk is a learnable representation of class k. 204

Heuristic Decoding A heuristic decoding so- 205

lution for the flat NER is provided to avoid the 206

prediction of over-lapped spans. For those over- 207

lapped spans, we keep the span with the highest 208

prediction probability and drop the others. 209

It’s worth noting that our method is flexible and 210

can be used with any other NER model based 211
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on span classification. In next section, we will212

introduce two additional objectives to tackle the213

OOV problem of NER.214

4 MI-based objectives215

Motivated by IB (Tishby et al., 2000; Federici216

et al., 2020), we can subdividing I(X;Z) into217

two components by using the chain rule of mutual218

information(MI):219

I(X;Z) = I(Y ;Z)︸ ︷︷ ︸
predictive

+ I(X;Z|Y )︸ ︷︷ ︸
superfluous

, (6)220

The first term determines how much informa-221

tion about Y is accessible from Z. While the222

second term, conditional mutual information term223

I(X;Z|Y ), denotes the information in Z that is224

not predictive of Y .225

For NER, which parts of the information re-226

trieved from input are useful and which are redun-227

dant?228

From human intuition, text context should be229

the main predictive information for NER. For230

example, "The CEO of X resigned", the type of X231

in each of these contexts should always be "ORG".232

Besides, entity mentions also provide much in-233

formation for entity recognition. For example,234

nearly all person names capitalize the first letter235

and follow the "firstName lastName" or "lastName236

firstName" patterns. However, entity name is not a237

well-generalizing features. By simply memorizing238

the fact which span is an entity, it may be possible239

for it to fit the training set, but it is impossible to240

predict entities that have never been seen before.241

We convert the targets of Eq. (6) into a form242

that is easier to solve via a contrastive strategy.243

Specifically, consider x1 and x2 are two contrastive244

samples of similar context, and contains different245

entity mentions of the same entity category, i.e., s1246

and s2, respectively. Assuming both x1 and x2 are247

both sufficient for inferring label y. The mutual248

information between x1 and z1 can be factorized249

to two parts.250

I(x1; z1) = I(z1;x2)︸ ︷︷ ︸
consistent

+ I(x1; z1|x2)︸ ︷︷ ︸
specific

, (7)251

where z1 and z2 are span representations of s1 and252

s2, respectively, I(z1;x2) denotes the information253

that isn’t entity-specific. And I(x1; z1|x2) repre-254

sents the information in z1 which is unique to x1255

but is not predictable by sentence x2, i.e., entity- 256

specific information. 257

Thus any representation z containing all informa- 258

tion shared from both sentences would also contain 259

the necessary label information, and sentence- 260

specific information is superfluous. So Eq. (6) 261

can be approximated by Eq. (7) by: 262

maximize I(z1; y) ∼ I(z1;x2), (8) 263

264

minimize I(x1; z1|y) ∼ I(x1; z1|x2), (9) 265

The target of Eq. (8) is defined as generaliz- 266

ing information maximization. We proved that 267

I(z1; z2) is a lower bound of I(z1;x2)(proof could 268

be found in appendix 7). InfoNCE (Oord et al., 269

2018) was used as a lower bound on MI and can 270

be used to approximate I(z1; z2). Subsequently, it 271

can be optimized by: 272

Lgi = −Ep

[
gw(z1, z2)− Ep′ log

∑
z′

exp gw(z1, z
′)

]
,

(10) 273

where gw(·, ·) is a compatible score function ap- 274

proximated by a neural network, z2 are the positive 275

entity representations from the joint distribution 276

p of original sample and corresponding generated 277

sample, z′ are the negative entity representations 278

drawn from the joint distribution of original sample 279

and other original sample. 280

The target of Eq. (9) is defined as superfluous 281

information minimization. To restrict this term, 282

we can minimize an upper bound of I(x1; z1|x2) 283

(proofs could be found in appendix 7) as follows: 284

Lsi = Ex1,x2Ez1,z2 [DJS [Pz1 ||Pz2 ]] , (11) 285

where DJS represents Jensen-Shannon diver- 286

gence. In practice, Eq. (11) encourage z to be 287

invariant to entity changes. 288

4.1 Contrastive sample generation 289

It is difficult to obtain samples with similar con- 290

texts but different entity words. We generate 291

contrastive samples by the mention replacement 292

mechanism(Dai and Adel, 2020). For each mention 293

in the sentence, we replace it by another mention 294

from the original training set, which has the same 295

entity type. The corresponding span label can be 296

changed accordingly. For example, "LOC" mention 297

"Berlin" in sentence "Berlin is wonderful in the 298

winter" is replaced by "Iceland". 299
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Datasets sents entities OOV Rate
WNUT2017 1286 947 1.00
TwitterNER 3257 3990 0.62
BioNER 3856 4344 0.77
Conll2003-Typos 2676 4130 0.71
Conll2003-OOV 3684 5648 0.96

Table 2: Number of OOV entities in the test sets.

4.2 Training300

Combine Eq. (4), (10), and (11), we can get the fol-301

lowing objective function, which try to minimize:302

L = Lbase + γ ∗ Lgi + β ∗ Lsi, (12)303

where γ and β are the weights of the generaliz-304

ing information loss and superfluous information305

loss, respectively.306

5 Experiment307

In this section, we verified the performance of308

the proposed method on five OOV datasets, and309

compared it with other methods. In addition, We310

tested the universality of the proposed method in311

various pre-trained models.312

5.1 Datasets and Metrics313

Datasets We performed experiments on:314

1. WNUT2017 (Derczynski et al., 2017), a315

dataset focus on unusual, previous-unseen316

entities in training data, and is collected from317

social media.318

2. TwitterNER (Zhang et al., 2018), an English319

NER dataset created from Tweets.320

3. BioNER (Kim et al., 2004), the JNLPBA 2004321

Bio-NER dataset focus on technical terms in322

the biology domain.323

4. Conll03-Typos (Wang et al., 2021), which324

is generated from Conll2003 (Sang and325

De Meulder, 2003). The entities in the test set326

is replaced by typos version(character modify,327

insert, and delete operation).328

5. Conll03-OOV (Wang et al., 2021), which329

is generated from Conll2003 (Sang and330

De Meulder, 2003). The entities in the test331

set is replaced by another out-of-vocabulary332

entity in test set.333

Table 2 reports the static results of the OOV 334

problem on the test sets of each dataset. As shown 335

in the table, the test set of these data sets comprises 336

a substantial amount of OOV entities. 337

Metrics We measured the entity-level micro av- 338

erage F1 score on the test set to compare the results 339

of different models. 340

5.2 Baseline methods 341

Li et al. (2020) share the same intuition, enrich 342

word representations with contextual, with us. 343

However, the work is neither open source nor 344

reported on the same data set, so this method is not 345

compared with MINER. We compare our method 346

with baselines as follows: 347

• SpanNER (Fu et al., 2021), which is trained by 348

original SpanNER framework, means without 349

any constraint and extra data processing. 350

• Vanilla information bottleneck(VaniIB), this 351

method employs the original information bot- 352

tleneck constraint to the SpanNER, which is 353

optimized based on Alemi et al. (2016). Com- 354

pared with our method, it directly compresses 355

all the information from the input. 356

• Dai and Adel (2020) (DataAug) , which trains 357

model with data augmentation strategy, while 358

keeps the same model architecture of Span- 359

NER. This model is trained by 1:1 original 360

training set and entity replacement training set, 361

which keeps the same input as the proposed 362

method. 363

• Shahzad et al. (2021) (InferNER), the method 364

focus on word-, character-, and sentence-level 365

information for NER in short-text, without 366

recurring to external sources. In addition, 367

it is able to incorporate visual information 368

and introduce an attention component which 369

computes attention weight probabilities over 370

textual and text-relevant visual contexts sepa- 371

rately. 372

• Li et al. (2021) (MIN), which utilizes both 373

segment-level information and word-level de- 374

pendencies, and incorporates an interaction 375

mechanism to support information sharing be- 376

tween boundary detection and type prediction 377

to enhance the performance for the NER task. 378

• Fukuda et al. (2020) (CoFEE), which refer 379

to pre-trained word embeddings for known 380
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CoNLL 2003Methods WNUT2017 JNLPBA TwitterNER
Typos OOV

VaniIB 51.55 73.22 71.00 83.49 70.12
DataAug 52.29 75.85 73.69 81.73 69.6
InferNER 50.52 - 74.17 - -
MIN 49.93 77.97 - - -
CoFEE 39.1 - 69.5 - -
MAML 24.19 76.36 - - -
SA-NER 50.36 - - - -
SpanNER (Bert large) 51.83 73.78 71.57 81.83 64.43
SpanNER (Roberta large) 51.65 74.49 71.7 82.85 64.7
SpanNER (AlBert large) 49.13 71.08 70.33 82.49 64.12
Our Method (Bert large) 54.52 77.03 75.26 87.09 78.03
Our Method (Roberta large) 54.86 76.43 75.38 87.57 79.15
Our Method (Albert large) 51.94 75.23 72.67 86.53 77.95

Table 3: Performance of the proposed method compared with state-of-the-arts.

words with similar surfaces to target OOV381

words.382

• Nie et al. (2020) (SA-NER), which utilize383

semantic enhancement methods to reduce384

the negative impact of data sparsity prob-385

lems. Specifically, the method obtains the386

augmented semantic information from a large-387

scale corpus, and propose an attentive seman-388

tic augmentation module and a gate module389

to encode and aggregate such information,390

respectively.391

To verify the universality of our method, we392

measured its performance in various pre-trained393

models, i.e., Bert (Devlin et al., 2018), Roberta394

(Liu et al., 2019), Albert (Lan et al., 2019).395

5.3 Implementation Details396

Bert-large released by Devlin et al. (2018) is se-397

lected as our base encoder. The learning rate is398

set to 5e-5, and the dropout is set to 0.2. The399

output dim of information bottleneck layer is 50.400

In order to make a trade-off for the performance401

and efficiency, on the one hand, we truncate the402

part of the sentence whose tokens exceeds 128. On403

the other hand, we count the length distribution of404

entity length in different datasets, and finally chose405

4 as the maximum enumerated entity length. The406

values of β and γ are different for different data407

sets. Empirically, 1e-5 for β and 0.01 for γ can408

get promised results. The model is trained in a409

NVIDIA GeForce RTX 2080Ti GPU. Checkpoints410

with top-3 performance are finally evaluated on the 411

test set to report averaged results. 412

5.4 Main Results 413

We demonstrate the effectiveness of MINER 414

against other state-of-the-art models. As shown 415

in table 3, we have the following observations and 416

analysis: 417

1) Our baseline model, i.e., SpanNER, does a 418

good job at predicting OOV entities. Compared to 419

sequence labeling, the the span classification could 420

model the relation of entity tokens directly;2) The 421

performance of SpanNER is further boosted with 422

our proposed approach, which proved the effective- 423

ness of our method. As shown in table, we almost 424

beats all other SOTA methods without any external 425

resource;3) Compared to Typos data transformation, 426

it is more difficult for model to predict OOV words. 427

To pre-trained model, typos word may not appear 428

in training set, but they share most subwords with 429

the original token. MOreover, the subword of OOV 430

entity may be rare; 4) It seems that the traditional 431

information bottleneck will not greatly improve 432

the OOV prediction ability of the model. We 433

argue that the traditional information bottlenecks 434

will indiscriminately compress the information in 435

the representation, leading to underfitting; 5Our 436

model has significantly improved the performance 437

of the model on the entity perturbed methods of 438

typos and OOV, proving that our method can not 439

only improve the generalization ability of OOV 440

words in the field, but also significantly improve 441

the robustness in the face of noise; 6) It is clearly 442

6



67

72

F1

𝛾 = 0

𝛾

𝛽 = 1. 𝐸-03

1.E-06  5.E-06  1.E-05  1.E-04     1.E-03               0.01                           0.1           

Figure 2: Illustration of f1 score in different γ values.
We fix β = 1e03, and the orange line is f1 score when
β = 0.
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Figure 3: Illustration of f1 score in different β values.
We fix γ = 1e04, and the orange line is f1 score when
β = 0.

that our proposed method is universal and can443

further improve OOV prediction performance for444

different embedding models. As we get stably445

improvements on Bert, Roberta, and Albert.446

5.5 Ablation Study447

We also perform ablation studies to validate the448

effectiveness of each part in MINER. Table 4449

demonstrates the results of different settings for450

the proposed training strategy equipped with BERT.451

After only adding the Lgi loss for enhance context452

and entity surface form information, we find that453

the results are better than the original PLMs. Sim-454

ilar phenomenon occured in Lsi, too. It reflects455

that both Lgi and Lsi are beneficial to improve the456

generalizing ability on OOV entities. Moreover, the457

results on three dataset are significantly improved458

by add both Lgi and Lsi learning objectives. It459

means Lgi and Lsi can boost each over, which460

proves that our method enhances representation via461

deep understanding of context and entity surface462

forms and discourages representation from rotate463

Dataset OOV MI F1

WNUT 2017

- - 51.83
✓ - 52.57
- ✓ 53.91
✓ ✓ 54.52

JNLPBA

- - 73.78
✓ - 75.23
- ✓ 74.22
✓ ✓ 77.03

Twitter-NER

- - 71.57
✓ - 73.78
- ✓ 73.32
✓ ✓ 75.26

Table 4: Ablation study results on three datasets.

memorizing entity names or exploiting biased cues 464

in data. 465

5.6 Sensitivity Analysis of β and γ 466

To show the different influence of our proposed 467

training objectives Lgi and Lsi, we conduct sensi- 468

tivity analysis of the coefficient β and γ. Figure 469

2 shows the performance change under different 470

settings of the two coefficients. The yellow line 471

denotes ablation results without the corresponding 472

loss functions (with β=0 or γ=0). From Figure 2 473

we can observe that the performance is significantly 474

enhanced with a small rate of β or γ, where the 475

best performance is achieved when β=1e-3 and 476

γ=1e-4, respectively. It probes the effectiveness 477

of our proposed training objectives that enhances 478

representation via deep understanding of context 479

and entity surface forms and discourages repre- 480

sentation from rotate memorizing entity names or 481

exploiting biased cues in data. When the coefficient 482

rate increases continuously, the performance shows 483

a decline trend, which means the over-constraint 484

of Lgi or Lsi will hurt the generalizing ability of 485

predicting the OOV entities. 486

5.7 Interpretable Analysis 487

The above experiments show the promising per- 488

formance of MINER on predicting the unseen 489

entities. To further investigate which part of the 490

sentence MINER focuses on, we visualize the 491

attention weights over entities and contexts. We 492

demonstrate an example in Figure 4 , where is 493

selected from TwitterNER. The attention score is 494

calculated by averaging the attention weight of the 495

0th layer of BERT. Take the attention weights of 496

entity "State Street" as a example, it is obvious 497

that baseline model, i.e., SpanNER, focus on entity 498
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SpanNER

but Chicago fans are piling into State inStreet the rain

but Chicago fans are piling into State inStreet the rain

…

…

…

…

MINER

LOC

Figure 4: Visualization of attention weights over entities and context.

words themselves. While the scores of our model499

is more average, means that our method concern500

more context information.501

6 Related Work502

6.1 External Knowledge503

This group of methods makes it easier to predict504

OOV entities using external knowledge. Zhang505

and Yang (2018) Use a dictionary to list numerous506

entity mentions. It is possible to get stronger "look-507

up" models by integrating dictionary information,508

but there is no guarantee that entities outside the509

training set and vocabulary will be correctly iden-510

tified. To diminish the model’s dependency on511

OOV embedding, Li et al. (2018) introduces part-512

of-speech tags. External resources are not always513

available, which is a limitation of this strategy.514

6.2 OOV word Embedding515

The OOV problem can be alleviated by improving516

the OOV word embedding. The character ngram517

of each word is used by Bojanowski et al. (2017)518

to represent the OOV word embedding. Pinter519

et al. (2017) captures morphological features using520

character-level RNN. Another technique is to first521

match the OOV words with the words that have522

been seen in training, then replace the OOV words’523

embedding with the seen words’ embedding. Peng524

et al. (2019) trains a student network to predict525

the closest word representation to the OOV term.526

Fukuda et al. (2020) referring to pre-trained word527

embeddings for known words with similar surfaces528

to target OOV words. This kind of method is529

learning a static OOV embedding representation,530

and does not directly utilize the context.531

6.3 Contextualized Embedding532

Contextual information is used to enhance the533

representation of OOV words in this strategy. (Hu534

et al., 2019) formulate the OOV problem as a K-535

shot regression problem and learns to predict the536

OOV embedding by aggregating only K contexts537

and morphological features. Pre-trained models538

contextualized word embbeddings via pretraining 539

on large background corpora. Furthermore, contex- 540

tualized word embeddings can be provided by the 541

pre-trained models which are pre-trained on large 542

background corpora (Peters et al., 2018; Devlin 543

et al., 2018; Liu et al., 2019). Yan et al. (2021) 544

shows that BERT are not always better at capturing 545

context as compared to Gloe-based BiLSTM-CRFs. 546

Their higher performance could be the results of 547

learning the subword structure better. 548

7 Conclusion 549

Based on the recent studies of NER, we analyzed 550

how to improve the OOV entity recognition. In 551

this work, we propose a novel and flexible learn- 552

ing framework - MINER, to tackle OOV entities 553

recognition issue from an information-theoretic 554

perspective. On the one hand, this method can 555

enhance the context information of the output of 556

the encoder. On the other hand, it can safely 557

eliminate task-irrelevant nuisances and prevents the 558

model from rote memorizing the entities. Specifi- 559

cally, the proposed approach contains two mutual 560

information based training objectives: generaliz- 561

ing information maximization, and superfluous 562

information minimization. Experiments on various 563

datasets demonstrate that MINER achieves much 564

better performance in predicting out-of-vocabulary 565

entities. 566
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A Appendix834

This section provides the proof of generalizing835

information maximization, i.e., Eq. (8). Consider836

x1 and x2 are two contrastive samples of similar837

context, and contains different entity mentions of838

the same entity category, i.e., s1 and s2, respec-839

tively.840

I(z1;x2) =I(z1;x2z2)− I(z1; z2|x2)
=I(z1;x2z2)

=I(z1; z2) + I(z1;x2|z2)
≥I(z1; z2)

(13)841

B Appendix842

This section provides the proof of superfluous843

information minimization, i.e. Eq. (9).844

845
846

I(x1; z1|x2)

847
= Ex1,x2∼p(x1,x2)Ez∼p(z1|v1) log

p(x1,z1|x2)
p(x1|x2)p(z1|x2)

848
= Ex1,x2∼p(x1,x2)Ez∼p(z1|v1) log

p(z1|x1)p(x1|x2)
p(x1|x2)p(z1|x2)

849
= Ex1,x2∼p(x1,x2)Ez∼p(z1|v1) log

p(z1|x1)
p(z1|x2)

850
= Ex1,x2∼p(x1,x2)Ez∼p(z1|v1) log

p(z1|x1)p(z2|x2)
p(z2|x2)p(z1|x2)

851
= DKL(p(z1|x1)||p(z2|x2))

852
−DKL(p(z1|x2)||p(z2|x2))

853
≤ DKL(p(z1|x1)||p(z2|x2))(14)

854
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